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Abstract: In this study, a two-step approximate Bayesian computation (ABC) updating framework 15 
is developed for dynamic responses. In this framework, the Euclidian and Bhattacharyya distances 16 
are utilized as uncertainty quantification (UQ) metrics to define approximate likelihood functions in 17 
the preliminary and main steps, respectively. A new algorithm combining Bayesian updating with 18 
structural reliability methods (BUS) with the adaptive Kriging model is then proposed to effectively 19 
execute the ABC updating framework. The performance of the proposed procedure is demonstrated 20 
with a seismic-isolated bridge model updating application using simulated seismic response data. 21 
This application denotes that the Bhattacharyya distance is a powerful UQ metric with the capability 22 
to recreate wholly the distribution of target observations and the proposed procedure can produce 23 
sufficient results with the much-reduced computational demand compared with another well-known 24 
method, transitional Markov chain Monte Carlo (TMCMC). 25 

Introduction 26 

Bayesian model updating using observed dynamic response data has a broad range of applications 27 
in a number of engineering fields (Beck and Ktafygiotis 1998; Ktafygiotis and Beck 1998; Cheung and 28 
Beck 2009; Jensen et al. 2013; Rocchetta et al. 2018). In Bayesian model updating, uncertainties in both 29 
the simulation and observation procedures should be appropriately considered; hence, uncertainty 30 
quantification (UQ) metrics are significant in order to comprehensively and quantitatively measure 31 
the stochastic discrepancy between model predictions and observations. 32 

In the context of UQ, model parameters are categorized according to the involvement of aleatory 33 
or/and epistemic uncertainties as (Kennedy and O’Hagan 2001; Crespo et al. 2014):  34 

I) Parameters without any uncertainties, appearing as explicit constants; 35 
II) Parameters with only aleatory uncertainty, appearing as random variables with fully 36 

determined probability characteristics such as density shapes and distribution coefficients;  37 
III) Parameters with only epistemic uncertainty, appearing as unknown-but-fixed constants 38 

bounded by given intervals; 39 
IV) Parameters with both aleatory and epistemic uncertainties, appearing as imprecise random 40 

variables with only vaguely determined probability characteristics. 41 

Both Categories III and IV parameters are considered in Bayesian model updating, whose target is 42 
not the single set of model parameters themselves, but a reduced space of epistemic parameters such 43 
as reduced intervals of Category III parameters and reduced bounds of the cumulative probability 44 
function (CDF) of Category IV parameters. 45 

The stochastic discrepancy between model predictions and observations caused by Category III 46 
parameters can be quantified using the classical Euclidian distance as the distance-based UQ metric. 47 
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On the other hand, quantifying the stochastic discrepancy caused by Category IV parameters requires 48 
a more comprehensive UQ metric capable of capturing a higher level of statistical information. The 49 
Bhattacharyya distance (Bhattacharyya 1946) has been recently investigated as such a potential UQ 50 
metric (Bi et al. 2017). The Bhattacharyya distance is a stochastic measure between two sets of random 51 
samples, i.e., model predictions and observations, and accounts for their probability distributions.  52 

Bi et al. (2019) developed a Bayesian model updating framework, in which the Bhattacharyya 53 
distance was employed as the UQ metric to define an approximate but efficient likelihood function 54 
based on the approximate Bayesian computation (ABC) method (Turner and Van Zandt 2012; Safta 55 
et al. 2015). This framework was demonstrated upon a three degree of freedom (DOF) spring-mass 56 
system example and showed to have a potential to recreate wholly the target observations. While the 57 
target outputs in this example is scalar modal responses, the direct computation of the Bhattacharyya 58 
distance becomes infeasible for high-dimensional dynamic responses because of the so-called curse 59 
of dimensionality. Hence, a dimension reduction procedure is proposed in this study to calculate the 60 
Bhattacharyya distance for such dynamic responses. 61 

On the other hand, Markov chain Monte Carlo (MCMC) algorithms are generally accepted as 62 
the most attractive Bayesian inference tools (Beck and Au 2002; Cheung and Beck 2009). Of particular 63 
importance among these algorithms is transitional Markov chain Monte Carlo (TMCMC) (Ching and 64 
Chen 2007; Betz et al. 2016) and Bi et al. (2019) also utilized TMCMC to perform the ABC updating 65 
framework. Although TMCMC is quite flexible and general, it requires a large number of model 66 
evaluations for calculating the likelihood function. In the ABC updating framework, the approximate 67 
likelihood function is calculated based on the Bhattacharyya distance. The Bhattacharyya distance 68 
evaluation requires random samples of model predictions generated by Monte Carlo simulation 69 
(MCS), Therefore, the number of model evaluations is extremely large compared with the general 70 
model updating and the computational cost becomes excessive in cases of time-consuming model 71 
evaluations, which are often involved in predicting dynamic responses. 72 

Straub and Papaioannou (2015) recently provided a formulation called Bayesian updating with 73 
structural reliability methods (BUS). The key idea of this formulation is to transform the Bayesian 74 
updating problem into an equivalent reliability problem, allowing to obtain samples from posterior 75 
distributions as conditional samples located into the failure domain of the adjunct reliability problem. 76 
By employing the Subset simulation technique (Au and Beck 2001), BUS has shown great efficiency 77 
in estimating posterior distributions (Betz et al. 2018). Moreover, its efficiency depends on the so-78 
called likelihood multiplier. Whereas the optimal multiplier ensuring the best acceptance rate is 79 
generally unknown, it can be defined a priori for the approximate likelihood function; hence, BUS 80 
has a potential to be efficiently integrated with the ABC updating framework.  81 

At the same time, BUS can further improve its efficiency by applying metamodeling techniques 82 
(Giovanis et al. 2017).  Among various types of the metamodels, the adaptive Kriging model has been 83 
shown to be one of the most accurate and efficient methods in solving reliability problems (Echard et 84 
al. 2011; Echard et al. 2013; Huang et al. 2016). However, the failure probability associated with the 85 
equivalent reliability problem in BUS is very small and thus the adaptive Kriging model becomes 86 
significantly inefficient, since the number of candidate samples should be extremely large to ensure 87 
that enough samples are contained in the failure domain. On the other hand, Wei et al. (2019) recently 88 
proposed a new algorithm called AK-MCMC, in which the Kriging model is adaptively trained upon 89 
dynamically updated MCMC populations. This algorithm is in particular suitable for extremely rare 90 
failure events. The objective of this study is hence to develop an efficient ABC updating framework 91 
for dynamic responses by combining BUS with the AK-MCMC algorithm.  92 

The structure of this paper is as follows. In Section 2, we describes the distance-based ABC 93 
updating framework with the dimension reduction procedure to compute the Bhattacharyya distance 94 
for high-dimensional dynamic responses. Section 3 outlines the proposed algorithm for Bayesian 95 
inference combining BUS with the adaptive Kriging model based on the AK-MCMC algorithm. The 96 
principle and illustrative application is detailed in Section 4, using a model updating problem of a 97 
seismic-isolated bridge based on simulated seismic response data. The computational efficiency of 98 
the proposed scheme is also presented by comparing with the results using TMCMC. Finally, some 99 
conclusions are given in Section 5. 100 
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Approximation Bayesian Computation for Dynamic Response Data 101 

Formulations of the Bhattacharyya Distance for Dynamic Responses 102 

In the context of Bayesian model updating, the investigating system can be expressed as: 103 

𝐲 = ℎ(𝐱) (1) 

where 𝐱 = [𝑥1,𝑥2 ,⋯ , 𝑥𝑛 ] is a column vector of 𝑛 input uncertain parameters; 𝐲 = [𝑦1 , 𝑦2 ,⋯ , 𝑦𝑚] is a 104 
column vector of the output feature as 𝑚-dimensional dynamic responses; ℎ(∙) is the simulator (e.g. 105 
finite element model). The uncertainties of the system are first characterized by uncertain parameters 106 
in various categories (refer Section 1) describing the model parameters and then propagated through 107 
the simulator into the uncertain output features. Suppose the sample size of the model parameters is 108 
𝑁𝑠𝑖𝑚, the simulator ℎ  is executed 𝑁𝑠𝑖𝑚 times to generate the sample set of the simulated features 109 
𝐘𝑠𝑖𝑚 ∈ ℝ𝑁𝑠𝑖𝑚×𝑚: 110 

𝐘𝑠𝑖𝑚 = [𝐲1 ,𝐲2 ,⋯ , 𝐲𝑁𝑠𝑖𝑚
]

𝑇
,with 𝐲𝑖 = [𝑦1𝑖, 𝑦2𝑖,⋯ , 𝑦𝑚𝑖 ],∀𝑖 = 1, 2, ⋯ , 𝑁𝑠𝑖𝑚 (2) 

In addition to the simulated features, observed features are required as the target of model 111 
updating. Suppose the number of observations is 𝑁𝑜𝑏𝑠, the sample set of the observed features has a 112 
similar structure as Eq. (2), where only the number of rows is changed: 𝐘𝑜𝑏𝑠 ∈ ℝ𝑁𝑜𝑏𝑠×𝑚 . The objective 113 
of Bayesian model updating can be expressed as to minimize the stochastic discrepancy between 𝐘𝑜𝑏𝑠 114 
and 𝐘𝑠𝑖𝑚 by updating the uncertainty characteristics of the model parameters. 115 

In the following, possible UQ metrics are defined to capture the discrepancy between 𝐘𝑜𝑏𝑠 and 116 
𝐘𝑠𝑖𝑚. The very classical Euclidian distance metric is expressed as: 117 

𝑑𝐸(𝐘𝑜𝑏𝑠,𝐘𝑠𝑖𝑚) = √(𝐘𝑜𝑏𝑠 − 𝐘𝑠𝑖𝑚)(𝐘𝑜𝑏𝑠 − 𝐘𝑠𝑖𝑚)𝑇 (3) 

where 𝐘∎ is a row vector of the means of the output features. The Euclidian distance is a point -to-118 
point distance capable to capture the stochastic discrepancy caused by Category III parameters. In 119 
the presence of Category IV parameters, it is more desirable to employ a more comprehensive metric 120 
capable to accounting for a higher level of statistical information from the sample sets. 121 

The Bhattacharyya distance is herein proposed as an alternative metric to more robustly measure 122 
the degree of overlap between distributions of two sample sets. Its original definition is given as: 123 

𝑑𝐵(𝐘𝑜𝑏𝑠 ,𝐘𝑠𝑖𝑚) = − log [∫ √𝑝𝑜𝑏𝑠(𝑦)𝑝𝑠𝑖𝑚(𝑦)
𝕪

d𝑦] (4) 

where 𝑝∎(𝑦) is the probability density function (PDF) of the sample set of each output feature; 𝕪 is 124 
the 𝑚-dimensional joint PDF space; ∫ ∎

𝕪
d𝑦 is the integration performed over the whole feature space.  125 

Differently from the Euclidian distance, the Bhattacharyya distance considers not only the means but 126 
also the variances, covariances, and even the distribution shapes of the samples sets. Nevertheless, 127 
the direct evaluation of Eq. (4) is not feasible because precise estimation of the PDF is generally 128 
unavailable, especially for applications where experiments are difficult or expensive. Bi et al. (2019) 129 
therefore proposed the so-called binning algorithm to evaluate the probability mass function (PMF) 130 
of a discrete distribution, such that the discrete Bhattacharyya distance is used instead. The PMF is a 131 
function which maps the possible values of a discrete random variable to the probabilities of their 132 
occurrence (Grimmett and Stirzaker 2001). The discrete Bhattacharyya distance is defined as (Patra 133 
et al. 2015): 134 

𝑑𝐵(𝐘𝑜𝑏𝑠 ,𝐘𝑠𝑖𝑚) = − log { ∑ ⋯ ∑ √𝑝𝑜𝑏𝑠(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
)𝑝𝑠𝑖𝑚(𝑏𝑖1,𝑖2,⋯,𝑖𝑚

)

𝑛𝑏𝑖𝑛

𝑖1=1

𝑛𝑏𝑖𝑛

𝑖𝑚=1

} (5) 

where 𝑝∎(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
) is the PMF of the bin 𝑏𝑖1,𝑖2,⋯,𝑖𝑚

. The bin has 𝑚 subscripts because it is generated 135 
under a 𝑚-dimensional joint PMF space. More detailed information of the binning algorithm can be 136 
referred to Bi et al. (2019). 137 
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In this study, the output features are assumed to be very high-dimensional dynamic responses. 138 
In such a circumstance, the direct evaluation of Eq. (5) becomes infeasible since the total number of 139 
bins is exponentially increasing with the dimension 𝑚 due to the so-called curse of dimensionality. 140 
To overcome this issue, a dimension reduction procedure consisting of the following steps is herein 141 
proposed (Kitahara et al. 2020). 142 

1) Define the window length 𝐿 and divide 𝐲𝑖, ∀𝑖 = 1, 2, ⋯ , 𝑁𝑠𝑖𝑚 into ⌈𝑚 𝐿⁄ ⌉ intervals, where ⌈∎⌉ 143 
denotes the upper integer of the investigating values. This is also applied to 𝐘𝑜𝑏𝑠; 144 

2) Compute the root mean square (RMS) values of each interval 𝐑 = [𝑅1,𝑅2 ,⋯ , 𝑅⌈𝑚 𝐿⁄ ⌉ ] and 145 
generate the sample set of the RMS values 𝐑 𝐘𝑠𝑖𝑚

∈ ℝ𝑁𝑠𝑖𝑚×⌈𝑚 𝐿⁄ ⌉ : 146 

𝐑 𝐘𝑠𝑖𝑚
= [𝐑 𝐘𝑠𝑖𝑚

1 , 𝐑 𝐘𝑠𝑖𝑚

2 , ⋯ , 𝐑 𝐘𝑠𝑖𝑚

⌈𝑚 𝐿⁄ ⌉ ],with 𝐑𝐘𝑠𝑖𝑚

𝑗
= [𝑅1𝑗,𝑅2𝑗 ,⋯ , 𝑅𝑁𝑠𝑖𝑚𝑗]

𝑇
,∀𝑗 = 1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉  (6) 

and 𝐑 𝐘𝑜𝑏𝑠
∈ ℝ𝑁𝑜𝑏𝑠×⌈𝑚 𝐿⁄ ⌉. Note that, 𝐑 𝐘𝑜𝑏𝑠

 has a similar structure as Eq. (6), where only the 147 
number of rows is changed; 148 

3) Evaluate the Bhattacharyya distance 𝑑𝐵𝑗 between two sample sets of the RMS values 𝐑 𝐘𝑜𝑏𝑠

𝑗  149 
and 𝐑 𝐘𝑠𝑖𝑚

𝑗 , ∀𝑗 = 1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉; 150 
4) Obtain the RMS value of the Bhattacharyya distances and employ it as a UQ metric. 151 

The principle of the window length 𝐿  is that a smaller 𝐿  leads to employing more detailed 152 
information of the target dynamic responses, while it also leads to a larger computational demand. It 153 
is found that 𝐿 = 0.025 ∙ 𝑚 is a reasonable choice in this study. This corresponds to the case where 154 
each RMS contains 2.5 % of the target signals.  155 

Approximate Bayesian Computation 156 

The ABC updating framework with the distance-based UQ metrics is summarized here. Bayesian 157 
model updating is based on the Bayes’ theorem (Beck and Ktafygiotis 1998): 158 

𝑃(𝐱|𝐘𝑜𝑏𝑠) =
𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱)𝑃(𝐱)

𝑃(𝐘𝑜𝑏𝑠)
 (7) 

where 𝑃(𝐱) is the prior distribution of 𝐱, representing the initial knowledge about the parameters 𝐱; 159 
𝑃(𝐱|𝐘𝑜𝑏𝑠) is the posterior distribution of 𝐱, representing the updated knowledge about the parameters 160 
𝐱 based on the observed data; 𝑃(𝐘𝑜𝑏𝑠) is the normalized factor ensuring that the posterior distribution 161 
integrates to one; 𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱) is the likelihood function of 𝐘𝑜𝑏𝑠 for an instance of the parameters 𝐱.  162 

The likelihood function is the key component in Bayesian model updating, since it quantifies the 163 
degree of relevance of a model with a given instance of the parameters, by representing the possibility 164 
of the observations. Under the assumption of independence between each observation, the likelihood 165 
in Eq. (7) is theoretically defined as: 166 

𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱) = ∏ 𝑃(𝐘𝑘|𝐱)

𝑁𝑜𝑏𝑠

𝑘=1

 (8) 

where 𝑃(𝐘𝑘|𝐱) is the PDF of the 𝑘th observed data 𝐘𝑘 conditional to the corresponding instance of 167 
the parameters 𝐱. Note that, the precise estimation of the PDF requires a large number of simulated 168 
features. Consequently, an analytical formula of the likelihood as in Eq. (8) demands a huge number 169 
of model evaluations and it can be almost infeasible for complex simulators. 170 

The ABC method (Turner and Van Zandt 2012; Safta et al. 2015) is utilized to overcome the above 171 
obstacle by replacing the full likelihood with an approximate but efficient function containing the 172 
information of the observations and the instance of the parameters 𝐱. In the approximate likelihood, 173 
any types of statistics can be used to measure the stochastic discrepancy between model predictions 174 
and observations (Turner and Van Zandt 2012); hence, it is natural to define it employing the distance 175 
metrics. Various functional formulas have been investigated in the literature for the ABC method, 176 
such as the Gaussian (Turner and Van Zandt 2012), sharp (Rocchetta et al. 2018), and Epanechnikov 177 
(Safta et al. 2015) functions. Nevertheless, the basic principle of the approximate likelihood is that it 178 
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should return a high value when the distance metric is small, while it penalizes the 𝐱 instance when 179 
its corresponding distance metric is large. In this study, an approximate likelihood function based on 180 
the Gaussian function is proposed as: 181 

𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱) ∝ 𝑒𝑥𝑝 {−
𝑑2

𝜀2
} (9) 

where 𝑑 is the distance metric; 𝜀  is the so-called width factor, which is a pre-defined coefficient 182 
controlling the centralization degree of the posterior distribution. Based on a series of tests in various 183 
applications, 𝜀  is determined to lie in the interval [10−3,10−1]  (Patelli et al. 2017). A smaller 𝜀 184 
corresponds to a more peaked posterior distribution which is more likely to converge to the true 185 
value but requires more computational demand for convergence.  186 

By employing the Bhattacharyya distance, the approximate likelihood is capable of capturing 187 
comprehensive uncertainty information from both model predictions and observations. However, 188 
the Bhattacharyya distance as in Eq. (5) will be infinite if the initial 𝐘𝑠𝑖𝑚 is too far from 𝐘𝑜𝑏𝑠, i.e., there 189 
is no overlap between the two sample sets, and thus cannot be directly employed in the likelihood.  190 
Hence, Bi et al. (2019) proposed the two-step ABC updating framework, in which a preliminary step 191 
with the Euclidian distance-based likelihood is employed to force an overlap between 𝐘𝑜𝑏𝑠 and 𝐘𝑠𝑖𝑚. 192 
The comprehensive uncertainty characteristics of the parameters are then further updated in the main 193 
step with the Bhattacharyya distance-based likelihood. This two-step framework is also utilized in 194 
this study and its detailed information can be referred to Bi et al. (2019). 195 

Bayesian Updating with Adaptive Kriging Model 196 

Bayesian Updating with Structural Reliability Mehtods (BUS) 197 

In this section, the BUS formulation (Straub and Papaioannou 2015; DiazDelaO et al. 2017) is briefly 198 
reviewed. The BUS formulation is based on the conventional rejection principle. Let 𝑐 denotes the so-199 
called likelihood multiplier such that the following inequality holds for all the parameters 𝐱: 200 

𝑐𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱) ≤ 1 (10) 

In the above context, a sample distributed as the posterior distribution 𝑃(𝐱|𝐘𝑜𝑏𝑠) ∝ 𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱)𝑃(𝐱) in 201 
Eq. (7) can be generated by the following rejection principle: 202 

1) Generate 𝑢 uniformly distributed on [0, 1] and 𝐱 distributed as the prior distribution 𝑃(𝐱); 203 
2) If 𝑢 < 𝑐𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱), return 𝐱 as a posterior sample. Otherwise, go back to Step 1).  204 

Although the rejection sampling is theoretically viable, it becomes inefficient with increasing the 205 
number of observations due to the large rejection rate. Hence, BUS transforms the Bayesian updating 206 
problem into an equivalent reliability problem to maintain the advantage of the rejection principle 207 
but have much higher efficiency. Consider a reliability problem with uncertain parameters (𝐱, 𝑢) 208 
according to the joint PDF 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1). Here, 𝐼(∙) denotes the indicator function, equal to one if 209 
its argument is true and zero otherwise. The limit state function and failure domain of this reliability 210 
problem can be herein defined as: 211 

𝐺 = 𝑢 − 𝑐𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱) (11) 

𝐹 = {𝐺 < 0} (12) 

The PDF of the failure sample (𝐱′, 𝑢′) can be then obtained as: 212 

𝑝𝐱′,𝑢′(𝐱,𝑢) = 𝑝𝐹
−1𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱)) (13) 

where 213 

𝑝𝐹 = ∬ 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿 (𝐘𝑜𝑏𝑠|𝐱))𝑑𝑢𝑑𝐱  

is the failure probability of the reliability problem. In this formulation, the PDF of the failure sample 214 
𝑝𝐱′,𝑢′(𝐱, 𝑢) corresponds to the posterior distribution 𝑃(𝐱|𝐘𝑜𝑏𝑠) and the failure probability 𝑝𝐹 is equal 215 
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to the normalized factor 𝑃(𝐘𝑜𝑏𝑠) in Eq. (7). As a consequence, the samples for deriving the posterior 216 
distribution can be generated as the conditional samples falling into the failure domain  by existing 217 
reliability analysis methods including Subset simulation (Au and Beck 2001). 218 

A key component in BUS is the likelihood multiplier, since the acceptance rate in BUS is directly 219 
proportional to it. Hence, it should be selected as large as possible along with satisfying the inequality 220 
as in Eq. (10) for all the parameters 𝐱 and its optimal choice is defined as 𝑐 = [max𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱)]−1. While 221 
the optimal multiplier is generally unknown in advance, it can be defined as 𝑐 = 1 for the proposed 222 
approximate likelihood function, because the approximate likelihood function is maximized when 223 
the distance metric is minimized to be zero. Therefore, BUS can be efficiently utilized as the Bayesian 224 
inference tool in the two-step ABC updating framework. 225 

Adaptive Kriging-based BUS Algorithm 226 

BUS has shown great efficiency in estimating the posterior distribution by employing the Subset 227 
simulation technique (Betz et al. 2018). However, the failure probability of the equivalent reliability 228 
problem in BUS becomes significantly small and can reach 10−6 or even smaller with increasing the 229 
number of observations. In such rare events, a large number of limit state function evaluations is 230 
required to estimate the failure probability even for Subset simulation. Moreover, in the main step of 231 
the ABC updating framework, the limit state function involves the computation of the Bhattacharyya 232 
distance requiring random samples of model predictions generated by MCS. Consequently, BUS with 233 
Subset simulation demands a huge number of model evaluations and it can be almost infeasible for 234 
complex simulators. 235 

BUS can further improve its efficiency by applying metamodeling techniques (Giovanis et al. 236 
2017).  Among various types of the metamodels, the adaptive Kriging model has been paid significant 237 
attention as one of the most accurate and efficient methods in solving reliability problems. It can be 238 
interpreted as the classification method for the failure domain in reliability problems by the Kriging 239 
model, also known as the Gaussian process model. In this model, the estimated responses follow a 240 
Gaussian distribution with the Kriging means and Kriging variances. The basic rationales of the 241 
kriging model can be found in Echard et al. (2011).  242 

The key idea of the adaptive Kriging model is to adaptively identify samples close to the limit 243 
state function from the candidate MC samples based on the Kriging means and Kriging variances. 244 
The Kriging model trained by those samples enables to provide a precise classification for the failure 245 
domain and thus the failure probability can be efficiently estimated using this model. Nevertheless, 246 
the failure probability of the equivalent reliability problem in BUS is significantly small. In such a 247 
circumstance, the adaptive Kriging model becomes very inefficient, since the candidate sample pool 248 
should be enlarged to ensure that enough samples are contained in the failure domain.  249 

Meanwhile, Wei et al. (2019) proposed a new algorithm called AK-MCMC. In this algorithm, the 250 
classification for a series of intermediate failure domains 𝐹𝑖 = {𝐺 < 𝑏𝑖 } is provided. Here, 𝑏𝑖 is the 251 
intermediate failure thresholds (𝑏1 > 𝑏2 > ⋯ > 𝑏𝑚 = 0). An illustration of a two-dimensional case 252 
following the AK-MCMC algorithm is provided in Fig. 1. Fig. 1(a) illustrates its initial step as the 253 
classification for the initial intermediate failure domain 𝐹1 = {𝐺 < 𝑏1} upon MC samples represented 254 
by the plots. The grey and black plots denote the arbitrary selected initial training samples and the 255 
additional training samples adaptively selected based on the Kriging means and Kriging variances, 256 
respectively. In addition, the dashed and solid lines show the initial intermediate failure surface and 257 
the Kriging model trained by the above samples, respectively. On the other hand, Fig. 1(b) illustrates 258 
the classification for the failure domain 𝐹𝑚 = {𝐺 < 𝑏𝑚(= 0)} upon MCMC samples represented as the 259 
squared points. Note that, this figure corresponds to the case where 𝑚 = 2. As same as Fig. 1(a), the 260 
black plots denote the adaptively selected training samples and the dashed and solid lines show the 261 
failure surface and the Kriging model trained by all training samples. As shown in these figures, this 262 
algorithm provides the classifications for a series of intermediate failure domains, which will finally 263 
converge to the classification for the true failure domain, and is much more efficient than the direct 264 
classification for the failure domain. As a consequence, this algorithm enables to efficiently utilized 265 
for extremely rare events and thus it is expected to be suitable for BUS. 266 
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 267 

Fig. 1. Illustration of the AK-MCMC algorithm: (a) Classification for the initial intermediate failure domain;  268 
(b) Classification for the failure domain. 269 

In this study, a new algorithm for Bayesian inference is thus proposed herein by combining BUS 270 
with the adaptive Kriging model using the AK-MCMC algorithm. The flowchart of this algorithm is 271 
summarized in Fig. 2 and the procedure is described in detail as below: 272 

1) Let 𝑖 = 1. Generate an 𝑁 MC samples population 𝐖1 of the parameters (𝐱, 𝑢) according to 273 
the joint PDF 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1); 274 

2) Randomly select 𝑁0 samples from 𝐖1 and evaluate the limit state function as in Eq. (11) on 275 
these samples. Attribute these 𝑁0 samples to the training samples population 𝐖𝑡; 276 

3) Train or update the Kriging model 𝐺̂𝑖 (𝐱,𝑢) with 𝐖𝑡; 277 
4) Predict the limit state function value for each non-training sample contained in 𝐖𝑖 by the 278 

Kriging model 𝐺̂𝑖(𝐱, 𝑢). Obtain or update the intermediate failure threshold 𝑏𝑖 based on the 279 
principle that ⌊𝑝0𝑁⌋ samples in 𝐖𝑖 is conditional on the intermediate failure domain 𝐹𝑖. Here, 280 
𝑝0  is the pre-defined target probability and ⌊∎⌋  is the lower integer of the investigating 281 
values; 282 

5) Compute the following learning function as: 283 

𝑈(𝐱, 𝑢) = |𝜇𝐺 (𝐱,𝑢) − 𝑏𝑖| 𝜎𝐺 (𝐱, 𝑢)⁄  (14) 

where 𝜇 𝐺(𝐱,𝑢)  is the Kriging mean and 𝜎𝐺 (𝐱, 𝑢)  is the Kriging standard deviation. If the 284 
stopping criterion as min(𝑈(𝐱,𝑢)) ≥ 2 is satisfied for all the 𝑁 samples, go to the next step. 285 
Otherwise, find the non-training sample in 𝐖𝑖  with the minimum value of the learning 286 
function as in Eq. (14) and evaluate the true limit state function. Attribute the sample to 𝐖𝑡 287 
and return to Step 3); 288 

6) If 𝑏𝑖 ≤ 0, let 𝑚 = 𝑖, save the Kriging model 𝐺̂𝑚(𝐱, 𝑢). Identify samples in 𝐖𝑚 located into the 289 
failure domain 𝐹. Keep these samples as the seeds 𝐖𝑠 and go to the next step. Otherwise, 290 
generate an 𝑁 MCMC samples population 𝐖𝑖+1 of the parameters (𝐱, 𝑢) conditional on the 291 
intermediate failure domain 𝐹𝑖 by calling the Kriging model 𝐺̂𝑖 (𝐱) based on the modified 292 
Metropolis-Hastings algorithm (Au and Beck 2001). Let 𝑖 = 𝑖 + 1 and 𝐺̂𝑖 (𝐱) = 𝐺̂𝑖−1(𝐱), and 293 
return to Step 4). 294 

7) Drawn 𝑁𝑝 samples in 𝐹 with the seeds 𝐖𝑠 by calling the Kriging model 𝐺̂𝑚(𝐱, 𝑢) based on 295 
the modified Metropolis-Hastings algorithm. 296 

The learning function as in Eq. (14) was proposed by Echard et al. (2011). Because the Kriging 297 
predictor follows a Gaussian distribution, Φ(𝑈(𝐱, 𝑢)) denotes the probability of making a wrong 298 
classification on the sign of 𝐺̂(𝐱, 𝑢) − 𝑏𝑖 , where Φ is the standard normal cumulative distribution 299 
function. Thus, the stopping criterion (min(𝑈(𝐱)) ≥ 2) corresponds to the case that the probability of 300 
making a wrong classification on the sign of 𝐺̂(𝐱) − 𝑏𝑖 is less than Φ(−2) = 0.023. 301 

The advantage of the proposed procedure is that it only needs a small number of evaluations to 302 
the computationally demanding limit state function in estimating posterior distributions. In addition, 303 
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no prior information about the failure probability 𝑝𝐹 is required for implementing the procedure, 304 
since the population size 𝑁 depends on the target probability 𝑝0  which is defined by the analyst in 305 
advance. Nevertheless, in the main step of the ABC updating framework, the stochastic property of 306 
the Bhattacharyya distance may cause inaccuracy in the classification of the failure surface by the 307 
Kriging model. Hence, the use of common random numbers (CRN) (Kleinman et al. 1999) is also 308 
employed in this step. CRN attempts to induce a positive correlation between the stochastic outputs 309 
(i.e. Bhattacharyya distances) for different inputs and thereby reduces the variance in the difference 310 
between the outputs; thus, it works to avoid the inaccuracy in the adaptive Kriging model.   311 

 312 

Fig. 2. Flowchart of the proposed Bayesian updating algorithm. 313 

Numerical Example  314 

Description of the Bayesian Updating Problem 315 

The two-step ABC updating framework for dynamic responses is demonstrated on a model updating 316 
problem of a seismic-isolated bridge based on simulated seismic response data. The target bridge is 317 
a seismic-isolated bridge with lead rubber bearings designed based on Japan Road Association (JRA) 318 
(2016). Descriptions of the target bridge are listed in Table 1. The reinforced concrete (RC) pier with 319 
the rubber bearings is modeled as a 2-DOF lumped mass system shown in Fig. 3(a), in which the 320 
superstructure and RC pier are represented as lumped masses and the rubber bearings and RC pier 321 
are described as nonlinear horizontal springs. The boundary condition at the surface is assumed to 322 
be fixed. The rubber bearings are idealized by a bi-linear model with the ratio of the yield stiffness 323 
𝐾𝐵1 to the post-yield stiffness 𝐾𝐵2 as 6.5:1 based on JRA (2004). On the other hand, the hysteresis and 324 
skeleton curves of the RC pier are idealized by a bi-linear model with the elasto-plastic characteristic 325 
and the stiffness degradation model (so-called Takeda model) (Takeda et al. 1970), respectively. 326 
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Rayleigh damping is assumed in which damping ratios of the rubber bearings and RC pier are given 327 
as 0% and 2%, respectively.  328 

Table 1. Descriptions of the target bridge. 329 
Model parameter Nominal value 

Superstructure Mass 𝑀𝑠 (ton) 604.0 

Rubber bearings Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness 𝐾𝐵2 (kN/m) 6000 

RC pier Mass 𝑀𝑃 (ton) 346.2 

Yield strength (kN) 3374 
Yield stiffness 𝐾𝑃 (kN/m) 110100 

Yield displacement (m) 0.0306 

Ultimate displacement (m) 0.251 

 330 

Fig. 3. (a) 2-DOF lumped mass system; (b) Time-history of the acceleration response at the superstructure. 331 

The objective of the model updating problem is to capture the uncertainties in the post-yield 332 
stiffness of the rubber bearings 𝐾𝐵2, which characterize the nonlinear behavior of the target bridges 333 
under strong earthquakes, as well as in the other stiffness parameters 𝐾𝑃 and 𝐾𝐵1 by using simulated 334 
seismic response data. The remaining parameters are assumed to be fixed constants with the nominal 335 
values, as shown in Table 1. The time-history of the acceleration response at the superstructure under 336 
the JR Takatori ground motion record recorded during the 1995 Kobe earthquake is taken as the 337 
investigating output features whose uncertainties are driven by the uncertain parameters 𝐾𝑃, 𝐾𝐵1, 338 
and 𝐾𝐵2. Dynamic response analysis of the 2-DOF system is conducted by Newmark 𝛽 method (𝛾 =339 
1 2⁄  and 𝛽 = 1 4⁄ ) with a time step ∆𝑡 = 0.001 s. Fig. 3(b) illustrates a time-history of the acceleration 340 
response at the superstructure for the case where all parameters are considered as the nominal values 341 
in Table 1. The duration time of the time-history is 40 s with the time step ∆𝑡 = 0.001 s; hence the 342 
output features are in the 40,000 dimensional-space. Both aleatory and epistemic uncertainties are 343 
involved in this system and are included by modeling 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 as independent Gaussian 344 
random variables, where the means and standard deviations are not fixed but unknown lying within 345 
given intervals. According to the parameter categories in Section 1,  𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 are Category IV 346 
parameters, while the remaining parameters are Category I parameters. The intervals of the means 𝜇 347 
and standard deviations 𝜎 associated to 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 are detailed in Table 2. 348 

Table 2. Uncertain characteristics and target epistemic inputs of the 2-DOF system. 349 
Parameter Uncertainty characteristic Target value of epistemic input 

𝐾𝑃 Gaussian, 𝜇1 ∈ [0.5,1.5], 𝜎1 ∈ [0,0.15] 𝜇1 = 1.0, 𝜎1 = 0.07 

𝐾𝐵1 Gaussian, 𝜇2 ∈ [0.5,1.5], 𝜎2 ∈ [0,0.15] 𝜇2 = 1.0, 𝜎2 = 0.07 

𝐾𝐵2 Gaussian, 𝜇3 ∈ [0.5,1.5], 𝜎3 ∈ [0,0.15] 𝜇3 = 1.0, 𝜎3 = 0.07 
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The target of the updating procedure 𝐘𝑜𝑏𝑠 is a set of the output features obtained by assigned 350 
target values of epistemic inputs 𝜇1, 𝜇 2, and 𝜇 3 and 𝜎1, 𝜎2, and 𝜎3 as shown in Table 2. Those target 351 
values are given based on Adachi (2002). The sample size of the observed features is set to be 𝑁𝑜𝑏𝑠 =352 
100, generated by evaluating the model 100 times with the model parameters sampled from their 353 
assigned Gaussian distributions with the target epistemic inputs. 354 

In addition to the target values in Table 2, a set of initial values of the epistemic inputs is arbitrary 355 
selected within the pre-defined intervals but different from the target values. The sample size of the 356 
initial simulated features is set to be 𝑁𝑜𝑏𝑠 = 500, generated by evaluating the model 500 times with 357 
the model parameters sampled from their assigned Gaussian distributions with the initial epistemic 358 
inputs. Fig. 4 illustrates the relative positions of the target observed features and initial simulated 359 
features. RMS values of both the observed and simulated features for each interval divided based on 360 
the window length 𝐿(= 0.025× 40000 = 1000) are computed and five arbitrary selected RMS values 361 
RMS

ACC
𝑗  are shown in this figure. The diagonal subfigures compare histograms of the observed and 362 

initial simulated features. Due to the initial values of the epistemic inputs are intended assigned to 363 
be different from their target values, the scatters and histograms of the initial simulated features are 364 
clearly apart from those of the target observed features. Note that, Bayesian updating is not really 365 
started from those initial values, but from the prior distributions of the epistemic inputs, as shown in 366 
the second column of Table 2. 367 

As shown in Fig. 4, the objective of the model updating herein is no longer a single updated 368 
point with maximum fidelity to a single observation point, but the updated means and variances of 369 
the parameter distributions which can represent simulated features as similar as the observed ones.  370 
To achieve this objective, both the Euclidian and Bhattacharyya distances are employed as metrics in 371 
the ABC updating framework. Moreover, this framework is executed using the proposed algorithm 372 
combining BUS with the adaptive Kriging model to efficiently estimate the posterior distributions.  373 

 374 

Fig. 4. Target observed scatters (in blue) and initial simulated scatters (in green); unit: m s 2⁄ . 375 

Updating Results with the Euclidian Distance 376 

In the preliminary step where the Euclidian distance is taken as the metric, the geometric distance 377 
between the centre of mass of the two sample sets is measured, while the dispersion and distribution 378 
information of the sample sets cannot be considered. Thus, only the parameter means are considered 379 
as the uncertain parameters and the model parameters are represented as their means, such that only 380 
the parameter means are updated in this step.  381 
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The parameters of the proposed algorithm are set to be 𝑁 = 3000, 𝑁0 = 12, 𝑝0 = 0.01, and 𝑁𝑝 =382 
500. The width factor in the approximate likelihood is set as 𝜀 = 0.1. Totally four intermediate failure 383 
surfaces are produced to finally provide the classification for the true failure domain. It implies that 384 
the failure probability of the equivalent reliability problem herein is reach around 10−8. Even for such 385 
a challenging problem, the number of the total training samples is 229, selected by evaluating the 386 
limit state function associated with the Euclidian distance metric 229 times. The computation of the 387 
Euclidian distance needs a single model evaluation with the parameter means. Hence, only 229 model 388 
evaluations are required throughout this step.  389 

As illustrated in Fig. 5, the posterior distributions of the parameter means well converge to their 390 
target values presented as the red lines. The horizontal axes of the figure are set to be as same as their 391 
prior intervals listed in Table 2. Table 3 presents the updated values of the parameter means which 392 
are obtained by estimating means of the posterior distributions. Percentage errors compared with the 393 
target values are also provided in the parentheses after the updated values.  394 

 395 

Fig. 5. Posterior distributions of parameter means after updating with the Euclidian distance. 396 

Table 3. Updated epistemic inputs with both the Euclidian and Bhattacharyya distances. 397 
Input Target value Updated value  

  With Euclidian distance With Bhattacharyya distance 

𝜇1 1.0 0.9682 (3.18 %) 1.0125 (1.25 %) 

𝜇2 1.0 0.9772 (2.28 %) 1.0159 (1.59 %) 

𝜇3 1.0 1.0276 (2.76 %) 1.0024 (0.24 %) 

𝜎1 0.07 – 0.0604 (13.7 %) 

𝜎2 0.07 – 0.0572 (18.3 %) 

𝜎3 0.07 – 0.0813 (16.1 %) 

Furthermore, Fig. 6 illustrates the relative positions of the target observed features and updated 398 
simulated features. The updated simulated features are obtained by evaluating the model 500 times 399 
with the model parameters sampled from their assigned Gaussian distributions with the updated 400 
means shown in Table 3 and variances arbitrary selected from their prior intervals. It can be seen that 401 
the simulated features are progressively sifted toward the observed features as a result of minimizing 402 
the Euclidian distance metric, corresponding to the maximization of the likelihood. Nevertheless, 403 
there are still some discrepancies between the observed and simulated features. These discrepancies 404 
are addressed in the main step using the Bhattacharyya distance as the metric.  405 
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 406 

Fig. 6. Target observed scatters (in blue) and simulated scatters after updating with the Euclidian distance (in 407 
green); unit: m s2⁄ . 408 

Updating Results with the Bhattacharyya Distance 409 

This section presents the main step where the Bhattacharyya distance is employed as the metric. 410 
The posterior distributions obtained in the preliminary step are taken as the prior distributions of the 411 
parameter means in this step. In this step, both the parameter means and variances are considered as 412 
the uncertain parameters and the model parameters are given as the assigned Gaussian distributions 413 
with the means and variances, such that both the parameter means and variances are updated.  In 414 
each computation of the Bhattacharyya distance, 100 random samples of the model parameters are 415 
generated from the Gaussian distributions and similarly 100 simulated features is obtained.  416 

The parameters of the proposed algorithm are set to be same as those in the preliminary step. 417 
The width factor in the approximate likelihood is set to be 𝜀 = 0.01. After four intermediate failure 418 
surfaces are produced, the final Kriging model providing the classification for the true failure domain 419 
is obtained. It indicates that the failure probability of the equivalent reliability problem herein is also 420 
reach around 10−8. The number of the total training samples is 521, selected by evaluating the limit 421 
state function associated with the Bhattacharyya distance metric 521 times. Differently from the last 422 
step, the computation of the Bhattacharyya distance requires 100 model evaluations. Hence, totally 423 
52100 model evaluations are executed throughout this step.  424 

Fig. 7 illustrates the finally updated posterior distributions of the epistemic inputs.  The posterior 425 
distributions of the means are further updated to be more centralized to their target values compared 426 
with those in Fig. 5. This is caused by introducing the posterior samples in the preliminary step as 427 
the prior samples in this step. More attention is paid to the posterior distributions of the standard 428 
deviations, which almost well converge to their target values presented as the red lines. The estimated 429 
means of these posterior distributions are listed in the last column of Table 3 as their updated values. 430 
The parameter means have quite high updating precisions with predicted errors less than 2%, while 431 
the parameter standard deviations show relatively large predicted errors more than 13%. This fulfils 432 
the general experience that dispersion information of parameter distributions is much more difficult 433 
to be precisely updated than means. Nevertheless, the finally updated simulated features obtained 434 
by evaluating the model 500 times with the model parameters sampled from their assigned Gaussian 435 
distributions with the updated epistemic inputs well coincide with the target observed features, as 436 
shown in Fig. 8. This demonstrates that the Bhattacharyya distance is a powerful UQ metric with the 437 
capability to recreate wholly the distribution of the target observations. 438 
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 439 

Fig. 7. Posterior distributions of epistemic inputs after updating with the Bhattacharyya distance. 440 

 441 
 442 

Fig. 8. Target observed scatters (in blue) and simulated scatters after updating with the Bhattacharyya distance 443 
(in green); unit: m s 2⁄ . 444 

Computational Efficiency 445 

Finally, computational efficiency of the proposed procedure is demonstrated. For comparison, 446 
the two-step ABC updating framework is also executed using the TMCMC algorithm. The number 447 
of samples generated from the posterior distributions are set to be 𝑁𝑝 = 500 as same as that in the 448 
proposed procedure. The width factors in the approximate likelihoods are set to be also same as those 449 
in the proposed procedure in order to keep the same computational demand for convergence as in 450 
the proposed procedure. All computations are processed using a local parallelization on a 12 cores 451 
machine installing an Intel core 2.10 GHz processor. 452 
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Table 4 summarizes the total computational time (in minutes) to reach convergence for both the 453 
preliminary and main steps, in which the Euclidian and Bhattacharyya distances are used as metrics, 454 
respectively. In this context, computational efficiency is indicated as the ratio of the computational 455 
time using TMCMC and the proposed algorithm combining BUS with the adaptive Kriging model, 456 
and is provided in the parentheses after the computational time of the proposed algorithm. It can be 457 
seen that the main step with the Bhattacharyya distance needs much more computational demands 458 
than the preliminary step with the Euclidian distance. The computational time in the main step is 459 
more than 300 times of that in the preliminary step for TMCMC and is about 50 times of that in the 460 
preliminary step for the proposed algorithm. It is obviously due to the necessity of MCS for each 461 
computation of the Bhattacharyya distance. Nevertheless, the difference in the computational time of 462 
these two steps is successfully reduced in the proposed procedure by confining the evaluation of the 463 
likelihood function only for the Kriging approximation.  464 

Furthermore, it is noted that the proposed procedure reaches convergence with one-fifth of the 465 
computational time in the preliminary step and with less than one-thirty of the one in the main step 466 
compared with TMCMC. This is mainly because the number of the model evaluations is significantly 467 
reduced by implementing the adaptive Kriging model in the proposed procedure. It should be noted 468 
that, the adaptive Kriging model enable to be also implemented in TMCMC. Nevertheless, several 469 
modifications are necessary to employ the adaptive Kriging model in TMCMC as the approximation 470 
of the likelihood function (Angelikopoulos et al. 2015; Jensen et al. 2017), because it was originally 471 
developed as the classification method in reliability problems. Meanwhile, the proposed algorithm 472 
transforms the Bayesian updating problem into the equivalent reliability problem; thus, the adaptive 473 
Kriging model is naturally implemented as the classification method. As a consequence, the proposed 474 
procedure combining BUS with the adaptive Kriging model enables to produce satisfied results with 475 
the much-reduced computational demand compared with TMCMC. 476 

Table 4. Comparison of computational efficiency. 477 
Method Computational time (minutes)  

 With Euclidian distance With Bhattacharyya distance 

TMCMC 39.1 12437.5 

BUS with the adaptive Kriging 7.9 (5.0) 394.4 (31.5) 

Conclusions 478 

The Bhattacharyya distance is demonstrated to be a powerful UQ metric in the two-step ABC 479 
updating framework for dynamic responses with the capability to recreate wholly the distribution of 480 
the target observations. The new algorithm for Bayesian inference is proposed by combining BUS 481 
with the adaptive Kriging model based on the AK-MCMC algorithm to efficiently execute the ABC 482 
updating framework. The approximate likelihood function built upon the distance metric acts as an 483 
efficient connection between BUS and the Bhattacharyya distance, because the optimal multiplier 484 
maximizing the acceptance rate in BUS is straightforwardly applicable. In addition, to cope with the 485 
high computational demand of the Bhattacharyya distance, the adaptive Kriging model is utilized to 486 
provide the classification for the limit state function associated with the Bhattacharyya distance. The 487 
AK-MCMC algorithm provides the classifications for a series of intermediate failure domains, which 488 
will finally converge to the classification for the true failure domain, and is much more efficient than 489 
the direct classification for the failure domain. As a consequence, this algorithm enables to efficiently 490 
utilized for extremely rare events in BUS. The proposed procedure is demonstrated upon the seismic-491 
isolated bridge model updating application using simulated seismic response data. This application 492 
denoted that the proposed procedure is enable to produce satisfied results with the much-reduced 493 
computational demand compared with TMCMC.  494 

Data Availability Statement 495 

All data, models, or code that support the findings of this study are available from the 496 
corresponding author upon reasonable request. 497 
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