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Temporal cavity solitons in ring microresonators provide broad and controllable generation of frequency
combs with applications in frequency standards and precise atomic clocks. Three-level media in the � configura-
tion inside microresonators displaying electromagnetically induced transparency can be used for the generation
of temporal cavity solitons and frequency combs in the presence of anomalous dispersion and two external
driving fields close to resonance. Here domain walls separating regions of two dark states due to quantum
interference correspond to realizations of stimulated Raman adiabatic passage without input pulses. With no
need of modulational instabilities, bright temporal cavity solitons and frequency combs are formed when these
domain walls lock with each other. Wide stability ranges, close to resonance operation, and the optimal shape of
the cavity solitons due to three-level quantum interference can make them preferable to those in two-level media.
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Frequency combs for precision optical synthesizing have
come a long way in the past two decades from mode-locked
lasers with cavity lengths between 30 cm and 3 m to chip-scale
sources based on microresonators [1,2]. When operating at
low loss, microresonators provide long interaction times and
can excite large nonlinearities. Considerable attention was
paid to the theoretical and experimental development of fre-
quency combs in high-Q optical resonators operating away
from material resonances via Kerr nonlinearities. Temporal
cavity solitons (TCSs) [3], the analog of transverse (diffrac-
tion) cavity solitons [4,5] in the longitudinal (dispersion)
domain, are key nonlinear solutions for the generation of
broad frequency combs in passive [6,7] and active [8] media.
These devices benefit from a variety of technological merits
including low-energy requirements and robust structures that
can be integrated on a chip [1,9]. Here the longitudinal coordi-
nate that spans the resonator length is replaced by a fast-time
variable when considering the group-velocity dispersion of
the propagating light.

At the same time, substantial progress has been made in
the realm of quantum interference phenomena for the manip-
ulation of the optical response of a medium close to material
resonances. Electromagnetically induced transparency (EIT)
is one such phenomenon where the optical response of the
material can be controlled by external electromagnetic fields
to forbid, for example, absorption or to enhance the refractive
index [10]. In this transparency window, dispersion properties
are also strongly modified, motivating many applications such
as slow light and stored light [11]. The underlying mechanism
is the quantum interference effect that destructively couples
the transition amplitudes of different excitation pathways [10].
Since then, mircoresonators have become an interesting plat-
form for the realization of EIT leading to solid-state-based
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technologies and new applications in sensing and field en-
hancement [12,13]. Recently, EIT resonance line shapes have
been found in a variety of optical cavities [14] including mi-
croring resonators in silicon-on-insulator chips with air holes
[15]. On the theoretical side, optical cavities with three-level
media displaying EIT have also been studied for the onset
and stability of various transverse structures, from patterns to
diffractive cavity solitons [16–18].

Yet to be studied are the fast-time EIT features for mi-
croresonators in the presence of longitudinal dispersion. It is
the aim of this Letter to show that quantum interference cou-
pled with anomalous dispersion in microresonators displaying
EIT can lead to bistability of dark states, stable domain walls
(DWs) between these states, trapped stimulated Raman adia-
batic passage (STIRAP) [19] schemes with no input pulses,
novel TCSs, and frequency combs induced by quantum inter-
ference and EIT.

We consider a ring microresonator as displayed in Fig. 1(a)
filled with a three-level medium in the � configuration
[Fig. 1(b)] with the transition between the two lower levels
|1〉 and |2〉 not dipole allowed. There are two optical beams
interacting with the medium, the resonated field E circulating
in the ring cavity under the external cw driving P and the
nonresonated field E2 of constant intensity and at resonance
with the transition between levels |2〉 and |3〉. The field E is
considered here to be detuned by � from the resonance of
levels |1〉 and |3〉. Note that the results presented below extend
to wide ranges of �, to fields E2 away from resonance, and
slow relaxations of the level |2〉 to level |1〉. In the case of a
fast response medium, the dynamics of the field E in the ring
resonator is described by [20]

∂t E = P − (1 + iθ )E + i(2C)R13 + i∂τ 2 E , (1)

where t is the slow time over several round-trips in the cav-
ity, P is the amplitude of the input pump, θ is the cavity
detuning from the input frequency, and 2C is the cooperativity
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FIG. 1. (a) Schematic representation of the dispersive ring-
resonator device described by Eq. (1). (b) A �-type three-energy-
level configuration. Symbols are described in the text.

parameter of the light-matter coupling that is proportional to
the dipole moment of the transition between levels |1〉 and |3〉.
In [16–18] we focused on the transverse diffractive case, while
here we investigate the anomalous group-velocity-dispersion
case with a longitudinal variable τ , the fast time, defined in
a reference frame moving at the group velocity of the light at
the driving wavelength. Here R13 is the density matrix element
in the Lindblad master equation given by [16,21]

R13 = χ (|E |2)E = −�|E2|2(|E2|2 + |E |2 − �2 − i�)

D
E ,

D = (|E2|2 + |E |2)3

+�2(|E2|2 + |E |2 + 4|E2|2|E |2 + �2|E2|2 − 2|E2|4).

(2)

The detuning � can be scanned by changing the frequency of
the input laser. This results in changes of the cavity detuning
θ as well. It is possible, however, to scan the cavity detuning
θ without affecting � by operating on cavity features such
as its length. This is different from the two-level medium
case where the medium response is basically unaffected by
the changes in the frequency of the input beam because one
is operating far from the medium resonance. Equation (2) is
derived from [21] in [22] for a three-level medium in the �

configuration together with the Lugiato-Lefever equation for
a two-level medium in the Kerr approximation [23] for a com-
parison. In the following we discuss cavity frequency scans
where the input frequency and consequently � are kept fixed.

The intensities |Es|2 of the homogeneous stationary solu-
tions (HSSs) are obtained from the equation

|P|2 = {[1 − 2C Im(χ )]2 + [θ + 2C Re(χ )]2}|Es|2, (3)

where Re(χ ) and Im(χ ) are the real and imaginary parts of
the complex susceptibility of Eq. (2). For small values of
the intensity of the second field E2, one observes a typical
bistability close to cavity resonance which is however strongly
enhanced by the quantum interference and splits into a closed
bubble and a low-intensity branch as shown in Fig. 2(a). It
is possible to obtain the stability of the HSS through stan-
dard linearization techniques. In Fig. 2(a), for |E2|2 = 0.1,
P = 2.5, 2C = 35, and � = 0.66 we see that the low-intensity
HSS branch is always stable, the lower part of the bubble is
always unstable to homogeneous perturbations (red dashed
curve), and the high-intensity HSS branch is stable for θ >

−1.6 and unstable to modulated perturbations (patterns) for
−2.6 < θ < −1.6. The HSS expressions of the probability of

FIG. 2. (a) Intensity, (b) R33, (c) R11, and (d) R22 for the HSSs
of Eq. (1) for |E2|2 = 0.1, P = 2.5, 2C = 35, and � = 0.66 when
changing the cavity detuning θ . Light and dark blue solid lines are
for stable HSSs, red and black dashed lines are for unstable HSSs,
and black dots are for TCS peaks. The vertical lines in (a) identify
the range where moving or stationary DWs connecting two stable
HSSs are found.

occupancy of each of the three levels are given by

R11 = 1 − R22 − R33,

R22 = |Es|2[(|Es|2 + |E2|2)2 + �2(1 + |E2|2)]

D
, (4)

R33 = 2�2|Es|2|E2|2
D

,

where D is the denominator appearing in Eq. (2) with the HSS
intensities replacing |E |2 [plotted in Figs. 2(b)–2(d)]. The first
key observation is that for a generic medium and cavity con-
figurations close to medium resonance, coherent population
trapping (CPT) and extremely low values of the probability
of occupancy of the excited state |3〉 are observed [see values
of R33 below 2% in Fig. 2(b)]. From Figs. 2(c) and 2(d) we
see that the stable low- (high-)intensity HSS corresponds to
maintaining more than 90% of the population in level |1〉
(level |2〉). This is a remarkable resonant coupling between
the medium properties and the cavity confinement induced by
the quantum interference in the three-level medium lead-
ing to the almost exclusive population of dark states D =
cos(β )|1〉 − sin(β )|2〉, where β is the mixing angle with val-
ues close to either zero or π/2.

To understand the mechanisms behind these effects, we
have plotted in Fig. 3 the chromatic dispersion and absorption
properties of the |1〉-|3〉 transition of the � system in the
two bistable HSSs at cavity resonance when changing the
detuning �. In the low-intensity branch, chromatic dispersion
shifts the input frequency and removes the effect of the cavity
resonance. The absorption has a typical EIT shape and is
ineffective over a broad band of detunings �, thus explaining
why 90% of the population remains confined to level |1〉. The
high-intensity branch has almost zero dispersion, is strongly
affected by the cavity resonance [note the peak in Fig. 2(a)
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FIG. 3. (a) Chromatic dispersion Re(R13) and (b) absorption
Im(R13) versus the material detuning � for the |1〉-|3〉 transition
for θ = 0, |E2|2 = 0.1, and P = 2.5. Blue solid (red dashed) lines
correspond to the low- (high-)intensity branch of the bistable HSSs.

close to θ = 0], and displays a broadband EIT due to quantum
interference.

On both sides of cavity resonance, we observe bistability
of the low- and high-intensity branches of the HSSs. We
then investigate the existence and stability of heteroclinic
solutions that move from the low-intensity branch to the high-
intensity branch, and vice versa, during a round-trip of the
cavity. Steep kinks from one branch to the other are known
as domain walls (or switching waves [24] in the absence of
an exchange symmetry) in analogy with magnetic systems
[25]. For example, in magnetic nanomaterials [26], flexible
metamaterials [27], and nematic liquid crystals [28], DWs
have a typical hyperbolic tangent shape, annihilate each other
when the kink and antikink collide, and require defects for
their pinning. In nonlinear optics, DWs have been described in
optical parametric oscillators [29–31] and in Kerr resonators
with two orthogonal polarizations [32,33], while switching
waves have been investigated in Kerr resonators in [34–37].
By tuning θ inside the range of −1.5 < θ < 0.37 where
DWs connecting two stable HSS are found [Fig. 2(a)], it is
possible to find Maxwell points, labeled θM , where upward
(kink) and downward (antikink) DWs exist and are station-
ary at many separation distances as shown, for example, in
Fig. 4, where we consider microresonators with a free spectral
range of around 140 GHz, input powers of a few milli-
watts, and realistic detunings in agreement with realizations of

FIG. 4. Asymptotic states from numerical integration of Eq. (1).
(a) Intensity profiles of two DWs at stable distances for θM =
−0.305, |E2|2 = 0.1, P = 2.5, 2C = 35, and � = 0.66 (black solid,
blue dotted, and red dash-dotted lines correspond to different initial
separations of the kink and antikink DWs) and for θM = −0.37,
|E2|2 = 1.0, P = 2.0, 2C = 35, and � = 0.2 (black dashed line).
(b) Fast-time distributions of occupancy probabilities of level |1〉,
R11 (blue solid line), and level |2〉, R22 (red dashed line), for the case
of the red dash-dotted line of (a).

FIG. 5. Asymptotic states from numerical integration of Eq. (1).
(a) Intensity profile of a quantum interference TCS for θ = −0.5
(θ = −1.0 in the inset), |E2|2 = 0.1, P = 2.5, 2C = 35, and � =
0.66. According to the chosen free spectral range of around 140 GHz,
the FWHM size of the TCS is about 0.27 ps (0.18 ps in the inset).
(b) Fast-time distributions of occupancy probabilities of level |1〉,
R11 (blue solid line), and level |2〉, R22 (red dashed line).

silicon-on-insulators devices [38]. Stationary and moving DW
solutions coexist with stable HSSs inside the two vertical lines
of Fig. 2(a). When moving across a DW inside the resonator,
the probability of occupancy goes from being in state |1〉 (low
output intensity) to state |2〉 (high output intensity) as dis-
played in Fig. 4(b), while the population of level |3〉 remains
well below 1% due to CPT and EIT. More than 90% of the
population of level |1〉 can be transferred to level |2〉 when
moving from one side of the DW to the other. This is nothing
other than a cavity-enhanced STIRAP process, the powerful
method for efficient and selective transfer of population be-
tween two quantum states [19]. Stimulated Raman adiabatic
passage has an enormous number of applications [39] and
is generally based on the sequence of two gated pulses of
laser light with appropriate Rabi frequency (i.e., intensity)
profiles. The DW-based STIRAP presented here requires no
pulsed light at the input. Once the DWs are formed by an
initial perturbation, they keep circulating in the resonator with
one part of the resonator residing in one of the two (dark)
quantum states, leaving the other part in the second of the two
(dark) quantum states. It is interesting to note that stable DWs
correspond to a continuous-wave realization of STIRAP since
the input pumps P and E2 are not pulsed as it is standard in
STIRAP configurations [19,39].

Domain walls are not the only localized structures due to
quantum interference in this system. Away from the values
of the cavity detuning θM where the DWs maintain a fixed
distance, the DWs move away from (towards) each other
for θ > θM (θ < θM) when � = 0.66 and |E2|2 = 0.1. When
compared to DWs in solid-state physics of hyperbolic tangent
shape [26–28], our optical DWs display large intensity peaks
when approaching the upper HSS because of group-velocity
dispersion instead of diffusion. These local peaks are essential
for stable TCS formed by locked DWs without the require-
ment of pinning defects. If the cavity detuning θ is smaller
than θM , two DWs move towards each other and, in view of
the large oscillation close to the top of the DWs, they lock and
form a TCS without requiring modulational instabilities in a
way similar to what was described in [30,31] for parametric
oscillators. For θ = −0.5, for example, the low-intensity HSS
expands in the high-intensity HSS until the DWs lock and
form a quantum interference TCS [see Fig. 5(a)] with an
underlying STIRAP process of more than 97% since the prob-
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FIG. 6. Spectrum of the locked DW TCS of Fig. 5 for (a) θ =
−0.5 and (b) θ = −1.0 after subtraction of the carrier wavelength of
the input light.

ability of occupancy of state |1〉 is very high in the TCS tails
and the probability of occupancy of state |2〉 is very high at the
TCS peak [see Fig. 5(b)]. The TCS peak intensities and occu-
pancy probabilities over the interval of TCS existence versus
the cavity detuning parameter are reported as black circles in
Fig. 2. Typical FWHM sizes of TCSs due to quantum interfer-
ence are expected to be in the subpicosecond regime. Domain
walls and TCSs formed by locked DWs are localized quantum
interference structures robust to noise perturbations of more
than 40% of their amplitudes, do not require modulational
instabilities, and exist in wide ranges of the parameter space of
the model equations, making them likely to be implemented
experimentally. It is important to note that stable and moving
DWs have been observed experimentally for two-level media
with normal dispersion [32,33] in regimes not affected by the
presence of pattern solutions. The quantum interference DWs
and TCSs presented here operate instead in the anomalous
dispersion regime.

Quantum interference TCSs formed by locked DWs have
a very high contrast (visibility) since their tails are anchored
on the low-intensity branch. When compared with their coun-
terpart in Kerr two-level media [22], they require four times
lower input powers (order of a few milliwatts) and present
almost no local modulations at the bottom of the peaks, mak-

ing them excellent candidates for the generation of frequency
combs. Figure 6 shows two examples of frequency combs
for the values of θ = −0.5 and θ = −1.0. In the first case
we have a higher peak intensity TCS with higher definition
but narrower spectrum, while in the second case we have
a narrower TCS resulting in a broader spectrum. These are
excellent realizations of frequency combs made of quantum
interference dark states and cw STIRAP.

Quantum interference between separate two-level transi-
tions leads to CPT, EIT, and the population of dark states
in three-level � configurations. Here we have shown that
quantum interference can also be responsible for stable DWs
and TCSs due to the locking of DWs in microresonators
driven by two external fields close to the medium resonances
and in the presence of anomalous group-velocity dispersion.
The DWs separate two dark states inside the optical cavity
where the medium is almost exclusively in one or the other
of the two ground-state energy levels. This phenomenon cor-
responds to the realization of cavity STIRAP with no input
pulses.

In contrast to two-level media, TCSs via quantum in-
terference and anomalous dispersion can occur without
modulational instabilities and close to medium and cavity
resonances due to EIT, very low absorption, and enhanced
nonlinear features. Close to resonance TCSs have optimal
shapes for nonlinear absorbers owing to their high peak in-
tensities, very low backgrounds, and almost no oscillation in
the tails. For these reasons, TCSs due to quantum interference
can be optimal candidates for the generation of novel mi-
croresonator frequency combs with applications in frequency
standards, optical communications, and high-resolution spec-
troscopy. Our DWs and TCSs are robust features and are
expected for wide ranges of input powers, pulsed regimes,
medium responses, and detunings. Dynamical TCSs, broaden-
ing of frequency combs, generalizations to normal dispersion,
and detuned fields E2 of large Rabi frequencies leading to
Fano-like resonances as well as quantum interference in V and
ladder three-level media in microresonators are left for future
investigation.
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