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A B S T R A C T

In the present work, interactions between a macro-crack and various micro-crack configurations are studied
extensively. Influence of different micro-crack configurations on propagation of a main crack is numerically
examined by ordinary state-based peridynamics. Certain micro-crack configurations improve toughness of the
specimens, while the some only has marginal impact on the crack growth rate. Furthermore, very complex
crack patterns are effectively simulated by the present implementation of ordinary state-based formulation.
1. Introduction

Functionally Graded Materials (FGMs) are considered to be ad-
vanced material types, which have become prevalent owing to the
advancements in the additive manufacturing technologies [1]. Depend-
ing on the field of application, the material properties of a structure on
one face can be adjusted for specific requirements, while the other face
may have different properties. Furthermore, the fracture toughness of a
material can be tailored so as to effectively control the crack initiation
and propagation.

Randomly distributed micro-cracks in a solid may impact the appar-
ent elastic properties of the body considerably [2]. On the other hand,
crack propagation and stress field ahead of a crack tip in engineering
materials can be controlled by the existence of micro-cracks [3–12] and
oles [13–16]. Rubinstein [3] investigated the interaction between a
o-linear micro-crack array and a semi-infinite macro crack in terms of
he stress intensity factors (SIFs) and stress potentials. Kachanov [4]
eported that a micro-crack array can significantly alter the stress
oncentration at the main crack tip. Hutchinsen [5] discussed how
he micro-cracks affect the stress field ahead of a main crack tip, and
nvestigated how arbitrarily oriented low-density micro-cracks act as a
hield. Brencich and Carpinteri [6] modelled the micro-cracks in front
of a main crack as a damage process zone, and the interactions between
macro–micro cracks as well as micro–micro cracks were examined.

Petrova et al. [7] conducted a comprehensive literature survey in-
volving macro–micro crack interactions for two-dimensional (2D) cases
under tensile, shear and combined stress states. Ducourthial et al. [8]
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numerically studied influence of the micro-structure, i.e., micro-cracks,
on the propagation of fatigue cracks in heterogeneous brittle materials.
Feng et al. [9] carried out a numerical work addressing the interactions
of a macro crack with a plenty of micro-cracks. The authors stated
that their method can be utilized for predicting effective material
properties of solids including uniform and non-uniform micro-cracks.
Zhou et al. [10] employed Voronoi tessellation model to construct
the micro-structure of ceramics, and investigated effects of the several
parameters, e.g., grain size, grain boundary strength and micro-cracks
on the crack propagation and toughness. Rahimi et al. [17] proposed
a toughening mechanism for crack propagation in FGMs with sharp
material interfaces. Their proposal involves two different approach: (i)
putting softer material sub-region, (ii) flipped material properties in a
certain sub-region, see [17] for details. Recently, multiple crack prop-
agation and the toughening mechanisms with micro-cracks and holes
have been addressed by employing extended finite element method
(XFEM) [18–20] and phase-field method [14].

The superior properties of NURBS have been recognized and im-
plemented in fracture parameter evaluation of FGM plates. Bhardwaj
et al. [21] adopted extended Isogeometric Analysis (XIGA) for the SIF
evaluation of FGM plates with first order shear deformation theory.
Then, Singh et al. [22] employed generalized higher order shear de-
formation theory for calculation of fracture parameters in FGM plates.
A series of comprehensive numerical works for various crack con-
figurations, loading and boundary conditions, as well as the plate
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shapes were also carried out in [22]. Furthermore, Bhardwaj et al. [23]
implemented XIGA for the FGMs with thermally induced cracks. The
influence of flaws and inclusions on the SIFs was also investigated in
the same work. A semi-homogenized XIGA approach for examining the
effects of flaws and inclusions on the SIFs of central cracked FGMs was
proposed in [24]. Apart from the fracture simulation of FGMs, Soni
et al. [25] studied static bending of functionally graded carbon nano-
tube reinforced plates in the framework of inverse hyperbolic shear
deformation theory.

The treatment of even a single crack in continuum media might
be challenging due to the requirements of the special techniques in
conventional methods. In recent times, Perdiynamics (PD) [26] was
proposed with an excellent capability of handling discontinuities with-
out any significant additional effort, as PD employs equation of motion
in the form of integration, which is valid throughout entire domain
regardless of discontinuities. The simplest form of PD formulation,
the so called bond-based PD [27], establishes force interactions be-
tween material points (particles) in terms of relative deformation to
each other, which brings about restrictions on Poisson’s ratio. Unlike
the bond-based PD, Ordinary State-Based (OSB) PD removes these
restrictions by the definition of elaborated interactions between the
particles [28].

These outstanding features of the PD have been recognized by
researchers to investigate interactions between a macro crack and small
sized defects, e.g., micro-cracks and holes. Vazic et al. [11] adopted the
bond-based PD for simulating interactions between a macro-crack and
a series of co-linear and parallel small cracks. It was shown that certain
small crack configurations reduce the crack growth speed significantly.
Then, Basoglu et al. [12] conducted a more comprehensive study for
the modelling of micro-cracks as a toughening mechanism using the
bond-based PD. Aside to the bond-based PD works, Rahimi et al. [15]
and Karpenko et al. [16] adopted the OSB-PD to investigate toughening
effects of the small-sized holes on propagation of a main crack.

Present study can be considered as follow-up of a series of the
works conducted by the present authors. The 2D OSB-PD formula-
tion proposed by Le et al. [29] was utilized for elastodynamics prob-
lems of cracked specimens to evaluate mixed-mode SIFs for stationary
cracks [30], and fast propagating cracks [31]. Imachi et al. [31] intro-
duced the transition bond concept to avoid the numerical oscillations
caused by sudden release of the PD bonds between two particles.
The crack arrest phenomenon was later simulated by the OSB-PD
model and the transition bond concept [32]. It was reported that
the transition bond concept has great importance for avoiding the
premature arrest of cracks. The same OSB-PD formulation was imple-
mented for dynamic fracture in FGMs by Ozdemir et al. [33]. In that
paper, both fast crack propagation under tensile loading and three-
point bending tests were considered. Crack branching and mix-mode
crack propagation were captured as well. Recently, Imachi et al. [34]
developed the smoothed variable horizon implementation for improv-
ing computational efficiency in elastodynamics problems, including
SIFs evaluation.

To the best of authors’ knowledge, micro-cracks interacting with
a main crack in FGMs have not been modelled and simulated by PD
yet, even though these interactions have been studied extensively for
homogeneous materials, see [6,7,9,11,12]. Therefore, the main objec-
tive of the present work is to provide a comprehensive investigation
and modelling framework for micro-crack and main crack interactions
in FGMs for the first time in the literature. We employ the OSB-PD
formulation, which was proposed by Le et al. [29] and later tailored
by Ozdemir et al. [33] for FGMs.

The paper layout is organized as follows. We firstly describe funda-
mental equations of the 2D OSB-PD. Their numerical implementation
involving the definition of PD parameters in FGMs is presented later.
In the numerical examples, we initially validate our OSB-PD implemen-
2

tation for micro-cracks in homogeneous materials, whose results have b
been provided by Refs. [11,12]. After validating the present implemen-
tation, we consider fast crack growth scenarios in FGMs under tensile
loading invoking various micro-crack configurations. Finally, three-
point bending test scenarios of FGMs involving micro-cracks are mod-
elled and studied numerically. In the end, we discuss the concluding
remarks.

2. Fundamental equations

The OSB-PD formulation decouples the deviatoric and dilatational
(volumetric) parts of the deformation state. Hence, the strain energy
density and force states can be recovered in terms of the dilatational
and deviatoric terms. Le et al. [29] derived the 2D OSB-PD formulation
for both plane stress and strain conditions. In the present work, only the
plane stress condition will be considered. Le et al. [29] proposed the
PD strain energy density expression for a particle in a 2D solid body in
the following form.

𝑊 = 1
2

(

𝜅′𝛩2 − 𝛼(𝜔𝑒d) ∙ 𝑒d
)

. (1)

The PD parameters 𝜅′ and 𝛼 in Eq. (1) can be evaluated from the
correspondence of strain energy density and dilatation obtained by the
PD and classical theory as:

𝛼 =
8𝜇
𝑞
, (2)

𝜅′ = 𝐾 +
𝜇(𝜈 + 1)2

9(2𝜈 − 1)2
, (3)

where 𝐾 and 𝜇 are the bulk and shear moduli of the material. 𝜈 is the
oisson’s ratio. The PD volume dilatation, 𝛩, for the plane stress case
s defined as [29]:

= 𝛽
(𝜔𝜉) ∙ 𝑒

𝑞
, (4)

where 𝛽 = 2(2𝜈 − 1)∕(𝜈 − 1). In Eqs. (1) and (4), the (∙) operator stands
for the dot product of two states as [28]:

𝐀 ∙ 𝐁 = ∫𝐱

(𝐀𝐁)⟨𝐱′ − 𝐱⟩d, (5)

where ⟨⋅⟩ involves the bond vector between two particles on which the
PD states 𝐀 and 𝐁 operate. The elongation/shrinkage of a PD bond is
represented by a scalar extension state 𝑒 = |𝐮′ − 𝐮|, and its deviatoric
part is: 𝑒d = 𝑒−(𝛩𝜉)∕3. Accordingly, the bond vector for the undeformed
configuration is expressed as 𝝃 = 𝐱′ − 𝐱. The initial distance between
the particles can be expressed by a scalar position state as 𝜉 = |𝝃|.

In the PD framework, the elastodynamics behaviour of a solid body
is represented by the equation of motion in the integration form as [27]:

𝜌(𝐱)�̈�(𝐱, 𝑡) = ∫𝐱

[

𝐟 (𝐱, 𝑡) − 𝐟 ′(𝐱′, 𝑡)
]

d + 𝐛(𝐱, 𝑡), (6)

where 𝐟 (𝐱, 𝑡) defines the force density vector for the particle at 𝐱 for
any instance, 𝑡. By the same definition, the force density vector for the
particle at 𝐱′ is represented by 𝐟 ′(𝐱′, 𝑡). The force density vectors are the
outcome of the force states, which operate on the bond vector 𝐱′ − 𝐱.
The displacement vector is denoted by 𝐮; the acceleration vector hence
becomes �̈�. In the present form of the equation of motion, 𝜌(𝐱) stands for
the location dependent material density, which can be set as variable
for the modelling of FGMs. The neighbourhood of the particle at 𝐱 is
enoted by 𝐱, which will be called horizon hereafter. The horizon
ize is assumed to be constant in the present work, which means the
umber of particles within the horizon of each particle is the same,
xcept for the boundary regions, which are truncated by the boundaries
f a solid body. The horizon has a circular shape in 2D problems with
radius, 𝛿. In Eqs. (2) and (4), the weighted volume of the horizon is
epresented by 𝑞 = (𝜔𝜉)∙𝜉. 𝜔 is the scalar state of weight function, which
is considered as linearly varying over the horizon, i.e, 𝜔 = 1−(𝜉∕𝛿). The
ody force density acting on the particle at 𝐱 is 𝐛(𝐱, 𝑡).



Composite Structures 287 (2022) 115299M. Ozdemir et al.

o
d
f

𝐟

w
w
𝐲
f
m
i

𝑓

s
h
t
s
i
r
e

2

c
T
t
t
𝜙
t
t
i
a
a

c
d
T
m
K
t
c
i
o
w
f
t

𝑠

T
d
b
s
4
t

o
t
i
d

3

m
t
I
t
e
t
p

c
t
e

𝜌

T
b
p
d
p
t

b
t
s
i

b
t
r

In the OSB-PD formulation, the force density vectors are aligned to
the bond vector in the deformed configuration, but may have unequal
magnitudes at each side of the bond. This is because, the force state
of the particle at 𝐱 due to interaction by the particle at 𝐱′ is not
nly dependent on their relative deformation, but also the collective
eformation of other particles within its horizon. In this regard, the
orce density vector for the particle located at 𝐱 can be written as [29]:

(𝐱, 𝑡) = 𝑓𝐦, (7)

here 𝐦 represents the unit bond vector in the deformed configuration,
hich is written as 𝐦 = 𝜼∕|𝜼| with 𝜼 = 𝐲′ − 𝐲. In this expression,
and 𝐲′ stand for the position vectors in the deformed configuration
or the particles initially located at 𝐱 and 𝐱′ points, respectively. The
agnitude of the force density vector, 𝑓 , for the plane stress condition
s then given as [29]:

= 𝛽
(

𝜅′𝛩 − 𝛼
3
(𝜔𝑒d) ∙ 𝜉

)𝜔𝜉

𝑞
+ 𝛼𝜔𝑒d. (8)

The parameter 𝑞 in Eqs. (4) and (8) plays a significant role to reduce the
oftening of the material near the boundaries because of the truncated
orizon, since 𝑞 is the denominator of both the force magnitude and
he PD dilatation expressions. In a truncated horizon, 𝑞 value becomes
maller than its correspondent for a horizon in bulk. Hence, the soften-
ng of the PD material near the boundaries can be compensated by the
educed value of the denominator in the force density and dilatation
xpressions [35].

.1. Damage representation

In the PD perspective, the damage model is rather straightforward
ompared to the conventional continuum mechanics based methods.
o model a damage or crack surface, the PD interactions passing
hrough the damage area or crack surface can be removed. In this case,
he scalar influence function must be multiplied by a step function,
(𝐱, 𝝃, 𝑡), which represents the bond condition for the particle at 𝐱 and
he associated bond vector 𝝃. If the bond is intact, the function takes
he value of 1.0, otherwise it becomes zero. This simple implementation
s valid regardless of the crack size; however, the discretization size
s well as the horizon radius must be adjusted sufficiently small to
ccurately model the sharp micro-crack surfaces by this technique.
After proper modelling of the initial cracks, various failure criteria

an be employed. Dipasquale et al. [36] discussed the advantages and
isadvantages of various criteria applicable in the OSB-PD framework.
hese criteria are based on the critical stretch of a bond [37] and the
aximum strain energy that can be stored in a bond [38]. In addition,
arpenko et al. [39] carried out a comprehensive investigation on
he elimination of PD interactions in the OSB-PD framework invoking
ritical stretch based failure. Even though both critical stretch and max-
mum strain energy approaches perform quite well, the implementation
f the critical stretch approach is more straightforward and has been
idely considered thus far. We therefore adopt critical stretch based
ailure criteria given by Madenci and Oterkus [37] for evaluation of
he crack propagation as:

𝑐𝑟 =

√

√

√

√

√

𝐺𝑐
( 6
𝜋
𝜇 + 16

9𝜋2
(𝐾 − 2𝜇)

)

𝛿
. (9)

If the stretch value of a bond obtained by Eq. (10) exceeds the critical
stretch value by Eq. (9), the step function, 𝜙(𝐱, 𝝃, 𝑡), must be set to zero
for the associated bond.

𝑠 =
|𝜼| − |𝝃|

|𝝃|
. (10)

In Eq. (9), 𝐺𝑐 is the critical energy release rate, which can be defined
within the linear elastic fracture mechanics framework for the plane
stress case as 𝐺 = 𝐾2
3

𝑐 IC∕𝐸, in which 𝐾IC is the fracture toughness. It
Fig. 1. Discretization schemes for PD domains: (a) particles are located along the
boundaries, (b) particles are located with a distance from the boundaries.

must be noted that the critical energy release rate has to be obtained
in a point-wise manner in FGM modelling.

For tracing the crack propagation as well as the damage accumula-
tion, a scalar local damage parameter is utilized as [27]:

𝜑(𝐱, 𝑡) = 1 −
∫𝐱

𝜙(𝐱, 𝝃, 𝑡)𝑑

∫𝐱
𝑑

. (11)

he local damage parameter given in Eq. (11) represents the internal
amage of a particle. Introducing an internal damage to a particle can
e considered as one of the efficient ways to simulate the reduction in
tiffness of the entire body. By adjusting this parameter, porosity [40,
1] and other micro-structural properties can be effectively introduced
o a solid body.
The minimum local damage parameter, 𝜑(𝒙, 𝑡), of a particle located

n a crack surface may vary from 0.35 to 0.5 depending on the ratio of
he horizon size to the particle distance. As an optimistic approach, it
s assumed that a crack-tip advances to a new particle when the local
amage parameter of that particle reaches the value of 0.5 [37].

. Numerical solution of PD equations

The problem domain can be discretized as similar to conventional
eshfree methods. In one discretization scheme as shown in Fig. 1(a),
he particles are allocated along the boundaries of the problem domain.
n this scheme, however, the particles on the boundaries would have
runcated volumes unlike the particles in the bulk. We, therefore,
mploy the another discretization scheme shown in Fig. 1(b), so that
he particles are allocated at the centre of the full grid cells and all
articles have the same volume regardless of their location.
By discretizing a continuous problem domain, one can rewrite the

ontinuous integral equations by means of summation of the discrete
erms. In that sense, the equation of motion for the particle (𝑘) can be
xpressed in discretized form as:

(𝑘)�̈�(𝑘) =
𝑁𝑘
∑

𝑗=1
(𝐟(𝑘)(𝑗) − 𝐟(𝑗)(𝑘))𝑉 ′

(𝑗) + 𝐛(𝑘). (12)

he force density vectors 𝐟(𝑘)(𝑗) and 𝐟(𝑗)(𝑘) arise due to the interactions
etween the particles (𝑘) and (𝑗). 𝑁𝑘

denotes the total number of
articles within the neighbourhood of particle (𝑘). The body force
ensity vector acting on the point of interest is denoted by 𝐛(𝑘). At this
oint, it is worth mentioning that the traction forces are modelled as
he body forces of the relevant particles in the solution of Eq. (12).
The particle (𝑗) within the horizon has a finite volume 𝑉 ′

(𝑗). If the
oundary of horizon, 𝑘, involves the entire volume of (𝑗), 𝑉 ′

(𝑗) is
aken as the full volume; otherwise, the volume correction procedure
hould be implemented to mitigate the errors caused by the numerical
ntegration [37].
The acceleration term �̈�(𝑘) in Eq. (12) can be simply obtained

y dividing the both sides to the density of the particle, 𝜌(𝑘). Then,
he explicit central difference time integration scheme is employed to
etrieve the velocity and displacement values.
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In order to be able to solve Eq. (12), the magnitude of the force
ensity vector, given in Eq. (8), is expressed in discretized form as:

(𝑘)(𝑗) =𝛽
(

𝜅′
(𝑘)(𝑗)𝛩(𝑘) −

𝛼(𝑘)(𝑗)
3

𝑁𝑘
∑

𝑗=1
𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝑒

d
(𝑘)(𝑗)𝜉(𝑘)(𝑗)𝑉

′
(𝑗)

)

×
𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝜉(𝑘)(𝑗)

𝑞(𝑘)
+ 𝛼(𝑘)(𝑗)𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝑒

d
(𝑘)(𝑗),

(13)

where the PD dilatation term in discretized form for the plane stress
condition can be written as:

𝛩(𝑘) =

𝛽
𝑁𝑘
∑

𝑗=1
𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝜉(𝑘)(𝑗)𝑒

𝑑
(𝑘)(𝑗)𝑉

′
(𝑗)

𝑞(𝑘)
. (14)

n Eqs. (13) and (14), the term 𝑞(𝑘) is independent of the material
roperties and it depends only the weight function, bond condition and
he horizon of the particle (𝑘), which is given as:

(𝑘) =
𝑁𝑘
∑

𝑗=1
𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝜉(𝑘)(𝑗)𝜉(𝑘)(𝑗)𝑉

′
(𝑗). (15)

Once the displacement values of the particles have been obtained by
the explicit time integration, the stretch value between the particles
within the neighbourhood of each other can be obtained as:

𝑠(𝑘)(𝑗) =
|𝜼(𝑘)(𝑗)| − |𝝃(𝑘)(𝑗)|

|𝝃(𝑘)(𝑗)|
, (16)

here 𝜼(𝑘)(𝑗) = 𝐲(𝑗) − 𝐲(𝑘) and 𝝃(𝑘)(𝑗) = 𝐱(𝑗) − 𝐱(𝑘). The stretch value, from
q. (16), is then compared with the critical stretch value in Eq. (9)
o assess whether the bond is intact or broken. Ultimately, the local
amage parameter for the particle (𝑘) can be expressed in discretized
orm for any instance as:

(𝑘) = 1 −

𝑁𝑘
∑

𝑗=1
𝜙(𝑘)(𝑗)𝑉

′
(𝑗)

𝑁𝑘
∑

𝑗=1
𝑉 ′
(𝑗)

. (17)

inally, the discrete form of the strain energy density is written as:

(𝑘) =
1
2

(

𝜅′
(𝑘)𝛩

2
(𝑘) − 𝛼(𝑘)

𝑁𝑘
∑

𝑗=1
𝜙(𝑘)(𝑗)𝜔(𝑘)(𝑗)𝑒

d
(𝑘)(𝑗)𝑒

d
(𝑘)(𝑗)𝑉

′
(𝑗)

)

. (18)

3.1. Modelling of FGMs

It is well known that the FGMs do not have sharp material interfaces
and both thermal and mechanical properties of FGMs are assumed to
vary gradually through the width or thickness direction. Considering
the fact that the PD parameters have been obtained by assuming the
material is homogeneous and bulk (far from the boundary), some
simplifications are required to model variable material properties. If a
material property varies dramatically within the horizon of a particle,
it might be expected that it will induce error in the conventionally
obtained PD parameters. By relatively fine discretization with slight or
moderate variation of the material properties within the horizon, the
localized homogenization approach performs well for the PD modelling
of FGMs. In this approach, the fundamental equations remain the same;
however, the material parameters for a bond are averaged values of the
properties for particles at each end of the bond, which is the simplest
but efficient modelling technique for FGMs.

The approach described above has also been widely adopted for
FGM modelling within PD perspective [33,42,43]. Recently, some re-
searchers have proposed to implement weighted averaging of the ma-
terial properties for a bond rather than simple averaging [44,45].
4

Rahimi et al. [17] proposed a dominance approach, which is similar
Fig. 2. The benchmark model adopted from Refs. [11,12] (not in true scale).

to the weighted averaging, for evaluating the bond properties in FGMs.
Rahimi et al. [17] have established their proposal based on the assump-
tion that the maximum bond force is limited to the resistance of the
particle, which has smaller stiffness among the particles at each end
of the bond. The softer material property is therefore multiplied by a
dominance factor.

The present FGM modelling technique is same as the one imple-
mented in our previous work [33]. For calculating the magnitude of
force density vector, the PD parameters, 𝛼 and 𝑘′ are evaluated by using
mean values of the material properties at particles (𝑘) and (𝑗). One
should be careful in calculating the parameter 𝛼 as its denominator is
independent of the material properties. The averaging of 𝛼 parameter
is performed as:

𝛼(𝑘)(𝑗) =
8(𝜇(𝑘) + 𝜇(𝑗))

2𝑞(𝑘)
, (19)

where 𝜇(𝑘) and 𝜇(𝑗) are the shear moduli of the particles at each side
of the PD bond. The bond parameter 𝜅′

(𝑘)(𝑗) is obtained by averaging
Poisson’s ratio and Elastic modulus of the particles (𝑘) and (𝑗). The
parameter 𝛽 is only function of Poisson’s ratio, as it is known from
a reference work [46], the influence of Poisson’s ratio on the crack
propagation is less significant compared to that of elastic modulus and
fracture toughness. The Poisson’s ratio can be assumed as constant.

For evaluating the strain energy density of the particle (𝑘), point-
wise quantities of PD parameters without averaging, 𝜅′

(𝑘) and 𝛽(𝑘), and
dilatation, 𝛩(𝑘), are utilized.

4. Numerical studies

We consider various micro-crack configurations ahead of a main
crack to carry out a comprehensive investigation on their influence on
the crack growth. Accordingly, we first verify our implementation with
a benchmark study for homogeneous materials. In the benchmark case,
two parallel micro-cracks, which are aligned with the main crack, are
introduced. Then, the crack patterns are compared with the reference
works. After successful verification of the present OSB-PD implemen-
tation, the FGMs are considered. Co-linear and complex micro-cracks
are introduced for FGM specimens under uni-axial tension load for fast
crack propagation and three-point bending test scenarios.

4.1. Benchmark study with homogeneous materials

The validation of the present OSB-PD implementation for the micro-
crack modelling and simulation is aimed by utilizing a benchmark
model, which was studied by Refs. [11,12]. The model is demonstrated
in Fig. 2 with a close-up view on the micro-crack zone.

In Fig. 2, entire modelling and material parameters are adopted
from Refs. [11,12]. The geometrical parameters are as follows. The
aspect ratio of the model is 1.0, i.e., 𝐿 = 𝑊 = 50 mm. The main crack
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Fig. 3. Damage patterns with local damage parameter (𝜑) at 1000th step: (a) 𝑠∕𝑙 = 2, (b) 𝑠∕𝑙 = 0, (c) 𝑠∕𝑙 = −2.
length is taken as the half of the length, 𝐿main = 𝐿∕2, and the size of the
micro-cracks are assumed as 2𝑙 = 𝐿∕50. The other parameters related
to micro-crack locations are: ℎ = 1.25𝑙, and the distance 𝑑 is varied as
2𝑙, 0, −2𝑙. Here, the negative value of 𝑑 means that the micro-cracks
fall behind the main crack tip.

The material properties are: modulus of elasticity, 𝐸 = 2940 MPa,
Poisson’s ratio, 𝜈 = 0.38, the density, 𝜌 = 1200 kg∕m3, and the fracture
energy is 𝐺𝑐 = 602 J/m2. The critical stretch value for the assessment
of the crack propagation is obtained by using Eq. (9).

The model is discretized with a particle distance, 𝑑𝑥 = 0.1 mm, and
the horizon size is taken as 𝛿 = 3.015×𝑑𝑥. A constant velocity boundary
condition, 𝑉0 = 5 m∕s is imposed on both top and bottom surfaces of
the model by invoking fictitious material layers, whose width is 3×𝑑𝑥.

In performing explicit time integration, proper determination of the
critical time step size is crucial. Silling and Askari [27] proposed a
critical time step size criterion in the PD perspective. In the present
work, the time step size is chosen as 𝑑𝑡 = 4×10−8 s, which is consistent
with Refs. [11,12] as well as meets the criterion proposed by Silling
and Askari [27]. Total number of steps is taken as 𝑛𝑡 = 2000.

Damage patterns for the homogeneous model were provided for the
000th step in Refs. [11,12]. For the comparison purpose, the damage
atterns are provided for the same instance, i.e., 1000th step in Fig. 3.
he damage patterns are considered to be in a very good agreement
ith the reported ones in Refs. [11,12]. Please see Fig. 9 in Ref. [12]
or the comparison. The crack propagation starts around 500th time
tep for all cases, which is also consistent with the reported values in
efs. [11]. These results also indicate that the Poisson’s ratio is not a
ain governing parameter of the crack propagation, since it is adopted
s 𝜈 = 0.38 in the present work, while the reference works [11,12]
tilized bond-based PD with a fixed Poisson’s ratio, 𝜈 = 1∕3.

.2. Fast crack propagation scenarios under tension loading

Fast crack propagation in FGMs was studied by bond-based PD
n [43]. Then, the same specimens have been adopted by the present
uthors [33] and a thorough investigation of crack propagation has
een carried out by utilizing OSB-PD formulation. Ref. [33] reported
hat the crack propagation speed reaches the critical wave speed,
hich is around 0.6𝐶T and branching takes place. 𝐶T represents the
ransverse wave speed in solids, see Ref. [33]. In the present study,
ame specimens are adopted and various micro-crack configurations
re introduced ahead of the main crack tip. The main dimensions of
he specimen, shown in Fig. 4, are as follows. The length is 𝐿 = 0.1 m
nd the width is 𝑊 = 0.04 m. The main crack length is 𝐿main = 𝐿∕2.
he loading condition is also assumed to be same as the previous
orks [33,43]; symmetrical tension load, with a magnitude of 𝜎0 =
5 MPa is suddenly applied on both top and bottom edges.
The material parameters are assumed to be same as the previous

orks [33,43]. As demonstrated in Fig. 4, the material stiffness as well
as the density increases from bottom to top surface. In accordance
with the reference works [33,43], linear variations for the material
properties are considered as:

𝐾 (𝑦) = 2.1 + 3.6 − 2.1 𝑦, (20)
5

IC 40
Fig. 4. Representative model of FGM specimens for fast crack propagation.

𝐸(𝑦) = 3.8 + 11.1 − 3.8
40

𝑦, (21)

𝜌(𝑦) = 918 + 1812 − 918
40

𝑦. (22)

In the above equations, 𝑦 is varied between 0 and 40 mm. The units
for fracture toughness, elastic modulus and mass density are MPa m1∕2,
GPa and kg/m3, respectively. The plane stress condition is adopted for
this problem, and the Poisson’s ratio is considered as constant, 𝜈 = 1∕3.

The critical stretch for a bond is evaluated by taking the mean
values of the material properties. The critical energy release rate is
computed for each particle as:

𝐺𝑐 (𝑦) =
𝐾2

IC(𝑦)
𝐸(𝑦)

. (23)

Then, by using the same simplified approach as described in Sec-
tion 3.1, the mean value of the critical energy release rates of the
particles at each end of the bond is invoked in Eq. (9).

4.2.1. Numerical convergence tests
Although we presented consistent results for the FGMs considering

crack growth in our previous paper [33], it would be useful to carry
out convergence analyses to determine the optimum discretization size
and the horizon parameter. In that sense, we have decided to perform
convergence study for the crack growth case of co-linear micro-crack
configurations. In the PD simulations, the convergence studies involve
two steps [47]: (i) 𝑚 convergence, in which the horizon parameter is
varied for a fixed 𝑑𝑥 value, (ii) 𝛿 convergence, in which the particle
discretization is varied for a fixed 𝑚 value.

In the convergence study, the number of micro-cracks is adopted as
two, and the cracks are aligned with the orientation of the main crack
as shown in Fig. 5.

The parameters of the micro-cracks are adopted from [11], which
are given as follows. The parameter 𝑎 represents the horizontal distance
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Fig. 5. Co-linear micro-crack configurations for the convergence study.

etween the cracks, and taken as 𝑎 = 𝐿main∕40. The relationship
between the micro-crack size parameters is adopted as 𝑎∕𝑏 = 0.4. Then,
the size of a micro-crack becomes 𝑏 − 𝑎 = 1.875 mm.

In order to represent the micro-crack shapes well, the particle
distance, 𝑑𝑥, is taken as 0.2 mm in the 𝑚 convergence study. Then, the
horizon parameter, 𝑚, is varied as 3, 4 and 5. In all horizon parameter
cases, the horizon size becomes smaller than the size of a micro-crack.
If the horizon size becomes comparably larger than the size of a micro-
crack, then the micro-crack cannot be represented as a sharp interface,
but as a damage zone. Moreover, the model discretization will affect
the critical time step size that is crucial for a stable explicit time
integration.

Once the 𝑚 convergence has been completed, the 𝛿 convergence
study is performed for the fixed horizon parameter, 𝑚 = 4, varying the
particle distance, 𝑑𝑥 as 0.1, 0.2 and 0.4 mm. For these configurations,
𝑚 = 4 is considered to be an optimum value as the lower value of 𝑚may
restrict the crack growth path due to the insufficient number of bonds
within the horizon; on the other hand, the larger value, i.e., 𝑚 = 5
may reduce the solution accuracy because of the assumptions made for
the FGM modelling based on the averaging technique. Based on the
guidance from the Refs. [27,37], we have obtained the critical time step
sizes. In one case, 𝑚 = 4 with 𝑑𝑥 = 0.1 mm, we adopt 𝛥𝑡 = 30 × 10−9 s.
As for the other cases, 𝛥𝑡 = 50×10−9 s guarantees a stable explicit time
integration.

We have performed the convergence study based on the parameters
we mentioned earlier, and the crack patterns after 60 μs with the local
damage parameter (𝜑) map are provided in Fig. 6. This figure indicates
that larger horizon sizes, i.e., 𝑚 = 5 in the 𝑚 convergence and 𝑑𝑥 =
0.4 mm in 𝛿 convergence, cannot capture the local branching due to the
presence of the micro-cracks. The final crack patterns obtained by these
parameters are almost the same with damage patterns without micro-
crack cases. Based on the experiences from our previous work [33] as
well as the findings from [43], we may expect two main branches with
multiple local branches. This behaviour was captured well in case of
𝑚 = 4 with 𝑑𝑥 = 0.1 and 0.2 mm. Although 𝑑𝑥 = 0.1 mm with 𝑚 = 4 case
epresents the sharp crack faces with high accuracy, its computational
fficiency is extremely lower compared to the case 𝑑𝑥 = 0.2 mm with
= 4.
In the convergence study, we have also examined the onset of crack

ropagation and the final location of the crack tip when the simulations
nd. It was found that the main crack starts to grow between 12 and
3 μs, which suggests that the influence of setted parameters on the
nstance of the crack propagation is just marginal.
The 𝑥-coordinate of the crack tips at the end of the simulation,

.e., 60 μs, were recorded and it was found that they may show slight
ariation depending upon the horizon sizes from 81.0 to 86.0 mm
or the smallest (𝑚 = 4 and 𝑑𝑥 = 0.1 mm) and largest (𝑚 = 4 and
𝑥 = 0.4 mm) horizon sizes, respectively.
The findings from the convergence study suggest that the discretiza-

ion with 𝑚 = 4 and 𝑑𝑥 = 0.2 mm seems to be the most optimum model
hat gives accurate results with affordable computational expenses.
6

4.2.2. Co-linear micro-crack configurations
The optimum discretization parameters along with the stable time

step sizes have been identified in the convergence study. So, we dis-
cretize the model with 𝑚 = 4 and 𝑑𝑥 = 0.2 mm parameters. The time
step size is taken as 𝛥𝑡 = 50 × 10−9 s. The dimensions of the micro-
cracks and their spacing are same as the convergence study. The model
parameters are schematically given in Fig. 7(a), while Fig. 7(b) shows
the numerical PD models.

The orientation of the micro-cracks is expressed with respect to
horizontal axis. In regular configuration, the micro-crack is aligned
with the main crack, and the crack orientation, 𝜃, becomes 0◦. For the
angular micro-crack configurations, 𝜃 is varied as 45◦, 90◦ and 135◦.
Furthermore, number of micro-cracks are varied as 𝑛𝑐 = 1, 2, 4. Their
influence on the propagation of the main crack is examined by com-
paring horizontal locations of the crack tips for different configurations
and final damage patterns.

Fig. 8 illustrates the 𝑥-coordinates of the crack tip locations during
the simulation. One of the main inference from the given figure is
that if the micro-cracks are aligned with the main crack, the crack
tip jumps through micro-cracks and travels longer distance within the
considered time interval. Despite the slopes of the given curves follow
a similar trend, earlier onset of crack propagation for 𝜃 = 0◦ case is the
main reason for the longer travel distance. On the other hand, as it is
expected, the micro-cracks orthogonal to the main crack face (𝜃 = 90◦)
retard the onset of crack propagation, which in turn a less distance
is travelled by the main crack. It must be noted that the influence of
orthogonal micro-cracks is just marginal on the final crack tip position
regardless of the number of micro-cracks. The effects of diagonal micro-
cracks (𝜃 = 45◦, 135◦) are almost the same on the location of the crack
tip within the given time interval. These configurations cause slightly
earlier onset of the crack propagation compared to the only main crack
case.

Effects of co-linear micro-cracks can also be discussed based on the
crack paths at the end of the simulations. Accordingly, the damage
patterns for the various micro-crack configuration cases as well as the
only main crack case are provided in Fig. 9

The impact of the micro-cracks might be judged by the branching
behaviour of the main crack. Crack branching is associated with the
local crack speed that reaches the critical wave speed (0.6𝐶T) [48,49].
This phenomenon was studied extensively in the previous work of the
authors [33]. As it is seen in Fig. 9, obvious single crack branching,
similar to that of only main crack case, occurs in a few cases. In 𝑛𝑐 = 1
case, the crack patterns are mostly similar to that of the only main crack
case, which shows the limited impact of the micro-cracks. However,
in some cases; particularly, 𝑛𝑐 = 4 case with 𝜃 = 45◦, 90◦ and 135◦,
there is no obvious branching unlike the only main crack case, which
means that the crack does not have sufficient energy to completely
branch. In the damage patterns for these cases, one can observe local
small-branching and accumulated damage rather than a sharp crack
face.

4.2.3. Complex micro-crack patterns
The micro-crack configurations studied so far have limited influ-

ence on the crack growth and they may play an accelerating role in
some configurations, i.e., co-linear micro-cracks with 𝜃 = 0◦. In this
section, we therefore consider complex micro-crack configurations that
possibly have some toughening effects. Basoglu et al. [12] examined
the toughening mechanisms of the various micro-crack configurations
in the homogeneous materials. They also reported that the crescent-
like micro-cracks are the most effective configuration in suppressing
the crack propagation speed among the numerical examples consid-
ered in their study. Recently, the crescent-like micro-cracks in regular
and random patterns were also numerically implemented in Kalthoff-
Winkler impact tests by Candas et al. [50]. Even if the efficiency
of this configuration has been proven for homogeneous materials, its

toughening effect has to be studied for FGMs. In the present work, we
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Fig. 6. The damage patterns after 60 μs.
Fig. 7. Co-linear micro-crack configurations: (a) schematic illustrations (not in true scale), (b) numerical PD models.
therefore adopt crescent-like micro-cracks, curved cracks and orbited
micro-cracks ahead of the main-crack tip in FGMs. The modelling
parameters are demonstrated on the numerical models with close-up
views in Fig. 10.

In the crescent-like configurations, see Fig. 10(a), three arrays of
micro-cracks in arch shape are invoked. The first array involves seven
micro-cracks; eight and nine micro-cracks constitute the second and
third micro-crack arrays, respectively. Origin of the arc shape of the
crack arrays is allocated slightly behind the main crack tip, and radius
for the first array is 𝑟in = 7.5 mm. The distance between the main crack
ip and the first crack array is 5.0 mm. The crescent-like micro-cracks
ave the size, 𝑎 = 2.0 mm, and this value is the offset distance between
the crack arrays as well. The offset angle between the micro-cracks in
the same array is set as 20◦.

Fig. 10(b) demonstrates a curved crack that acts as a shield for the
ip of the main crack. The centre of the curved crack is located at the
ip of the main crack with a radius, 𝑟in = 7.5 mm. The sweep angle of
he curved crack is 240◦.
The orbited micro-cracks in Fig. 10(c) have the same properties with

the crescent-like micro-cracks in terms of the orbit radius and the crack
7

offset angle. The micro-crack size is adopted as 𝑎 = 2.5 mm, which is the
offset distance between the crack arrays as well. In this configuration,
there are five layers, and the number of micro-cracks are increasing
from one to five as the orbit circle enlarges.

The crack tip locations in the horizontal direction have been cap-
tured and presented in Fig. 11. This figure suggests that the crescent-
like and orbited micro-cracks have similar effects on the crack growth
as expected; however, the final horizontal location of the crack tip in
case of crescent-like micro-cracks is slightly smaller than that of orbited
micro-cracks case. On the other hand, the curved crack retards the onset
of crack growth significantly owing the its continuous geometry and
shielding effect. When the crack starts to propagate, the crack growth
rate is the smallest among others, see the slope of curve within the
interval of 15–22 μs. Beyond 22 μs, the crack tip suddenly jumps as it
is shown in Fig. 12(b). The crack growth takes place on the back side
of the curved crack in addition to main crack. In this case, we have
considered the right-most crack tip as the new crack tip.

Fig. 12(a) sheds light on the almost flat-region of the crack-growth

rate in 30–35 μs interval for the crescent-like micro-crack case. In
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Fig. 8. Advance of crack tips in the horizontal direction for co-linear micro-crack configurations: (a) 𝑛𝑐 = 1, (b) 𝑛𝑐 = 2, (c) 𝑛𝑐 = 4.
Fig. 9. Damage patterns with local damage parameter (𝜑) for co-linear micro-crack configuration cases: (a) 𝜃 = 0◦, (b) 𝜃 = 45◦, (c) 𝜃 = 90◦, (d) 𝜃 = 135◦.
this interval, main crack reaches the micro-crack cluster; afterwards,
it splits into multiple branches because of the multiple stress concen-
trations at the tips of the micro-cracks. We can interpret locations of the
stress concentrations as well as their magnitudes in terms strain energy
8

densities calculated by Eq. (18). The strain energy distributions for both

with and without micro-cracks cases at 𝑡 = 14 μs are demonstrated in

Fig. 13.
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Fig. 11. Crack tip locations in the horizontal axis with respect to time.

As it is apparent in Fig. 13, the maximum strain energy density
takes place in the only main crack case. Although the maximum values
of strain energy densities for the crescent-like and orbited micro-crack
cases are slightly lower than the only main crack case, their values
double the maximum strain energy density value of the curved crack
case. It is worth noting that the maximum strain energy density de-
velops at the lower tip of the curved crack, while the most stressed
locations are the main crack tips for other cases. Moreover, the back
side of the curved crack is also stressed noticeably. The strain energy
plots confirm the crack-tip location histories in Fig. 11. Due to the lower
strain energy density at the tip of the main crack in curved crack case,
the growth starts late; what is more, the growth rate is the smallest
until a certain point. From that point, a new crack initiates from the
back side of the curved crack, see Fig. 12(b). Then, the new crack
propagates almost in the same rate with the only main crack case,
see Fig. 11. Considering the findings above, the most efficient way to
suppress the crack growth rate seems to be the crescent-like micro-
crack configuration as its final crack-tip coordinate is the smallest. On
the other hand, from the practical point of view, the curved crack case
is the most efficient way for retarding onset of the crack propagation.

4.3. Three-point bending (TPB) test scenarios with micro-cracks

The fast crack propagation scenarios for various micro-crack config-
urations have been studied thus far in Section 4.2. The crack branching
as been therefore observed in many of the considered cases. Next,
e are going to replicate TPB test specimens including micro-cracks
n the OSB-PD framework. TPB test setup mostly yields lower crack
ropagation speed without any crack branching. This test configuration
as studied by Cheng et al. [42] by utilizing the bond-based PD formu-
9

ation. Then, the present authors conducted a thorough investigation a
f the same problem by the OSB-PD formulation for only main crack
ases [33]. In that study, we reported mixed-mode crack propagation
ithout any branching. The TPB test model with the main dimensions
nd loading condition is given in Fig. 14.
Fig. 14(a) shows the model without micro-cracks. The main crack

s located on the stiff side of the specimen. The bottom supports are
odelled in terms of reacting opposite loads. The main loading is
pplied on the top surface with a distance from the mid-span, see
ig. 14(a). The length of the loaded part is 6.0 mm. Each of the support
oadings is acting on a 3.0 mm distance at the bottom surface. These
arameters are all consistent with the reference works [33,42]. Unlike
he reference works, only one loading condition, called rump-up-down
oading, as defined in Fig. 14(b) is considered.
The material properties are assumed to be varying linearly from

ottom to top surface, which is also a consistent assumption with
he reference works [33,42]. The variation of the material properties
hrough the width of the model can be expressed as follows.

IC(𝑦) = 2.2 − 2.2 − 1.4
43

𝑦, (24)

𝐸(𝑦) = 10 − 10 − 4
43

𝑦, (25)

𝜌(𝑦) = 1750 − 1750 − 1175
43

𝑦, (26)

where 𝑦 is varied between 0 and 43 mm. The units for fracture tough-
ness, elastic modulus and mass density are MPa m1∕2, GPa and kg/m3,
respectively. Poisson’s ratio is considered to be constant as 𝜈 = 0.34.
Critical energy release rate is obtained by Eq. (23) in a point-wise
anner, and the bond properties are obtained in the same manner with
he fast crack propagation scenarios in Section 4.2.
The model is discretized with a particle distance of 𝑑𝑥 = 0.2 mm,

nd the horizon size is set as 𝛿 = 4 × 𝑑𝑥. Critical time step size for
stable explicit time integration is taken same as the reference works,
𝑡 = 20×10−9 s. The total simulation time is adopted as 300 μs to ensure
ull failure of the specimens.

.3.1. Co-linear micro-crack configurations
We consider co-linear micro-crack configurations first. The mod-

lling and parameters are defined in the same manner with Section 4.2.
he TPB models with co-linear micro-cracks are schematically illus-
rated in Fig. 15(a). The discretized numerical PD models are provided
n Fig. 15(b).
In Fig. 15(a), the 𝑎∕𝑏 ratio is taken as 0.4. The distance from the
ain crack tip to the first micro-crack is 𝑎 = 𝐿main∕8. The crack
rientation angle is expressed with respect to horizontal axis and varied
s 𝜃 = 0◦, 45◦, 90◦ and 135◦. The number of co-linear micro-cracks is
onsidered as 𝑛𝑐 = 1, 2 and 4.
The crack tip locations in the vertical direction have been recorded

nd presented in Fig. 16. As can be clearly seen in the figure, the
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Fig. 12. The damage patterns with local damage parameter (𝜑) for 𝑡 = 30 and 60 μs: (a) crescent-like micro-cracks, (b) curved crack, (c) orbited micro-cracks.
Fig. 13. Strain energy density [J/m3] distributions (×105) at 𝑡 = 14 μs: (a) crescent-like micro-cracks, (b) curved cracks, (c) orbited cracks, (d) only main crack.
Fig. 14. Representative model of FGM specimens for TPB simulations: (a) main dimensions with problem description, (b) loading condition.
nfluence of the co-linear micro-cracks on the crack propagation speed
s just marginal. The crack propagation starts slightly earlier for 𝜃 = 90◦
case. However, the crack tip locations become almost the same in the
end. Fig. 16 also suggests that the full failure of the specimens takes
place in a small time interval between 265–275 μs.

To explain better the impacts of the co-linear micro-cracks, the
damage patterns at 250 μs are provided for both only main crack and co-
linear micro-crack cases in Fig. 17. As it is seen in the figure, the crack
tip locations and the crack paths are very much similar to each other.
The only visible impact of the co-linear micro-cracks can be said that
the mode-mixity for the crack propagation is suppressed in a certain
level. Furthermore, the crack patterns remain simple unlike the fast
10
crack propagation scenarios, which have complicated crack patterns
with multiple branching as reported in Section 4.2.

4.3.2. Complex micro-crack patterns
In a similar fashion with the fast crack propagation scenarios, the

complex crack patterns are allocated ahead of the main crack tip. The
modelling strategy is similar with the fast crack propagation case as
shown in Fig. 10. In the curved crack case, the inner radius is adjusted
as, 𝑟in = 5.0 mm. The size of micro-cracks for both crescent and orbited
configurations is utilized as 𝑎 = 2.0 mm.

The crack tip locations in the vertical direction were captured and
presented in Fig. 18. This figure suggests that only distinguishable
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Fig. 15. Co-linear micro-crack configurations for TPB models: (a) schematic illustrations (not in true scale), (b) numerical PD models.
Fig. 16. Advance of crack tips in vertical direction for co-linear micro-crack configurations: (a) 𝑛𝑐 = 1, (b) 𝑛𝑐 = 2, (c) 𝑛𝑐 = 4.
impact is observed for the curved crack case. The other micro-crack
configurations demonstrate more or less the same crack growth rate
with small local oscillations, whereas the curved crack plays a signifi-
cant shield role for the main crack, and suppresses its propagation rate,
see the slope of the curve for the curved crack case in Fig. 18.

The main crack grows with a smaller rate between 100–150 μs in
the curved crack case. Then, the tip location suddenly jumps because
of the initiation of new cracks on the back side of the curved crack, see
Fig. 19(b). Afterwards, the growth rate for all cases follows a similar
trend. Fig. 18 shows that the final failure of the specimens takes place
between 260–275 μs for all cases except the curved crack configuration.
In this case, the full failure of the specimen occurs around 297 μs. The
damage patterns for the TPB specimens involving various micro-crack
configurations are provided for 𝑡 = 150 and 250 μs in Fig. 19. The given
damage patterns for the instance of 𝑡 = 250 in Fig. 19 indicate that
the crescent like micro-cracks cannot suppress the mode mixity of the
11
main crack. The final crack path is obviously a mixed-mode fracture for
crescent-like configuration, while the orbited micro-cracks are able to
suppress the mixed-mode fracture to a some extent compared to the
case of crescent-like micro-cracks. As for the curved crack case, we
observe almost mode-I fracture with insignificant level of horizontal
crack deflection.

The crack growth rates as well as the onset of the crack propagation
can be interpreted from the strain energy density plots. In a similar
fashion with the fast crack propagation scenarios, the strain energy
density of the specimens with and without micro-cracks are presented
in Fig. 20. This figure suggests that the strain energy densities for the
only main crack and with micro-cracks are in the same order except the
curved crack case at 𝑡 = 90 μs. In all cases, the maximum value of the
strain energy density occurs at the main crack tip prior to onset of crack
growth. However, the strain energy concentration on the right-hand
side tip of the curved crack can be noticed, see Fig. 20(b). Furthermore,
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Fig. 17. Damage patterns with local damage parameter (𝜑) for co-linear micro-crack configurations at 𝑡 = 250 μs: (a) 𝜃 = 0◦, (b) 𝜃 = 45◦, (c) 𝜃 = 90◦, (d) 𝜃 = 135◦.
Fig. 18. 𝑦-coordinate of crack tip locations with respect to time.

slightly stressed region on the back side of the curved crack can be
bserved in the same plot, which will later cause the crack forming
rom that region.
The forming of the new crack tip from the back side of the curved

rack can be explained as follows. At the initial stage of the crack
ropagation, the most stressed location is the main crack tip. However,
s the main crack grows, the strain energy at the tip is released, which
esults in the decline of the crack growth rate between 100–150 μs, see
Fig. 18. At a certain point, the strain energy density at the main crack
tip becomes smaller than the strain energy density on the back side
of the curved crack. From that point, a new crack starts to grow from
the back side. Fig. 20(e) approves that statement as the strain energy
12
density on the back side of the curved crack is much higher than that
of the main crack tip at 𝑡 = 140 μs.

5. Conclusions

A comprehensive investigation on the macro–micro crack interac-
tions in FGMs has been carried out employing OSB-PD formulation.
Firstly, our micro-crack implementation has been validated by numer-
ical examples for homogeneous materials from the literature. Once the
present implementation and modelling have yielded good agreement
with the reference results, we proceeded to the FGM implementa-
tions. Two different scenarios, namely, fast crack propagation and
TPB tests have been considered. In these test set-ups, numerous co-
linear and complex micro-crack configurations, i.e., crescent-like and
orbited micro cracks, and curved cracks, have been adopted. Co-linear
micro-cracks have played an accelerating role for the crack propagation
except for one case of 𝜃 = 90◦ in the fast crack propagation scenarios.
The curved crack case retards the onset of crack propagation. On the
other hand, a new crack forms from the back side of the curved crack,
which follows a similar growth rate with the only-main crack case.
The crack growth in the crescent-like and orbited micro-crack cases
shows similar behaviour. In case of TPB models, the impact of the co-
linear micro-cracks is insignificant in terms of the crack growth rate
and the final damage patterns. The same is true for the crescent-like
and orbited micro-crack cases; however, the curved crack retards the
onset of crack propagation noticeably. Moreover, the time until the
full failure is larger for the curved crack configuration. In summary,
introducing micro-cracks has improved the toughness when the crack
velocity is higher. On the other hand, micro-cracks improved the tough-
ness just marginally in case of lower crack speeds. The curved crack
has improved the toughening effect for both scenarios by retarding the

onset of the crack propagation.
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Fig. 19. The damage patterns with local damage parameter (𝜑) for 𝑡 = 150 and 250 μs: (a) crescent-like micro-cracks, (b) curved crack, (c) orbited micro-cracks.
Fig. 20. Close up views of strain energy density [J/m3] distributions (×105): (a) crescent-like micro-cracks at 𝑡 = 90 μs, (b) curved cracks at 𝑡 = 90 μs, (c) orbited cracks at 𝑡 = 90 μs,
d) only main crack at 𝑡 = 90 μs, (e) curved crack at 𝑡 = 140 μs.
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