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Abstract

In this paper, we consider a history-dependent mixed shock model which is a combination

of the history-dependent extreme shock model and the history-dependent �-shock model.

We assume that shocks occur according to the generalized P�olya process that contains

the homogeneous Poisson process, the non-homogeneous Poisson process and the P�olya

process as the particular cases. For the de�ned survival model, we derive the corresponding

survival function, the mean lifetime and the failure rate. Further, we study the asymptotic

and monotonicity properties of the failure rate. Finally, some applications of the proposed

model have also been included with relevant numerical examples.
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1 Introduction

Most of the systems that are used in reality are directly or indirectly a�ected by some harm-

ful `instantaneous' events (shocks of various nature), which either cause the system failure or

decrease the system's lifetime. Thus, the study of system's lifetime subject to external shocks

is one of the important problems in reliability theory. A large number of studies on di�erent

shock models and their applications could be found in the literature.

The existing shock models are mostly classi�ed into four broad categories: extreme shock

models, cumulative shock models, run shock models and �-shock models. In the extreme shock

model, a system fails when a single shock occurs with a critical magnitude (see, for instance, Gut

and H•usler [14, 15], Shanthikumar and Sumita [26, 27], Cha and Finkelstein [6], and the refer-

ences there in). In the cumulative shock model, a system fails when the aggregate damage due

to shocks exceeds the predetermined threshold value (see A-Hameed and Proschan [1], Esary

et al. [11], Gut [13], to name a few). Further, in the run shock model, a failure of the system

occurs when the magnitudes of k consecutive shocks exceed the pre�xed threshold value (see,

e.g., Mallor and Omey [22], Ozkut and Eryilmaz [24]). Lastly, in the �-shock model, a system

fails if the time lag between two successive shocks is less than the predetermined threshold value

�, i.e., the recovery time of a system from a shock is � (see Li, Chan and Yuan [17], Li, Huang

and Wang [18], Li and Kong [19], and the references there in). It is worthy to mention that the

�-shock model is di�erent, in nature, from other shock models because the �-shock model deals

mostly with the frequency of shocks, whereas magnitudes of shocks play the key role in other

shock models. Apart from these shock models, there are various mixed shock models, which

are the combinations of two or more shock models, namely, the extreme shock model with the

cumulative shock model (Cha and Finkelstein [2]), the extreme shock model with the run shock

model (Eryilmaz and Tekin [10]), the extreme shock model with the �-shock model (Wang and

Zhang [31], Parvardeh and Balakrishnan [25]), the cumulative shock model with the run shock

model (Mallor et al. [23]), the cumulative shock model with the �-shock model (Parvardeh and

Balakrishnan [25]), the run shock model with the �-shock model (Eryilmaz [7]), etc.

Even though the classical extreme shock model was intensively studied in the literature, its

applications were limited due to the restrictive assumption that the system's survival probability

at any time does not depend on the history of a shock process. Therefore, a history-dependent

extreme shock model was proposed by Cha and Finkelstein [3]. In this model, the survival
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probability of a system at a given time t depends on the number of shocks that the system has

experienced in the past. Cha and Finkelstein [4] further generalized this model by considering

that both the system's survival probability and the shock process depend on this history.

Similar to the classical extreme shock model, the classical-� shock model has also been

generalized in di�erent directions in the literature. Wang and Zhang [31] have extended it

by considering two types of failures. Further, Parvardeh and Balakrishnan [25] have studied

this model based on a renewal process. Eryilmaz and Bayramoglu [8] have studied a �-shock

model based on the renewal process with uniformly distributed inter-arrival times. Wang and

Peng [30] have considered a generalized �-shock model with two types of shocks with two di�er-

ent threshold values �1 and �2. Eryilmaz [9] have studied the �-shock model based on the P�olya

process of shocks. Tuncel and Eryilmaz [29] considered the �-shock model with non-identically

distributed inter-arrival times. Recently, Lorvand et al. [21, 20] have generalized the mixed

�-shock model to the multi-state systems.

As far as we know and follows from the forgoing discussion, the �xed � was considered in all

�-shock models developed so far in the literature. In other words, the recovery time of a system

from the damage of a shock, arrived at any time, is assumed to be �xed. However, the assump-

tion of a constant � is non-realistic at many practical instances. Indeed,due to deterioration

of a system, its recovery time from the damage caused by a shock often gradually increases as

the number of shocks increases. Furthermore, it is assumed, in most of the studies, that shocks

occur according to the homogeneous Poisson process (HPP) or the non-homogeneous Poisson

process (NHPP). Note that these processes are characterized by independent increments,which

is not the case at many instances in practice. For instance, the larger number of shocks in the

past often implies the larger number of shocks in the future (positive dependence). Therefore,

the main goal of this paper is to study a history-dependent mixed shock model which is a

combination of the history-dependent extreme shock model and the history-dependent �-shock

model. The novelty in this paper is as follows.

(a) We consider a history-dependent �-shock model, i.e., the recovery time � of a system from

a shock depends on the number of shocks arrived in the past.

(b) We combine this history-dependent �-shock model with the history-dependent extreme

shock model.
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(c) Finally, we consider a more general shock process, with dependent increments, namely,

the generalized P�olya process (GPP) that contains the HPP, the NHPP and the P�olya

process as the particular cases.

The rest of the paper is organized as follows. In Section 2, we �rst provide some preliminaries

and then describe the model. In Section 3, we derive the survival function, the mean lifetime

and the failure rate of a system. Further, we study the long-run behaviour and monotonicity

properties of the corresponding failure rate. Some applications of the proposed model are

discussed in Section 4. Finally, the concluding remarks are given in Section 5.

2 Preliminaries and model description

For any random variable U , we denote the cumulative distribution function by FU (�), the sur-

vival function by �FU (�), the probability density function (if exists) by fU (�) and the failure rate

function by rU (�); thus, �FU (�) � 1� FU (�) and rU (�) � fU (�)= �FU (�).

Denote by fN(t); t � 0g the point process of shocks, where N(t) is the number of shocks

that have occurred by time t. Assume that our system is `absolutely reliable' in the absence of

shocks. Cha and Finkelstein [3] have studied a history-dependent extreme shock model when

each shock results in its failure with probability p(t;N(t)) and has no e�ect with probability

q(t;N(t)) = 1 � p(t;N(t)). Thus, the survival probability of a system depends on the number

of shocks N(t) occurred in [0; t). Further, it was assumed that q(t; n(t)) = 1 � p(t; n(t)) =

q(t)�(n(t)), where �(�) is a decreasing function of n(t), for each �xed t, and n(t) is the realiza-

tion of N(t). On the other hand, Li et al. [17] studied the �-shock model as discussed in the

introduction section. In this paper, extending the previous studies, we consider a generalized

version of the �-shock model to be called the history-dependent �-shock model as � depends on

the history of the shock process. Moreover, we combine the history-dependent extreme shock

model with the history-dependent �-shock model and study the lifetime behaviour of a system

under this mixed shock model governed by the GPP. In what follows in this section, we give

the formal de�nition of the GPP that contains the NHPP, the HPP and the P�olya process as

the particular cases. Due to the dependent increment property, the GPP can present a more

adequate model in practice as compared with counting processes with independent increments.
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De�nition 2.1 A counting process fN(t); t � 0g with stochastic intensity �t is said to be the

GPP with a set of parameters f�(t); �; �g; � � 0; � > 0, if

(a) N(0) = 0;

(b) �t = (�N(t�) + �)�(t).

Remark 2.1 The following observations can be made:

(a) The GPP with the set of parameters f�(t); �; �g, where �(t) = � (> 0), � ! 0 and � = 1,

is the HPP with intensity �.

(b) The GPP with the set of parameters f�(t); �; �g, where � ! 0 and � = 1, is a NHPP

with intensity function �(�).

(c) The GPP with the set of parameters f�(t); �; �g, where �(t) = 1=(b+t), b > 0, and � = 1,

is the P�olya process with the set of parameters f�; bg.

Let L denote the lifetime of a system that has started operation at time t = 0. The system

is subject to external shocks that arrive according to the GPP with the set of parameters

f�(t); �; �g. Let 0 = T0 < T1 < T2 < � � � < Tn be a sequence of the corresponding arrival times

of n shocks, and let Xn = Tn�Tn�1, n = 1; 2; : : : , be the inter-arrival time between the n-th and

the (n�1)-th shocks. Let � : N[f0g ! [0;1) be an increasing function of its argument, where

�(i) = �i and N is the set of natural numbers. Thus, the recovery time after a shock increases

with the number of shocks occurred previously describing system's deterioration under shocks.

In accordance with the suggested model, we assume that the operating system fails at the i-th

shock (i 2 N [ f0g) when:

(i) Xi � �i�1,

(ii) Xi > �i�1 (with probability p(Ti; i)).

Accordingly, the conditional survival function is

P
�
L > tjT1; T2; : : : ; TN(t); N(t)

�
=

N(t)Y
i=1

q(Ti; i)1(Xi > �i�1)

=

N(t)Y
i=1

q(Ti)�(i)1(Ti > Ti�1 + �i�1); (2.1)
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where
QN(t)

i=1 (�) � 1 when N(t) = 0, and 1(�) is an indicator function, i.e.,

1(Ti > Ti�1 + �i�1) =

8><>:
1; if Ti > Ti�1 + �i�1

0; otherwise.

Note that the history dependent extreme shock model (i.e., �i = 0, for all i 2 N [ f0g) and

the history dependent �-shock model (i.e., q(�; �) � 1) are the particular cases of this model.

Further, when q(�; �) � 1 and �i = �, for all i 2 N[f0g, then this model reduces to the classical

�-shock model with the constant recovery time �.

3 Reliability characteristics of the model

In this section, we discuss some reliability characteristics of a system under the de�ned mixed

shock model.

3.1 Survival function

We begin this subsection with the following lemma obtained in Cha [5]. This lemma will be

used in proving the main result of this subsection.

Lemma 3.1 For the GPP with the set of parameters (�(t); �; �), � > 0, � > 0, the joint

distribution of (T1; T2; T3; : : : ; TN(t); N(t)) is given by

f(T1;T2;:::;TN(t);N(t))(t1; t2; : : : ; tn; n) =
�(�=�+ n)

�(�=�)

 
nY

i=1

��(ti) expf��(ti)g

!
expf�(� + n�)�(t)g;

0 < t1 < t2 < � � � < tn < t; n = 0; 1; 2; : : :

In the following theorem, we derive the survival function of a system for the mixed shock

model as discussed above.

Theorem 3.1 Let shocks occur according to the GPP with the set of parameters f�(t); �; �g; � >

0; � > 0. Then the survival function of a system for the de�ned mixed shock model is given by

�FL(t) = expf���(t)g+
K0(t)X
n=1

	(n)

expf(� + n�)�(t)g
�(�=�+ n)

�(�=�)

�
Z t

Pn−1
i=0 �i

Z tn��n−1Pn−2
i=0 �i

� � �
Z t2��1

�0

 
nY

i=1

�q(ti)�(ti) expf��(ti)g

!
dt1 : : : dtn;

where K0(t) = maxfn � 1j
Pn�1

i=0 �i < tg, 	(n) =
Qn

i=1 �(i) and �(t) =
R t
0 �(x)dx.
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Proof: Note that the system survives n shocks in [0; t) provided T1 > �0; T2 > T1+�1; : : : ; Tn >

Tn�1+�n�1. This implies that t > Tn >
Pn�1

i=0 �i. In other words, if t �
Pn�1

i=0 �i (or, n > K0(t)),

then the probability of the event \the system survives n shocks till time t" is zero. Now,

�FL(t) = P (L > t)

= E
�
P
�
L > tjT1; T2; : : : ; TN(t); N(t)

��
=

1X
n=0

Z t

0

Z tn

0
� � �

Z t3

0

Z t2

0

 
nY

i=1

q(ti)�(i)1(ti > ti�1 + �i�1)

!
�f(T1;T2;:::;TN(t);N(t))(t1; t2; : : : ; tn; n)dt1dt2 : : : dtn

= expf���(t)g+
K0(t)X
n=1

	(n)

expf(� + n�)�(t)g
�(�=�+ n)

�(�=�)

�
Z t

Pn−1
i=0 �i

Z tn��n−1Pn−2
i=0 �i

� � �
Z t2��1

�0

 
nY

i=1

�q(ti)�(ti) expf��(ti)g

!
dt1 : : : dtn;

where the third equality follows from (2.1) and the last equality follows from Lemma 3.1. 2

The following corollary follows from Theorem 3.1 by using Remark 2.1(b).

Corollary 3.1 Let shocks occur according to the NHPP with intensity function �(t) = ��t,

where � > 0; � 6= 1 and � > 0. Then the survival function of a system for the history dependent

�-shock model (i.e., q(�; �) � 1) is

�FL(t) = exp

�
��

�
�t � 1

log �

��241 + K0(t)X
n=1

�n

n!
�
Pn−1

i=0 (n�i)�i

 
�t�

Pn−1
i=0 �i � 1

log �

!n
35 ;

where K0(t) is the same as in Theorem 3.1. 2

The next corollary is an immediate consequence of Theorem 3.1. Here we assume that shocks

occur according to the GPP with the set of parameters f�(t) = 1
b+�t ; �; �g. Note that this GPP

contains the HPP (�(t) = �; � ! 0 and � = 1) and the P�olya process (� = 1) as the particular

cases.

Corollary 3.2 Let shocks occur according to the GPP with the set of parameters f�(t) =

1
b+�t ; �; �g; � > 0; � > 0; b > 0. Then the survival function of a system for the de�ned mixed

shock model is given by

�FL(t) =

�
b

b+ �t

� �
�

241 + K0(t)X
n=1

	(n)
�(�=�+ n)

�(�=�)

�
�

b+ �t

�n

�
Z t

Pn−1
i=0 �i

Z tn��n−1Pn−2
i=0 �i

� � �
Z t2��1

�0

 
nY

i=1

q(ti)

!
dt1 : : : dtn

#
;
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where K0(t) and 	(n) are the same as in Theorem 3.1. 2

Consider now some special cases of corollary 3.2.

(i) When q(�) is a periodic function with the periodicity � (i.e., q(t+ �) = q(t) for any t > 0)

and �i = � for all i 2 N [ f0g, the survival function of the system is given by

�FL(t) =

�
b

b+ �t

� �
�

241 + b t
�
cX

n=1

	(n)
�(�=�+ n)

n! �(�=�)

�
�

b+ �t

�n
 Z t�(n�1)�

�
q(x)dx

!n
35 :

(ii) When q(�) is an exponential function (i.e., q(t) = �t for some 0 < � < 1), the survival

function of the system is

�FL(t) =

�
b

b+ �t

� �
�

241 + K0(t)X
n=1

	(n)
�(�=�+ n)

n! �(�=�)

�
�

b+ �t

�n

�
Pn−1

i=0 (n�i)�i

 
�t�

Pn−1
i=0 �i � 1

log(�)

!n
35 :

(3.1)

(iii) When q(�; �) � 1 (i.e., the system follows the history-dependent �-shock model), the

survival function of the system is given by

�FL(t) =

�
b

b+ �t

� �
�

241 + K0(t)X
n=1

�(�=�+ n)

�(�=�)

�
�

b+ �t

�n

�
t�

Pn�1
i=0 �i

�n

n!

35 :

(iv) When the i-th recovery time is de�ned as �i = �i�0 for all i 2 N[f0g, � > 1, the survival

function of the system is

�FL(t) =

�
b

b+ �t

� �
�

241 + B0(t)X
n=1

	(n)
�(�=�+ n)

�(�=�)

�
�

b+ �t

�n

�
Z t

( �n−1
�−1 )�0

Z tn��n−1�0�
�n−1−1

�−1

�
�0

� � �
Z t3��2�0

(�+1)�0

Z t2���0

�0

 
nY

i=1

q(ti)

!
dt1 : : : dtn

#
;

where B0(t) =

$
ln
�

�0+t(�−1)
�0

�
ln(�)

%
.

(v) When shocks occur according to the HPP with intensity � > 0, the survival function of

the system is given by

�FL(t) = expf��tg

241 + K0(t)X
n=1

	(n)�n

Z t

Pn−1
i=0 �i

Z tn��n−1Pn−2
i=0 �i

� � �
Z t2��1

�0

 
nY

i=1

q(ti)

!
dt1 : : : dtn

35 :
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δ
δ
δ

Figure 1: Plot of system’s survival function against t ∈ [0, 25], for fixed σ = 0.9, ρ = 0.95,

β = 2, α = 1, and b = 1.

•
•
•

Figure 2: Plot of system’s survival function against t ∈ [0, 25], for fixed δ = 0.3, ρ = 0.95,

β = 2, α = 1, and b = 1.

To illustrate the result in (ii), we plot the corresponding survival functions. Figure 1 shows

that the system’s survivability decreases as the recovery time δ increases (which is obvious). On

the other hand, Figure 2 (by comparison with Figure 1) shows that the system’s survivability

increases as σ increases. This holds because an increment in σ implies a corresponding increment

in the probability of the system’s survivability after a shock.

3.2 Mean lifetime

In this subsection, we derive relationships for the mean lifetime of a system for the above

discussed mixed shock model.
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Theorem 3.2 Let shocks occur according to the GPP with the set of parameters f�(t); �; �g; � >

0; � > 0. Then the mean lifetime of a system for the de�ned mixed shock model is given by

E(L) =

Z 1

0
expf���(t)gdt+

1X
n=1

Z 1

Pn−1
i=0 �i

�
	(n)

expf(� + n�)�(t)g
�(�=�+ n)

�(�=�)

�
Z t

Pn−1
i=0 �i

� � �
Z t2��1

�0

 
nY

i=1

�q(ti)�(ti) expf��(ti)g

!
dt1 : : : dtn

)
dt:

Proof: Since the system survives n-shocks till time t, we have t >
Pn�1

i=0 �i. On using this, we

can write

E(L) =

Z 1

0
P (L > t)dt

=

Z �0

0
P (L > t;N(t) = 0)dt+

Z �0+�1

�0

[P (L > t;N(t) = 0) + P (L > t;N(t) = 1)] dt

+

Z �0+�1+�2

�0+�1

[P (L > t;N(t) = 0) + P (L > t;N(t) = 1) + P (L > t;N(t) = 2)] dt+ : : :

=

Z 1

0
P (L > t;N(t) = 0)dt+

Z 1

�0

P (L > t;N(t) = 1)dt+

Z 1

�0+�1

P (L > t;N(t) = 2)dt+ : : :

=

Z 1

0
P (L > t;N(t) = 0)dt+

1X
n=1

Z 1

Pn−1
i=0 �i

P (L > t;N(t) = n)dt: (3.2)

Further, from Theorem 3.1, we have

P (L > t;N(t) = 0) = expf���(t)g (3.3)

and, for n � 1,

P (L > t;N(t) = n) =
	(n)

expf(� + n�)�(t)g
�(�=�+ n)

�(�=�)

�
Z t

Pn−1
i=0 �i

� � �
Z t2��1

�0

nY
i=1

�q(ti)�(ti) expf��(ti)gdt1 : : : dtn: (3.4)

On using the above equalities in (3.2), we get the required result. 2

Corollary 3.3 Let shocks occur according to the HPP with a constant intensity � > 0, and let

q(t) = �t for some 0 < � < 1. Then the mean lifetime of a system for the de�ned mixed shock

model is

E(L) =
1

�

"
1 +

1X
n=1

�(n)�n
�
�
Pn−1

i=0 (n�i)�i
�
exp

(
��

n�1X
i=0

�i

)#
;

where �(n) =
Qn

i=1
�(i)

log( 1
�
)i+�

.
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Proof: From (3.3) and (3.4), we get

P (L > t;N(t) = 0) = expf��tg

and, for n � 1,

P (L > t;N(t) = n) = 	(n) expf��tg�
n

n!

�
�
Pn−1

i=0 (n�i)�i
� 

�t�
Pn−1

i=0 �i � 1

log(�)

!n

:

On using the above equalities in (3.2), we get

E(L) =
1

�
+

1X
n=1

Z 1

Pn−1
i=0 �i

expf��tg	(n)

n!

 
�

log( 1� )

!n �
�
Pn−1

i=0 (n�i)�i
��

1� �t�
Pn−1

i=0 �i
�n

dt

=
1

�
+

1X
n=1

	(n)

n!

 
�

log( 1� )

!n �
�
Pn−1

i=0 (n�i)�i
�
exp

(
��

n�1X
i=0

�i

)Z 1

0
expf��tg

�
1� �t

�n
dt

(3.5)

Now, consider

In
def.
=

Z 1

0
expf��tg

�
1� �t

�n
dt:

Note that I0 = 1=�. Integrating by parts, we get

In =

"
n log( 1� )

�+ n log( 1� )

#
In�1 =

1

�

"
n!

�
log( 1� )

	nQn
i=1

�
log( 1� )i+ �

�# :

On using the above equality in (3.5), we get the required result. 2

To illustrate the result given in Corollary 3.3, Figure 3 shows that the mean lifetime changes

as � varies over (0; 1].

Remark 3.1 Let shocks occur according to the HPP with a constant intensity � > 0. Then the

mean lifetime of a system for the constant �-shock model (i.e., � = 1, �(i) = 1 and �i = � for

all i) is given by

E(L) =
1

�(1� expf���g)
:

3.3 Failure rate

In this section, we discuss the corresponding failure rate for the de�ned mixed shock model

governed by the NHPP.
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Figure 3: Plot of mean lifetime against σ ∈ (0, 1], for λ = 1, δ0 = 0.5 and ρ(i) = 0.8, for all i.

Theorem 3.3 Let shocks occur according to the NHPP with intensity λ(t). Assume that δi = δ

for all i ∈ N ∪ {0} and ρ(j) = ρ for all j ∈ N. Then the failure rate of a system for the defined

mixed shock model is given by

rL(t) =

⎧⎪⎨
⎪⎩
λ(t), if 0 < t < δ

λ(t)
[
1− ρq(t) exp

{
− ∫ t

t−δ λ(x)dx
}

F̄L(t−δ)
F̄L(t)

]
, if t ≥ δ.

Proof: From Theorem 3.1, we have

F̄L(t) = exp{−Λ(t)} +

� t
δ
�∑

n=1

ρn exp{−Λ(t)}
∫ t

nδ

∫ tn−δ

(n−1)δ
· · ·

∫ t2−δ

δ

(
n∏

i=1

q(ti)λ(ti)

)
dt1 . . . dtn,

where Λ(t) =
∫ t
0 λ(x)dx. Now consider the following cases.

Case I: Let 0 < t < δ. Then F̄L(t) = exp{−Λ(t)}, and hence rL(t) = λ(t).

Case II: Let δ ≤ t < 2δ. Then F̄L(t) = exp{−Λ(t)} + ρ exp{−Λ(t)}
(∫ t

δ q(x)λ(x)dx
)
, which

gives

fL(t) = −
[
−λ(t) exp{−Λ(t)} − ρλ(t) exp{−Λ(t)}

(∫ t

δ
q(x)λ(x)dx

)
+ ρ exp{−Λ(t)}q(t)λ(t)

]

= λ(t)F̄L(t)− ρ exp{−Λ(t)}q(t)λ(t)
= λ(t)F̄L(t)− ρq(t)λ(t) exp{− (Λ(t)− Λ(t− δ))}F̄L(t− δ),

and hence

rL(t) = λ(t)

[
1− ρq(t) exp

{
−
∫ t

t−δ
λ(x)dx

}
F̄L(t− δ)

F̄L(t)

]
.
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Case III: Let 2� � t < 3�. Then

�FL(t) = expf��(t)g+� expf��(t)g
Z t

�
q(x)�(x)dx+�2 expf��(t)g

Z t

2�

Z t2��

�
q(t1)�(t1)q(t2)�(t2)dt1dt2;

which gives

fL(t) = �

"
� �(t) expf��(t)g � ��(t) expf��(t)g

�Z t

�
q(x)�(x)dx

�
+ � expf��(t)gq(t)�(t)

��2�(t) expf��(t)g
�Z t

2�

Z t2��

�
q(t1)�(t1)q(t2)�(t2)dt1dt2

�
+�2 expf��(t)gq(t)�(t)

�Z t��

�
q(x)�(x)dx

�#

= �(t) �F (t)� � expf��(t)gq(t)�(t)� �2 expf��(t)gq(t)�(t)
�Z t��

�
q(x)�(x)dx

�
= �(t) �F (t)� �q(t)�(t) expf� (�(t)� �(t� �))g �F (t� �);

and hence

rL(t) = �(t)

�
1� �q(t) exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

�
:

By proceeding in a similar manner, we arrive at the required result. 2

In the following theorem, we show that the failure rate of the system asymptotically converges

to the limiting intensity of the NHPP.

Theorem 3.4 Let shocks occur according to the NHPP with intensity �(t). Assume that

limt!1 �(t) exists and q(t) is decreasing in t > 0. Further, assume that �i = � for all i 2 N[f0g

and �(j) = � for all j 2 N. Then

lim
t!1

rL(t) = lim
t!1

�(t):

Proof: From Theorem 3.3, we have

lim
t!1

rL(t) = lim
t!1

�(t)

�
1� �q(t) exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

�
:

Now, we can write

exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

=
1 +

Pb t
�
c�1

n=1 �n
R t��
n�

R tn��
(n�1)�� � �

R t2��
� (

Qn
i=1 q(ti)�(ti)) dt1 : : : dtn

1 +
Pb t

�
c

n=1 �
n
R t
n�

R tn��
(n�1)�� � �

R t2��
� (

Qn
i=1 q(ti)�(ti)) dt1 : : : dtn

;

(3.6)
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which gives

0 < exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

� 1:

Again, 0 � q(t) � 1 for all t. Thus, the result trivially holds when limt!1 �(t) = 0 and/or

limt!1 q(t) = 0. Now, consider the case when 0 < limt!1 �(t) < 1 and 0 < limt!1 q(t) � 1.

From the hypothesis, we have that q(t) is decreasing in t > 0. Then there exists a t0 (> �) such

that 1 � q(t) � � > 0 and � > �(t) � � > 0, for all t 2 [t0;1] and for some constants �, � and

�. On using these bounds of q(t) and �(t), we get

(��)n
(t� (n+ 1)�)n

n!
�

Z t��

n�

Z tn��

(n�1)�
� � �

Z t2��

�

 
nY

i=1

q(ti)�(ti)

!
dt1 : : : dtn � (�)n

(t� (n+ 1)�)n

n!

for all n � b t
� c � 1 and for all t 2 [t0;1). Similarly,

(��)n
(t� n�)n

n!
�

Z t

n�

Z tn��

(n�1)�
� � �

Z t2��

�

 
nY

i=1

q(ti)�(ti)

!
dt1 : : : dtn � (�)n

(t� n�)n

n!
;

for all n � b t
� c and for all t 2 [t0;1). Again, these imply that, for all t 2 [t0;1),

1 +

b t
�
c�1X

n=1

�n
Z t��

n�

Z tn��

(n�1)�
� � �

Z t2��

�

 
nY

i=1

q(ti)�(ti)

!
dt1 : : : dtn �

b t
�
c�1X

n=0

(��)n
(t� (n+ 1)�)n

n!

and

1 +

b t
�
cX

n=1

�n
Z t

n�

Z tn��

(n�1)�
� � �

Z t2��

�

 
nY

i=1

q(ti)�(ti)

!
dt1 : : : dtn �

b t
�
cX

n=0

(���)n
(t� n�)n

n!
:

On using the above two inequalities in (3.6), we get

0 � exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

�
Pb t

�
c�1

n=0 (��)n (t�(n+1)�)n

n!Pb t
�
c

n=0(���)
n (t�n�)n

n!

; for all t 2 [t0;1):

Note that the right hand side expression approaches zero as t ! 1. This holds because it is

a ratio of two polynomials and the degree of the polynomial in the numerator is smaller than

that in the denominator. Thus, we get

lim
t!1

exp

�
�
Z t

t��
�(x)dx

� �FL(t� �)
�FL(t)

= 0;

and hence, the result follows. 2

In the following theorem, we show that the failure rate of a system for the constant �-shock

model has nonmonotone behaviour.
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Theorem 3.5 Let shocks occur according to the HPP with a constant intensity � > 0. Then

the corresponding failure rate for the constant �-shock model (i.e., �i = � for all i 2 N [ f0g

and q(�; �) � 1) is nonmonotonic.

Proof: From Theorem 3.3, we have

rL(t) =

8><>:
�; if 0 < t < �

�
�
1� exp f���g �FL(t��)

�FL(t)

�
; if t � �;

where

�FL(t) = expf��tg
b t
�
cX

n=0

�n (t� n�)n

n!
:

Clearly, rL(t) is constant in (0; �), and rL(t) = �2 f(t� �) =(1 + �(t� �)g for t 2 (�; 2�) and

hence, it is increasing in (�; 2�). To prove the result, it su�ces to show that there is an extrema

point in [2�;1). We will prove it by showing that there is a local minima point in (2�; 3�).

Note that both �FL(t) and �FL(t � �) are di�erentiable on (2�;1). This implies that rL(t) is

di�erentiable on (2�;1) and hence, we have

r0L(t) = �� expf���g
�
� �FL(t)fL(t� �) + �FL(t� �)fL(t)

( �FL(t))2

�
; t > 2�:

If a local extrema exists in (2�; 3�), then r0L(t) has to be zero at this point. Now, r0L(t) = 0

holds if and only if rL(t� �) = rL(t), which can equivalently be written as

�FL(t� 2�)
�FL(t� �)

=
�FL(t� �)
�FL(t)

: (3.7)

Further, this is equivalent to mean that

expf��(t� 2�)g
expf��(t� �)g+ � expf��(t� �)g(t� 2�)

=
expf��(t� �)g+ � expf��(t� �)g(t� 2�)

expf��tg+ � expf��tg(t� �) + �2

2 expf��tg(t� 2�)2
;

or equivalently,
1

1 + �(t� 2�)
=

1 + �(t� 2�)

1 + �(t� �) + �2

2 (t� 2�)2
;

or equivalently,

(t� 2�)2 +
2

�
(t� 2�)� 2

�
�

�

�
= 0:

Note that t� = 2� +
q

1
�2 + 2�

� � 1
� is a solution of the above equation, and it lies in (2�; 3�).

Thus, t� is a local extrema of rL(t). Further, note that r
0
L(t) > 0, for t 2 (t�; 3�), and r0L(t) < 0,
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Figure 4: Plot of failure rate against t 2 (0; 80], for � = 5, � = 15 and q(�; �) � 1.

for t 2 (2�; t�). This implies that t� is a local minima point in (2�; 3�). This completes the

proof.

In what follows, we illustrate the result given in Theorem 3.5. We plot rL(t) against

t 2 (0; 80], for �xed � = 5, � = 15 and q(�; �) � 1. Figure 4 shows the non-monotonic shape of

the failure rate. It also equals 0 at t = 15 as clearly follows from this theorem.

4 Applications

In this section, we discuss two applications of the proposed model, namely, the optimal replace-

ment policy and the optimal mission duration.

4.1 Optimal replacement policy

In this subsection, we study the optimal replacement policy N� for a system under the de�ned

mixed shock model. This optimal replacement policy for the constant �-shock model based on

the HPP was �rst introduced by Lam and Zhang [16]. It was further considered in Tang and

Lam [28], and Eryilmaz [9] for the renewal process and the P�olya process of shocks, respectively.

We assume that q(t) = �t, 0 < � < 1 and study the problem for three di�erent types of recovery

functions given by �(i) = �, �(i) = ui� and �(i) = � + iv, u > 1, v > 0, i 2 N [ f0g. We denote

these recovery functions by r1(�), r2(�) and r3(�), respectively.

Below we give a list of assumptions and descriptions that are similar to those considered

in Lam and Zhang [16], Tang and Lam [28], and Eryilmaz [9]. Note that, as in the listed
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papers, we are also considering the non-negligible repair times, whereas for the sake of numerical

illustration, the shock process is the HPP.

Assumptions:

1. A new system is incepted into operation at t = 0 and it is repaired immediately once it is

failed. The system is replaced by a new identical one after the N -th failure is observed.

2. The system is subject to external shocks that occur according to the HPP with intensity

� > 0.

3. After the n-th repair, the new recovery function is given by �n : N [ f0g ! [0;1) such

that �n(i) = �n�i, for � > 1.

4. Let Yi be the repair time of the system after the i-th failure, i = 1; 2; : : : . Then the

sequence fY1; Y2; : : : g forms an increasing geometric process such that E(Yn) =
�

yn−1 ; n =

1; 2; : : : .

5. The repair cost is c; the reward rate is r when the system is operating. The replacement

cost has two parts: the basic replacement cost is R, whereas the other one is proportional

to the replacement time Z with rate cp. Further, we assume that E(Z) = � .

6. The HPP, the geometric process and the replacement time Z are independent.

Let L1 denote the random operating time of the system to the �rst failure. Further, let Ln denote

the operating time of the system after the (n � 1)-th repair to the n-th failure, n = 2; 3; : : : .

Let W be a random length of a cycle under the replacement policy N . Then

W =

NX
n=1

Ln +

N�1X
n=1

Yn + Z:

From Corollary 3.3, we have

E(Ln) =
1

�

241 + 1X
j=1

�(j)�j
�
��n−1

Pj−1
i=0 (j�i)�i

� 
exp

(
���n�1

j�1X
i=0

�i

)!35 :

On using the above expression, we get

E(W ) =
NX

n=1

1

�

241 + 1X
j=1

�(j)�j
�
��n−1

Pj−1
i=0 (j�i)�i

� 
exp

(
���n�1

j�1X
i=0

�i

)!35+

N�1X
n=1

�

yn�1
+ �

=
N

�
+

1

�

NX
n=1

1X
j=1

"
�(j)�j

�
��n−1

Pj−1
i=0 (j�i)�i

� 
exp

(
���n�1

j�1X
i=0

�i

)!#
+

N�1X
n=1

�

yn�1
+ �:
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Further, the expected cost on a cycle is given by

E

(
c

N�1X
n=1

Yn � r

NX
n=1

Ln +R+ cpZ

)

= c
N�1X
n=1

�

yn�1
� rN

�
� r

�

NX
n=1

1X
j=1

"
�(j)�j

�
��n−1

Pj−1
i=0 (j�i)�i

� 
exp

(
���n�1

j�1X
i=0

�i

)!#
+R+ cp�:

Then the average (long-run) replacement cost rate of the system, denoted by C(N), can be

calculated as

C(N) =
Expected cost incurred in a cycle

Expected length of a cycle

=
c
PN�1

n=1
�

yn−1 � rN
� � r

�

PN
n=1

P1
j=1

h
�(j)�j

�
��n−1

Pj−1
i=0 (j�i)�i

��
exp

n
���n�1

Pj�1
i=0 �i

o�i
+R+ cp�

N
� + 1

�

PN
n=1

P1
j=1

h
�(j)�j

�
��n−1

Pj−1
i=0 (j�i)�i

��
exp

n
���n�1

Pj�1
i=0 �i

o�i
+
PN�1

n=1
�

yn−1 + �
:

Let Ci(N) be the average replacement cost of the system when the recovery function is ri(�),

i = 1; 2; 3. In Table 1, we calculate Ci(N), i = 1; 2; 3, for di�erent values of N . We assume

the model parameter values as follows: � = 1:05; � = 0:8; c = 3; r = 2; R = 100; � =

30; cp = 5; � = 10; y = 0:8; l = 0:3; � = 0:99; � = 1; u = 1:2; v = 0:7. Table 1 indicates

the minimum average replacement costs, for di�erent recovery functions, as C1(9) = 2:495398,

C2(9) = 2:545428 and C3(10) = 2:598365. Thus, the system should be replaced immediately

after the N� = 9-th failure when the recovery functions are r1(�) and r2(�). On the other hand,

it should be done immediately after the N� = 10-th failure when the recovery function is r3(�).

Moreover, the graphical representation of Ci(N), i = 1; 2; 3; against N = 1; 2; : : : ; 30, is given

in Figure 5.

Further, we illustrate the e�ect of � on Ci(N) and N�, i = 1; 2; 3. Figure 6 shows that the

optimal values of Ci(N) and N� decrease as � increases.

4.2 Optimal mission duration

The notion of the optimal mission duration was introduced by Finkelstein and Levitin [12] for

a non-repairable system subject to shocks and internal failures. In this paper, they showed that

the mission completion is not always bene�cial in terms of cost for a degrading system. In many

real life scenarios, it may be a good strategy to abort the mission before its completion. The

mission abort usually results in a reward that depends on the system's operation time and a

penalty. On the other hand, the mission completion results in an additional reward. Moreover,
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Table 1: Values of Cl(N) for l = 1; 2; 3

N C1(N) C2(N) C3(N) N C1(N) C2(N) C3(N)

1 6.310475 6.403005 6.511520 14 2.635177 2.660795 2.690814

2 4.608003 4.707498 4.825231 15 2.675697 2.697639 2.723330

3 3.707055 3.800422 3.911283 16 2.714776 2.733445 2.755292

4 3.183374 3.268529 3.369722 20 2.842405 2.851637 2.862433

5 2.867401 2.944476 3.036020 24 2.920088 2.924337 2.929310

6 2.677378 2.746925 2.829422 28 2.961543 2.963408 2.965595

7 2.568473 2.631047 2.705151 32 2.982100 2.982895 2.983828

8 2.513652 2.569741 2.636042 36 2.991852 2.992185 2.992575

9 2.495398 2.545428 2.604458 40 2.996348 2.996486 2.996647

10 2.501744 2.546109 2.598365 55 2.999833 2.999838 2.999844

11 2.524219 2.563305 2.609268 70 2.999993 2.999993 2.999993

12 2.556706 2.590900 2.631055 85 3.000000 3.000000 3.000000

13 2.594759 2.624462 2.659301 100 3.000000 3.000000 3.000000
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Figure 5: Plot of Cl(N) for l = 1; 2; 3
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Figure 6: Plot of optimal average cost and N∗ against σ ∈ (0, 1)
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the failure of the system during the mission also results in a penalty because it incurs additional

costs due to failure of a mission. In this subsection, we discuss the optimal mission duration

for a system under the de�ned mixed shock model. Below we give a list of assumptions.

Assumptions:

1. A new system with lifetime L starts a mission at time t = 0. The mission duration is T .

The mission can be terminated at any time � 2 (0; T ].

2. The system is subject to external shocks that occur according to the HPP with intensity

� > 0 under the de�ned model with q(t) = �t for 0 < � < 1.

3. The system gets pro�t C(T ) when the mission is completed (i.e., the system does not fail

during the mission or the mission is not aborted in [0; T ]). The per time unit reward,

when the system is working, is cp and the per time unit operational cost is c0, where

c0 < cp.

4. A penalty Cf is imposed if the system fails during the mission. In case of premature

termination, the �xed penalty Ct (Ct < Cf ) is administrated. Further, CR is an additional

reward for the mission completion.

5. Reward after the failure is discarded.

Based on aforementioned assumptions, the pro�t C(T ) upon mission completion can be ex-

pressed as

C(T ) = (cp � c0)T + CR:

Note that the mission is aborted at time � if the total pro�t at termination exceeds the expected

pro�t in case of mission continuation. The pro�t at termination at time � is equal to (cp �

c0)� � Ct. On the other hand, the expected pro�t in the case of mission continuation is

�FL(T )
�FL(�)

((cp � c0)T + CR)�
�
1�

�FL(T )
�FL(�)

�
Cf ;

where �FL(T )= �FL(�) is the probability that a system will not fail in the remaining mission time

given that it is operable at time � ; here �FL(�) is the same as in (3.1) with � ! 0; � = 1; b = 1=�

and �i = � for all i 2 N [ f0g. Thus, if for some � , the expression

A(�)
def:
=

�FL(T )
�FL(�)

((cp � c0)T + CR)�
�
1�

�FL(T )
�FL(�)

�
Cf � ((cp � c0)� � Ct)
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Figure 7: Profit comparison function A(τ) against τ ∈ [0, 5]

is non-negative, then the mission should not be terminated at time τ . Clearly, A(0) ≥ 0, as

there is no need to terminate the mission that had just started. Since the expression of A(τ)

is complicated, it is not analytically possible to find out the values of τ for which A(τ) ≥ 0.

Thus, we consider the following numerical example.

Let us assume T = 5, cp = 2.5, c0 = 0.5, CR = 3, Cf = 8, Ct = 5, ρ = 0.95, δ = 0.1, σ =

0.95 and λ = 1.4. Based on these parameter values, we plot the profit comparison function

A(τ) against τ ∈ [0, 5]. Figure 7 shows that A(τ) is increasing in τ ∈ [0, 0.1] and is in U-shaped

in τ ∈ (0.1, 5]. Further, note that it takes negative values in τ ∈ [0.72, 2.92]. This implies that

the mission should not be terminated in the interval [0, 0.72) and (2.92, 5], whereas it should

be aborted just at τ = 0.72 as it is the optimal solution. In case the mission is not terminated

at time τ = 0.72, it may be terminated at any time in the interval [0.72, 2.92]. Further, if this

is not done, then the mission should not be terminated at all because its termination in the

interval (2.92, 5] is not beneficial.

5 Concluding remarks

A combination of the history-dependent extreme shock model and the history-dependent δ-

shock model is considered in this paper. This model is a generalization of some of the existing

models in the literature, namely, the classical extreme shock model, the history-dependent ex-

treme shock model and the constant δ-shock model. Further, we assume that shocks occur

according to the GPP which is a generalization of some of the commonly used counting pro-
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cesses, namely, the HPP, the NHPP, and the P�olya process. For the de�ned model, we derive

the survival function, the mean lifetime and the failure rate of a system. Further, we study the

long run behaviour and the non-monotone behaviour of the failure rate. As applications of the

proposed model, we consider the optimal replacement policy and the optimal mission duration.

In our study, we have considered binary systems, when a system can be only in two states

(operable or failed). In the future research, we plan to discuss the multistate systems under

the history dependent mixed shock models. These models could provide a better stochastic

description at may practical instances.
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