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Abstract 
Defect free graphene is believed to be the strongest material. However, the effective 
strength of engineering used large-area graphene in which defects are inevitable is 
actually determined by the fracture toughness, rather than the intrinsic strength that 
governs the breakage of atomic bonds in perfect graphene. Due to the limitations of 
commonly adopted experiments, conventional continuum mechanics based methods 
and fully atomistic simulations, fracture of polycrystalline graphene under uniaxial 
tensile load is explored by performing peridynamic (PD) simulations in this paper. 
The fracture strength, the fracture strain and the fracture toughness of polycrystalline 
graphene, as well as the grain size effect and the temperature effect on such quantities, 
are studied in this work. The results show that the fracture strength of polycrystalline 
graphene and the grain size follows an inverse pseudo Hall-Petch relation. The 
fracture strain and the fracture toughness of polycrystalline graphene decrease with a 
decrease in the grain size. Increasing temperature can also weaken the fracture 
properties of graphene. The results can provide guidelines for the applications of 
polycrystalline graphene in nano devices. This study also expands the application of 
peridynamics and presents a new way to study the fracture of graphene. 
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1. Introduction
As an excellent material, graphene has gained increasing attention from all over the 
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world. Due to its prominent mechanical, electrical and thermal properties, graphene 
has been applied in various areas, such as nano-devices, nano-composites, etc. Good 
mechanical properties of graphene are the foundation to guarantee the performance of 
graphene-based systems. For perfect graphene, its extremely high intrinsic strength 
and Young’s modulus, e.g. 130.0 GPa and 1.0 TPa, respectively [1], mainly benefit 
from the strong atomic bonds. Now, large-area graphene can be synthesized for its 
practical applications, but defects are inevitable in the chemical-vapor-deposition 
(CVD)-synthesized graphene. Thus, the effective strength of large-area graphene is 
determined by the fracture toughness rather than the intrinsic strength [2]. 

Experimental testing and theoretical modeling are useful ways to investigate the 
mechanical properties (e.g. fracture) of graphene. By combining experiments and 
molecular dynamics (MD) simulation, Zhang et al. [2] quantified the fracture 
toughness of graphene as the critical stress intensity factor of 4.0 ± 0.6 MPa√m and 
the equivalent critical strain energy release rate of 15.9 J/m2. However, theoretical 
modeling is preferred in most studies due to the high cost of experiments and the 
difficulties in experimental operations. 

Although classical continuum mechanics (CCM) based methods are effective 
and efficient to predict many mechanical behaviors (e.g. vibration and stress wave 
propagation, etc.) of graphene under the continuum hypothesis, they cannot directly 
be employed to solve discontinuity related problems (e.g. crack growth) for the reason 
that the spatial derivatives in CCM theory can lose its meaning at discontinuities. For 
discontinuity related problems such as crack propagation in graphene, MD simulation 
methods are mostly used for the discrete atomistic systems [2-8]. However, fully 
atomistic simulations (e.g. MD simulation) are prohibitively expensive to study the 
large-deformation and failure mechanisms at mesoscale [9]. Therefore, another 
method is necessary to overcome such issues. 

Peridynamics, a new continuum-based theory proposed by Silling [10], can 
directly be used for discontinuity related problems (e.g. crack growth) ranging from 
macro to micro even nano scales [11]. Ren et al. [12] also developed a dual-horizon 
peridynamics formulation to overcome the ‘ghost force’ issue in the use of the 
original single-horizon peridynamics and applied the dual-horizon peridynamic model 
to the fracture of elastic solid under shear deformation [13]. Besides, inspired by the 
peridynamic differential operator, Ren et al. [14] proposed a nonlocal operator method 
for solving partial differential equations and successfully applied the model to 
electromagnetic waveguide problem [15]. Recently, many studies [16-23] have shown 
that peridynamics can be another new way to study fracture of graphene. Martowicz 
et al. [22] found that peridynamics can recover the physical nature of atom-scale 
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reactions in graphene via analyzing the wave dispersion. Based on peridynamics, 
Diyaroglu et al. [19] modeled the wrinkling of graphene, Madenci and Dorduncu [18] 
predicted the thermal expansion coefficient of graphene, and Oterkus et al. [21] 
investigated the fracture properties of graphene and observed the crack branching 
behavior in the simulation. Liu et al. [20] developed a nonlinear ordinary state-based 
PD coarse-grain model under isotropic assumption and captured the crack branching 
behavior in zigzag graphene. Considering the chiral effect on the fracture of graphene, 
Liu et al. [17] also developed another model by combining bond-based peridynamics 
and coarse-grain technique and observed the dependence of crack initiation on the 
chirality of graphene. 

In above investigations, coarse-grained peridynamics model has been effectively 
adopted to investigate the fracture of large-size graphene with high efficiency. 
However, only crack propagation in single crystalline graphene is covered in these 
studies. Generally, grain boundaries are unavoidable in the CVD-synthesized 
graphene, and thus graphene exists in polycrystalline forms. Based on this point, a 
further attempt is made and fracture of polycrystalline graphene is studied via 

coarse-grained PD simulation in this work. In the next section, methodology 
employed in this study is described. Then, via coarse-grained PD simulations, fracture 
of pre-cracked polycrystalline graphene under uniaxial stretching and the effect of 
different factors (e.g. the grain size and temperature) on the fracture are presented and 
discussed. Finally, some concluding remarks obtained from this study are drawn. 
 
2. Methodology 
Each polycrystalline graphene sample used for the fracture investigation is considered 
as homogeneous and discretized as square-distributed material points. Several seeds 
are randomly scattered in each sample and each seed represents one grain in the 
sample. According to the distances between the material points and the randomly 
scattered seeds, polycrystalline graphene containing several grains can be obtained. 
For example, if the material points are closer to one seed than to other seeds in the 
sample, the material points then belong to the grain represented by the seed. Random 
chiral angles are defined for the grains in each sample. A schematic of polycrystalline 
graphene is shown in Fig. 1. 
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Fig. 1 A schematic to show the polycrystalline graphene sample containing 3 grains. 
In the sample, 1, 2, 3 and 𝜃1 , 𝜃2 , 𝜃3  stand for the grain number and the 
corresponding chiral angle of each grain, respectively. 

 
The deformation of the system can be obtained via the governing equation of the 

material point which is written as 

𝜌𝑘�̈�𝑘 = ∫ 𝒇
 

𝐻𝑘

𝑑𝑉 + 𝐛𝑘 (1) 

where 𝜌𝑘  is the density, �̈�𝑘  is the acceleration vector, 𝐻𝑘  is the corresponding 
horizon, 𝐛𝑘 is the body force density vector, and 𝑑𝑉 is the volume of the material 
point, as shown in Fig. 2. 𝒇 is the PD force density vector and is defined as 

𝒇 = 𝜇𝑓�⃗⃗� 

𝐲𝑗 − 𝐲𝑘

|𝐲𝑗 − 𝐲𝑘|
 (2) 

in which 𝐲𝑗 and 𝐲𝑘 are the position vectors of two material points j and k after 
deformation, respectively, 𝑓�⃗⃗�  is the PD force density function, 𝜇  is a 
history-dependent scalar and is written as 

𝜇 = {
1       𝑠 < 𝑠0

0       𝑠 ≥ 𝑠0
 (3) 

s is the stretch of the PD bond and is expressed as 

𝑠 =
|𝐲𝑗 − 𝐲𝑘| − |𝐱𝑗 − 𝐱𝑘|

|𝐱𝑗 − 𝐱𝑘|
 (4) 

where 𝐱𝑗 and 𝐱𝑘 are the position vectors of two material points j and k before 
deformation, respectively. When the bond stretch, s, is larger than the critical value, 
𝑠0, 𝜇 renders the PD force density to be zero, which means that the corresponding 
PD bond breaks and damage occurs in the PD material body. 
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Fig. 2 Schematic of the PD material body of graphene in which the central material 
point k interacts with its neighboring material points (e.g. j) in the horizon H. The xy 
coordinate system is a global system. The x’y’ coordinate system is a local one and 
can change with the chiral angle, 𝛼. x’ and y’ are along the zigzag and armchair edges 
in graphene, respectively. 𝛾 is the orientation angle of the initial PD bond kj relative 
to the global coordinate system. 
 

A chirality-dependent PD model which was developed by Liu et al. [17] on the 
basis of the original bond-based PD theory is employed to describe the interaction 
between material points in graphene. In the model, the nonlinear and anisotropic 
mechanical property of single crystalline graphene is considered and the PD force 
density function between two material points is expressed as 

𝑓�⃗⃗� = (𝑐2 cos(6𝛽) + 𝑐1)𝑠
2 + 𝑐0𝑠 (5) 

in which �⃗⃗�  represents the orientation of the initial PD bond relative to the local 
coordinate system and is denoted by the orientation angle 𝛽 (𝛽 = 𝛼 + 𝛾), as shown 
in Fig. 2. 𝑐0, 𝑐1 and 𝑐2 are the PD parameters which are determined by the stress 
equivalence principle in the work by Liu et al. [17]. The critical bond stretch, 𝑠0, is 
expressed as [17] 

𝑠0 = 𝑠2 cos(6𝛽) + 𝑠1 (6) 
in which 

𝑠1 =
𝑠𝑐𝑧 + 𝑠𝑐𝑎

2
   and   𝑠2 =

𝑠𝑐𝑧 − 𝑠𝑐𝑎

2
 (7) 

where 𝑠𝑐𝑧 and 𝑠𝑐𝑎  are the critical stretches of PD bonds along the zigzag and 
armchair edges, respectively.  

In the PD simulation of fracture of polycrystalline graphene in this study, the 
chirality-dependent PD model can only be used to describe the interaction between 
material points in each single grain. The interaction between material points in two 
different grains in polycrystalline graphene and the critical stretches of the 
corresponding PD bonds need to be considered additionally. Generally, the 
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expressions of the PD bond force density and the critical PD bond stretch for the PD 
bond crossing the grain boundary are defined as 𝑓𝑖 = 𝑤𝐴𝑓𝐴 + 𝑤𝐵𝑓𝐵  and 𝑠0

𝑖 =

𝑤𝐴𝑠0
𝐴 + 𝑤𝐵𝑠0

𝐵, respectively. In the expressions, 𝑤𝐴 and 𝑤𝐵 are weighted parameters 
which should be between 0 and 1, 𝑓𝐴 and 𝑓𝐵 represent the PD force densities in 
grains A and B, and 𝑠0

𝐴 and 𝑠0
𝐵 are the critical PD bond stretches in grains A and B. 

Different combinations of the weighted parameters can be selected to study their 
effect on the fracture and there should be only one correct combination for one certain 
case. In this work, the weighted parameters are chosen as 0.5. i.e.  

𝑓𝑖 =
(𝑓𝐴 + 𝑓𝐵)

2
⁄  (8) 

𝑠0
𝑖 =

(𝑠0
𝐴 + 𝑠0

𝐵)
2

⁄  (9) 

In the simulations, the sizes of the polycrystalline graphene samples are (W × H) 
300 nm × 300 nm and a pre-crack with a size of (w × h) 2 nm × 70 nm is positioned at 
the center of each sample. The grid spacing of square-distributed material points in 
the sample is 0.6 nm. The horizon size is chosen as 1.8 nm which is usually 3 times of 
the grid spacing [24]. According to Liu et al. [17], the PD parameters, i.e. 𝑐0, 𝑐1 and 
𝑐2 in Eq. (5) and the critical stretches, i.e. 𝑠𝑐𝑧 and 𝑠𝑐𝑎 in Eq. (7) are chosen as 

𝑐0 =
7.4×1012

𝜋ℎ𝛿3 , 𝑐1 = −
19.5×1012

𝜋ℎ𝛿3 , 𝑐2 =
19.2×1012

𝜋ℎ𝛿3 , 

𝑠𝑐𝑧 = 0.13 and 𝑠𝑐𝑎 = 0.1. 
(10) 

The velocity-Verlet numerical scheme [25] is adopted with a timestep of 5 fs in the 
simulation. The volume-based correction method [26] is employed to minimize the 
surface effect in the PD simulation. It should be noted that the chirality-dependent PD 
model has been validated via simulation of the fracture of single crystalline graphene 
with different chiralities [17]. Simulations in this work are performed through running 
FORTRAN code in serial mode. The results such as the crack propagation forms in 
polycrystalline graphene are visualized by using the software OVITO [27]. 
 
3. Results and discussion 
Mechanical properties and fracture characteristics of polycrystalline graphene under 
uniaxial load are presented and analyzed in this section. The graphene is uniaxially 
stretched by moving the left and right boundaries with velocities of -3 m/s and 3 m/s, 
respectively, and the corresponding loading rate is 2 × 107 /s. Fig. 3 presents the 
fracture forms and the uniaxial tensile stress-strain curves of pre-cracked 
polycrystalline graphene samples which contain different number of grains. Fig. 3 
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demonstrates that the pre-cracked graphene sample breaks in a brittle way. With each 
graphene sample being uniaxially stretched by moving the left and right boundaries, 
the uniaxial stress increases linearly with the strain. Here, the uniaxial stress and the 
strain are calculated as 𝜍 = 𝐹/𝐴 and 𝜀 = (𝑙 − 𝑙0)/𝑙0, respectively, where F is the 
force on the boundary, A is the cross sectional area, 𝑙 is the current length, and 𝑙0 is 
the initial length. When the strain reaches a critical value, the uniaxial stress reaches 
the maximum at the same time. After that, the graphene sample breaks into two halves 
in a brittle way, which is consistent with the experimental observation by Zhang et al. 
[2]. Besides, the maximum fracture stress (about 11.0 GPa) is substantially lower than 
the intrinsic strength (about 130.0 GPa) of graphene. Therefore, the results verify the 
fact that the strength of defective graphene is not determined by the intrinsic strength 
which governs the breakage of atomic bonds in perfect graphene. 
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Fig. 3 Crack propagation in polycrystalline graphene with different number of grains 
and the corresponding stress-strain relations under uniaxial tension. The numbers in 
the insets represent the grain number in the corresponding polycrystalline graphene 
sample. 
 

Although the global crack propagation path in graphene is perpendicular to the 
uniaxial stretching direction, the pre-crack initiation direction is significantly 
dependent on the chiral angle of the grain where the initial pre-crack tip is located, as 
shown in Fig. 3. This can be explained by the critical strain energy release rate for the 
armchair and zigzag edges in graphene, respectively. Zhang et al. [2] reported that the 
critical strain energy release rate is the lowest of 11.8 J/m2 for the zigzag edge and 
the highest of 12.5 J/m2 for the armchair edge, which means that the crack prefers to 
propagate along the zigzag edge. As shown in Fig. 4, the chiral angle is θ (the angle 
between the zigzag edge-1 and the horizontal axis) and the chiral structure in 
graphene shows a period of 60º. In the uniaxial stretching process, the local tensile 
stress (around the pre-crack tip and perpendicular to the zigzag edge) on the zigzag 
edge-2 is certainly larger than the one on the zigzag edge-1. Thus, the crack can 
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propagate more easily along the zigzag edge-2 and the angle between the crack 
propagation direction and the vertical axis is 30º−θ. Therefore, it can be seen in Fig. 3 
that the pre-crack initiates centro-symmetrically from the upper and lower crack tips 
in the single crystalline graphene (sample 1) with chiral angle of 6.8º (See Table A1 in 
appendix A) and the angle between the crack initiation direction and the vertical axis 
is about 23º. In the polycrystalline graphene samples, Fig. 4 shows that the chiral 
angles of the two grains where the upper and lower crack tips of the pre-crack are 
located are different, and this can result in different crack initiation directions. Besides, 
the crack propagation can also be affected due to large differences between the chiral 
angles of the grains in the polycrystalline graphene samples. Especially, the crack path 
is changed in sample 5 in Fig. 3 when the crack propagates across the grain boundary 
between grain 6 and grain 14. In sample 3 in Fig. 3, the chiral angle of grain 5 is 
larger than the one of grain 1. Correspondingly, Fig. 4 demonstrates that the crack can 
propagate more easily in grain 5 (e.g. the crack propagates to the upper edge faster 
than to the lower edge in sample 3). The large differences between the chiral angles of 
the grains in the polycrystalline graphene sample can also induce obvious stress 
oscillations before fracture occurs (e.g. the stress oscillates before it reaches the 
fracture stress in the stress-strain relationship of sample 3 in Fig.3). It can be 
understood here that the crack propagates locally depending on the chiral structure (i.e. 
the chiral angle of graphene) and globally depending on the uniaxial stretching 
direction. Therefore, the crack propagation pattern in graphene should be the 
consequence of the competition between the local and global level fractures, as 
reported by Liu et al. [3]. In addition, inter-granular fracture in polycrystalline 
graphene is significantly dependent on the determination of the weighted parameters 
in the PD model for the grain boundary. With the current PD model, the crack 
propagation along the interface between two grains is too short to be obviously 
observed from the simulation results in this work. To date, few studies can present a 
way to determine the weighted parameters exactly. How to obtain accurate weighted 
parameters is under exploration at present, which can be a further extension of the 
current work in the future. 
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Fig. 4 Schematic to show the direction of crack initiation from the crack tip of the 
initial pre-crack. 
 

The following part presents the effect of the grain size in the polycrystalline 
graphene sample on the mechanical properties, such as the Young’s modulus in Fig. 5, 
and the fracture strength and the fracture strain in Fig. 6. It should be noted that the 

grain size is defined as 𝑑 = √𝐴 𝑁⁄  by assuming a square geometry for an equivalent 

grain in a polycrystalline graphene [7]. In the expression, 𝐴 is the area of the 
polycrystalline graphene sample and equal to the product of its width (𝑊) and height 
(𝐻) and 𝑁 is the number of grains in the polycrystalline graphene. Different grain 
sizes are considered by changing the number of grains in the sample of fixed size in 
this work. This is different from the way used by Mortazavi et al. [28] that the number 
of grains is fixed while the global size of the sample is changed. In the figures, each 
point is obtained by taking the average of five values which are collected from five 
independent simulations to reduce the effect of randomness. 

In Fig. 5, the Young’s modulus is obtained by calculating the slope of the initial 
linear part of the stress-strain curve (the corresponding strain is in the range of 
0~0.01%). For the graphene with (or without) initial pre-crack, the Young’s modulus 
of the single crystalline graphene is the largest. The Young’s modulus slightly 
decreases with a decrease in the grain size. The Young’s modulus of graphene without 
the initial pre-crack is about 0.99 TPa which matches well with the measured value 
(about 1.0 TPa) in the experiment by Lee et al. [1]. Compared with the grain size 
effect, the Young’s modulus of graphene can be affected more by the initial pre-crack. 
The effective Young’s modulus of graphene with the initial pre-crack is about 0.964 
TPa. 
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Fig. 5 The grain size effect on theYoung’s modulus of polycrystalline graphene. 
 
    In Fig. 6a, the fracture strength of graphene decreases with a decrease in the 
grain size, which presents a similar inverse pseudo Hall-Petch relation to the one 
reported by Sha et al. [6]. Such relation can be explained by the weakest-link model 
[6] which shows that the fracture strength of a brittle material and the number of weak 
links in the material follows a power-law relation and the fracture strength decreases 
with an increase in the number of weak links. Here, the grain boundaries and the 
junctions formed by the grain boundaries in graphene increase with the number of 
grains. Thus, the weak links in graphene increase, which can lead to the reduction of 
fracture strength of graphene. Besides, it can be observed from Fig. 6a that the 
fracture strength of graphene shows very small change when the grain size is less than 
a certain value (e.g. 95 nm). The fracture strain of graphene and the grain size also 
presents a similar trend as the fracture strength vs the grain size does, and the fracture 
strain decreases with reducing the grain size, as shown in Fig. 6b. In addition, it is 
found that the inverse pseudo Hall-Petch relation between the fracture strength and 
the grain size is slightly different from the one reported by Kotakoski and Meyer [29] 
and Sha et al. [6]. The increasing rate of the fracture strength increases with 
increasing the grain size in this work but decreases in the referenced studies. Such 
differences may be ascribed to the range of the grain size that the grain size is larger 
than 65 nm in this work but smaller than 15 nm in the referenced studies. 
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Fig. 6 Fracture strength (a) and fracture strain (b) of pre-cracked polycrystalline 
graphene with grains of different sizes. 
 

In addition to the grain size effect, the fracture properties of graphene can also be 
affected by temperature [30]. According to the PD theory [31], the temperature effect 
can be considered by adding a thermal expansion coefficient related term. Thus, the 
PD model (i.e. eq. (5)) in this work can be rewritten as 

𝑓�⃗⃗� = (𝑐2 cos(6𝛽) + 𝑐1)𝑠
2 + 𝑐0(𝑠 + 𝛼𝑇) (11) 

where 𝛼 is the thermal expansion coefficient and 𝑇 is the temperature of the system. 
According to Moradi et al. [32], the thermal expansion coefficient of graphene is 
−9 × 10−6 /K  when the temperature is 100 K and approaches 0  /K  as the 
temperature increases. Besides, the thermal coefficient is 0 /K when the temperature 
is 0 K. Based on the PD model, dependencies of the fracture strength and the fracture 
strain of a pre-cracked single crystalline graphene are obtained and shown in Fig. 7. It 
can be seen that increasing temperature can reduce the fracture strength and the 
fracture strain of graphene. 
 

  

Fig. 7 Fracture strength (a) and fracture strain (b) of pre-cracked graphene at different 
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temperatures. 
 

For the brittle fracture of graphene, Zhang et al. [2] verified the applicability of 
the classical Griffith theory of brittle fracture to graphene via combining experiment 
and MD simulation. For a central crack with length of 2𝑎0, the critical stress, 𝜍𝑐 for 
the onset of brittle facture is a function of 𝑎0 in the Griffith theory and the function 
is expressed as  

𝜍𝑐 = √
2𝛾𝐸

𝜋𝑎0
 (12) 

where 𝐸 is the Young’s modulus and 𝛾 is the edge (e.g. the armchair and zigzag 
edges) energy of graphene. Two times of the edge energy (2𝛾) is equal to the critical 
strain energy release rate for the corresponding edge in graphene. Eq. (12) can be 

rewritten as 𝜍𝑐√𝑎0 = √2𝛾𝐸 𝜋⁄ , so that 𝜍𝑐√𝑎0 should be a constant because the 

right-hand side depends on the material constants (i.e. 𝛾 and 𝐸) and the numerical 
constant (i.e. 𝜋). This is also consistent with the measured values in experiment [2]. 
Due to the brittle fracture nature of graphene, the effective strength of graphene can 
be indicated by the fracture toughness which is characterized by the critical stress 

intensity factor of fracture, 𝐾𝑐 = 𝜍𝑐√𝜋𝑎0. Then, based on the length of the initial 

pre-crack in each graphene sample and the critical stress which can be obtained from 
the corresponding stress-strain relation in Fig. 3, the critical stress intensity factor of 
fracture of each graphene sample can be calculated. 

Fig. 8 gives the relationship between the critical stress intensity factor of fracture 
and the grain size in the pre-cracked graphene samples. From the figure, it can be 
determined that the critical stress intensity factor of fracture of the pre-cracked single 
crystalline graphene (i.e. the number of grains equal to 1 and the grain size is 300 nm) 
is 3.82 MPa√m, which is very close to the value (about 4.0 MPa√m) measured in 
experiment [2]. Based on Eq. (12), the edge energy of graphene can be calculated as 
7.4 J m2⁄ , which is also close to the experimental value of 8.0 J m2⁄  (the edge 
energy is expressed as 𝛾 = 𝜍𝑐

2𝜋𝑎0 2𝐸⁄ = 𝐾𝑐
2 2𝐸⁄  and 𝐾𝑐 and 𝐸 are selected as 

3.82 MPa√m and 0.99 TPa in the calculation in this work and 4.0 MPa√m and 1.0 
TPa in the experimental calculation, respectively). It can also be observed from the 
figure that the critical stress intensity factor of fracture decreases with a decrease in 
the grain size while it can hardly change when the grain size is less than a critical 
value (e.g. 95 nm). Besides, the temperature effect on the critical stress intensity 
factor of fracture of a pre-cracked single crystalline graphene is shown in Fig. 9 from 
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which it can be seen that the critical stress intensity factor can be weakened as the 
temperature increases. 

In addition, the equi-biaxial breaking strength of pristine and polycrystalline 
graphene are tested as 103 GPa and 98.5 GPa, respectively, as reported by Lee et al. 
[33] in their experiment. Thus, it can be concluded that the fracture strength of 
polycrystalline graphene can slightly be reduced by the grain boundaries (about 
103.0 98.5⁄ − 1.0 = 4.6%). Compared with the grain boundary, the existence of the 
pre-crack can severely reduce the fracture strength of graphene by several folds [2]. In 
this study, the fracture strengths of pre-cracked single- and poly-crystalline graphene 
are about 11.2 GPa and 10.5 GPa, respectively. The fracture strength of the 
pre-cracked single-crystalline graphene is about 6.7% (11.2 10.5⁄ − 1.0 = 6.7%) 
higher than that of the pre-cracked polycrystalline graphene, which is consistent with 
the report by Lee et al. [33]. Correspondingly, the critical stress intensity factor (𝐾𝑐) 
of the pre-cracked single-crystalline graphene is 6.7% (3.82 3.58⁄ − 1.0 = 6.7%) 
higher than that of the pre-cracked polycrystalline sample. 
 

 
Fig. 8 Critical stress intensity factor of pre-cracked polycrystalline graphene with 
grains of different sizes. 
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Fig. 9 Critical stress intensity factor of pre-cracked single crystalline graphene at 
different temperatures. 
 
4. Conclusions 
The fracture of pre-cracked polycrystalline graphene under uniaxial stretching is 
studied via coarse-grained PD simulation. The following several concluding remarks 
can be drawn from this study. The local crack propagation such as the crack initiation 
or the crack crossing a grain boundary depends on the chiral angle while the global 
crack path is perpendicular to the uniaxial stretching direction. Therefore, the fracture 
of graphene is the result of the local and global level fractures. The fracture strength 
decreases with a decrease in the grain size, which follows an inverse pseudo 
Hall-Petch relation and can be explained by the weakest-link model that the 
increasing weak links in graphene due to the increase of the number of grains can 
reduce the fracture strength of polycrystalline graphene. Besides, the fracture strain 
and the critical stress intensity factor of fracture reduce as the grain size decreases. 
The change of the three fracture related quantities is very limited when the grain size 
is less than a critical value. The three fracture related quantities can be reduced by 
increasing the temperature. In this study, the critical stress intensity factor of fracture 
and the edge energy of pre-cracked single crystalline graphene are calculated as 3.82 
MPa√m and 7.4 J m2⁄ , respectively, which are very close to the experimental values 
(i.e. 4.0 MPa√m and 8.0 J m2⁄ ). This study verifies the fact that the effective 
strength of defective graphene is determined by the fracture toughness rather than the 
intrinsic strength of perfect graphene and the obtained results are useful for the 
application of graphene in many nano systems. Moreover, further extensions can be 
made for the application of peridynamics through this work. 
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Appendix A 
The chiral angle of each grain in polycrystalline graphene samples in Fig. 3 is 
presented in the table below. 
 
Table A1. The chiral angle information of each grain in polycrystalline graphene 
samples in Fig. 3. 

Unit: degree 
       Sample no. 

Grain no. 
1 2 3 4 5 6 

1 6.8 4.1 5.4 9.0 10.6 19.0 
2  15.5 6.6 4.0 18.5 25.4 
3  15.4 1.1 2.1 0.4 23.2 
4   2.2 17.7 19.4 0.8 
5   22.9 6.4 29.8 3.2 
6   24.5 10.4 13.1 17.1 
7    24.0 1.3 23.0 
8    3.7 12.2 19.7 
9    16.5 3.5 17.9 
10    9.4 4.3 8.8 
11     17.6 10.6 
12     19.8 14.1 
13     6.7 9.1 
14     0.0 29.4 
15     29.0 5.5 
16      12.3 
17      18.6 
18      14.7 
19      2.7 
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20      29.9 
21      15.8 
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