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ARTICLE INFO ABSTRACT

Keywords: Considerable efforts have been devoted to developing rapid methodologies for predicting the residual strength
Buckling of ship hull girders for a given damage scenario (e.g., R-D diagram). This task is usually challenged by
Ship hull girder the difficulty of a proper definition of damaged scenarios, which is a function of the damage location and

Grounding damage index
Ultimate limit state
Accidental limit state

extent. The concept of damage index (DI) was proposed to resolve this issue, and its application has been
demonstrated previously through the incorporation of the Intelligent Supersize Finite Element Method (ISFEM)
and Modified Paik-Mansour (P-M) approach. Alternatively, a Smith-type progressive collapse can be adopted.
In fact, this may enable a more comprehensive application of the DI concept, as the Smith-type approach
is codified in the Common Structural Rule (CSR) for assessing the longitudinal strength of the hull girder.
In light of this, the damage index based assessment tools (i.e., R-D diagram) incorporated with a Smith-type
progressive collapse method is presented in this paper. This also facilitates a comparison with the R-D diagram
previously developed by ISFEM and Modified P-M approach. Discussion is given regarding the discrepancy
between different methods, and recommendations for future research are outlined.

1. Introduction An innovative damage index (DI) concept was proposed by Paik
et al. [52] to address these issues concerning the condition assess-

Ships and ship-shaped offshore structures are vulnerable to vari- ment for damaged structures, and they validated its applicability for
ous accidents that may encounter during operations [1-7], such as grounding damaged oil tankers. In this damage index technique, a
grounding [8-13], collision [14-24], fire [25-29], explosion [30-33], reliable number of damage scenarios are sampled from the probabilis-
ice impact [34-37] and many others. These accidental events impose tic distributions of relevant random variables. The sampled variables,
significant hazards to the ships, affecting their structural integrity and including d.amage.d locati(?n and extent, fiefine the damage index. The
endangering the onboard crew members [38]. There might also be a corresponding residual ultimate strength is then computed by analytical

or numerical methods for all selected scenarios to develop the Residual
strength versus Damage index (R-D) diagram. Based on this, the condi-
tion assessment of grounding damaged oil tankers was performed, and
practical R-D diagrams were proposed, including its user guide [52].
The same concept was applied to container ships [53] and bulk carri-
ers [54]. The secondary effects, i.e., the ageing deterioration [55] and
the low-temperature condition [56], were investigated by continued
studies. The use of the R-D diagram was also extended to the vessels
damaged by collision accidents [57].

In the previous works abovementioned, the residual ultimate strength
was calculated by Modified Paik—-Mansour Method [52] and by Intelli-
gent Supersize Finite Element Method (ISFEM) [53-57]. A comparison
of the R-D diagrams developed by these two methods, i.e., modified
P-M method and ISFEM, was also conducted by Kim et al. [58]. An al-
ternative approach is the Smith-type progressive collapse method [59],

negative implication to the ecology system of the ocean environment,
such as that caused by the spilling of pollutive cargo from a damaged
ship hull. A rapid and emergency response is therefore necessary for
the salvage and evacuation operations [39].

One of the key steps in the required action is to examine the remain-
ing capacity (= residual ultimate longitudinal strength) of damaged
ship hulls [40-43] so as to comply with the ultimate limit state (ULS)
criterion [44-51]. Since a direct strength calculation requires dedicated
expertise, marine structural engineers seek to devise various closed-
form formulas and/or design diagrams for efficient first-cut estimation.
However, this is often challenged by the appropriate definition of a
damaged scenario. Ship grounding, which is the focus of this work, is
a complex accidental event that could damage the ship hull at random
locations with different shapes.
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which is a prevailing approach codified in the Harmonised Common
Structural Rules (CSR-H), issued by IACS for bulk carriers and oil
tankers [60], and container ships [61]. Many kinds of research are
available in the literature on the development and application of the
Smith method for a range of ultimate strength analyses of hull gird-
ers [62-73]. However, the integration between the Smith method and
damage index concept-based residual strength assessment for grounded
ships has not yet been completed. A more comprehensive application
of the DI-based concept to deal with the residual ultimate strength
assessment of ship hull girders can be realised by incorporating with
the Smith-type progressive collapse method. In the meantime, whist all
these approach (ISFEM, modified P-M and Smith method) are well-
established for predicting the ship hull girder strength, quantifying
their computational discrepancy is important. However, a thorough
comparison between the ISFEM, modified P-M approach and Smith
method seems to be lacking in the literature.

In the light of this, this paper contributes the R-D diagram devel-
oped from a Smith-type progressive collapse method for four classes of
double-hull oil tankers, i.e. VLCC, Suezmax, Aframax, and Panamax.
A comparison of the developed R-D diagrams based on the ISFEM,
modified P-M and Smith method is presented. The remaining part
of the present study is structured as follows. Section 2 reviews the
fundamentals of three analysis methods, i.e., ISFEM, Modified P-M
method and Smith method. Section 3 summarises the key steps in
the damage index concept-based condition assessment procedure. In
Section 4, the development of the R-D diagram based on the Smith
method is presented, including the comparison results with other meth-
ods, i.e., ISFEM and Modified P-M method. Section 5 elaborates the
insights developed from the comparison between the three methods.
The conclusions drawn from the present study are documented in
Section 6.

2. Background

This section provides a brief summary of the three prevailing nu-
merical methods to compute the ultimate strength of ship hull gird-
ers, namely the Intelligent Supersize Finite Element Method, Modified
Paik—-Mansour method and Smith-type progressive collapse method.
Their fundamentals, common features and distinct differences are high-
lighted.

2.1. Intelligent Supersize Finite Element Method (ISFEM)

The Intelligent Supersize Finite Element Method (ISFEM) is devel-
oped to resolve the high computational requirement of the conventional
finite element method (FEM) [2]. In contrast to the conventional FEM,
the ISFEM is said to be intelligent because the highly nonlinear be-
haviour of the large elements is educated or formulated in advance,
generating a high level of intelligence in terms of judging the failure
status and modes of such a large element. The ISFEM overcomes the
high computational requirement in conventional FEM but still retains
the versatility to analyse the nonlinear inelastic large deflection be-
haviours of different steel and aluminium structures, such as ship hulls,
bridges, cranes, and others [74,75]. Pioneering development of this ap-
proach, which was named the Idealised Structural Unit Method (ISUM),
was reported by Ueda and Rashed [76,77]. The ISFEM is implemented
into ALPS/HULL computer simulation code for the progressive collapse
analysis of hull girders [78].

Two common elements of ISFEM are illustrated in Fig. 1, namely
the beam-column unit and rectangular plate unit. The former is usu-
ally adopted to simulate the nonlinear behaviour of stiffener without
attached plating, and the latter is generally employed for predicting
the nonlinear response of locally attached plating. The beam-column
unit is formulated with three degrees of freedom at each node:

U ={u, v, w w v w) (1a)
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T
{(R}={R, R, R, R, R, Ry} (1b)

The rectangular plate unit is formulated with six degrees of freedom at
each node as given in Box I. The general relationship between nodal
displacement and nodal force is given by

{R} = [K]{U} €]

where [K] is the tangent stiffness matrix that depends on the nodal
displacement. A complete formulation of the stiffness matrix is docu-
mented in [2]. As the applied load increases, the ISFEM element will
undergo buckling and/or yielding. Thus, the element tangent stiffness is
updated considering these failure modes. In principle, the procedure is
similar to the conventional finite element method. The strain increment
will first be calculated for a given increment of displacement vector
via the strain—displacement relationship. Subsequently, the membrane
stress increment will be evaluated using a pre-defined and efficient
stress—strain relationship that encapsulates both geometric and material
nonlinearities. This is also a distinct feature of ISFEM as compared with
conventional FEM. Finally, an updated Lagrangian approach is applied
to formulate the tangent stiffness matrix.

Similar to the conventional FEM, the element stiffness matrix [K] of
ISFEM will be transformed from local coordinate to global coordinate
via the transformation matrix [T]:

Klg = [T1T [KI[T] Q)

The stiffness matrix of all elements in the global coordinate is assem-
bled to formulate the overall stiffness matrix and the stiffness equation
for the target structures. The structural response can be estimated by
solving the stiffness equation of the entire structure with prescribed
boundary conditions and loading.

(R} = ) [Klg {U) ()
2.2. Modified Paik—Mansour method

The Modified Paik and Mansour method (= modified P-M method)
is usually categorised as the presumed stress distribution-based method.
Pioneering development was presented by Caldwell [79], which is
also the first systematic approach to predict the ultimate longitudinal
strength of ships. In this method, a stress distribution pattern at the
ultimate limit state of the ship hull should be pre-defined. An example
of typical bending stress distribution across the cross-section of a ship’s
hull at the ultimate limit state under a hogging bending moment is
shown in Fig. 2.

The presumed stress distribution is usually divided into several
regions: compressive buckling collapse region, tensile yielding region
and linear elastic region. The heights of different regions are estimated
by imposing zero axial force condition, i.e.,

/cdi =0 6)

The vertical coordinate of the neutral axis where the resultant stress
is zero can be estimated by
Z?:l o] a:z;
&= w1 @)
py |‘7xi| a;
The ultimate bending moment is calculated by taking the first
moment of the resultant stresses about the neutral axis as given by the
following:

n
Mu = Zo_xiai (Zi _gu) (8)
i=1

In the original Paik-Mansour method [81], the only unknown is
the height of the compressive buckling collapse region. Thus, Eq. (6)
is sufficient to determine the unknown. The modified Paik-Mansour
method was adapted from the original P-M approach. It improves the
original approach by considering the expansion of the yielding zone
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T
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Fig. 1. Beam column and plate elements of ISFEM [2].

Fig. 2. Example of typical bending stress distribution across the cross-section of a ship
hull [80].

toward the vertical members under tensile loads. The presumed stress
distributions of the modified P-M method are illustrated in Fig. 3.
There are two unknowns in this modified method, i.e. the height of
the compressive buckling region and the height of the tensile yielding
region. Eq. (6) is insufficient for two unknowns, and an iterative process
is required. In principle, the cross-section will be sub-divided into
structural components, i.e., plate-stiffener combination (PSC) or plate-
stiffener separation (PSS). The heights of the compressive and tensile
failure regions are searched iteratively until the minimal difference
between the compression and tensile axial forces is found. Once the
height of the compressive and tensile failure regions are determined,
the computation of the ultimate bending strength is completed by
Eq. (8). Details may be referred to [82].

2.3. Smith-type progressive collapse method

The Smith-type progressive collapse method is a generalisation of
the elementary beam theory to consider the influence of local compres-
sive failure due to buckling. With the pioneering paper published by
Smith [59], the Smith method was formalised and validated with small-
scale testing by Dow et al. [83]. In the early days, the Smith method
was developed in a descriptive format. Smith and Dow subsequently
introduced a stiffness equation to deal with the bi-axial bending prob-
lem, which becomes the governing equation of this class of method as
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Fig. 3. Presumed stress distribution of modified Paik-Mansour method [82].
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Fig. 4. Cross-section sub-division in Smith method.

presented in Eq. (9).

{MH} [DVV DVH:| {){H}

= €)]
My, Dyy  Dpm Xv

where M and M, are the horizontal and vertical bending moment,
respectively. yy and y, are the horizontal and vertical curvature,
respectively. Dy, and Dy are the vertical and horizontal bend-
ing stiffness, respectively. Dy, and D, are the interactive bending
stiffness. Regarding the ultimate strength of damaged ship hulls, this
bi-axial bending equation should be adopted to allow for the rotation of
the neutral axis. Fujikubo et al. [84] derived the solution to this bi-axial

bending for a damaged ship hull. With a vertical curvature increment
(4y), the increment of vertical bending moment (4M,,) is given as

DyyD

AM,, = <DVV - M) Ay 10)
Dyy

In an unconstrained vertical bending case, horizontal bending might be

induced due to the asymmetric damage in the cross-section.

Dyy
Ayy = —
XH D

Ayxy (11
HH

To evaluate the four bending stiffness terms (i.e., Dy, Dy, Dyy
and Dy ), a sub-division of the ship hull girder is needed, as illustrated
in Fig. 4. Plate-stiffener combination (PSC) or plate-stiffener separation
(PSS) techniques can be utilised for the cross-section sub-division. In

this paper, the PSC technique is applied. A load-shortening curve (LSC)
characterising the average stress versus average strain response under
in-plane loading will be assigned to each structural component. For all
structural components, their tensile load-shortening behaviour is de-
fined as elastic-perfectly plastic. The inelastic buckling behaviour will
be considered for most structural components in terms of compressive
behaviour, except the so-called hard corner elements. It is assumed
that the hard corner element will not experience any buckling, and
therefore its compressive behaviour follows the elastic-perfectly plastic.
The pre-defined load-shortening curves evaluate the tangent stiffness of
structural component at a given applied strain
_do

T o

With the tangent stiffness of all components, the instantaneous neutral
axis of the cross-section can be estimated as follows:

ey 12)

n n

2= Y ki Azi/ D KrA, (13)
i=1 i=1
n n

Yo = Y ki A/ Y KA 14)
i=1 i=1

where z; and y; are the vertical and horizontal coordinates of the
centroid of the neutral axis, respectively. ki, 4;, z; and y; are the
elemental tangent stiffness, cross-sectional area, vertical coordinate and
horizontal coordinate, respectively.
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Fig. 5. Schematic illustration of the load-shortening curve formulation.

With the elemental tangent stiffness and instantaneous neural axis
of hull girder cross-section, the bending stiffness can be computed as

n

Dyy = Y kA (2 - 25)° (15)
i=1
1 ; | 2

Dy = Y KA (- v6) 16)
i=1
1 . |

Dyy =Dyy = 2 kITAi (yi - YG) (Zi - ZG) a7

i=1
As given by Eq. (10), the bending moment increment can be solved. To
continue the iteration, the resultant strain of each structural component
due to the bending moment increment, which drives the update of
element tangent stiffness and instantaneous neutral axis, is calculated
as follows:

Ae, = (z;—zg) Ayy + (¥, — v6) Axn (18)

As can be seen in Eq. (10), the interactive stiffness terms are included
in calculating the vertical bending moment increment for a given
curvature increment. Additionally, a horizontal curvature is induced as
a result of the applied vertical curvature (Eq. (11)), which will also
be taken into account in the applied strain increment on each element
(Eq. (18)). Meanwhile, caused by the horizontal bending (in an indirect
way), the position of the horizontal neutral axis will be updated at
each incremental step in a similar way as the vertical neutral axis.
These effectively account for the effects of the neutral axial translation
in both directions and its rotation around the principal vertical and
horizontal axes. Note that an explicit calculation of the rotation angle is
not required, as the bending curvature is still applied about the upright
axes (i.e., principal axes) rather than the rotated one. However, it may
be calculated as follows:

As shown in Fig. 5, the LSC adopted in the present Smith method is
evaluated by the adaptable algorithm proposed and systematically val-
idated in [67], in which the LSC is described by three distinct responses:
linear elastic response, arc-shape ultimate response and the asymptotic
post-collapse response. This method was developed by idealising the
observations in parametric nonlinear finite element analyses and offers
an efficient and robust approach to be incorporated in the Smith-type
method. The formulation of this method is given by Egs. (20)-(22) in
which the ultimate compressive strength of stiffened panels (c,,) is
estimated by the empirical formula introduced in [85].

D D
6 = 0.5arctan <M (19)

g — Dyy

Linear elastic response

o — € € €
2 _Ep, i for—X < X (20)
OYeq Squ squ equ
Arc-shape ultimate response

o o — € € €
—— = =~ — R+ Rcos [—tarfl (ET)] for—= < = < X (2D)
O-qu O-qu gqu 5qu Equ
Asymptotic post-collapse response

c o c € £ € €
X == +(1-0)X exp< = ——X>for = > (22)
O-qu O-qu O-qu Equ Equ ‘Equ Equ

where E;, is the normalised initial stiffness which can be taken as unity
if the initial imperfection is not excessively large; E; is the normalised
instantaneous stiffness which incrementally reduces from the initial
stiffness to null at the ultimate limit state. Meanwhile, the following
expressions define the arc radius of the nonlinear response close to the
ultimate limit state (i.e., R), the linear strain limit which separates the
linear elastic response and arc-shape ultimate response (i.e., ,,/€y,,);
the ultimate strain at collapse state (i.e., €,,/€y,,) and the parameter
related to the asymptotic convergence of the post-collapse strength
(i.e., O):

-1 (T T Exu Oxu
cos |tan (E )] Ep, = — 2
[ To Totyey  Ove

R= — (23)
1 —cos [tan‘1 (Era)]
Exe _ Fx 4 Ryin [—tan_' (ETG)] 24)
Equ Equ
Exu 2
—— =—0.0004 4+ 1.0054 — 1.31264
6qu
+1.7101/y/8 — 0.37524//F — 0.7337/5 25)
C = 07834 — 03174V — 0.0060/ (26)

where g is the plate slenderness ratio of stiffened panel element, and 4
is the column slenderness ratio of stiffened panel element.

A Smith method example is given in Fig. 6, which shows the
difference between the analysis results with and without considering
neutral axis rotation for the Suezmax tanker with damage scenario
No. 35 (explained in Section 3). The two bending moment/curvature
relationships are nearly identical, and the deviation is also minimal in
terms of the progressive translation of the vertical neutral axis. There
is a sudden change in the rotational angle of the neutral axis when the
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Fig. 6. Example comparison on the effect of neutral axis rotation.

cross-section reaches the ultimate limit state. This is likely due to the
local failure of compressed structural elements. But soon after that, the
rotational angle recovers to relatively small, which is probably caused
by the gross yielding failure of the elements under tension. In most
damaged scenarios analysed in this paper, the effects of the neutral axis
rotation seem to be relatively small. This is because only grounding
damage is considered, i.e. only bottom damage, in which case a highly
un-symmetrical cross-section does not present. Thus, the effect of the
neutral axis is generally minor. It is acknowledged that different tech-
niques were also proposed in several studies for the progressive collapse
analysis of hull girder under unsymmetrical bending by a Smith-type
approach considering the neutral axis rotation [86-88].

3. Damage index (DI) concept-based safety assessment technique
3.1. Overall framework and procedure

Paik et al. [52] proposed an innovative structural condition as-
sessment technique by developing the residual strength versus damage
index (R-D) diagram technique, and the general procedure is presented
in Fig. 7. For the application to the grounding damage ship structures
in this study, the definition of ship structure characteristics in principle
refers to the modelling for strength analysis in accord with the chosen
method, including model discretisation and local behaviour definition
etc. The characterisation of the damage parameters aims to select
the most critical influence parameters for the rational definition of a
grounding scenario. Once this is completed, the selected parameters are
sampled from their probability distributions with an efficient sampling
scheme (e.g. Latin Hypercube Sampling, LHS). A damaged index is
defined, representing the severity of a damage scenario. The residual
strength versus damage index diagram can be established by computing
the target vessel’s residual ultimate strength in all sampled damaged
scenarios.

3.2. Definition of grounding scenarios

As illustrated by Fig. 8, a ship grounding scenario may be featured
by (1) location and extent of the seabed obstacle in the longitudinal di-
rection; (2) location and extent of the seabed obstacle in the transverse
direction; (3) location and extent of the seabed obstacle in the vertical
direction; (4) shape of the seabed obstacle [52]. The statistics of ship
grounding may refer to the studies reported in [90,91]. Concerning
Fig. 9, the following four parameters are considered in the DI-based
approach for grounded ship hull girders:

+ Transverse location of grounding damage affected zone (p,)
+ Height of grounding damage affected zone (p,)

+ Breadth of grounding damage affected zone (p;)

+ Angle of the affected zone (p,)

‘ Definition of ship structure characteristics l

l

lCharacterisation of damaged parameters|

Probabilistic

identification Selection of Sampling
of damaged damaged scenarios technique
parameters

Definition of damage index
for selected damaged scenarios

Calculation of residual strength
for selected damaged scenarios

Development of the diagram between
residual strength and damage index

Fig. 7. Flowchart of the damage index (DI) concept-based condition assessment of
damaged structures [52,89].

In some scenarios, it is not possible to configure the height of the
damage affected zone because its angle is too large. In these cases, the
following relationship will be used instead:

py = 2arctan (p3/2p,) 27)

A grounding damage index (GDI) is calculated to indicate the dam-
age severity for each grounding damage scenario. As given by Eq. (19),
the GDI is a function of the ratio between the damaged area of the
inner bottom (A, g gymageq) and the total area of the original intact
inner bottom (A; g grigingt)> the ratio between the damaged area of the
outer bottom (App gemaged) and the total area of the original intact
outer bottom (A g eriginat)> and a correction factor (a) to account for
the contribution difference between the inner and outer bottom to the
strength of the hull girders.

AoBdamaged ~ AIB.damaged

a (28)
Al B,original

3.3. Sampling of grounding scenarios

The probability distribution of four grounding damage parameters
is shown in Figs. 10(a) to 10(d), respectively. The distributions of p,, p,
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a) Ship grounding scenario
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b) Grounding damage in cross section
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Fig. 8. Schematics of ship grounding scenario.
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Fig. 9. Schematic illustration of sharp and blunt rocks [52].

and p; are consistent with the requirement by International Maritime
Organisation (IMO) [92]. The probability distribution of p, was devel-
oped in [52]. As the sampling statistics covers all grounding damaged
scenarios recorded by IMO, the grounding damaged scenarios would
include the sharp rock-type scenario and the blunt shoal-type scenario
with a large contact surface. However, it is assumed that the damaged
structures will lose their effectiveness completely, regardless of the
grounding damage failure mode, i.e., tearing or denting. Nevertheless,
this aligns with most studies on the post-accident residual strength
assessment of grounded ship hull girders.

To sample the grounding scenarios, a Latin-Hypercube Sampling
(LHS) technique is utilised [93]. In this sampling method, each di-
mension is divided into n intervals with equal probability. The LHS
sampling is carried out by first randomly selecting an interval that
has not been selected in the previous sample. Once an interval is
selected, a random value within the corresponding interval will be
generated. The main benefit of using LHS is the efficiency to simulate
the desired probability distribution with a limited number of samples.
Fifty grounding damage scenarios are sampled in this work, which is
summarised in Appendix. A similar random sampling technique is also
applied to the stochastic imperfection [94], plate selection [95], ship

12 ———71T 77T T 7T 71T T 1T T 1T T T T 717

1.0

Dy j2 Mean = 0.500
0.8 - —)=1000<—<1.0 =
d (B) ( B ) COV = 0.606

0.6 - -

04 ]
B p; = Transverse location of grounding damage i

Probability density

0.2 - -

0.0 T S T Y ) T T T I ST Y T N T B
00 01 02 03 04 05 06 07 08 09 1.0

p1/B

Fig. 10(a). Probability distribution of the transverse location of grounding damage

().

berthing [96], corroded structures [97,98], current profile [99] and
offshore riser [100].

4. Results
4.1. Case study models

In this work, the GDI-based residual strength assessment is per-
formed for four different classes of double hull oil tankers, including
VLCC class, Suezmax class, Aframax class and Panamax class. Their
midship cross-sections are shown in Fig. 11, in which L = ship length,
B = ship breadth, D = ship depth, b = double side shell width and h =
double bottom height.

Consistent with the previous studies, it is assumed that the ground-
ing takes place at the midship section. Therefore, the R-D diagram
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will be developed in association with the residual ultimate strength

performance of the midship cross-section.
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4.2. Validation of numerical methods

Paik et al. [52] performed a comparison study on the ultimate
longitudinal strength behaviour of the VLCC class and Suezmax class
oil tankers suffered by a minor (Scenario No: 24) and major (Scenario
No: 35) grounding damages (Fig. 12). Various simulations were per-
formed by the Modified P-M method, ALPS/HULL (= ISFEM), ANSYS
(= NLFEM), and CSR method, which are presented in Figs. 13 to 16.
In addition, the predictions by the present Smith method are also
plotted. Note that the CSR method is a variant of the Smith-type pro-
gressive collapse method. The distinct difference between the present
Smith method and CSR is the formulation for load-shortening curves of
structural components.

The calculation based on the present Smith method would implicitly
include an average-level initial geometric imperfection and residual
stress. In the ANSYS simulation, a single-bay finite element model is
adopted to model the ship hull cross section subjected to longitudinal
bending. The bending load is applied through reference points coupled
with the cross-section boundary. The rotation-controlled technique is
adopted. An average-level initial geometric imperfection is considered,
including local plate distortion, column-type distortion and stiffener
sideway distortion. Conversely, the effect of residual stress is ignored.
The finite element analysis is executed by the arc-length solver.

It can be seen that the calculations by ISFEM, modified P-M method,
and the present Smith method are generally in reasonable agreement
with the reference prediction by ANSYS nonlinear finite element analy-
sis and CSR method. As suggested by the benchmark studies regarding
the ultimate longitudinal strength of ship hull girder [102-104], the
present computational discrepancy should be acceptable, and hence the
rationality of the three numerical methods can be verified.

4.3. Correction factors

The correction factor (a) in Eq. (19) aims to account for the contri-
bution difference between the inner bottom and otter bottom to the
ultimate longitudinal strength of ship hull girders. To calibrate this
correction factor, a series of computations are completed on the four
oil tanker models with systematically varying damages in the inner
bottom or outer bottom only. Linear regression curves are developed
for the variation in ultimate longitudinal strength with respect to the
damages in the inner bottom or outer bottom. As illustrated by Fig. 17,
the correction factor is defined as the ratio between the slopes of the
fitted linear curves for the results corresponding to the inner bottom
(6;p) and outer bottom (6 ), respectively (Eq. (29)). The variation in
ultimate longitudinal strength of the four oil tankers with respect to the
damages in the inner bottom or outer bottom are plotted in Fig. 18.

a=06;3/00p (29)

As presented in Fig. 17(a) to (d), different correction factors are
developed for different numerical methods. The computational discrep-
ancy between the three numerical methods will be discussed in the
later section. Nevertheless, it should be noted that there will be some
differences in the GDI values between the three numerical methods due
to the deviation in correction factors, even though the same damage
parameters are defined.

4.4. Residual strength versus grounding damage index (R-D) relationships

The residual ultimate strength of four oil tanker models is calculated
for the generated 50 grounding damaged scenarios. The developed R-D
diagrams (= empirical formula) are summarised in Figs. 19(a) to 19(d).
Note that the R-D formula is derived by a quadratic curve-fitting on the
obtained results. Generally, it is found in all four vessels that the R-D
diagram based upon the present Smith method is the most optimistic
with regards to the residual ultimate strength of ship hull girders in
sagging. When it comes to the residual strength of hull girders in
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Fig. 11. Cross-sections of the four different double-hull oil tankers models [78,101].
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Fig. 12. Illustrations of the minor (No. 24) and major (No. 35) damage scenarios of VLCC class and Suezmax class double-hull oil tankers.
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Fig. 13. Comparison of the progressive collapse behaviour of VLCC class double-hull oil tanker with minor grounding damage (Scenario No: 24).
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Fig. 15. Comparison of the progressive collapse behaviour of Suezmax class double-hull oil tanker with minor grounding damage (Scenario No: 24).
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Fig. 16. Comparison of the progressive collapse behaviour of Suezmax class double-hull oil tanker with major grounding damage (Scenario No: 35).

hogging, the R-D diagrams are close for GDI < 0.6. A larger discrepancy summarised in Table 1. These data are useful for developing acceptance
is observed in more severe grounding scenarios. criteria to assess the residual ultimate strength of grounded double-hull
The developed R-D diagram provides efficient first-cut estimation oil tankers based on different numerical methods.
for the residual ultimate strength of double hull oil tankers suffered When it comes to the assessment of double-hull oil tankers with
from grounding damage, in which the approximate location and dam- different sizes, the relationship between the correction factor « and
age extent are known. Additionally, the R-D diagram can also be used the principal dimensions of ships (e.g. ship length, breadth, depth
to determine the acceptance criteria in relation to the post-grounding etc.) could provide a measure for size scaling, so that the damage
residual strength performance of ship hull girders. The IMO [105] index GDI of the target vessel can be calculated using Eq. (18). The
proposed that the residual strength of all vessels should not be less relationship between ship’s breadth and the correction factor « is
than 90% of its intact ultimate strength (Fig. 20). In accord with this shown in Fig. 21, the best-fit one among different parameters. Note
requirement, the upper limit of GDI of each vessel can be computed, as that the data shown in Fig. 18 corresponds to the analysis by the

10
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Fig. 17. Schematic illustration of the calibration of the correction factor a.
Table 1
The upper limit of GDI of double-hull oil tankers.
VLCC Suezmax Aframax Panamax
ISFEM Hog 0.4026 0.3962 0.4119 0.4131
Sag 0.5366 0.5238 0.5171 0.5125
. Hog 0.2882 0.2992 0.3376 0.3965
Modified P-M
odified Sag 0.4225 0.4344 0.4366 0.4363
. Hog 0.3386 0.3281 0.3248 0.3851
Smith method Sag 0.6239 0.6099 0.5939 0.6416

Note: ISFEM = Intelligent supersize finite element method implemented in ALPS/HULL
software, Modified P-M = modified Paik-Mansour method.

Smith-type progressive collapse method. The scaling relationships for
ISFEM and the modified P-M method are given in Appendix (Fig. A.1
and Fig. A.2). The calculated GDI will be used in combination with a
suitable R-D diagram/formula depending on the type of the vessels and
the chosen strength analysis method. If the target vessel is out of the
scope of the four different classes analysed in this work, a generic R—-
D diagram/formula is provided in Fig. 22, which are developed based
on the calculation results of all four oil tankers. The generalised R-
D diagram may support structural designers/engineers in predicting
the residual strength capacity of the hull girders damaged by ground-
ing. Application examples of the damage index-based assessment of
grounded ship hull girders are given in Appendix.

5. Discussions

As shown in Section 4, there is considerable uncertainty in the
residual strength prediction between ISFEM, Modified P-M method and
Smith-type progressive collapse method. The computational discrep-
ancy is mainly driven by (1) differences in their fundamental theories;
(2) sub-division technique; (3) hard corner element.

As reviewed in Section 2, there is a distinct difference between
these methods regarding their fundamental concepts. The ISFEM is
developed similarly to the conventional finite element method. The
modified P-M method is a presumed stress distribution-based approach,
while the Smith method is a generalisation of the elementary beam
theory. In addition, the idealisation of the local behaviour of structural
components also substantially differs. Although using a similar concept
of pre-defining the load-shortening curves of structural elements, the
ISFEM and the present Smith method employ different formulations to
generate these average stress/average strain relationships for charac-
terising the in-plane response of the local component. This difference
may be highlighted in the residual strength calculation of ship hull
girders with un-symmetrical damages, as the problem is complicated

11
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by the neutral axis rotation. As for the modified P-M method, only
the ultimate limit state of the local structural component is utilised to
evaluate the overall hull girder bending strength. In other words, the
post-collapse behaviour of local structures is ignored. In the meantime,
the effect of neutral axis rotation is not accounted for in the modified
P-M approach.

Sub-division of the hull girder cross-section into structural elements
is an essential step in all three numerical methods. Nevertheless, differ-
ent sub-division techniques are employed in these methods. The ISFEM
adopts a plate-stiffener separation (PSS) technique where the local
plating and stiffener are considered different elements. The present
Smith method utilises a plate-stiffener combination (PSC) approach
where the stiffener and its attached plate is viewed as one stiffened
panel element. The PSS technique is adopted for the sagging strength
in the modified P-M method, whereas the PSC technique is adopted
for the hogging strength. The difference in the subdivision technique
has several implications regarding the calculation of residual ultimate
strength of ship hull girders. Given the same grounding damage sce-
nario, more damaged elements may be identified when using the PSC
technique. This may occur when the longitudinal stiffeners in the
inner bottom are damaged. In such a case, the whole stiffened panel,
including stiffener and attached plate, needs to be removed according
to the PSC technique.

However, only the stiffeners should be deleted when using the PSS
technique. The conservatism of the PSC technique may partially explain
why the R-D diagram for hogging developed by ISFEM is slightly
optimistic than the other two numerical methods. Aside from this, the
conservatism of the PSC technique regarding damaged element identifi-
cation also affects the vertical position of the neutral axis of a damaged
cross-section. Since more elements should be removed from the bottom,
the vertical position of the neutral axis will further translate upward
comparing with the case where PSS could be applied. This implies
that the applied in-plane compression on the deck panel resulting from
global bending will be smaller, possibly leading to a larger ultimate
sagging strength of the hull girder. Hence, this may partially explain the
optimistic sagging strength reduction predicted by the present Smith
method.

Hard corner element, with elastic-perfectly plastic behaviour, is
considered in most Smith-type progressive collapse methods. However,
it is usually not included in the ISFEM and modified P-M approach.
It is apparent that neglecting the buckling effect in those elements
would increase the ultimate strength of the hull girder, which therefore
adds a discrepancy to the Smith method as compared with the other
methods. It is usually argued that the intersections between the deck
and side shell, or bottom and longitudinal bulkhead, in which the hard
corner elements appear, would gain a strengthening effect because of
the relatively strong boundary constrain. Therefore, the plating in these
locations will not suffer from a significant buckling failure. However,
this is still an empirical statement, and no research has been conducted
to verify this conclusion.

It is assumed in all three numerical methods that the affected zone
by grounding damage will lose completely its structural effectiveness
(= load-carrying capacity) regardless of the grounding damage modes,
e.g., tearing and denting. This also aligns with most studies on the post-
accident residual strength assessment of grounded ship hull girders.
However, this may be somewhat conservative, especially in the case
of minor dented structures. A complete loss of structural effectiveness
can be unrealistic.

Additionally, the damage affected zone is defined only as those in
direct contact with the seabed obstacles, whereas the adjacent struc-
tural elements are assumed to be intact. In fact, minor denting or
residual stress may also be induced in those adjacent areas. There
have been many advanced numerical simulations of ship hull structures
that suffered from grounding or collision. Nevertheless, the assumption
of removing damaged elements for the simplified residual strength
calculation is still in place. Future research is needed to develop a
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Fig. 18(a). Variation in ultimate longitudinal strength of VLCC class oil tanker with respect to the damages in the inner bottom or outer bottom.
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Fig. 18(b). Variation in ultimate longitudinal strength of Suezmax class oil tanker with respect to the damages in the inner bottom or outer bottom.
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Fig. 18(c). Variation in ultimate longitudinal strength of Aframax class oil tanker with respect to the damages in the inner bottom or outer bottom.

more reasonable mapping between the damage simulation and sim-
plified residual strength calculation models. Concerning the DI-based
concept, the definition of grounding damage index may be updated to
accommodate the difference in damage modes.

6. Conclusions

A comparison of the numerical methods for the DI-based residual
strength assessment of grounded ship hull girders is presented in this
paper. The Intelligent Supersize Finite Element Method, Modified Paik—
Mansour method, and Smith-type progressive collapse are compared

regarding the developed residual strength versus damage index (R—
D) diagram. Discussion upon the computational discrepancy between
the three numerical methods is given. From this study, the following
conclusions are drawn:

+ With damage location and extent embedded in the formulation,
the GDI concept is a practical approach to evaluate the residual
ultimate strength of ship hull girders suffered from accidental
grounding.

+ Different numerical methods for the ultimate strength prediction
of ship hull girders can be integrated with the GDI-based assess-
ment. The present work supplements the R-D diagram based on
the Smith method. Thus, the GDI-based assessment has now been
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Fig. 18(d). Variation in ultimate longitudinal strength of Aframax class oil tanker with respect to the damages in the inner bottom or outer bottom.
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Fig. 19(b). Residual strength versus damage index (R-D) diagrams of Suezmax class

double-hull oil tanker by three numerical methods.

integrated with the three most prevailing numerical methods for
the strength analysis of ship hull girders, i.e. ISFEM, modified

P-M and Smith method.

1.1
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Fig. 19(d). Residual strength versus damage index (R-D) diagrams of Panamax class
double-hull oil tanker by three numerical methods.

+ There is an appreciable computational discrepancy between three
numerical methods, likely caused by the differences in fundamen-
tal theories, sub-division techniques of structural components,

and the effects of hard corner elements.
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Fig. 20. Use of R-D diagram/formula in association with IMO requirement [44].
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Fig. 22. Generic R-D diagram/formula of double hull oil tankers by three numerical
methods.

+ Plate-stiffener combination sub-division may lead to a conserva-
tive prediction of the hogging strength reduction. Conversely, the
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sagging strength reduction may be overestimated as compared
with a plate-stiffener separation technique.

Based upon the present study, the following future researches are
recommended: (1) application of the other types of existing empirical
formulas [106-112] in predicting the ultimate limit state (ULS) of
the plate-stiffener combination (PSC) model; (2) developments of plate
elements and stiffener elements for Smith-type progressive collapse
method to allow for the use of plate-stiffener separation (PSS) sub-
division technique; (3) investigation of hard corner element behaviour
to better evaluate their buckling capacity; (4) development of R-D
diagram for bi-axial bending; (5) development of time-dependent R-D
diagram based on Smith method; (6) application of the R-D diagram
for a probabilistic reliability assessment; (7) an improved mapping
between the grounding damage simulation models and the simplified
residual strength calculation models.

Lastly, this study assumed that the vessel’s mid-ship section would
suffer from raking type grounding damage. It means that the grounding
damage in the longitudinal direction has not been considered, and thus
future research should be conducted to resolve this issue.
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Appendix

To demonstrate the application of the damage index-based for
grounded ship hull girders, two examples are provided in the following.
The first example corresponds to damage scenario No. 24 and the
second example corresponds to damage scenario No. 35, as given in
Table A.1.

Example 1 (Damage Scenario No. 24). In this example, the VLCC-class
double hull oil tanker is analysed, and its principal dimension is given
as follows.

L=3150m;B=580m;D=304m;h=3.0m;b=24m;

2. 2
AIB,original =133m"; AOB,original =1.76m
The four damage parameters of scenario No. 24 are defined as follows:

p; =0470x B =0.470 % 58.0 =27.26 m

p, =0.004 X D =0.004 x30.4 =0.1216 m

p3 =0.237x B =0.237x58.0 = 13.746m

py = 106.7 deg

Based on the four damage parameters and assuming the use of the PSC

subdivision technique for the midship cross-section, the damaged areas
of the inner and outer bottom can be evaluated as follows:

— 2. _ 2
AlB,damaged =0.0m ) AOB,damaged =047m
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Table A.1
Grounding damaged scenarios.

No. Py P2 P3 Py

1 0.010 0.080 0.144 103
2 0.030 0.017 0.918 88.3
3 0.050 0.071 0.064 56.2
4 0.070 0.019 0.018 124
5 0.090 0.200 0.777 101.3
6 0.110 0.016 0.008 74

7 0.130 0.026 0.945 80.6
8 0.150 0.182 0.127 116.5
9 0.170 0.273 0.427 84.4
10 0.190 0.219 0.046 96.6
11 0.210 0.109 0.195 71.3
12 0.230 0.044 0.090 81.9
13 0.250 0.011 0.023 72.7
14 0.270 0.008 0.083 99.7
15 0.290 0.291 0.013 62

16 0.310 0.024 0.104 79.3
17 0.330 0.075 0.327 51.4
18 0.350 0.033 0.034 53.9
19 0.370 0.052 0.058 48.5
20 0.390 0.040 0.477 138.7
21 0.410 0.042 0.577 93.7
22 0.430 0.255 0.070 87
23 0.450 0.067 0.980 26.2
24 0.470 0.004 0.237 106.7
25 0.490 0.028 0.003 85.7
26 0.510 0.049 0.183 92.3
27 0.530 0.095 0.377 63.7
28 0.550 0.005 0.827 111.1
29 0.570 0.021 0.153 113.6
30 0.590 0.038 0.052 75.4
31 0.610 0.128 0.877 60.2
32 0.630 0.057 0.994 83.1
33 0.650 0.086 0.097 41

34 0.670 0.006 0.257 89.6
35 0.690 0.164 0.221 78
36 0.710 0.022 0.135 66.9
37 0.730 0.060 0.727 119.8
38 0.750 0.036 0.162 76.7
39 0.770 0.064 0.076 58.2
40 0.790 0.032 0.207 68.4
41 0.810 0.002 0.119 95.1
42 0.830 0.014 0.677 98.1
43 0.850 0.146 0.111 65.3
44 0.870 0.012 0.964 129.8
45 0.890 0.030 0.040 35.2
46 0.910 0.047 0.527 104.8
47 0.930 0.009 0.029 108.8
48 0.950 0.237 0.627 69.9
49 0.970 0.001 0.172 45.2
50 0.990 0.054 0.285 91

Following the relationship shown in Fig. 19, the correction factors a for

hogging and sagging are calculated as follows:

ey = 2.673 = 0.0873 X (B) + 0.0009 X (B%) = 2.673 — 0.0873 x (58)
+0.0009 X (58°) = 0.6372

=0.9607 — 0.0354 x (B) + 0.00038 x (Bz) = 0.9607 — 0.0354 x (58)
+0.00038 x (58°) = 0.1858

Asag

In accord with Eq. (19), the GDI in hogging and sagging can be
calculated.

GDIhog _ AOB.damaged ros AIB,damaged _ w +0.6372 x ﬂ
AOB,original AIB,original 1.76 L.
=0.267
GDImg _ AOB,damaged . AIB,da.maged _ w +0.1858 x ﬂ
AOB,on'ginal ¢ AIB,on'ginal 176 1.33
=0.267

By using the R-D diagram developed by the Smith method shown in
Fig. 17(a), the residual strength of the damaged VLCC in hogging and
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Fig. A.1. Relationship between the principal dimension of ship and correction factor
a (ALPS/HULL).
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Fig. A.2. Relationship between the principal dimension of ship and correction factor
a (Modified P-M method).

sagging can be evaluated as follows:

h
M 2
=1.0 - 0.2816 X GDI},,, — 0.0406 X GDI}
Mo o

= 1.0 — 0.2816 x (0.267) — 0.0406 X (0.267)>
0.9219 > 0.9 (Satisfies the IMO requirement)

M3

i = 10-0.1036 X GDI,
uo

—0.1278 x GDI?

sag

= 1.0 — 0.1036 x (0.267) — 0.1278 x (0.267)
9632 > 0.9 (Satisfies the IMO requirement)
From the above calculation, it is clear that the residual strength of

the VLCC suffered from damage scenario No. 24 satisfies the IMO
requirement [105].
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Example 2 (Damage Scenario No. 35). In this example, the same VLCC
model is analysed. The four damage parameters of scenario No. 35
are defined as follows: p; = 0.690 x B = 0.470 x 58.0 = 40.02m p, =
0.164xD = 0.004x30.4 = 4.9856 m p; = 0.221XB = 0.237x58.0 = 12.818 m

py =178.0 deg

Based on the four damage parameters and assuming the PSC subdi-
vision technique for the midship cross-section, the damaged areas of
the inner and outer bottom can be evaluated as follows: A;p qamaged =
0.37m% Agp damaged = 043 m?

As given in the previous application example, the correction factors
for hogging and sagging are:

g = 0.6372
=0.1858

Asag

In accord with Eq. (19), the GDI in hogging and sagging can be
calculated.

GDIh,,g _ AOB,damaged - AlB,damaged _ % +0.6372 % ﬁ
Ao original ¢ Aporiginat 176 133

=0.4216
GDImg _ AOB,damaged i AIB,damaged _ % +0.1858 x w
AoB.original * Arporigna 1.76 133

= 0.2960

By using the R-D diagram developed by the Smith method shown in
Fig. 17(a), the residual strength of the damaged VLCC in hogging and
sagging can be evaluated as follows:

hog

M, 2
M':“’g = 1.0-0.2816 X GDI,, — 0.0406 x GDI;,,
uo
= 1.0 — 0.2816 X (0.4216) — 0.0406 X (0.4216)>
=0.8743 < 0.9 (Not satisfies the IMO requirement)
M:ag
5 = 1001036 X GDI,,, — 0.1278 X GDIZ,

uo

= 1.0 — 0.1036 X (0.296) — 0.1278 x (0.296)*
=0.9581 > 0.9 (Satisfies the IMO requirement)

From the above calculation, it is found that the residual sagging
strength of the VLCC suffered by damage scenario No. 35 satisfies the
IMO requirement [105]. However, the residual hogging strength is not
acceptable.

Similarly, the R-D diagram developed by another method, i.e., IS-
FEM or Modified P-M presented, can also be applied to assess the safety
of the hull girder damaged by grounding.
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