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A B S T R A C T   

The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by con
ducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, 
several barriers preclude the development of a systematic “ConnEEGtome” in dementia research. Here we review 
critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric pro
tocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal 
processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions 
made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically 
applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. “Ground truths” for the choice of 
processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to 
harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Con
ducting multiple analyses of the same data and a proper integration of the results need to be considered in 
additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite 
metric combining different connectivity measures brings a powerful strategy to scale up the replicability of 
multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic 
tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that 
include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining 
clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of 
the dementia.   

1. Introduction 

The understanding of neurodegeneration as a large-scale network 
disintegration linked to neuroplasticity has attracted neuroscientists' 
and clinicians' attention (Dorszewska et al., 2020; Schaefers and 
Teuchert-Noodt, 2016). In recent years, efforts have been directed to 
develop affordable, scalable and broadly available biomarkers of brain 

connectivity to help tackle global challenges of dementia (e.g., Man
tzavinos and Alexiou, 2017; McKhann et al., 2011; Swift et al., 2021). 

Trying to provide the most precise definition of brain connectivity, 
we revisited a seminal article written by Barry Horwitz (2003), inspired 
by extensive discussions that had taken place in a previous workshop on 
functional connectivity. The title of the article, “The elusive concept of 
brain connectivity”, reflects concerns and opinions that still hold true 
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today. When restricted to EEG, connectivity refers to patterns of statis
tical dependencies between signals in both sensor- and source-spaces. 
This type of connectivity, which is termed functional connectivity, is 
regardless of physical connections between neural assemblies. Also, at 
the source space, direction of the information flow can be estimated, 
leading to the concept of effective connectivity (Bowyer, 2016; Sporns, 
2014; Friston, 2011). 

Brain functional connectivity has provided relevant information for 
the classification of dementia subtypes and predicting disease severity 
across dementias (Chen et al., 2019; Moguilner et al., 2021). Examples 
are Alzheimer's disease (AD) (Dennis and Thompson, 2014), fronto
temporal dementia (Jalilianhasanpour et al., 2019; Sedeño et al., 2017), 
Huntington's disease (Johnson and Gregory, 2019; Pini et al., 2020), 
Parkinson's disease (Kim et al., 2017; Niethammer et al., 2018), Multiple 
Sclerosis (Labbe et al., 2020; Pagani et al., 2020), Ataxia (García et al., 
2017), and Lewy body dementia (Schumacher et al., 2019), among 
others neurogenerative disorders. Although this approach to dementia 
has been mainly developed for magnetic resonance imaging (MRI), the 
assessment of brain connectivity using high density electroencephalog
raphy (hd-EEG) has emerged in the brain network agenda (Babiloni 
et al., 2021; Horvath et al., 2018; Law et al., 2020; Ibanez and Parra, 
2014). 

The hd-EEG is a relatively portable, broadly available, and low-cost 
technology that allows large- scale multisite studies of brain dynamics 
with high temporal resolution. Over the last two decades, these studies 
have benefited from the increased sophistication of hd-EEG processing 
pipelines, allowing researchers to gain more insight into the dynamics 
and connectivity of the brain (Başar et al., 2013; Larson-Prior et al., 
2013; Ibanez et al., 2012). This is illustrated by recent EEG studies 
incorporating graph theory, nonlinear dynamics, decoding, and whole 
brain modeling (Ghaderi et al., 2020; Iakovidou, 2017; García et al., 
2020; Hesse et al., 2019; Dottori et al., 2017; Josefsson et al., 2019), 
which bring novel opportunities for the study of dementia. Moreover, 
the addition of the temporal dimension to these EEG analyses has 
recently allowed to characterize the switching behavior of EEG micro
states, offering a remarkable opportunity for assessing abnormal con
nectivity fluctuations in neurodegenerative diseases (Khanna et al., 
2015; Pal et al., 2021). This can be boosted by connectivity analyses in 
the EEG source space that incorporate relevant anatomical information 
provided by MRI. 

Further advances in dementia research can result from the multi
modal assessment of EEG connectivity, i.e., the “ConEEGtome”. This 
neologism refers to the multi-feature combination of different connec
tivity metrics (e.g., tasks vs. rest, linear vs. nonlinear, source vs. elec
trode spaces, direct connectivity vs. network organization-derived 
metrics), fueled by machine learning algorithms with feature selection 
processes. These multimodal metrics may allow for a new multicentric 
approach to dementia, and may potentiate research in low- and middle- 
income countries where the access to current mainstream biomarkers (e. 
g., positron emission tomography) is more restrictive (Ibanez et al., 
2021a, 2021b, 2021c; Parra et al., 2018, 2021). 

Notwithstanding the evidence endorsing the robustness of the hd- 
EEG for large-scale multicenter studies, several methodological and 
analytical caveats preclude the systematic assessment of the dementia 
ConnEEGtome. EEG datasets present multiple sources of variability 
(Farzan et al., 2017; Jovicich et al., 2019). They include different 
experimental and data collection procedures, data monitoring and 
quality checks, preprocessing pipelines, feature extraction, and statisti
cal approaches. These sources of heterogeneity prevent the development 
of unified protocols for replication (e.g., Pavlov et al., 2021). Currently, 
procedures for data harmonization (i.e., signal normalization and stan
dardization), and the subsequent control (e.g., confusion matrices) of 
multicentric heterogeneity are very scant. The barriers for a Con
nEEGtome of dementia have limited the development of standardized 
multi-feature analyses, in which EEG-based connectivity is integrated 
with neuroimaging, cognitive, and plasma biomarkers to deliver 

comprehensive dementia phenotypes. 
The present work aims to bring together the first set of guidelines to 

accelerate the development of a dementia ConnEEGtome. We provide 
recommendations for a multicentric approach to dementia, which may 
result in standard procedures for (a) recording and preprocessing, (b) 
data analysis harmonization, and (c) the development of a multi-feature 
framework for out-of-sample validation and generalization. In the 
following sections, we will describe current challenges for the devel
opment of diagnosis tools, and intervention strategies based on the 
analysis of large volumes of EEG data (section 2). Then, we provide 
considerations for the harmonization of experimental tasks, protocols 
for data acquisition, and different preprocessing steps (e.g., denoising, 
artifact removal, and data normalization) (section 3). Subsequently, we 
analyze tools that could contribute towards the realization of a multi- 
feature framework for EEG connectivity, with special emphasis on 
those needed for retesting, and the development of integrative measures 
of connectivity (section 4). We discuss how the use of composite mea
sures of connectivity can promote the development of diagnosis tools 
based on multi-feature classification (section 5). Lastly, we address the 
need of metrics to verify the success of EEG data harmonization (section 
6). 

2. Data staging and harmonization 

In recent years, particular emphasis has been placed on the devel
opment of EEG-based collaborative multicentric studies assessing pre
dictors of brain disorders and neurodegeneration (Lam et al., 2016; 
Trivedi et al., 2016). These efforts are set to increase the efficacy of 
diagnostic tools and intervention strategies based on the analysis of 
large volumes of data. The current and potential impact of functional 
connectivity studies based on EEG cannot be ignored, and a great part of 
this success is owed to the development of affordable and portable EEG 
systems. Nevertheless, developing EEG collaborative multicentric 
studies is not an easy road and involves major technical difficulties and 
organizational needs. 

2.1. Resting-state versus task-running EEG 

EEG-based functional connectivity can be addressed from either 
ongoing (resting-state) or task- related activity depending on the ques
tion at hand. In a multicentric approach to task-related EEG functional 
connectivity, the major drawbacks arise from the task design, which 
needs careful validation. Although task-related connectivity approaches 
can directly address specific network markers of neurocognitive deficits, 
they may lack sensitivity to global network trait compromises. 
Furthermore, multicentric studies involving the acquisition of task- 
related EEG face several technical challenges, which include compen
sations for different stimulation timing and EEG synchronization 
procedures. 

A more global view on network dysfunctions is provided by func
tional connectivity analyses of ongoing (resting-state) EEG. In this case, 
the thoughts and behavior of the participants are difficult to control, so 
their cognitive states may vary during the experimental session (van 
Diessen et al., 2015). Nevertheless, this approach makes multicenter 
validations easier, since the outcomes of the studies do not largely 
depend on specific tasks. Furthermore, connectivity analyses of ongoing 
EEG allow to link intrinsic (spontaneous) neural activity to off-line task 
performance, different features of diseases, cognitive decline, and other 
impairments (Bassett and Bullmore, 2009; Supekar et al., 2008). Based 
on the characterization of ongoing EEG oscillations of individuals with 
AD, mild cognitive impairment (MCI) and dementia, the Electrophysi
ology Professional Interest Area (EPIA) and Global Brain Consortium 
recently endorsed recommendations on EEG measures for clinical trials 
in AD (Babiloni et al., 2021, see also Babiloni et al., 2020). The EEG 
power spectrum of these patients shows altered peak frequency, power, 
and interrelatedness of low and middle EEG frequency-bands (from 
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delta to alpha). Consequently, measures related to power spectrum, 
including directed transfer function, phase lag index and linear lagged 
connectivity were suggested for stratification of AD patients, as well as 
for monitoring the disease progression and the success of interventions 
(Babiloni et al., 2021). 

The above example illustrates that the choice of preprocessing 
strategy of EEG data for connectivity is conditional on the type of brain 
activity that is intended to be analyzed, either ongoing or task-related 
(Fig. 1A). For methodological reasons, the analysis of ongoing EEG 
connectivity is mainly restricted to the frequency domain and focuses on 
specific narrow frequency-bands of the EEG. The acquisition of task- 
related EEG gives the opportunity to expand the connectivity analyses 
to a variety of time-domain approaches and to establish direct links 
between brain network dynamics and behavior. 

2.2. Sources of variability in multicentric studies 

Multicentric EEG studies benefit greatly when data integration is 
planned ahead. For many reasons this is often not possible, and vari
ability in task design and acquisition protocols can potentially affect the 
outcome of the study. The primary sources of variability in multicentric 
EEG studies span five categories: i) the aim of the primary study for 
which the data was obtained, ii) the experimental protocol, iii) the 
acquisition system and acquisition protocol, iv) the procedures to con
trol for the data quality, and v) preprocessing workflows. Within each 
category, several factors affecting the EEG-data variability need to be 
considered. Further sources of variability arise from the use of particular 
feature extraction algorithms, the choice of statistical methods, the 
format for data storage, and the method of knowledge translation 
(Farzan et al., 2017). 

Factors needed to overcome hardware-related sources of variability 
in EEG multicentric studies include randomizing the task sequence when 
EEG is integrated with behavioral and neuroimage datasets, such as MRI 
images (Farzan et al., 2017). They also include the differences in time 
delay and jitter among stimulation setups, if task-related EEG is ac
quired. The use of a dimly lit, sound- attenuated, and 
electromagnetically-shielded EEG chamber is recommended. Proced
ures aimed to attenuate the impact of variability linked to the envi
ronment (e.g., sources of electromagnetic interference) and movements 
(i.e., chin rest) need to be considered and implemented. Because of this, 
it is important to report the amount and nature of lightning, the acoustic 
background noise, the electromagnetic noise of the EEG chamber and 
other setting conditions. For consistency, site- specific information 
about these conditions should be archived. 

Noteworthy, researchers are usually encouraged to set the EEG 
acquisition parameters close to the highest possible boundaries. This 
includes using the larger possible number of recording electrodes and 
the utmost possible sampling rate for analog-digital conversion. 
Nevertheless, the integration of multicentric EEG data will be condi
tioned by the lowest acquisition capacity among all of the participant 
institutions. Future efforts should focus on how the proposed Con
nEEGtome can inform either ad-hoc or post-hoc theory-driven data 
harmonization strategies when multicentric collaborations are set up. 

3. Preprocessing harmonization 

Nowadays, the variety and flexibility of pipelines for the analysis of 
EEG allow research teams to have their own processing strategy. The 
choice of algorithms used in different processing steps (artifact removal, 
filtering, and time-domain transformations) affects the estimation of the 
power spectral density of different EEG frequency-bands (Alam et al., 
2020), with substantial effects on scientific conclusions. The reproduc
ibility of results that are obtained using a single analysis pipeline is hard 
to estimate, and researchers generally overestimate the likelihood of 
significant results across hypotheses (Botvinik-Nezer et al., 2020). 
Consequently, in addition to having standard collection procedures, 

standardized data preprocessing pipelines are of utmost priority for 
minimizing raw data heterogeneity across sites, increasing the statistical 
power and sensitivity of multicentric studies. In this section, we discuss 
some critical aspects for the standardization of processing workflows in 
EEG-based studies of connectivity. Additionally, we highlight the need 
to conduct multiple analyses of the same data, and to have composite 
metrics that allow the proper integration of the results. These recom
mendations are armed with an ideal processing workflow (Fig. 1) as the 
point of departure for developing standard procedures for EEG- based 
studies of connectivity. 

3.1. Control procedures 

The adoption of semi-automated quality control procedures (Fig. 1 
B) ensures that planned acquisition parameters and criteria for data 
annotation are meet (Farzan et al., 2017). Annotation should not been 
restricted to technical aspects of the EEG acquisition but should also 
include tracking experiment- specific events using a standard tag system. 
This is the case of the Hierarchical Event Descriptors (HED), a tags 
system used in subsequent processing stages to isolate the effects of 
events that share a particular feature, e.g., events associated with the 
same sensory or cognitive phenomena (Bigdely-Shamlo et al., 2016). 

Security and organization of the data benefits from organizational 
standards for EEG data, which also protect patients' personal data. This 
is the case of EEG-BIDS, an extension to the brain imaging data structure 
for EEG, which addresses the heterogeneity of data organization by 
following the FAIR principles of findability, accessibility, and interop
erability (Pernet et al., 2019). The use of EEG-BIDS is closely tied to data 
repositories that build on BIDS, such as OpenNeuro (https://openneuro. 
org). 

Furthermore, the design of standard pipelines profits from the high 
number of freely available signal processing software for EEG data. The 
list of powerful tools is lengthy and includes EEGLab (Delorme and 
Makeig, 2004), Cartool (Cartool Software FBMLab), Brainstorm (Tadel 
et al., 2011), MNE-Python (Gramfort et al., 2013) and BioSig, among 
others. Within each tool, several processing strategies can be designed. 
Consequently, the selection of tools, the sequence of processing steps, 
and the analysis parameters need to be planned and carefully reported. 

The output of critical processing steps needs to be frequently 
archived for additional analysis beyond the scope of the original study. 
Developers of signal processing software for EEG data should also be 
made aware of data harmonization guidelines as they can greatly 
contribute to such strategies. 

3.2. Denoising 

Since multicentric studies typically involve large sample sizes, pre
processing worflow needs to run automatically, and with minimal su
pervision. An automatic sequence of processing steps provides an 
efficient workflow for denoising, especially when a large amount of data 
has been collected (Fig. 1C). Grounded on pre-selected settings, auto
mating EEG pre-processing tools allow for removal of artifact- 
contaminated EEG segments and channels without subjective judg
ments precluding standardized signal quality metrics. This is the case of 
the standardized early-stage EEG processing pipeline (PREP), an open- 
source tool for automatic removal of line noise, electrode interpola
tion, and average referencing (Bigdely-Shamlo et al., 2015). 

Noteworthy, the preprocessing strategy needs to consider the 
particular features of the experimental design, the cohort of participants 
and the expected outcomes of the study. In this regard, pipelines have 
been developed to address the low signal-to-noise (SNR) ratios of EEG 
recordings from young children, patients with neurodevelopmental 
disorders, or individuals with neurodegenerative diseases, where data is 
relatively more affected by artifacts (Gabard-Durnam et al., 2018). 
Flexibility of processing pipelines allows users to manage batches of EEG 
files collected across multiple acquisition setups in multicentric studies 
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(Levin et al., 2018). Furthermore, it permits to implement processing 
strategies that maximize signal isolation and minimizes data loss using 
EEG signal quality measures (van Noordt et al., 2020). The emergence of 
new artificial intelligent solutions (Mashhadi et al., 2020) can signifi
cantly contribute not only to remove undesired activity from the EEG 
but to better characterize it and hopefully contribute in future harmo
nization strategies. 

3.3. Artifact removal 

Automatic artifact removal using blind source separation techniques, 
either alone (Bell and Sejnowski, 1995) or in combination with time- 
frequency denoising algorithms (e.g., Zima et al., 2012), need to bal
ance the relative contribution of different sources of artifacts (ocular, 
myographic, cardiac, external) to the EEG signal. Automatic removal of 
artifacts is facilitated by the identification of eye motions and blinking 
based on templates (Fig. 1D). For that purpose, processing tools con
taining a database of manually identified eye-related ICA scalp maps 
have been developed (Bigdely-Shamlo et al., 2013). This tool (Eye- 
catch) has been used for the integration of different EEG datasets 
(Bigdely-Shamlo et al., 2020a) in combination with methods that flag 
latencies corresponding to different stages (phases) of the blinks 
(Kleifges et al., 2017) and restrict the corrections to a limited time 
window. 

3.4. Spatial harmonization 

To provide general guidelines regarding EEG studies for connectiv
ity, we will restrict the concept of spatial harmonization to the assign
ment of common labels to channels from recordings that were acquired 
using different electrode layouts (Fig. 1D). Considerations about spatial 
transformation (spatial filters) will be given in section 4.1. 

The integration of EEG data for connectivity analyses deeply depends 
on the number of electrodes and the electrode placement system (elec
trode layout) used for data acquisition. Globally adopted guidelines are 
not currently available. Recommendations endorsed by international 
panels and consortiums are critical, since lack of procedures for co- 
register different electrode layouts may result in distorted EEG spatial 
representations and inconsistent interpretation of connectivity matrices. 
Nevertheless, important progress has been achieved. Some multicentric 
projects have implemented the closest equivalent electrodes between 
layouts as replacement procedures for integrating different electrode 
placement systems and electrode configurations (Farzan et al., 2017). A 
similar assignment procedure, based on electrode distances, has been 
implemented to reduce a 256-channels electrode layout to standard 
10–20 locations (Bigdely-Shamlo et al., 2020b). Alternatively, instead of 
assigning electrodes, integrating different electrode layouts can be 
achieved by generating virtual electrodes computed from topographic 
interpolation transforms either using i) triangulation plus linear inter
polation or ii) interpolation by spherical splines over a mesh-head 
model. This idea has been successfully implemented in studies 
analyzing the effect of variance across acquisition systems compared to 
between-subject, and between-session variances (Melnik et al., 2017). 
The method consists of projecting the electrode positions onto a mesh- 
head model of 1082 points and interpolating the activity of EEG. 

3.5. Data normalization 

Dataset variability needs to be compensated when samples across 
centers are combined. In this sense, efforts have been made to enable the 
joint connectivity analysis of raw functional MRI (fMRI) data from 
different scanners (e.g., Legaz et al., 2021; Bachli et al., 2020; Donnelly- 
Kehoe et al., 2019; Moguilner et al., 2018, 2021; Salamone et al., 2021; 
Sedeño et al., 2017). More research is needed for EEG multicentric 
studies to achieve the same standardization. Harmonization of raw EEG 
data is worthy, since it eliminates technical and methodological sources 
of variability that impact the interpretation of EEG meta-analysis. Based 
on previous studies, we propose that between-dataset variability can be 
reduced by i) multiple normalizations to improve the comparability 
across recordings, ii) patient-control normalization, and iii) machine 
learning and confusion matrix approaches (Fig. 1D). 

Data normalization (rescaling) can be carried out with methods for 
data alignment (Bigdely-Shamlo et al., 2018). These methods are linear 
transformations of the EEG that reduce the between- subject variability 
by computing statistical properties of the data which in turn are used as 
a weighting factor for correcting (rescaling) voltage amplitudes. For 
illustrative purposes, methods for data alignment can be classified as 
within-electrode and across-electrode transformations. On a much 
smaller scale, some of these weighting procedures are used to analyze 
auditory evoked potentials in clinical settings with the objective of 
reducing the effect of artifacts on the estimated response (e.g., John 
et al., 2001; Prado-Gutierrez et al., 2019). Across-electrode weighting 
factors include the mean, Huber mean (Huber, 1964) and the Euclidean 
(L2) norm (Li et al., 2009). These three methods capture the central 
tendency of the EEG amplitude. Unlike the mean and Euclidean norm, 
the Huber mean seems to be more robust to outliers (Bigdely-Shamlo 
et al., 2020b). 

The weighting methods described above are usually implemented in 
a single dataset, in which different subsets (i.e., different studies) are 
grouped. This may not be convenient in multicenter studies involving 
both patients and healthy individuals. In this case, the weighting factor 
(constant for rescaling, e.g., the Huber mean) can be computed by 
pooling together the data belonging to healthy participants. Subse
quently, both groups can be rescaled using the same weighting factor 
(Fig. 1D). A similar approach has been implemented in multimodal and 
multicentric MRI studies on frontotemporal neurodegeneration to avoid 
MRI-setup bias (e.g., Donnelly-Kehoe et al., 2019). In this study, features 
(cortical volume and thickness) of participants (both healthy volunteers 
and patients) who were recruited in a given center were z-scored based 
on the mean and standard deviation of features of the corresponding 
healthy participants. Likewise, patient-control normalizations using Z- 
score have been used for comparing relevant behavioral and electro
physiological measures of patients with MCI and prodromal patients 
from familial AD carrying the mutation E280A of the presenilin-1 gene 
(Pietto et al., 2016). In cases where data distribution is not restricted to a 
narrow range, w-score standardization can be implemented (Chung 
et al., 2017). This method has been applied to assess neurodegenerative 
diseases, where correlation of parameters with clinical features has been 
established (La Joie et al., 2012; Jack et al., 1997; O'Brien and Dyck, 
1995; Ossenkoppele et al., 2015). 

4. A multi-feature computational framework 

Functional and effective connectivity (for robust definitions, see Reid 

Fig. 1. Flow chart of steps and modules comprising an ideal workflow for multicenter EEG studies of connectivity. Steps in the workflow are grouped as they 
belong to the A) Acquisition protocol, B) Data sharing procedures, C) basic preprocessing, D) advanced preprocessing, and E) the final stages of the multi-feature 
framework for EEG connectivity. Process types are classified as completely supervised, semi- automatic and automatic (grey color code). Cells colors indicate 
critical steps in the workflow, i.e., where harmonization of datasets is performed (orange cells) or where computation of parameters depend on the integration of 
several sources of information (green cells). Cells in red denotate additional steps that are favored by processing tools already available. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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et al., 2019) can be assessed with several methods, which differ in 
mathematical assumptions about the nature of the signals. Conse
quently, different measures of dependency and similarity can be used 
(Ahmadlou et al., 2014; Yuvaraj et al., 2016). An illustrative taxonomic 
description of methods for quantifying functional connectivity has been 
provided by Bastos and Schoffelen (2016). These methods can be clas
sified as model-based or model-free, depending on whether they make 
assumptions about the linear relationship between signals. While model- 
based metrics of connectivity can be computed from both the EEG en
velopes and frequency representations of the signals, popular model-free 
metrics (e.g., mutual information and transfer entropy) entirely rely on 
time-domain analyses (Bastos and Schoffelen, 2016). 

Studies comparing metrics for functional connectivity typically 
highlight the advantages and drawbacks of the methods, as well as their 
applicability to a particular scenario, e.g., to a particular sensory or 
neurocognitive disorder. Nevertheless, studies comparing the potential 
of individual connectivity metrics against a pool of alternative measures 
are scarce. This kind of comparison has been conducted in a recent 
exploratory study, in which healthy individuals were classified by age 
(younger versus older) using a binary machine learning classifier based 
on i) a single functional connectivity measure, and ii) a composite 
metric, obtained by combining eight measures of functional connectivity 
(Mohanty et al., 2020b). The result of this study suggests that retesting 
the data with different analyses and obtaining a composite measure that 
integrates a pool of connectivity measures adds significant value for EEG 
multicentric studies (Fig. 1F). This procedure has the potential to in
crease the consistency of findings and make the results obtained in 
different multicentric studies more comparable. 

4.1. The need for retesting 

A critical element behind the aforementioned statement concerns the 
preprocessing workflow, since a “ground truth” for the choice of 
methods used in different preprocessing steps is not available. This is the 
case of the spatial transformations of EEG, which are applied based on 
theoretical considerations about the physics of the brain and the sur
rounding tissues (Fig. 1F). These transformations change the voltage 
values at each electrode according to a weighted combination of voltage 
values at other (all) electrodes to highlight features that can be difficult 
to observe in the raw data (Cohen, 2015). They also include adaptive 
spatial filters (e.g., independent component analysis, ICA; and principal 
component analysis, PCA) to rescue neural activity that can remains 
masked when spatial transformations consider that EEG is stationary 
(Bufacchi et al., 2021). It is hard to know a priori which of several EEG 
spatial distribution reflects better a particular physiological process. 
Most of the time correlations with behavioral or clinical measures are 
needed for validation. 

The basic principle of the surface Laplacian transform, as well as the 
differences between common reference schemes (nose, linked mastoids, 
average) and the surface Laplacian have been described (Kayser and 
Tenkem, 2015). These transformations affect the output of EEG con
nectivity analyses, such that spatial transformation applied to the EEG 
data needs to be specific to the sensory or cognitive process that is being 
investigated (Cohen, 2015). 

The dependence of EEG connectivity from the spatial trans
formations implemented in the processing pipeline is show in Fig. 2. We 
constructed this illustrative example using our own database of auditory 
steady-state responses (ASSR). Our ASSR datasets comprise recordings 
from 36 healthy, normal hearing participants (young adults aged 22–36, 
median age 27) from the region of Valparaíso, Chile. The ASSR were 
elicited by 1-kHz tones modulated in amplitude at 40 Hz. The EEG was 
acquired using a 64-channels acquisition system (Biosemi Active Two), 
such that the EEG was acquired using the zero-reference principle. 
Spatial transformations of raw data were obtained using different elec
trode combinations for re-referencing: Cz, linked mastoids (LM), and 
average reference of the 64 electrodes (AVE). Furthermore, the current 

source density (CSD) was computed as an estimate of the surface Lap
lacian based on the EEG voltage values across electrodes. This trans
formation is considered reference-free, such that the output is 
independent of any previous choice of reference. The ASSR was 
computed by the time-domain averaging of synchronized EEG epochs 
and the subsequent frequency transformation of the averaged signal 
using the fast Fourier transform. At the sensor space, different 
coherence-related measures in a narrow-band around 40 Hz (38–42 Hz) 
were computed between all channel pairs. Furthermore, source gener
ators of the 40-Hz ASSR were estimated using the Bayesian model 
averaging (BMA) approach of the EEG inverse problem (Trujillo-Barreto 
et al., 2004). At the source space, pair-wise functional connectivity was 
estimated in a 20-nodes network comprising temporal, and frontal 
cortical regions of both hemispheres. Nodes corresponded to the 
centroid of Broadman areas 20, 21, 22, 37, 38, 41, 42, 44, 45, and 47. 

As expected, spatial transformation of the raw data conditioned the 
amplitude of the 40-Hz ASSR, and the scalp distribution of the oscilla
tory response (Fig. 2A). Consequently, results obtained with a given 
method of coherence varied as a function of the 40-Hz ASS spatial 
transformation (Fig. 2B, left box). We contrasted the results derived 
from a pair of spatial transformations to highlight the effect of the 
processing pipeline on the results (Fig. 1B, right box). 

The choice of reference for EEG has been a long-debated methodo
logical topic, due to its impact on the interpretation of the results. 
Consequently, the potential biases induced by the choice of reference on 
EEG connectivity patterns have been analyzed at both sensor and source 
space (Chella et al., 2017). Results consistently show that the choice of 
reference heavily impacts the connectivity outcome, and that the best 
reference choice depends on the connectivity analysis that is conducted. 
In addition to the reference schemes included in the illustrative example 
presented in Fig. 2 (Cz, LM, AVE and CSD), comparative studies have 
included an infinity reference estimated via the Reference Electrode 
Standardization Technique (REST). When cross-frequency connectivity 
of eye open EEG resting-state is analyzed at the sensor space using the 
cross-bicoherence and the antisymmetric cross-bicoherence, REST pro
vided superior performance than Cz, LM, and AVE in approximating the 
ideal neutral reference (Chella et al., 2017). CSD outperforms the rest of 
aforementioned reference choices, when information-theoretic mea
sures of segregation and integration-interaction complexity are analyzed 
at the EEG sensor space (Trujillo et al., 2017). Furthermore, changes in 
the underlying neural source of resting-state EEG were more accurately 
estimated using CSD (Trujillo et al., 2017), which is likely a consequence 
of the positive impact of CSD on EEG signal quality, and the reduction of 
the volume-conduction effect that is obtained when this infinite refer
ence is implemented. 

The effect of reference-related bias on the estimation of EEG poten
tials has been also analyzed in combination with other factors, including 
the electrode layout, number of channels, SNR at the sensor level and 
head models (Hu et al., 2018a). By comparing the relative error between 
the EEG potentials generated by forward calculation using a single 
dipole in the neural source space (where the reference is the ideal in
finity), and the EEG that resulted from reference transformations, au
thors indicates that REST can be considered as the primary re-reference 
choice, since REST outperform monopolar references, LM and AVE (Hu 
et al., 2018a). For solving the inverse solution of the EEG, a regularized 
version of REST (rREST) has been developed (Hu et al., 2018b). This 
reference provides the lowest relative error in estimating the EEG po
tentials, in comparison with a regularized version of AVE and other 
reference choices. Furthermore, results obtained when using individual 
and average lead fields are comparable (Hu et al., 2018a), a finding that 
boost the extended use of rREST. The validation of spatial trans
formations, as well as any other data transformation, can benefit when 
methods are tested in a data set stemming from a well-understood 
experimental manipulation (Kayser and Tenkem, 2015). 
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4.2. Connectivity at the EEG source space 

The different spatial transformations illustrated in Fig. 2 also derived 
in different current densities maps inside the brain, i.e., different brain 
activation maps estimated using models to solve the inverse problem of 
the EEG (Fig. 2C, upper panels). Consequently, the output of a particular 
functional connectivity analysis of the 40-Hz ASSR differed on the basis 
of the spatial transformation of the EEG at the sensor space (Fig. 2C, 
lower panels). The spatial transformation particularly affected long- 
range inter-hemispheric functional connections. 

Beside the spatial transformations at the sensor space, the estimation 
of EEG neural generators heavily depends on the selection of parameters 
used for modeling the EEG inverse problem. This topic has been 
addressed by studies in which neural generators of resting-state activity 
have been estimated using different commonly-used algorithms (based 
on minimum-norm and beamforming estimates) (Tait et al., 2021). After 
testing the performance of the source reconstruction methods, based on 
quantitative metrics that included the explained variance at the sensor 
level, and resolution properties of the inverse solutions, authors 
conclude that that there is no “one size fits all” algorithm. Consequently, 
recommendations for the choice of the inverse solution method were 
provided, considering available information about the SNR, the spatial 
resolution requirements, and the properties of the resting-state activity 
that are statically tested (Tait et al., 2021). 

The impact of the choice of EEG source reconstruction algorithm on 
functional/effective connectivity has been tested as a function of 
anatomical templates, electrical models of the head, methods of source 
estimations, and software implementations (Mahjoory et al., 2017). The 
estimation of EEG sources using weighted minimum-norm estimate 
(WMNE), exact low resolution brain electromagnetic tomography 
(eLORETA) and linearly constrained minimum-variance (LCMV) 
beamformer was more consistent across pipelines than the subsequent 
estimations of functional connectivity. Although in silico studies suggest 
that some methods for source-space connectivity can be preferred when 
a particular density electrode configuration is used (Barzegaran and 
Knyazeva, 2017), the disparity in the results evidences again that inte
gration of multiple approaches is needed for multisite EEG connectivity 
settings. 

The (lack of) consistency across EEG connectivity analyses in the 
EEG source-space reinforces the idea that standardized signal processing 
workflows are necessary for successful multicenter analyses. This is 
maybe more relevant when EEG is acquired in a resting condition, since 
the arousal state of the individual represents a major source of incon
sistency in source localization and connectivity analyses (Kaufmann 
et al., 2006; Massimini et al., 2005; Murphy et al., 2009; Ventouras et al., 
2010; Moezzi and Goldsworthy, 2018; Tagliazucchi and Laufs, 2014). 
Variability of the results can be reduced when EEG is integrated with 
structural or functional MRI images (Ferri et al., 2021), such that 
physiological information about EEG generators, and anatomical con
nections are used as priors (Moezzi and Goldsworthy, 2018). Indeed, the 
validation of EEG connectivity measures at the source space can benefit 
from electrocorticographic studies in which well-known anatomical 
connections are probed actively using single pulse electrical stimulation 

(Hebbink et al., 2019). Likewise, priors for connectivity analysis can be 
obtained when EEG is combined with transcranial magnetic stimulation 
(Bortoletto et al., 2015). 

4.3. The need of composite measures 

As mentioned above, EEG connectivity can be estimated using a large 
number of methods at both sensor and source spaces (Lee et al., 2017; 
Sarmukadam et al., 2020). Results are encouraging, since they suggest 
that EEG connectivity measures can be used as predictors of AD severity 
(Briels et al., 2020; for a review see delEtoile and Adeli, 2017). Never
theless, these studies also reveal that different measures that address a 
particular type of connectivity, e.g., functional connectivity, yield 
different results for the same dataset. This is also illustrated in Fig. 2, 
where different EEG connectivity metrics provided different results, 
even when they were computed on the same scalp distribution of volt
ages (Fig. 2B and C). Disparity of the results is also exemplified by in 
silico studies where 42 methods of functional connectivity were 
benchmarked, using different types of generative models and connec
tivity structures. No single method was optimal for all types of data 
(Wang et al., 2014). Likewise, dissimilar results have been obtained 
when different lag-based effective connectivity measures were tested 
and benchmarked using simulated data that reflected different scenarios 
(e.g., different network configurations) with practical interest (Rodri
gues and Andrade, 2014). More recently, relevant differences in func
tional (effective) connectivity estimated with Granger-Geweke 
causality, directed transfer function, and partial directed coherence 
methods in real EEG data have been observed (Perera et al., 2020). 

The marked disparity in results suggests that a combination of al
gorithms, and the subsequent integration of the results, e.g., in a com
posite measure of connectivity, is a promising strategy for the success of 
multicentric EEG studies (Fig. 1, a multifeatured framework of EEG 
connectivity). Underlying this approach is the seminal idea that all 
functional connectivity measures are useful, since they help to constrain 
the theoretical set of network configurations and causal models that 
sustain a particular neurocognitive process (Reid et al., 2019). This 
hypothesis space can undergo progressive refinements when different 
functional connectivity metrics are integrated (Hyttinen et al., 2016; 
Ramsey et al., 2010, 2011). This is the case of combining pairwise 
Pearson correlation and partial correlation analyses, which helps to 
resolve causal configuration in networks comprising either confounder 
or colliders nodes, as well as chain interaction (Reid et al., 2019; San
chez-Romero and Cole, 2021). Likewise, the interpretation of functional 
connectivity changes can benefit from a “covariance conjunction” 
method, which combines normalized and non-normalized version of 
Pearson correlation (Cole et al., 2016). An extension of this approach is 
to use a relatively large set of functional connectivity metrics to capture 
different types of dependency between time series, i.e., a composite 
metrics of connectivity. The usefulness of this metric has been evident in 
cases where, while time domain Pearson's correlation indicates low 
functional connectivity between cortical areas, frequency-domain 
magnitude-squared coherence suggests otherwise (Mohanty et al., 
2020). Noteworthly, classification systems using multiple measures of 

Fig. 2. Effect of EEG spatial transformations on EEG functional connectivity. Spatial transformations of raw data (a single subject) were obtained using different 
electrode combinations for re-referencing: Cz, linked mastoids (lm) and average reference of the 64 electrodes (ave). Furthermore, the current source density (csd) 
was computed as an estimate of the surface Laplacian based on the EEG voltage values across electrodes. Spatial transformations are displayed at the top of the figure. 
All the results presented in each column were obtained using the same transformation. A) Power spectrum of the 40-ASSR in the electrode Fz are presented in upper 
panels. The spectral peak corresponding to the 40-Hz frequency bin is denoted by an asterisk (*). The scalp distributions of the ASSR are presented in the lower 
panels. B) Coherence- related measures were computed in a narrow-band around 40 Hz (38–42 Hz) between all channel pairs. Methods of coherence-related 
measures were magnitude-squared coherence (msc), phase of cross- spectrum (pcs), and the imaginary part of coherency (ipc). The different coherence-related 
measures are presented in the box on the left, while contrast between measures derived from different spatial transformations (ave vs. Cz) are presented in the 
right-hand box. C) Upper panels show neural generators of the 40-Hz ASSR, estimated with BMA. Lower panels display representations of the 40-Hz functional 
connectivity, estimated in a 20-nodes network including temporal and frontal cortical regions of both hemispheres. Functional connectivity measures were total 
coherence (totalCoh) and total phase synchronization (totalPhase), as computed by Loreta Key software (Pascual-Marqui et al., 1994) and described in Pascual- 
Marqui (2007). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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functional connectivity followed by a feature selection procedure has 
been proved to provide more consistent results than those in which 
connectivity metrics are used alone (Mohanty et al., 2020). This result, 
along with the fact that a particular functional connectivity metric does 
not typically outperformed others, indicates that a composite metric that 
integrates information from multiple domains represents an ideal tool 
for developing the ConnEEGtome for dementia. Nevertheless, further 
investigation is needed before a composite connectivity metric can be 
proposed as the standard for neurodegenerative studies. This include 
assessing the robustness of the connectivity metrics to the intra-subject 
and inter-subject variability in longitudinal studies (Conti et al., 2019). 

Like other aspects of the processing pipeline addressed in this review, 
the design and implementation of composite metrics of functional con
nectivity can significantly benefit from computational tools that are 
already available. This is the case of toolboxes containing combined 
functional connectivity methods based on correlation, and partial cor
relation analyses (Sanchez-Romero and Cole, 2021). Another example is 
SEED-G, a toolbox for the generation of pseudo-EEG data with imposed 
connectivity patterns, in which ground-truth connectivity models, and 
different parameters impacting the SNR of the EEG can be controlled 
(Anzolin et al., 2021). 

4.4. Statistical approaches 

The standardization of statistical frameworks, particularly methods 
for correcting multiple comparisons, is a further step to reduce the 
variability among EEG functional connectivity analyses (Fig. 1F). In this 
regard, the Unbiased Cluster Estimation (UCE) method, a threshold-free 
extension to traditional cluster-based analysis (Radhu et al., 2015) has 
been proposed as a benchmark statistic for multisite initiatives (Farzan 
et al., 2017). Additionally, promising approaches need to be examined 
in greater detail, such as permutation-based mass univariate tests in 
combination with complex factorial designs (Fields and Kuperberg, 
2020). Likewise, statistics in multicentric EEG studies can benefit from 
methods in which hierarchical linear modeling accounts for single trial 
variability (Pernet et al., 2011). This can be complemented with 
methods for elucidating nonlinear connectivity (Dottori et al., 2017; 
Parra et al., 2017), hierarchical representations of higher-order brain 
areas during complex tasks (Livezey et al., 2019), connectivity-based 
decoding (Hesse et al., 2019; García et al., 2020) and algorithms that 
combine Dynamic Causal Modeling and Parametric Empirical Bayes to 
characterize between-subject variability in effective connectivity 
(Zeidman et al., 2019). Extensive use of this methodologies is facilitated 
by freely available computational tools and tutorials with step-by-step 
instructions (Pernet et al., 2011; Zeidman et al., 2019). 

5. Advanced computational tools for diagnosis and 
classification 

The ultimate objective of EEG connectivity studies is to explain (or 
predict) multi-feature perceptual and cognitive processes, and therefore 
understand behavior (i.e., Fittipaldi et al., 2020). Consequently, the 
assessment of EEG connectivity in combination with low-dimensional 
metrics (like graph theory) can become a powerful tool for diagnosis 
and classification of neurodegenerative diseases. In this regards, recent 
studies have analyzed the intra-subject and inter-subject variability of 
graph-theoretical measures (global and local measures) derived from 
effective (Granger Causality, and Transfer Entropy), and undirected 
(Pearson Correlation, and Partial Correlation) connectivity maps, when 
data is acquired in multiple functional MRI sessions (Conti et al., 2019). 
Although intersession reproducibility of functional connectivity metrics 
varies depending on the of graph-theoretical measure selected for the 
analysis, results like those presented by Conti et al. (2019) are promising 
and they can be extended to brain connectivity analyses based on EEG. 
Validation studies can be conducted using well described and publicly 
available data repositories, such as the Healthy Brain Network (HBN) 

Biobank, which include a high-density EEG dataset (128 channels, 
reference Cz) of a diverse sample (1657 individuals) of children and 
adolescents (aged 5–21) from the New York City area (Alexander et al., 
2017). 

The predictive power of classification systems based on EEG con
nectivity, and graph-theoretical measures, substantially increases when 
the estimation of behavior from functional brain connectivity is assessed 
with machine- learning- based frameworks, such as connectome- based 
predictive modeling (CPM) (Shen et al., 2017). Using this model, the 
functional connectivity has been computed with model-based (linear) 
metrics on the time domain (e.g., Finn et al., 2015; Rosenberg et al., 
2018), and model-free approximations (Kumar et al., 2019). So far CPM 
has been applied to fMRI (Finn et al., 2015), using available dataset such 
that the Human Connectome Project (HCP) (Van Essen et al., 2013). 
Nevertheless, CPM can be extended to brain connectivity datasets 
derived from magnetoencephalography (MEG), and EEG. It is worth to 
mention that high-quality EMG data for 67 subjects has been released as 
part of the Young Adult HCP (https://www.humanconnectome. 
org/study/hcp-young-adult/project-protocol/meg-eeg). 

Furthermore, several open-source EEG datasets are available (eg. 
Valdes-Sosa et al., 2021), and they typically comprise high-density 
resting-state EEG in different conditions, e.g., eyes closed, eyes open, 
and hyperventilation. EEG datasets usually belong to multimodal re
positories, which also contains MRI datasets, behavioral and psycho
logical data, as well as anthropometrics and demographic information. 
Additionally, physiological measures (e.g., blood pressure, heart rate, 
and breathing rate), as well as blood and urine samples can be acquired 
(Babayan et al., 2019). A relatively extensive list of open-source EEG 
data repositories has been provided (Cavanagh et al., 2017). Further
more, initiatives to integrate sparse EEG repositories have been 
launched. This is the case of The Patient Repository for EEG Data +

Computational Tools (PRED+CT), an open-source site for gathering, 
storing, and analyzing clinically relevant data (Cavanagh et al., 2017). 

Moving beyond the use of unimodal predictive systems, such as those 
mentioned above, diagnosis tools based on multi-feature classification 
can take better advantage of the information provided by functional 
connectivity maps (Fig. 1F). This type of analysis can exploit the po
tential of multicentric studies of neurodegeneration in which clinical, 
molecular, metabolic, and genetic examinations of patients are typically 
made in combination with neuroimaging. Multimodal assessment of 
clinical and cognitive process combined with EEG and MRI (Abrevaya 
et al., 2020; García-Cordero et al., 2016; Ibáñez et al., 2017, Ibáñez, 
2018; Melloni et al., 2015a, 2015b, 2017; Salamone et al., 2018, 2021) 
can improve the characterization of multiple physiopathological and 
neurocognitive pathways impacted by neurodegeneration. In this sense, 
a data-driven hierarchical Bayesian model to identify latent factors in 
AD has been proposed, which performs a joint analysis of atrophy and 
cognitive deficits. The model outperformed canonical correlation anal
ysis at capturing the heterogeneity of the atrophy-cognitive associations, 
and revealed atrophy-cognitive factors which had not previously been 
described (Sun et al., 2019). A comprehensive review of data-driven 
methods to assess the heterogeneity in neurodegenerative conditions 
have been recently published (Habes et al., 2020). Another approach is 
the implementation of models that assess hierarchical associations 
among sensory processing, neurocognition, clinical symptoms, and 
functional outcomes, using structural equation modeling (Koshiyama 
et al., 2021). This approach has been successfully used in other condi
tions such as schizophrenia, demonstrating that including EEG measures 
(MMN/P3a and gamma-band ASSR), add explanatory power to tradi
tional models of neuropsychiatric disorders (Koshiyama et al., 2021). 
This approach can be advanced by multi-feature machine learning 
classification using hyperparameter tuning and gradient boosting of 
progressive feature elimination that allows for feature dimensionality 
reduction and control of overfitting and collinearities. 
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6. Testing the success of harmonization 

Metrics about the success of EEG data harmonization are needed to 
guide further data analyses and plan future multicentric preclinical 
studies. Such metrics need to consider the acquisition system and rele
vant acquisition parameters as covariates in multicentric EEG studies of 
connectivity. Studies on this matter are scarce, since it is often assumed 
that the specific choice of EEG system has limited impact on the data and 
does not add variance to the results (Melnik et al., 2017). Nevertheless, 
acquisition systems can make a significant contribution to the variance 
of multisite EEG studies, particularly when they differ in the type of 
electrodes, and portability- related electronics. This effect is reduced 
when comparisons are restricted to standard-EEG acquisition systems 
(Melnik et al., 2017). Since multiple competitive companies participate 
in the global market of EEG instrumentation, it is necessary to test the 
equivalence of data acquired with acquisition systems from different 
companies. We anticipate that such companies should also being 
informed of sources of variability and suggested guidelines. 

Metrics for benchmarking may rely on signal representation ap
proaches, based on the computation of epoch rejection rate, SNR, 
amplitude variance in particular time windows, the susceptibility of the 
experimental setup to line noise and the percentage of artifact- 
contaminated EEG segments (Oliveira et al., 2016; Radüntz, 2018; 
Hinrichs et al., 2020). When multicentric studies comprise sensory or 
cognitive tasks with different experimental conditions, the output of 
algorithms for trial classification can be designed for comparative pur
poses (Kam et al., 2019). Additionally, metrics about signal stability 
(Malcolm et al., 2019) based on cross- correlation and auto-correlation 
analysis can be implemented. 

How variations of EEG time series co-vary across headsets have been 
assessed using distance metrics between recording covariance matrices, 
e.g., Riemannian distance and Euclidean distance (Bigdely-Shamlo 
et al., 2020a). For statistical comparisons, random permutations tests 
are conducted with the output of representational similarity analysis 
(Kriegeskorte et al., 2008). The latter method computes similarity based 
on two aspects of the data, for example, the Riemannian distance, and 
whether EEG was acquired with the same electrode configuration. Using 
this approach, the effect on any independent parameter that has a po
tential impact on the integration of multisite EEG data can be tested. 
This analysis is potentiated when the Hierarchical general modeling 
(Pernet et al., 2011), which assesses statistically significant ERP and 
ERSP patterns across subjects, is combined with HED tags (Bigdely- 
Shamlo et al., 2020b). This method is referred to as the Hierarchical 
organizational model and allows for the separation of subject, headset, 
paradigm and cognitive aspects in a manner that is scalable and 
generalizable across diverse collections of EEG datasets (Bigdely-Shamlo 
et al., 2020b). Metrics indicating the success of the harmonization can be 
extended to the EEG source space. This is the case of the pairwise 
normalized difference/asymmetry (ND), a measure that represent the 
dimensionless, normalized pairwise asymmetry of functional connec
tivity matrices and derived graph-based metrics, and that may be used as 
indicators of inter-subject variability (Conti et al., 2019). 

The metrics mentioned above may help to build methodological 
consensus, which in turn will contribute to establish functional con
nectivity measures as reliable biomarkers for the early identification of 
subtypes within a particular neurodegenerative disorder, and facilitate 
intervention. This early identification system implies that the traditional 
classification of neurodegenerative disorder based on group analyses 
shall be complemented with individual-level analyses. The paradigm 
shift is challenging, and it is not unique to EEG multisite studies. In fact, 
the need for consensus and harmonization across subtyping methods for 
AD has been revealed by studies demonstrating a mismatch between the 
group-level and the individual-level classification of patients, based on 
MRI images and positron emission tomography (Mohanty et al., 2020). 
Since this is partially a consequence of the heterogeneity of methodo
logical approaches, metrics comparing the performance of the 

classification algorithms are needed. 
Last but not least, sharing data and processing pipelines is critical for 

the replicability and cross- validation of multisite studies. These aspects 
contribute to conducting joint analysis in which two or more multi
centric studies are integrated, impacting the power of current diagnosis, 
monitoring and intervention assessments. Tools for this purpose are 
available, and some of them have been described in this article. Valuable 
contributions are initiatives like #EEGManyLabs, a platform for large- 
scale international collaborative replication studies (Pavlov et al., 
2021). The number of peer review journals that seek sharing protocols 
for result replication is constantly increasing. Many research groups, 
including us, have participated in these collaborative efforts (e.g., 
Prado-Gutiérrez et al., 2019). Noteworthy, increasing data sharing and 
harmonization of methodological procedures is a further step towards 
the federation of machine learning methods and other computational 
tools, where model parameters are shared instead of data (Alam et al., 
2020). Consensus is needed, and the scientific community is aware of 
barriers for harmonization of neuroimaging biomarkers for neurode
generative diseases (Jovicich et al., 2019). Actions to overcome these 
barriers have been proposed, as well as priorities for funding. They 
address the creation of a hub of documents to guide the planning and 
execution of future multicentric studies, and the support of future 
harmonization challenges (Jovicich et al., 2019). 

7. Conclusions 

The creation of a global platform for harmonization of EEG-related 
multi-feature connectivity in neurodegenerative research is chal
lenging, but progress made in the field is encouraging. Several tools for 
harmonization of preprocessing steps are already available and need to 
be unified within basic common processing workflows. Summarizing, 
relevant aspects for data replicability in multicentric EEG studies on 
connectivity, also relevant for the success of the ConEEGtome, include 
(a) conducting multiple analyses of the same data to be integrated in 
subsequent processing steps, and (b) developing composite metrics of 
connectivity to feed multi-feature classification systems. Undoubtedly, 
significant advances in these directions will help to revolutionize current 
EEG approaches in neurodegenerative research, by creating a new 
generation of objective, computer-based tools for diagnosis, character
ization and treatment of neurodegenerative diseases and other 
disorders. 
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