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Abstract: A novel structural health monitoring approach is developed by coupling the inverse 

finite element method (iFEM) and peridynamic theory (PD) for real-time shape sensing analysis 

and crack propagation monitoring of plate structures. This hybrid method, called iFEM-PD, can 

account for deformation, stress, and damage states of any sensor-equipped structure in real time 

without the need for loading knowledge and regardless of the complexity of structural topology or 

boundary conditions. The integrated iFEM-PD approach first reconstructs continuous (full-field) 

deformations from discrete strain measurements and then utilizes them to obtain full-field strains 

within the structure. Subsequently, iFEM-reconstructed strains are employed with a suitable 

damage diagnosis index to quantify the critical (possibly damaged/cracked) zone of the structural 

domain. Next, this critical zone is modelled by populating PD material points and establishing 

non-local interactions between the material points. Enforcing the real-time deformations predicted 

by iFEM to the boundary material points of the PD domain as displacement boundary conditions, 

the deformations of the material points located internal to the damaged zone is recalculated through 

PD analysis. During this simulation, the damage prognosis is achieved by precisely modelling 

structural discontinuities (crack etc.) and analyzing crack propagation based on non-local particle 

interactions. The shape sensing and damage monitoring capabilities of the iFEM-PD method are 

numerically verified for crack monitoring problems of composite structures subjected to various 

static/dynamic loads. Also, the high accuracy of the iFEM-PD formulation is experimentally 

validated by comparing the numerical results with those of digital image correlation. Overall, the 

merits of the new approach are revealed for precise crack growth monitoring in composite 

structures. 

Keywords: Structural health monitoring; inverse finite element method; peridynamic theory; 

shape sensing; crack monitoring; damage propagation; composite structures. 
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1. Introduction 

Structural health monitoring (SHM) is an integrated and automated monitoring process to 

assess real-time damage state of various engineering structures used in the fields of marine [1], 

aerospace [2], and civil [3] engineering. Early diagnosis and posteriori prognosis of defects such 

as cracks, damages, corrosion through an SHM system can prevent the catastrophic failure of the 

structure, thereby playing a crucial role for decreasing the direct economic losses and increasing 

environmental and human safety. Considering large-scale structural systems, combination of 

sensor technologies and digital twins can enable collection of precise structural integrity 

information to be used for condition-based maintenance scheduling. In this context, robust and 

efficient sensing algorithms capable of performing real-time and full-field structural integrity 

assessment is required to construct effective SHM systems that can realize a reliable monitoring 

of the lifecycle phases of a structure [4].  

Dynamic reconstruction of structural deformations from in situ measurements, the so-called 

shape sensing, is an inverse problem that requires combination of parametric mathematical models 

together with experimental measurements. In the last decades, new sensor technologies have been 

developed for real-time experimental data collection, which were extensively applied to 

monitoring of strains, displacements, and mechanical loads at the discrete positions of the 

structures [5-7]. Among existing sensor types, fiber optic sensing systems have become popular 

for SHM applications of aerospace structures since they can be practically embedded between plies 

of composite laminates for interior strain measurements [8-11]. As these distributed systems use 

light scattering methods such as Brillouin [12] or Rayleigh [13] scattering, they offer an advantage 

of continuous strain measurement along an optical cable. In addition to the sensor technologies, 

different shape sensing methods have been introduced over the years such as Ko’s displacement 

theories [14-15], modal based algorithms [16-18], neural network algorithms [19-22], and inverse 

finite element method (iFEM) [23]. Moreover, Tikhonov regularization [24] were employed to 

solve the parametric differential equations of the inverse problems including  sparse identification 

of nonlinear dynamical systems [25], inverse wave propagation [26], damage detection [27], 

among others.  

In short, Ko’s formulation [14-15] is based on simple analytical integration of in situ strain 

measurements, where appropriate boundary conditions are used to determine the integration 
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constants. Besides, the modal methods [16-18] employ continuous weighted basis functions to 

approximate displacements based on mode shapes of the structure and predict the unknown 

weights of the displacement function by using curve-fitting of experimental strains. Furthermore, 

neural network approaches [19-22] is based on training various classification and regression 

models via supervised/unsupervised learning algorithms to gain maximum information from the 

experimental measurements. Lastly, the iFEM [23] is a continuum-mechanics-based least-squares 

variational principle that can be categorized as a new class of shape sensing algorithms. More 

details of these algorithms with various numerical and experimental comparisons can be found in 

references [28-29]. 

Recent studies [30-31] have shown that iFEM methodology provides very robust and reliable 

deformation reconstruction results for both static and dynamic conditions. The iFEM has the 

following characteristics for shape sensing process: (1) Shape sensing without material and loading 

information, (2) modelling capability of complex plate/shell structural geometries, (3) applicability 

to any geometrical and/or natural boundary conditions, (4) suitability to deformation 

reconstruction in real time, and (5) insensitivity to measurement errors such as noisy strains. As a 

result, the iFEM methodology fulfills all requirements of a reliable SHM system as being the most 

general shape sensing method among the approaches mentioned above. Least-squares variational 

principle of iFEM enforces the match between analytical and experimental section strains of 

beam/plate/shell/solid geometries through a minimization process with respect to the unknown 

displacements, resulting in the partial differential equations. These equations are commonly solved 

in a weak form by using inverse finite elements where kinematic variables are approximated 

through Lagrangian shape functions.  

Up to now, various inverse element formulations were proposed in literature ranging from 

beam to shell elements. The most attractive ones including iMIN3 [32], iQS4 [33], and iCS8 [34] 

inverse-shell elements employ C0-continuous interpolation functions in accordance with the first-

order shear deformation theory (FSDT). Particularly, the iQS4 element has recently gained a 

popularity for shape sensing applications on simple/complex geometries, e.g., ship and offshore 

structures [35-39] and stiffened aerospace panels [40-41], due to its merits for practical modelling 

of large-scale structures with low-cost sensor measurement and highly accurate displacement 

estimations [42-43]. Several studies have shown the superior applications of iFEM/iQS4 approach 
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for damage identification in monolithic/stiffened structures having isotropic/orthotropic material 

properties [44-49].  

Furthermore, a variety of inverse-beam elements were developed for displacement monitoring 

of thick/thin beam structures [50-53]. Numerous combined experimental and numerical studies 

have proven their high efficiency and accuracy for real-time deformed shape detection [54-57]. 

Recently, isogeometric iFEM analysis [58-60] were introduced by employing the iFEM as a 

general framework and the non-uniform rational B-splines (NURBS) as the discretization strategy 

for both structural geometry and displacement domain. This new framework simply merges the 

concepts of isogeometric analysis [61-62] with the iFEM methodology. The first method [60] was 

developed for thin doubly-curved shell structures, which was simplified later for shape sensing 

applications of straight beams with variable cross sections [63-64]. Additionally, robust 

displacement theories such as refined zigzag theory (RZT) [65] have been combined with iFEM 

to reconstruct zigzag deformation through the thickness of sandwich plate [66], shell [67], and 

beam [68] structures. The predictive capabilities of iFEM-RZT method were numerically and 

experimentally verified for moderately thick wing-shaped sandwich panel in [69-70]. Recently, a 

two-step formulation, so-called “smoothed iFEM” [71], has been proposed to (i) generate smooth 

(continuous) strain data from discrete sensor measurement and (ii) use the continuous data for 

performing shape sensing by iFEM. The combined experimental and numerical results have 

validated the improved accuracy of smoothed iFEM against the classical formulations.  

Full-field shape sensing information can be suitably utilized to perform structural anomaly 

identification, which is another important step of SHM to estimate exact damage location, size, 

and amount of material degradation. Current SHM developments to support damage diagnosis 

and/or characterization include investigation of guided waves and modal parameters [72-75] via 

acoustic sensors [76]. Since fiber reinforced polymer matrix materials are broadly used in 

manufacturing of primary load bearing structural components of aerospace structures, the robust 

anomaly identification approaches have extensively been implemented for laminated composite 

structures. Moreover, researchers have used methods such as acoustic emission, digital image 

correlation (DIC), infrared thermography, and fiber Bragg grating sensors in an 

individual/combined manner to understand the specific damage mode and its accumulation under 

various loading conditions in fiber reinforced laminates and sandwich structures [77-79]. Among 
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the methods mentioned herein, with the ability to provide local and global displacement field as 

discrete point clouds, the DIC system has become ever more appealing for failure analysis, thereby 

lending itself to become one of the most popular noncontact measurement systems [80].  

Albeit their high specific strength and corrosion resistance properties, composite materials are 

prone to complex damage/failure mechanisms. These may include delaminations [81], fiber/matrix 

cracking [82], and face/core debonding [83] due to the continuous operational loading conditions 

over the service life of a structure. Current SHM methods to prognose full-field detail of gradual 

damage accumulation inside these composite materials followed by abrupt failure may be limited 

due to their simplified/inherent assumptions. To solve such a challenging problem as forward 

analysis (i.e., requiring knowledge of material, loading, constraint conditions), an advanced 

nonlocal continuum-mechanics formulation, peridynamic theory, has been proposed [84]. 

Peridynamics (PD) is a state-of-the-art theory for improved modelling of crack growth dynamics 

and damage simulation in materials and structures. Unlike classical continuum mechanics and/or 

linear elastic fracture mechanics, PD equations do not involve any spatial derivatives and do not 

require an external crack/damage growth criterion, thus being always valid regardless of 

discontinuities. Hence, since its first publication, various research studies have been dedicated to 

simulating failure analysis of different materials including multi-physics and multi-scale problems 

[85-87] and topology optimization [88-89]. 

In particular, the peridynamic theory to capture failure and damage in composites is first 

introduced in [90] where the matrix and delamination damages of graphite-epoxy laminates under 

low-velocity impact were predicted. Moreover, inhomogeneous nature of composite laminates was 

modelled considering volume fractions of stiff-fiber and softer-matrix materials to predict damage 

evolution of laminates with different fiber orientations using PD [91]. Besides, a robust 

homogenized peridynamic model [92] was developed for dynamic fracture analysis of fiber-

reinforced composites utilizing a conical micro-modulus function for the homogenization process. 

Afterwards, this model was extended to partially and fully homogenized peridynamic models in 

[93] to capture accurate damage results in a three-point-bending experiment. Furthermore, the 

concept of transverse micro-modulus was introduced to refine the anisotropy of PD composite 

model [94]. More recently, orthogonal anisotropy of composite lamina was represented utilizing a 

lattice PD model as well [95]. The robustness of this model was extensively validated with tension 
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experiments of a notched lamina. Most recently, an efficient PD composite laminate model was 

implemented [96] adopting the kinematic relations of FSDT plate theory for transverse shear 

deformation effects. The accuracy of this method was demonstrated with double cantilever beam 

experiment. 

Apart from those PD approaches for fracture simulations of laminate structures, a robust 

peridynamic composite model [97] was proposed by defining fiber and matrix bonds on 2D lamina 

as well as interlayer and shear bonds in the thickness direction between each lamina. This model 

was verified for different matrix cracking failures along fiber directions based on quasi-static 

problems. Later, it was used to analyze damage behavior of stiffened composite curved panel with 

a central slot in [98], where the PD model was also coupled with FEM to increase the 

computational efficiency. Additionally, this PD laminate model was implemented to simulate all 

damage types (matrix cracking, fiber breakage, mode I-II delaminations) of 13-plies composite 

laminate subjected to extreme shock/blast loading conditions in [99].  

In this study, we propose a novel algorithm that enables the effective coupling of iFEM and 

PD, which can predict damage propagation based on discrete strain information such as sensor 

measurements. Here, we will clearly convey the novelty and originality of the present study by 

addressing the gap in literature in terms of structural anomaly identification and crack propagation. 

These can be listed as follows. (1) From an application point of view specific to SHM procedures, 

PD has never been utilized to characterize damage evaluation based on the real-strain information. 

(2) The application of iFEM in damage/crack propagation analysis of composite materials is still

unexplored. (3) The combined usage of PD with novel iFEM techniques has not been investigated

at all. One of the main novel aspects of the present study is to combine a strong and well-accepted

nonlocal continuum theory, Peridynamics, and a powerful shape-sensing method, iFEM, to handle

problems that would be otherwise rather impossible to treat by individual usage of either iFEM or

PD as well as other traditional SHM methods. As such, iFEM can neither classify or prognose

damage type and its complex mechanics (e.g., matrix failure, fiber breakage, etc.) and cannot

handle damage propagation with detailed crack path evolution. As being a forward analysis

technique, the PD may not be suitable for solving an inverse problem of shape sensing using sensor

information. However, a need for a technique that can predict and prognose details of crack

propagation using sensor information only is evident. Here, we have used the advantage of PD
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theory for particularly treating the crack propagation prognosis of damaged structures that are 

concurrently monitored using iFEM methodology in real time. Coupling the iFEM tool with PD 

can be beneficial to understand crack growth dynamics in engineering structures by leveraging the 

full-field deformations/strains reconstructed by iFEM. All in all, to our best knowledge, this is the 

first study in literature that creates an important step towards combining PD together with the 

iFEM under a unique framework. It is important to note that nonlocal operator methods [100-101] 

have recently proposed to solve partial differential equations, where the extensive application areas 

of the formulation were proved regardless of any limitations like discretization pattern and horizon 

size. The present iFEM-PD methodology can also be extended by using these nonlocal operators 

for more applications of crack monitoring. 

The remainder of this paper is organized as follows. Section 2 presents the individual 

mathematical formulations of iFEM and PD approaches and their synthesis to efficiently construct 

a database of shape sensing and SHM processes under both static and dynamic conditions of 

laminates. The effective coupling-algorithm and workflow of iFEM-PD hybrid system are also 

presented in relation to relevant equations. In section 3, analyses of various test cases are 

performed to provide numerical and experimental evidence of high accuracy of the iFEM-PD in 

terms of deformation reconstruction and damage prognosis. Concluding remarks are provided in 

Section 4. 

2. Mathematical Formulation of the iFEM-PD Methodology for Shape Sensing and Crack 

Monitoring 

In this section, the mathematical formulation of coupled iFEM and PD methodology will be 

presented for plate structures. Let us briefly describe the main inverse problem first. Rigid-body-

motion of the plate is fully constrained, and external forces are applied to the plate. Moreover, the 

surface strain measurements are collected via strain sensors mounted at the discrete positions over 

the top/bottom bounding surfaces of the plate. The inverse problem herein is the full-field solution 

of the deformations in three-dimensional space of the plate without knowing the loading and 

material information and only using sensor data. Essentially, the iFEM methodology can be 

utilized to obtain a real-time solution of this problem. The deformation field provided by iFEM 

can be logically utilized to identify any damage scenario of the structure. Although there exist 

various attempts for such calculations, none of them is applied to crack propagation monitoring. 
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With the aid of a non-local continuum theory, peridynamics, it would be possible to account for 

realistic damage/crack propagation simulations of the engineering structures. Herein, the iFEM 

methodology is coupled with PD formulation to detect and characterize real-time damage 

mechanisms during SHM process. Therefore, iFEM-PD methodology can serve as a diagnostic 

and prognostic technology for various SHM systems used in the today’s engineering industry.  

2.1. The inverse finite element formulation for plate/shell structures 

Consider a plate domain bounded as   3 2
1 2 1 2( , , ) ; , ; ( , )x x z z h h x x A        x   

in a rectangular Cartesian coordinate system, where the plate is laminated with isotropic and/or 

orthotropic layers with a total thickness of 2h  as shown in Fig. 1(a). Here, the 1x - and 2x - axes 

corresponds to the in-plane coordinates of the plate, and thickness coordinate is represented by the 

z -axis with 0z   being the mid-plane of the laminate. For the solution of the inverse problem 

mentioned above, FSDT formulation is adopted to describe the deformation of a material point in 

the laminated plate as:  

1

1 2

2

1
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( )

( , ) 1 0 0 0 ( )

( , ) 0 1 0 0 ( )

( , ) 0 0 1 0 0 ( )
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  

x

x x

u x x

x x

x

 (1) 

where 1u , 2u , and zu  are the components of the deformation vector, u . These components are 

aligned with the positive directions of coordinate system as illustrated in Fig. 1(a). The 

1 2 1 2[ ]T
zv v v  v  vector contains five kinematic variables of FSDT. Here, 1v  and 2v  are 

translations along the positive 1x - and 2x -axes, respectively, while zv  is transverse deflection 

along positive z -axis. Besides, 1  and 2  are bending rotations around 2x - and 1x -axes, in the 

given order. The positive directions of these variables are clearly depicted in Fig. 1(a) as well. 

The infinitesimally small in-plane ( 11 22 12, ,   ) and transverse-shear ( 1 2,z z  ) strains of a 

material point can be defined by taking the first-order derivatives of Eq. (1) with respect to the 

1 2, ,x x z  axes as: 
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where the vectors e , κ , γ  contain membrane, bending, and transverse-shear section strains of the 

plate. These section strains are constant through the thickness of the laminate, yet they become a 

variable of the x  coordinate since they are a function of the v  vector only. Note that in Eqs. (2-

3), the operator ,( ) ( ) / x      indicates the partial derivative of a functional with respect to x  

coordinates. 

 
Fig. 1. (a) Geometry and kinematic variables of the laminated plate, (b) surface strain 

measurements with sensors.  

The experimental counterparts of the section strains are one of the main inputs of the iFEM 

methodology. To obtain these experimental values at discrete positions of the plate, surface strain 

measurements need to be collected using strain sensors (i.e., strain gauges/rosettes, fiber optic 

sensors) as depicted in Fig. 1(b). Both membrane strain and bending curvatures of the plate can be 

experimentally determined using the surface strains that are measured at both top and bottom 

surfaces of the plate. Consider that the top and bottom strain rosettes provide discrete strains as a 

vector of 11 22 12( ) ( ) ( )
T

i i i i        ε , 11 22 12( ) ( ) ( )
T

i i i i        ε , where the   and   

superscripts denote the top and bottom surfaces, respectively. Besides, 1, 2,..., si N  subscript 

implies the discreteness of the strains collected from the spatial locations, 0{ } sN
i i x , with sN  

x x1 2, 
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being the total number of sensors attached to the domain. Additionally, normal strains along the 

1x - and 2x -axes and engineering shear strain of the 1 2x x -plane are denoted by the symbols, 11( )i 

, 22( )i  , 12( )i  , respectively.  

Utilizing in situ strain data, the experimental section strains can be defined at the positions of 

the sensors as: 

1

2 ( ) /
i i i

i i i h

 

 

  
   

   

Ε ε ε

Κ ε ε
 (4) 

where the iE  and iΚ  vectors are experimental counterparts of the e  and κ  section strains at any 

sensor position, ix . The surface strain measurements ( ,i i
 ε ε ) cannot be directly employed to 

calculate the experimental conjugate of transverse-shear section strains, iΓ . Although various 

methods [67] have been suggested to compute the experimental values of iΓ , their contribution to 

the bending of the thin plates is much smaller than that of iΚ . Therefore, the role of this transverse-

shear strain contributions can be safely eliminated for shape-sensing of thin plates, which is 

suitable for the geometry studied herein. Before performing an iFEM analysis, the experimental 

section strains can be smoothed utilizing strain pre-extrapolation techniques such as smoothing 

element analysis [102] and curve-fitting approaches [103]. For the sake of notational brevity, the 

smooth strains can be written without the subscript i, and the i E E  and i Κ Κ  notations are 

used to the describe the least-squares formulation of the iFEM hereafter.  

Once the analytic and experimental values of the section strains are available for a given plate 

domain, their squared difference can be employed in the least-squares variational principle of 

iFEM methodology as: 

 2 2 22

2 2 2

1
( ) ( ) ( ) ( )ew w z w d 

       
 v e v Ε κ v Κ γ v Γ  (5) 

where the squared L2-norms corresponding to the membrane, bending, and transverse-shear 

section strains are weighted by the ( , , )iw i e    coefficients to generalize their individual 

contributions to the   functional. These weighting coefficients takes the value of one when the in 

situ section strains are available at a given position, ix . Otherwise, they are set to a small number 
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compared to unity ( 1  , e.g., 310  ) to maintain accurate the strain-data connectivity between 

sensor positions. 

The Eq. (5) can be rewritten more concisely by performing the through-the-thickness integral 

analytically as: 

     
2

0

1
2 2 2

3
T T T

eA

h
w w w dA

A   
 

        
 

 e e Ε κ κ Κ γ γ Γ  (6) 

where the 0  is function of experimental measurements only, therefore its variation becomes zero, 

i.e., 0 0  . On the other hand, the first part of the   functional contains the quadratic and linear 

functions of the v  deformations such as Te e  and Te Ε  terms, thereby leading to a non-zero 

variational equations. To obtain the final set of shape-sensing equations in accordance with the 

iFEM methodology, the error functional can be minimized with respect to the unknown 

deformations. For this purpose, its first variation can be calculated as: 

     
22

3
T T T

eA

h
w w w dA

A     
 

       
 

 e e Ε κ κ Κ γ γ Γ  (7) 

which can be minimized as 0  . This operation can be performed analytically by rewriting the 

section strains using derivative operator matrices as: 

( , , )  D v e κ γ  (8) 

where , ,e κ γD D D  matrices contain / ( 1, 2)i ix i      derivative operators of x1 and x2 axes in 

relation to the section strain expressions as: 

1

2

2 1

0 0 0 0

0 0 0 0

0 0 0

 
   
   

eD  (9) 

1
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2 1
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κD  (10) 
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1

2

0 0 1 0

0 0 0 1

 
   

γD  (11) 

Applying the first variation to the section strain expression given in Eq. (8), the following 

coupling equations can be formulated between variation of the v  deformations and associated 

section strains as: 

( , , )T T T
   v D e κ γ  (12) 

Substituting the Eq. (12) into the Eq. (7) and setting the resultant to zero yields: 
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and rearranging the matrix-vector terms can give rise to the following final set of iFEM equations: 

  0T      v Av q Av q  (14) 

21

3
T T T

eA

h
w w w dA

A  

 
   

 
 e e κ κ γ γA D D D D D D  (15) 

21

3
T T T

eA

h
w w w dA

A  

 
   

 
 e κ γq D Ε D Κ D Γ  (16) 

where the A  matrix contains second-order of differential operators and does not require 

experimental strain input whereas the q  matrix constitutes first-order differential operators and is 

a function of experimental measurements. In fact, if the equation, Av q , is written explicitly, it 

involves five governing equations of the iFEM methodology. For example, if

 11 22 12E E E
T

i Ε  and  11 22 12K K K
T

i K  are calculated at ix ( 1,2,..., )si N  using 

sensor measurements, then their associated weights can be set as 1ew w  . Moreover, setting 

0Γ  and 6 2(10 ,10 )w      in the case of modelling a thin plate, the partial differential 

equations of iFEM can be written in a component form on A  as: 

2 2 2
1 1 2

11,1 12,22 2
1 2 1 2

v v v
E E

x x x x

  
   

   
 (17) 
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2 2 2
2 2 1

22,2 12,12 2
1 2 1 2

v v v
E E

x x x x

  
   

   
 (18) 

2 2
1 2

2 2
1 2 1 2

0z zv v

x x x x

    
   

   
 (19) 

2 2 2
1 1 2

1 11,1 12,22 2
1 2 1 2 1

zv

x x x x x

    
    

            
 (20) 

2 2 2
2 2 1

2 22,2 12,12 2
1 2 1 2 2

zv

x x x x x

    
    

            
 (21) 

Discretizing the structural domain with suitable inverse-elements, these equations can be 

written in an element level. For this purpose, the kinematic variables, v , can be interpolated with 

suitable shape functions in an element domain. For example, iQS4 element is a viable four-node 

flat inverse-shell element that has recently gained a lot of attention from the shape-sensing research 

community. As shown in Fig. 2, this element has six degrees-of-freedom at its each node, i.e., 

three translations and three rotations including a drilling rotation, and interpolates the 1 2, , zv v v  

translational kinematic variables using quadratic anisoparametric shape functions [104] and 1 2,   

rotational kinematic variables by bilinear isoparametric shape functions.  

 
Fig. 2. (a) iQS4 element for shape sensing based on iFEM, (b) its degrees-of-freedom per node. 

Utilizing the interpolation strategy of the iQS4 element, the v  deformations can be expressed 

as e ev N v , where ev  is the element DOF vector, namely main unknowns of discretized domain, 

and the eN  matrix contains the shape functions of the iQS4 element. The explicit form of the shape 

function matrix can be formed by following the reference [33]. This approximation can be 
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substituted into the Eq. (8) and then the differential operator matrices ( , , )i i D e κ γ  and shape 

function matrix eN  can be readily utilized to express iFEM equations over an iQS4 element as: 

e e eA v q  (22) 

21

3e

e T T T
e eA

e

h
w w w dA

A  

 
   

 
 e e κ κ γ γA B B B B B B  (23) 
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e T T T
e eA

e

h
w w w dA

A  

 
   

 
 e κ γq B Ε B Κ B Γ  (24) 

where eA  is the area of the iQS4 element, the ( , , )i i B e κ γ  matrices are strain-displacement 

relation matrices of the iQS4 element that can be calculated as e
i iB D N . These matrices involve 

the derivatives of shape functions with respect to local element coordinates as provided in 

reference [33]. In Eq. (22), the eA  matrix and eq  vector are the left-hand-side matrix and right-

hand-side vector that are formed by considering the contributions of either analytical or 

experimental section strains.  

Note that 2×2 gauss quadrature rule can be employed to numerically compute the area integrals 

given in Eqs. (23-24), for which necessary Jacobians needs to be established to perform the 

relevant isoparametric transformations between coordinate axes. After constructing the element 

level iFEM equations, they can be assembled to form the global system of the iFEM equations for 

the whole discretization. Then, applying relevant constraint boundary conditions, the global 

equations can be solved to give rise to the three-dimensional deformations in the full-field 

structural domain. This shape-sensing information can be utilized to compute the strain variations 

as provided in Eqs. (2-3); therefore, the full-field strain sensing of the structure can also be possible 

during the SHM process. For structural integrity assessment, von Mises equivalent strain can be 

predicted using the individual strain components under plane stress condition as:  

       2 2 2 2 2 2
11 22 11 22 12 2 1

2
6

3vm zz zz z z                   (25) 

where the 11 22( ) / ( 1)zz        is the strain along thickness coordinate, and   is the Poisson’s 

ratio of the material. Finally, using the full-field strain components in the constitutive relations, 
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three-dimensional stresses can be obtained anywhere in the structural domain, thus enabling full-

field stress sensing in real time. 

2.2. Peridynamics for laminate mechanics 

In the framework of peridynamics, it is assumed that the three-dimensional structure consists 

of an infinite number of infinitely small volumes that are so-called material points or particles. 

These material points interact with each other in areas where they are closest to each other as 

depicted in Fig. 3(a). Considering the conservation of linear and angular momentum, the PD 

equation of motion of a material point can be expressed in the form of integrodifferential equation 

as:  

on , 0t    uu L b  (26) 

where the   is the density of the material, the u  and b  vectors contains the accelerations and 

body forces along 1x , 2x , and z  coordinates at time t , respectively. Here, uL  is the force per unit 

reference volume due to particles interactions, which can be stated as [84]: 

 ( , ) ( , ) ( , ), d , 0
H

t t t V t      
x

u xL x f u x u x x x x  (27) 

where f  represents the interaction forces between particles located at x  and x  positions, which 

are integrated over an interaction domain of the particle of interest, x . This finite domain is 

referred to as ‘horizon’, which can be defined as  ; 0;H         x x x x , where   is 

the size of the interaction domain, e.g., radius of a circular horizon in 2D space. In Eq. (27), the 

( , )t u x u  and ( , )t u x u  terms are the deformation vectors of x  and x  material points. 

The Eqs. (26-27) are the general form of the peridynamic theory, and it can be restated for 

performing structural analysis of laminates in accordance with the bond-based PD composite 

model [97]. Given   laminate domain is composed of N  layers, let ( )k    denote the lamina 

level, i.e.,  ( ) 3 ( ) ( )( , ) ; , ; 1,2,...,k k kz z h h k N        x  , where the contact forces of the 

material points are defined in four different groups as shown in Fig. 3(b-c). The in-plane lamina-

level interaction forces are classified according to the direction of the PD bonds relative to the 

fiber direction. Consider that the fibers are oriented by   angle with respect to the reference 1x -
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axis as illustrated in Fig. 3(b). In the k-th lamina, directional forces are introduced for fiber and 

arbitrary direction bonds. Here, the material point, i , interacts with material point, q , through 

fiber direction bond in its horizon, Hx , whereas it also interacts with other material points, p , 

through arbitrary direction bonds.  

 
Fig. 3. (a) Interaction of material points in the horizon, (b) in-plane bond interactions, (c) 

interlaminar bond interactions, and (d) shear bond deformation for PD laminate model. 

Moreover, in Fig. 3(c), two other peridynamic bonds, namely interlayer and shear bonds, 

between plies are introduced to account for the thickness direction deformation and/or deflection 

of a laminate subjected to bending loads. Essentially, two plies of a laminate are connected through 

interlaminar peridynamic bonds. The main material points, i , in k-th and (k+1)-th plies relate to 

interlayer bonds between plies. Besides, shear bonds are introduced by connecting the i  material 

point in the k-th ply with the p  and q  particles in the (k+1)-th ply. Similarly, shear bonds are also 

established for the i  particle in (k+1)-th ply as depicted in Fig. 3(c-d). With the existence of these 

bonds in the PD analysis, in-plane normal and shear deformations can be solved by considering 
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the internal forces generated by the in-plane bonds (fiber and arbitrary direction bonds), whereas 

out-of-plane deformation and transverse-shear deformations can be computed via interlaminar 

bonds (interlayer and shear bonds). Accordingly, the equation of motion can be defined for 

material points within the k-th lamina as : 

( ) ( ) ( ) ( ) ( )on , 0k k k k k t    uu L b  (28) 

where the ( )k , ( )ku , ( )kb  terms represent density, acceleration, and body force of the x  material 

point in the k-th lamina, in the given order. In addition, the ( )k
uL  peridynamic force is calculated by 

the integral of in-plane and interlaminar bond force densities over their respective horizons as: 

      ( ) ( ) ( )( ) ( )( ) ( )

1, 1

, , , , 0k k k m k m k
N SH H

m k k

dV V dV t   
  

      
x x

u x x xL f η ξ f η ξ f η ξ x  (29) 

where bond force vectors are the functions of relative displacement vector,  η u u , and the 

relative position vector,  ξ x x  of the bond. For interacting two particles, the horizon Hx  

always belongs to the x  particle and contains its family members represented by the x  particle 

with the volume of V x . This volume can be computed as ( )2 kV x x h    x  for equal particle 

spacing of x . 

In Eq. (29), single superscript (k) is used to indicate in-plane interaction terms associated the 

k-th lamina itself, and double superscripts (k)(m) are utilized to denote the interlaminar interaction 

terms between k-th and m-th laminae. For example, the ( )k
f  vector contains the bond forces 

corresponding to in-plane bonds aligned with either fiber or arbitrary directions. Besides, the ( )( )k m
Nf  

and ( )( )k m
Sf  vectors include the interlayer and shear bond forces between k-th and m-th plies, 

respectively. These can be clearly defined between any two interacting material points as follows: 

( , )c s N    
 


ξ η

f
ξ η

 (30) 

S S Sc  



ξ η

f
ξ η

 (31) 
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where the Nf , Sf , and f  peridynamic force vectors are aligned with the direction of the relative 

position of the interacting material points in the deformed configuration, i.e., 

( ) ( )     ξ η x u x u . The (k) and (k)(m) superscripts are dropped from the bond force vectors 

in Eqs. (30-31) for conciseness of the mathematical expressions therein and hereafter. The s  and 

  symbols given in Eqs. (30-31) represent the stretch and shear angle between the x  and x  

material points and can be defined as   /s   ξ η ξ ξ  and   ( )/ 4 k
ii ppu u h    with iiu  and 

ppu  denoting the relative in-plane displacements of the corner points within two adjacent plies as 

clearly illustrated in Fig. 3(d).  

Since the Eq. (29) does not contain spatial derivatives, this peridynamic laminate model 

becomes applicable to the mechanics of laminate even in the special cases such as the formation 

of a discontinuity (crack) within the structure. Thus, the peridynamic forces are related to the 

history-dependent failure parameters, N , S ,  . Furthermore, in Eqs. (30-31), the interlayer, 

shear, and in-plane peridynamic forces are related with Nc , Sc , and c  bond constants. These 

material parameters can be found by equating the strain energy densities based on the classical 

continuum theory and peridynamics for simple loading conditions such as the uniform tensile 

(elongation) and shear tests [97]. Accordingly, the material parameters corresponding to each type 

of interaction can be expressed for three-dimensional PD laminate model as: 

( )2
m

N k

E
c

h V 


x

 (32) 

  
( ) 2

2 ( ) 2 ( ) 2 2 ( ) 2

/ 2( )

(2 ) ln (2 ) / ( (2 ) )

k
m

S k k k

G h
c

h h h




   
 (33) 

F A

A

c c
c

c

 
 

 
  

 (34) 

where the mE  and mG  are the Young’s and shear moduli of the matrix material, respectively. Note 

that the horizon size is commonly selected as 3 x    for performing highly accurate PD analysis, 

where the x  term represents the equal particle spacing between particles located at the same ply. 

As given in Eq. (34), the in-plane bond constant c  is determined by the angle of the bond relative 
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to the 1x -axis,  . If this direction is equal to the fiber direction, then both arbitrary, Ac , and fiber, 

Fc , direction bond constants are taken into account to compute the c  constant. On the other hand, 

the contribution of Fc  constant drops off for two material points interacting in any other direction 

except fiber direction. Accordingly, these bond constants can be defined using orthotropic material 

constants of a composite lamina as [97]: 

1 2

( ) 3
1 2

4
1

( )
9

A
k

E E
c

E E h


 
 (35) 

1 1 2

( ) 2
1 2

1

( )

1
( )

9

F
k

i
i

E E E n
c

E E h


 





  
 (36) 

where 1E  and 2E  are the elastic moduli of the composite material along the fiber and transverse 

directions, respectively, the n  term is the total number of material points in the horizon, 

( 1,2,..., )i i   is the distance between material points interacting along the fiber direction within 

the horizon with   being the total number of these interactions. Note that the bond constants, c

, Sc  and Nc , are derived under the assumption that the horizon of the main material point, Hx , is 

completely inside the body. However, this is not generally the case for horizons truncated near the 

boundaries of a surface, which results in a reduction in material point stiffness. Hence, this stiffness 

reduction can be corrected by calculating the strain energy density of a material point with 

truncated horizon and equating it to that of CCM theory. Mathematical details of applying surface 

corrections can be viewed in [105]. 

In case of modelling any damage in the PD laminate analysis, the bond breaking criteria shown 

in Fig. 4 are defined to perform the crack propagation analysis of the laminate. Therefore, failure 

has direct relationship with critical parameters or stretches of the peridynamic bonds. In other 

words, if the mechanical strain and/or shear angle between any two material points exceeds its 

critical value, the interaction of two material points is terminated. These criteria are considered 

separately, namely, in-plane fiber and matrix direction, and between-layer vertical and shear 

directions.  
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Fig. 4. Failure criteria of (a) in-plane and (b) interlayer bonds. 

In Eqs. (30-31), the N  and S  damage parameters define interlaminar failures for mode I and 

mode II cracks in delamination for an orthotropic laminate (i.e., related with transverse normal and 

transverse shear deformations), in the given order. In addition to these out-of-plane damage modes, 

the   damage parameter can express the amount of in-plane damage that can be classified as 

matrix ( M ) and fiber ( F ) failures based on   angle. All these parameters are defined as step 

functions ranging from 0 to 1 as follows: 

1 if ( ) [0, ]
( )

0 otherwise
N

N

s t s t t
t

   
 

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 (38) 
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0 otherwise
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    
      



 (39) 

where the Fs  and Ms  terms are the critical stretches of fiber direction and arbitrary (matrix) 

direction peridynamics bonds within the laminae. Depending on the in-plane bond type being 

evaluated, the   damage parameter can be equated to the matrix or fiber failure parameters, M  

or F  (Fig. 4a). Moreover, the Ns  symbol represents critical stretch of the interlayer peridynamic 

bonds and the S  defines the critical shear angle of shear peridynamic bonds between the layers 

(Fig. 4b). The critical values of Ns , S , Ms , and Fs  can be determined based on experimental 
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measurements of different lay-up configurations as indicated in [97]. Appropriately, they can be 

expressed in terms of orthotropic material properties laminae as: 

( )
IC

N k
m

G
s

h E
  (40) 

( )2
IIC

S k
m
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h G
   (41) 
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s

E
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
 (43) 

where ICG  and IICG  parameters are the mode I and II critical energy release rates of the matrix 

material. The underlying idea on derivations of Eqs. (40-43) is that energies required to break all 

associated bonds crossing unit crack between particles within the same ply or two adjacent plies 

of a laminate are the same with related critical energy release rate. It is also important to note that 

the bonds are assumed to fail only in tension because of the predominant mechanism of the 

delamination/fiber/matrix failure modes of a laminate. 

Local damage at any material point, ( , )t x , can be expressed using the ratio of the number 

of broken (terminated) interactions in the non-local region to the total number of interactions as 

follows: 

( )
( , ) 1 ( , , , )H

H

t dV
t N S M F

dV






 





  



x

x

x

x

x  (44) 

where local damage of a material point is characterized as matrix ( M ) and fiber ( F ) damages in 

the plies, and the delamination damage related with mode I ( N ) and mode II ( S ) cracks between 

plies. Note that the degree of damage herein is defined by a value between 0 and 1; where 0 

indicates no damage at the material point, and 1 indicates complete damage. Also, a damage value 

of nearly 0.35 and greater indicates possible cracking.  
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For numerical implementation of the PD laminate model, all lamina-level peridynamic force 

relations can be summed for the composite laminate and equation of motion can be dynamically 

solved in three-dimensional space using explicit time-integration. To this end, after obtaining the 

acceleration in each time step, the velocity and displacement of each material point can be 

determined for the next time step by integrating the acceleration within the explicit time step. The 

advantage of explicit schemes over implicit time integration methods is that there is no need to 

solve equation of motion using large matrices because each equation related to the main material 

point, i , can be solved independently. However, the explicit schemes are stable only if the time 

step size, t , is smaller than a particular value. Adopting the von Neumann stability condition 

[106], a stable time-step size can be determined for a composite laminate as: 

 
 

  
 
 

 
   2

2

1 1 1
2

k

i

k m
N Sp i

p mi p

t
c V c V c x

h h





 
   

 (45) 

where   i p  represents reference distance between material points p  and i  in the undeformed 

configuration,       i p p i  x x .  

Contrary to classical continuum mechanics, normal and/or shear stresses are not considered 

when solving PD governing equations as is given in its original form [84]. Essentially, the 

interactions between particles are demonstrated by peridynamic forces, which are calculated as a 

function stretch, thus there is no direct definition of strain in PD formulation. Nevertheless, 

calculating the strain components within the scope of PD theory is important in terms of realizing 

numerical samples in the current study. In other words, experimental discrete strain data collected 

from a cracked structure under crack propagation case can be simulated through a PD analysis. 

This simulated data can be then utilized as experimental strain input in iFEM analysis for shape 

sensing and crack monitoring analysis. To this end, the strain calculation method used in the 

composite PD model [96] is adopted and rigorously implemented into the in-house PD laminate 

code. 

Before summarizing the strain formulas of the PD model, three types of bonds needed for 

calculating in-plane strains are clearly described as: 
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1-) 1x -axis normal bond: As shown in Fig. 5, the material point i in the 1 2x x -plane can interact 

with a material point j in its horizon by forming a normal bond along the 1x  direction. In addition, 

material points k and l in the horizon of material point i can interact with material point i by 

establishing a normal bond in the 2x  direction. Similarly, material points m and n can interact with 

material points j via the 2x -axis directional bond. 

 
Fig. 5. Types of bonds formed by various directional interactions for PD strain calculation. 

2-) 2x -axis normal bond: As shown in Fig. 5, the material point i can interact with material points 

j located along the 2x  direction in its horizon through a normal bond in the 2x -axis direction. In 

addition, material point i can interact with material points k and l along the normal bond in the 1x

-axis direction. Similarly, material point j can interact with material points m and n through the 

normal bond in the 1x -axis direction. 

3-) 1 2x x -plane shear bond: Any material point i on the 1 2x x -plane can diagonally interact with any 

material point j within its horizon as such defining the shear bond between i and j material points 

as illustrated in Fig. 5. Then, to describe the shear strain that will occur in this case, one can 

consider the shear deformation of a rectangle formed by the interaction of material points i, j, k, 

and l. 
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Under the small displacement assumption, the normal strains along the 1x - and 2x -axes ( xx
ij ,

yy
ij ), and shear strains in the 1 2x x -plane ( xy

ij ) of the ij bond can be expressed specifically for each 

bond type as: 

1
1

1

1 1
2

1 1

1 1
1 2

1 1

if -axis normal bond

1
if -axis normal bond
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if -plane shear bond
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kl mn

ik jl

u
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u u
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x x

u u
ij x x

x x
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 (46) 
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 (48) 

where ( ) ( ) ( )ij i j      operates as displacement or coordinate difference between any two 

interacting i and j particles, and 1 2 1 2, , , ( , , , , , )u u x x i j k l m n       denote the displacement of 

material points i, j, k, l, m, n along the 1x - and 2x -axis, and their coordinates, in the given order. 

The strain expressions of the ij bond interactions herein can be used to find all in-plane strain 
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components for a material point i by simply averaging their contributions within the horizon as 

follows: 

1

( )
xxn
ij

xx i
j n






 x  (49) 

1

( )
yyn
ij

yy i
j n






 x  (50) 

1

( )
xyn
ij

xy i
j n






x  (51) 

where the summation is performed for the total number of j  particles available in the horizon of 

the i  particle located at the ix  position, resulting in the in-plane strain component therein, 

( , , )xx yy xy i   . The PD strain calculation described herein will be utilized in the remainder of this 

study for generating the discrete strain data (i.e., simulated experimental strain) as input to the 

iFEM analysis during crack propagation condition of a laminate with crack performed by the 

presented PD laminate model. 

2.3. iFEM-PD Coupling Algorithm 

To summarize the motivation of the coupling of iFEM with PD theory for SHM, consider a 

real experimental tensile test of a laminate with a central crack depicted in Fig. 6. This structure 

will be exposed to further crack formation and/or crack propagation after a certain time due to the 

external loads. Is it possible to obtain how the crack propagates in the structure or how the full-

field deformation of the damaged structure changes during crack propagation by using sensor 

information only? In fact, hybrid iFEM-PD method systematically answers this important 

engineering question: Yes, it is possible to diagnose crack propagation by performing the shape 

sensing with iFEM and subsequently using the reconstructed displacements to inform PD domain 

through relevant boundary conditions. 

The integrated iFEM-PD system is a very important technology for performing real-time 

displacement and stress monitoring, detecting the types of damages/cracks, simulating the 

evolution of the cracks in a structure. The main purpose is to reconstruct full-field deformations 

using iFEM in real time from discrete strain (sensor) data and transform iFEM displacements to 
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full-field strains by simply taking their relevant derivatives. After this step, one can use the iFEM 

deformations to describe appropriate boundary condition on a local critical zone to predict the 

progress of possible damages/cracks through a PD simulation. Note that the critical zone can be 

selected anywhere in the structure depending on the unexpected von Mises strain differences 

between positions. In other words, the iFEM simulation can be performed in real time and 

examining the von Mises strains reconstructed through iFEM can be utilized to diagnose the 

unexpected von Mises strain concentrations in the laminate structure. The PD laminate model can 

then be created to zoom in the critical region of the structure for estimating the progress of the 

possible damage by the deformation data fed with iFEM. 

 
Fig. 6. Experimental test setup for crack monitoring 

As shown in Fig. 7, let us assume that strain data is continuously collected in time intervals 

from a lamina with or without damage, and this data is analyzed by iFEM in real time. As the 

structure is under the effect of external loads, it will be constantly exposed to internal 

displacements. It is possible to predict these structural deformations and the resulting strains with 

iFEM by using only the sensor data as shown in Fig. 7. It may be not necessary to use the iFEM-

PD damage diagnosis/prognosis system if there are no large strain variations. However, if the 

continuously monitored von Mises strains are above high critical values (e.g., larger than 8000 

µm/m), then the strains differences between current (possibly damaged) and undamaged 

(reference) conditions can be employed to diagnose the critical damage zone and clearly 

distinguish its vicinity. To this end, the recent damage detection formula introduced in [44,46] can 

be utilized as:  

, ,

,

100%vm current vm undamaged

vm undamaged

D
 




   (52) 
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where ,vm current  represents the currently measured von Mises strains and ,vm undamaged  denotes the 

von Mises strains before the damage occurrence. Since both strains are predicted by iFEM they 

become available in full-field structure. Therefore, the damage index given in Eq. (52) can be 

utilized to draw the main boundary of the local critical/damaged zone within the structure. 

 
Fig. 7. Coupled iFEM-PD shape-sensing and crack-propagation monitoring model. 

After the damage diagnosis step, as illustrated in Fig. 7, PD material points can be assigned 

within the boundaries of the critical zone at any time for prognosis of the damage accumulation. 

Expressly, PD material points can be defined inside the iFEM elements encountering high von 

Mises strains to detect damage in these areas. This definition is the first step of creating the coupled 

iFEM-PD system for three-dimensional laminates. As for the next step, the instantaneous 

displacements estimated by iFEM analysis can be applied as the boundary conditions along the 

edges of the PD laminate model. Subsequently, displacements in the damaged area can be 

recalculated by the PD model. Finally, these non-local displacements can be utilized with the PD 

damage criteria to examine the propagation of the cracks/damages during the PD simulation. 
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Algorithm 1 Shape Sensing and Crack Propagation Monitoring Algorithm 
1: procedure COUPLED iFEM-PD ANALYSIS 

2: 
Read nodal coordinates, elements connectivity data, constraint boundary conditions, 
material properties of laminate 

3: for e = 1 to Nel do 
4: Compute ( , , )i i B e κ γ  matrix using derivatives of shape functions, e

iD N   

5: Compute eA  matrix defined in Eq. (23) 

6: 
Assemble eA  matrix to left-hand-side matrix of global system, Θ , for all inverse 
element 

7: end 
8: Reduce the Θ  matrix using constraint conditions and take its inverse to obtain 1

R
Θ  

9: for t0 =1 to tall do 
10: Strain data acquisition from sensors, 0 0( ), ( )i it t ε ε  
11: run iFEM SOLUTION (Algorithm 2)
12: if D > Dtr (e.g., Dtr = 50%, 60%, …, 100%) 
13: Estimate critical zone, d   
14: run PD SOLUTION (Algorithm 3) on possibly damaged domain, d  
15: end 
16: end 
17: write Full-field data set for real-time shape sensing and crack monitoring 
18: exit 

 

In the next loading increment, the collected sensor data can be analyzed by iFEM methodology 

again, and the deformed shape of the damaged structure can be updated. The resulting 

displacements are transferred to the PD composite model as boundary condition, and PD analysis 

can be reperformed for fracture simulation. In this framework, by creating a fully connected loop 

between the iFEM and PD models, the damage prognosis can be achieved until complete failure 

in the structure. The processes specified herein establish the coupled iFEM-PD method applicable 

for a lamina/laminate and/or isotropic materials depending on the suitability of selected individual 

iFEM/PD models. For ease of computer implementation of iFEM-PD approach, relevant 

computational flowchart and algorithm are given in Fig. 8 and Algorithms 1-3, respectively. 
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Algorithm 2 iFEM analysis for displacement and strain predictions, and damage diagnosis 
1: procedure iFEM SOLUTION 
2: Recall 0 0( ), ( )i it t ε ε  sensors data and 1

R
Θ  matrix from Algorithm 1 

3: for e = 1 to Nel do 
4: Compute experimental section strains ( ,i iE Κ ) using Eq. (4)  

5: Compute eq  matrix defined in Eq. (24) 

6: 
Assemble eq  matrix to right-hand-side matrix global set of system, Λ , for all 
inverse elements 

7: end 
8: Reduce the Λ  matrix using constraint condition to get RΛ  

9: Solve the global displacement DOF of all elements, 1 1[ ]elN T
R R
 U Θ Λ v v  

10: for e = 1 to Nel do 
11: Compute the kinematic variables using element DOF vector, e ev N v  
12: Use the v  vector in Eq. (1) to get 3D full-field deformation vector, u  

13: Compute full-field strains using Eqs. (2-3),  11 22 12

T   ,  1 2

T

z z   

14: Compute von Mises strains for the current state, ,vm current , using Eq. (25) 

15: 
Compare initial (undamaged strains) with predicted strains and compute damage 
index, D , using Eq. (52)

16: end 
17: return Full-field deformations, strains, and damage index (Algorithm 1: Line 11)
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Algorithm 3 PD analysis for damage/crack propagation prognosis
1: procedure PD SOLUTION 
2: Recall laminate material properties and dimensions of d domain from Algorithm 1

3: 
Initialize the PD parameters and compute bond constants using Eqs. (32-34), Nc , Sc , 

and c  

4: Generate PD material points in the d  domain, and import iFEM displacements at its 
boundary 

5: for i =1 to Np do 
6: Determine the family members of each particle ix  in their horizon, Hx  
7: end 
8: for i = 1 to Np do 
9: for j = 1 to n  do 

10: Compute surface correction factors for each particle, Scf

11: 
Apply pre-existing damage obtained from iFEM by breaking bonds according 
to Eqs. (37-39) 

12: end 
13: end 
14: Initialize displacement of the particles, u , on d  domain 
15: for ni = 1 to Nt do 
16: Apply iFEM displacement as boundary condition for the step of ni 
17: for i = 1 to Np do 
18: for j = 1 to n  do 

19: 
Compute PD force densities ( Nf , Sf , f ) by multiplying Eqs. (30-31) with 

Scf corrections 
20: Determine the failure condition of each material point using Eqs. (37-39) 
21: Solve equation of motion using PD force densities as given in Eqs. (27-28)
22: end 
23: end 

24: 
Retrieve fiber, matrix, interlayer, shear damage of laminate, , , ,F M N S    , using 

Eq. (44) 
25: end 
26: return Full-field damage parameters i  in the critical zone (Algorithm 1: Line 14) 
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Fig. 8. Workflow of hybrid iFEM-PD system for its coding implementation. 
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3. Numerical and Experimental Examples 

In this section, the integrated iFEM-PD model is applied to damage prognosis and diagnosis 

of composite materials. In this context, the static tensile/bending scenarios of a unidirectional 

composite lamina and a cross-ply laminate are numerically analyzed first. For each test case, 

forward analysis of the model is performed in case of the crack propagation to create a numerical 

(simulated) discrete strain input to the iFEM-PD analysis, namely representing experimental 

surface strains. In fact, there is no need for such an analysis to integrate the iFEM-PD model with 

a real/laboratory test case since the continuous/discrete experimental strain data can be collected 

from the in situ sensors (if the positions of the sensors are determined in the real structure), which 

can be used as direct input of the iFEM-PD code. After this numerical verification step, the high 

accuracy of the iFEM-PD method is then validated against DIC results for experimental shape 

sensing and crack propagation monitoring. 

3.1. Damage detection and crack monitoring of a unidirectional thin lamina 

The shape sensing and crack monitoring of a unidirectional thin lamina with a fiber angle 

direction of 0° with a central crack, shown in Fig. 9, is investigated under static tensile loading by 

using the iFEM-PD model. The main purpose here is to verify the accuracy of the integrated iFEM-

PD formulation for a mode I crack opening condition in a composite lamina. The lamina has a 

rectangular geometry with a length of 152.4 mmL  , width of 76.2 mmW  , thickness of 

( )2 0.1651 mmkh  , and crack size of 17.78 mml   located at its center (i.e., parallel to the width 

of the plate). The fiber and transverse direction elastic modulus, major Poisson ratio and shear 

modulus of the composite (carbon fiber and epoxy) material are listed in Table 1. In addition, 

density, and critical energy release rate of the lamina as well as the elastic modulus, Poisson ratio, 

and shear modulus of isotropic matrix material are provided in Table 1.  

Lamina is subjected to an axial tensile load of 0 159.96 MPaP   from its left and right edges 

as depicted in Fig. 9. For simulating the experimental sensor-strain data (i.e., input for iFEM-PD 

analysis) in the case of the crack opening mode in the structure, first, a forward problem is analyzed 

using the PD laminate model. To this end, the lamina is modeled with a uniform particle 

distribution with the same grid spacing of 0.635 mmx   along both x  and y  directions. 

Therefore, in the PD model of the problem, there are 240 material points in the longitudinal 
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direction, while there are 120 material points in the width direction. In this PD model, the horizon 

size is selected as 3 x   .  

Table 1. Orthotropic material properties of the 0° unidirectional lamina and isotropic material 

properties of the epoxy. 

Material Elastic moduli, 
GPa 

Poisson’s 
ratio 

Shear moduli, 
GPa 

Density, 
kg/m3 

Critical energy 
release rate, J/m2

Carbon-
epoxy 
lamina 

( )
1

( )
2

( )
3

159.96

8.96

3.792

k

k

k

E

E

E







 

( )
12

( )
13

( )
23

1/ 3

1/ 3

1/ 3

k

k

k













 

( )
12

( )
13

( )
23

3.00537

1.422

1.422

k

k

k

G

G

G







 

( ) 1700k   2370

592.5
IC

IIC

G

G




 

Epoxy 3.792mE   1/ 3m   1.422mG   - - 

 

 
Fig. 9. Geometry and boundary conditions of a unidirectional lamina with central crack. 

The PD analysis is statically solved using adaptive dynamic relaxation (ADR) technique for 

10000 time steps, and the convergence of the displacement solution is examined at the points 

located far-field of the crack positions. The deformations obtained at the end of time integration 

are converted into strains for each PD material point with the formulas given in Eqs. (49-51). The 

strain values obtained here, namely the normal strains along the x - and y -axis and the xy -plane 

shear strains, are illustrated for both crack-free and crack-opening conditions as shown in Fig. 10. 

Note that for crack-opening condition, no fail zone is introduced at the vicinity of the crack tip to 

disable the breakage of the PD bonds. For the crack-free case, a constant distribution strain of 

x, u

y, v

L

L/2 Po Po

Crack

l
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( ) 3
1/ 1 10 m/mk

xx oP E    , ( ) 4
12 3.333 10 m/mk

yy xx        , 0xy   is expected in the 

lamina analytically. As shown in Fig. 10, the PD model produces strain distribution that are highly 

compatible with these analytical results.  

To elaborate on the results, the xx  strain contour obtained using PD can be examined for 

lamina without crack. It is seen that the light green colors are generally fixed and corresponding 

to 9.99×10-4, except for the border regions of the plate. The main reason for the formation of tiny 

blue contours in the left and right boundaries of the plate can be attributed to the truncated horizons 

of the material points. Surface effect correction coefficients can be used to compensate for this 

surface effect [105]. However, the mentioned surface effect has only a negligible effect on the 

solution of the inverse problem (i.e., discussed later in this section) because the critical strain 

solution that is sought in the inner area of the plate, which has been obtained correctly. Similarly, 

when the yy  contour distribution is examined, a constant color distribution of approximately 

−3.36×10-4, which corresponds to green color, was reached in the area inside the plate. Moreover, 

according to the xy  contour distribution obtained from the PD model, nearly zero constant shear 

strains are obtained in the range of ±4.75×10-6 in the plate area excluding the corners of the plate. 

All results agree with the analytical values, demonstrating the accuracy of our in-house coding 

implementation as well as the PD laminate model for simulating synthetic sensor-strain data.  

Additionally, when the strain values obtained for crack opening case is examined from Fig. 10, 

it is observed that all strain values have reached their absolute maximum values at the crack tips. 

In other words, in these critical regions, highly dense strain concentration is observed as known 

from the fundamental of the classical fracture mechanics. Besides, as can be seen in these contour 

images that the surface effects are dramatically reduced in this case due to the condensed strain 

regions. These results overall reveal the correctness of the predicted strain distribution for both 

crack-free and crack-opening conditions of the plate, thereby validating accuracy of simulated 

strains input for iFEM-PD analysis. 
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Fig. 10. Normal and shear strain contours of the lamina with/without crack. 

Dense, medium, and sparse iQS4 discretization named as iFEM (80×40), iFEM (48×24), and 

iFEM (16×8) models are created for the shape sensing analysis of the lamina. At this stage, the 

main concern is to evaluate the sensitivity of the iFEM-PD results against the mesh density, 

therefore it is thought that there is a strain sensor positioned on all inverse elements in each iQS4 

discretization. Note that the number of sensors can be reduced especially for the application to the 

real experimental setup by using a suitable weighting strategy of iFEM methodology for sensor 

placement [69]. Alternatively, sparse sensor data can be smoothed by employing  ‘a priori’ 

smoothing techniques [102], resulting in full sensor data even for dense iFEM domains. Thus, it 

is possible to use a high density iFEM mesh even with a sparse sensor distribution as indicated in 

[71]. An example of sensor placement for iFEM (16×8) model is given in Fig. 11. Here, the strain 

data is generated at the center of each inverse element by performing a crack/damage growth 

simulation based on the PD lamina model with 10000 ADR time steps. This data is sampled and 

transferred to iFEM-PD code as an input at each 200 ADR time steps, thus yielding strain data 
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acquisition time range of [1,50]t  for the shape sensing analysis. Such an intensive real-time data 

can be practically processed in a real experimental setup, thanks to the real-time monitoring 

capabilities of the iFEM-PD hybrid damage detection system.  

 
Fig. 11. Sparse resolution of iQS4 model for shape-sensing analysis. 

In Figs. 12-14, total displacement contours obtained with three different iQS4 models in three 

different time steps are compared with the contours of the reference solutions obtained with PD in 

the respective time steps. As can be seen from these figures that the contours obtained by iFEM 

are almost indistinguishable from those of reference solution, demonstrating the highly accurate 

full-field shape sensing capability of the iFEM. When the maximum deformations predicted by 

iFEM are compared with the maximum values of the reference solutions, it is seen that the results 

obtained with the densest iFEM (80×40) model possess approximately 0.4%, 1.7% and 3.3% errors 

in different time steps, respectively. Looking at displacement percent difference for medium 

(48×24) and sparse (16×8) resolutions of iFEM meshes for the same time steps, they are computed 

as 1.31%, 3.4%, 4.8% and 3.3%, 4.2%, 4.3%, in the given order. Expectedly, as the mesh density 

increases, the margin of error generally decreases. The main reason why the margin of error 

increases for each mesh in ascending time steps can be attributed to the propagation of the 

damage/crack failure within the laminate.  

x

y Uniform sensor placement
at the center of elements

iFEM (16×8) model

Strain
rosette
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Fig. 12. Contours of u  axial deformation at time step, 7t  , for unidirectional lamina. 

 
Fig. 13. Contours of u  axial deformation at time step, 15t  , for unidirectional lamina. 

Furthermore, in Fig. 15, the time variations of maximum deformation  for each iQS4 model 

are compared with the reference solution to demonstrate the real-time shape sensing accuracy of 

the iFEM. According to this comparison, the iFEM results differ slightly from the reference results 

after the time step of 15t  . As indicated above, this difference can be ascribed to damage/crack 

propagation in the lamina; thus, it would be useful to examine the von Mises critical strains 

obtained using iFEM displacement results to find the exact diagnostic (high-strain concentration) 

zone. As a matter of fact, modelling of crack propagation in mesh-based systems is quite tedious 
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and requires extra operations such as crack tip identification and/or re-meshing. Here, instead of 

performing these tasks, we first aim to practically diagnose the damage location using the full-

field strain data (generated by iFEM analysis) without updating the mesh, and secondly prognose 

the iFEM-reconstructed deformation data with the iFEM-PD method.  

 
Fig. 14. Contours of u axial deformation at time step, 50t  , for unidirectional lamina. 

 
Fig. 15. Time variation of maximum u  axial deformation for unidirectional lamina. 

Note that it is possible to perform an integrated iFEM-PD analysis at any time step before and 

immediately after damage increment. In this way, the damaged areas can be defined into the iFEM 
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mesh according to the direction of the damage for increasing the sensitivity of the deformation 

results obtained with the current damage paths of the iFEM mesh in each time step. Nevertheless, 

for practicality of the present iFEM-PD hybrid system, we proceed the detailed damage prognosis 

of the lamina by neglecting the errors less than 5% in the maximum displacement. 

 
Fig. 16. Damage propagation and von Mises strain contours for unidirectional lamina. 

To better observe the crack propagation and damage accumulation in the laminate, matrix 

damage contours estimated by direct PD analysis are shown in Fig. 16. Lengths of propagated 

matrix damage/cracks are approximately measured as 20 mm and 34 mm at the time steps of 15t   

and 50t  , respectively. Similar damage results were obtained in the study of Oterkus and 

Madenci [97], and in this context, the accuracy of the PD laminate model is demonstrated. In 
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parallel with this damage growth, the equivalent strain values of iFEM analysis are expected to be 

high at the crack tips and their increment may continue up to a certain length along the x -axis, 

whereby the damage progress can be examined as presented in Fig. 16. To this end, von Mises 

strain contours obtained at different time intervals using each iFEM model are compared with the 

damage evolution contours in Fig. 16.  

 
Fig. 17. Damage diagnosis and formation of PD material points in critical von Mises strain 

regions for unidirectional lamina. 

Particularly, the distribution of the red von Mises strain contours indicates that there is a 

potential damage (high strain region) in the local area at the center of the structure, where may be 

a failure/crack propagation exist. Employing the von Mises predictions at the onset of crack 

propagation time step, 8t  ,  for the damage index computation in Eq. (52), the boundary lines of 
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this region can be roughly estimated for each iFEM model as depicted in Fig. 17. Subsequently, 

PD material points can be placed in these areas as can be seen in the close-up view in Fig. 17. For 

each iFEM discretization, the diagnosed critical regions dimensions and related uniform particle 

spacings are listed in Table 2. Note that all these models coincide with the center of the laminate 

as the damage index is mainly localized therein. Additionally, their horizon size is defined as 

3 x   . Through these new models, the PD particles are directly integrated with mechanical 

response of the iQS4 elements to re-estimate the deformations in this region by imposing the 

iFEM-predicted deformations to the boundary particles of the PD model. To this end, the 

deformation values obtained by using the relevant iQS4 models in three different time steps are 

assigned to the PD material points that limit the critical region, and then an integrated iFEM-PD 

analysis is performed. In the PD model, the solution of the displacement can be directly  calculated 

for all the material points within the local critical region, and as a result the damage propagation 

can be consistently analyzed utilizing the PD lamina model at each different time step. 

Table 2. Geometrical parameters of the iFEM-PD model in the critical damage zone. 

Dimensions, mm iFEM (80×40) iFEM (48×24) iFEM (16×8) 

Domain size along x -axis 53.34 50.8 76.2 

Domain size along y -axis 26.67 25.4 38.1 

PD particle spacing, x  0.381 0.3175 0.47625 

 

The crack/damage propagation results predicted by iFEM-PD analysis are shown in Fig. 18 for 

various mesh resolutions at two critical time steps. These damage estimations can be compared 

with the reference results (i.e., obtained from forward PD analysis) presented in Fig 16. It can be 

clearly seen from these damage contours that the dense, medium, and sparse iQS4 models are 

capable of tracking crack/damage with good precision in accordance with reference solutions. At 

the time step of 15t  , growing cracks length of is roughly estimated as 20 mm on average of the 

iFEM models, respectively, which agrees well with the reference results shown in Fig. 16. On the 

other hand, at the last time step, 50t  , the iFEM-PD solution predicts about 30 mm length of 

crack propagation, which differs from its reference solution by %12. Although the exact true 
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damage size is not perfectly reached at this step, the crack size is fairly estimated even with sparse 

iFEM-PD model and the direction of the damage progression is accurately estimated. When these 

results are evaluated in general, it can be concluded that the integrated iFEM-PD model prognoses 

sufficiently accurate size and direction of damage propagation in composite structures. Hence, this 

example verifies high precision of iFEM-PD approach for the crack detection and its propagation 

monitoring for composite structures.  

 
Fig. 18. Crack/damage propagation contours predicted by the hybrid iFEM-PD system for 

unidirectional lamina. 

3.2. Damage detection and crack monitoring of a cross-ply laminate 

In this section, the shape sensing and crack propagation monitoring of a three-layer (cross-ply) 

laminate with fiber angle directions of 0/90/0 is studied under dynamic tensile and bending loads. 

Similar to the previous example, the length and width of the plate are 152.4 mmL   and
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76.2 mmW  , and each lamina has a thickness of ( )2 0.1651 mmkh  , resulting in the total 

thickness of the laminate defined as 2 0.4953 mmh  . As shown in Fig. 19, a crack with a length 

of / 8 19.05 mmL  , which cut all layers parallel to the y -axis, is located at the center of the 

laminate.  

 
Fig. 19. Geometry and boundary conditions of cracked laminate in tension and bending. 
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The material properties of the lamina (namely, orthotropic carbon-epoxy properties and 

isotropic epoxy properties) are kept the same as that of lamina described in previous section (see 

Table 1). To create the three-dimensional PD laminate model of the problem, each lamina is 

discretized with 120×60 material points, and therefore a uniform discretization with equal spacing 

of 1.27 mmx   is obtained. Therefore, the laminate model consists of 120×60×3 = 21600 

particles in total. The horizon size is chosen as 3 x    during forward PD and/or iFEM-PD 

analyses.  

First, tensile test of the cracked laminate is simulated using the PD laminate model for a 

dynamic pressure applied on the left and right surface edges of the laminate as shown in Fig. 19. 

Here, tensile pressure is distributed equally to all three layers of the laminate. As illustrated in Fig. 

20, the tensile pressure varies linearly in time by reaching its maximum value of 302.85 MPa in 

total time of 0.125 milliseconds. This loading is designated to propagate the crack in the laminate 

as like a real tensile test condition.  

 
Fig. 20. Dynamic loading conditions applied for the laminate with central crack. 

On the other hand, in the bending problem, the crack growth is observed by applying a smaller 

time-dependent pressure (with a linear increase in time) plotted in Fig. 20. Here, the maximum 

value of the pressure, 177.17 kPa, is reached at the time of 0.5 milliseconds. The bending pressure 

is applied on the top surface of the laminate along the negative z axis whereas both the 0x   and 
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x L  surface of the laminate are constrained against three-dimensional deformations as depicted 

in Fig. 19. The stable explicit time-step size of 82.5 10t     is used for the PD analyses of both 

problem, which satisfies the stability condition given in Eq. (45). Therefore, the dynamic tensile 

and bending PD analyses are performed for 5000 and 20000 time steps in total, respectively. 

However, each analysis is divided into 50 equal time steps to examine the time-dependent variation 

of the results more effectively. Note that Fig. 20 shows the variation of the loads applied for both 

tensile and bending problems over these 50 time intervals.  

As a result of the direct PD analysis, the reference displacement and damage propagation 

solutions are generated for each problem described herein. This data is used to verify the accuracy 

of the integrated iFEM-PD model for both shape sensing and damage assessment of cracked 

laminates. Besides, using the strain results of forward PD analysis, numerical sensor-strain data 

that will provide input to iFEM analysis is created. Essentially, this dataset represents strain data 

collected from sensors at specific locations in a real structure with cracks subjected to either tensile 

or bending dynamic loads. It should be noted that in a real experimental setup, there is no need to 

create such a digital (synthetic) data, and it will be sufficient to use the strain readings from real 

sensors for damage detection with the novel iFEM-PD system. In short, the basic setup in creating 

the dataset obtained by direct PD analysis is to prove theoretically and numerically that the iFEM-

PD system works for laminated structures. 

The shape sensing and damage monitoring of the laminate in two different loading conditions, 

i.e., tensile and bending problem, is performed by using two different iQS4 mesh resolutions: 

iFEM (40×20) and iFEM (24×12) models. The number of elements is 40 and 20 along the x  and 

y  axes of the first model, respectively, while it is equal to 24 and 12 for the relatively sparse 

solution domain. Besides, a strain sensor is mounted at the center of each iFEM element (see Fig. 

11 as representative sensor placement model). The sensor-strain data is collected at 50 different 

time steps from the direct PD analysis of the laminate. The number of sensors used here may seem 

to be quite intensive for the experimental setup. However, the main reason for performing dense 

sensor iFEM analysis is to examine the shape sensing and damage detection capabilities of the 

iFEM-PD hybrid algorithm in the case of full sensor measurement (all element having sensor, i.e., 

ideal iFEM solution domain). As explained earlier studies [34-37], the iFEM method does not 
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require a sensor in every element to perform accurate deformation reconstruction. In this context, 

the number of sensors can be reduced for making an experimental application. 

The maximum axial (u ) and transverse ( w ) displacement results predicted by iFEM models 

are compared with their reference solutions (generated by direct PD laminate analyses) as shown 

in Figs. 21-22. Here, the maximum u  displacement along x -axis corresponds to the critical 

deformation of the tensile problem whereas the w  displacement along the z -axis is highest 

deformation of the bending problem. In addition, it should be noted that these real-time solutions 

are obtained for 50 different strain-data-acquisition (time) steps. As graphed in Figs. 21-22, the 

deformations reconstructed from sensor data are in very well agreement with their reference 

solutions for iFEM models. These results also indicate that sparse sensor model (24×12) provides 

quite close results to those generated by the denser model, except short time intervals during the 

crack propagation zone. Overall, these comparisons reveal the high accuracy of the iFEM analysis 

for performing shape sensing of a cracked laminate under either tensile or bending loads. 

 
Fig. 21. Comparison of critical displacement results for tension at different time steps. 

Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures

46



47 

 

 
Fig. 22. Comparison of critical displacement results for bending at different time steps. 

To evaluate the shape sensing performance of the iFEM algorithm over the full computational 

domain, total displacement contours are presented everywhere in the laminate at two different time 

steps as shown in Fig. 23. These time steps, 10,50t  , are critically selected out of all time steps 

to scrutinize the crack propagation within the laminate by using hybrid iFEM-PD model under 

tensile loading (see time step in Fig. 21 for crack propagation zone). In Fig. 23, iFEM produces 

very close deformation distributions that are almost indistinguishable from those of the reference 

PD results in both time steps. The maximum displacement values produced by dense and sparse 

iFEM models at 10t   time step can be read as 0.05662 mm and 0.05816 mm from Fig. 23, 

respectively. According to the reference result (0.05694 mm), the percent errors pertaining to these 

models are around 0.56% and 2.14% only. With the similar calculation method at 50t   time step, 

the percentage maximum displacement errors are found as 0.24% and 4.1% for the dense and 

sparse sensor placement models. These small differences between iFEM and reference maximum 

displacement demonstrate the high accuracy iFEM models for deformation monitoring of a 

cracked laminate under tensile loading. While there are very low error rates for both sensor 

placement models, it is seen that the margin of error is slightly higher when the solution domain 

becomes sparser. This can be only attributed to a natural effect of discretization resolution on the 

result accuracy. 
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Fig. 23. Total displacement contours of the laminate under tensile loads at different time steps. 

Like the axial deformation monitoring of the laminate, the various displacement contours 

estimated for the bending case are shown separately for critical strain-data-acquisition steps in Fig. 

24-25. As can be seen from Fig. 22 that these steps, 40,45,50t  , encounter the crack propagation 

zone of the laminate under bending loads. In Fig. 24, the total displacement contours obtained 

using the iFEM (40×20) and (24×12) models have very close distribution to that of reference PD 

result almost anywhere in the laminate. To assess the accuracy of the predicted displacements, the 

maximum bending displacements at 40t   time step, i.e., 3.528 mm (reference), 3.435 mm 

(iFEM-40×20), 3.349 mm (iFEM-24×12), can be considered as illustrated in Fig. 24. Accordingly, 

the percent difference between iFEM and reference PD solution is only 2.63% and 5.07%. Besides, 

for the next time step, 45t  , displacement prediction accuracy of iFEM (40×20) and (24×12) 

models are computed as 95.8% and 93.5%, in the given order. Moreover, the , ,u v w  displacement 

contours produced by the iFEM (24×12) model in the last time step ( 50t  ) of shape-sensing 

analysis are compared with their reference solutions in Fig. 25. The maximum values of these 

displacement components are predicted as maxu 0.392 mm, maxv  0.103 mm, and maxw  7.34 
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mm by iFEM analysis whereas they are obtained as maxu  0.335 mm, maxv  0.112 mm, and maxw 

7.53 mm from direct PD analysis. Expectedly, the largest displacement value belongs to the w  

displacement in the z  direction due to bending state of the laminate. Remarkably, this fact is well 

estimated by the iFEM methodology even if there exist a growing crack within the laminate. 

Furthermore, the error margins for the maxw  predictions remain in small values (being less than 

2.6%), and the , ,u v w  deformation contours produced by reference PD and iFEM analysis are 

almost indistinguishable from each other in every region of the laminate as presented in Fig 25. 

Hence, these results validate the high accuracy of iFEM methodology in terms of achieving full-

field displacement solution as compared to the PD reference results.  

 
Fig. 24. Total displacement contours of the laminate under bending loads at different time steps. 

Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures

49



50 

 

 
Fig. 25. Axial, lateral, and transverse displacement contours of the laminate under bending loads 

at the last time step, 50t  . 

The full field displacement solution estimated by iFEM analysis can be utilized to compute the 

von Mises strains within the laminate for performing full-field strain sensing in both cases of 

tensile and bending conditions. It should be noted that damage prognosis and/or crack propagation 

monitoring may not be analyzed directly over the von Mises strain contours. Nevertheless, the von 

Mises strain predictions can play an important role to detect a critical/potential damage region for 

detailed prognosis of damage accumulation therein based on the hybrid iFEM-PD system. Here, 

the critical region is classified according to the high von Mises strains that exceed large strain 

values of 9000-10000 µm/m.  

For the tensile problem, the von Mises strains calculated by iFEM at 30,50t   time steps are 

illustrated together with the matrix damage contours obtained by the PD code, representing the 

reference solution in Fig. 26. Here, one can clearly observe hot spot regions where the von Mises 

strain value exceeding 10000 µm/m match with the damage zones in different time steps. Such 

comparison can enable a damage-diagnosis criterion between von Mises strain values and 
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damage/crack propagation in the laminate. More specifically, the maximum strain value is 

approximately 14460 µm/m at 30t   time step while the PD results confirms that the damage 

starts to propagate within the laminate. Remarkably, at last time step of the problem, the strain 

level increases up to 30000 µm/m as such drawing the boundaries of the highly susceptible failure 

area. 

 
Fig. 26. Comparison of the von Mises strain contours obtained by iFEM with the PD damage 

results at different time steps in the tensile loading of the laminate. 

Additionally, the comparison between PD damage and iFEM von Mises strain contours are 

shown in Fig. 27 for the bending problem. These contours clarify how the maximum values of von 

Mises strain over time can be used to diagnose the damage propagation around the crack. For 

instance, maximum strains for iFEM (40×20) and (24×12) models reach 26840 and 28260 µm/m 

at 45t   time step, respectively. At this stage, when the PD damage contours are examined, it is 

obvious that the damage have progressed within the laminate. Marching to the last time step, 50t 
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, as illustrated in Fig. 27, the iFEM von Mises strains increase exponentially up to the maximum 

value of 56110 µm/m whereas the matrix damage grows rapidly from the tip of the crack towards 

clamped edges. 

 
Fig. 27. Comparison of von Mises strain contours obtained by iFEM with PD damage results at 

different time steps in the bending loading of the laminate. 

The damage indices are calculated to define the critical damage zone for both mesh resolutions 

as depicted in Fig. 28. To this end, time steps of 14t   and 36t   corresponding to the onset of 

crack propagation is chosen for tensile and bending problems, in the given order. The relative 

damages are diagnosed and localized at these specific time steps for evaluating damage prognosis 

of the laminate through iFEM-PD hybrid algorithm. Comparing these contours with Figs. 26-27,  

the strain values surpassing 10000 µm/m over the critical damaged zone confirm that the damage 

has started to propagate in this period for the iFEM models. In other words, these critical zones 

conform the high von Mises strain locations such that they are susceptible to any damage 
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occurrence, thus the development of the damage in this area is examined using the PD laminate 

model. For this purpose, as shown in Fig. 28, blue PD model is first generated in the critical zone 

with the particle discretization of 60×30 for both tensile and bending conditions of the laminate. 

Then, the displacement results obtained from the iFEM analysis are used as the input in the PD 

laminate code. Namely, the displacements on the red lines of the critical region in Fig. 28 are 

determined from the iFEM analysis and subsequently used as boundary conditions in the PD 

analysis. After that, iFEM-PD analyses of both loading problems are performed, and the matrix 

damage results are finally evaluated as presented in Figs. 29-30. 

 
Figure 28. Formation of PD material points in critical von Mises strain zones for both tensile and 

bending problem of the laminate. 
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Fig. 29. iFEM-PD damage predictions in critical area of laminate subjected to tensile loading: 

damage prognosis. 

As an output of the iFEM-PD hybrid system for the tensile problem, the damage contours 

obtained by the PD analysis are presented on the critical high strain regions of two different iFEM-

iFEM models at different time steps in Fig. 29. Note that the results corresponding to the 30,50t   

time steps are monitored herein as they are the most crucial steps of the damage accumulation. To 

validate the accuracy of the iFEM-PD results in Fig. 29, they can be compared with the reference 

solution generated by direct PD analysis illustrated in Fig. 26 at the associated time steps. From 

such a comparison, it will be observed that damage contours prognosed by the coupled iFEM-PD 

analysis are in very good agreement with their reference matrix damage solutions at sequential 

strain-data-acquisition steps. Besides, the damage magnitudes for the iFEM-PD models are almost 

identical to those estimated by direct PD analysis. These comparisons clearly verify the high 

accuracy of coupled iFEM-PD system for prognosis of damage/crack propagation in laminated 

structures subjected to tensile loads by utilizing only a network of strain sensors. In summary, it 
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can be concluded that the iFEM-PD methodology merges the merits of iFEM and PD algorithms 

to monitor crack propagation in composite laminates in detail.  

In addition to the damage-prognosis comparisons made for the tensile problem, damage 

accumulation results produced by the coupled iFEM-PD algorithm are shown in Fig. 30 for the 

critical time steps of 45,50t   in the case of bending problem. Like to the tensile problem 

comparison, it is possible to compare these damage contours obtained in the high-strain-region 

with their reference solutions illustrated in Fig. 27. This assessment reveals that the direction and 

shape of the matrix damage growth in the layers of the laminate are almost identically estimated 

by the iFEM-PD hybrid system to those of direct PD results. Namely, iFEM-PD analysis can 

forecast a highly precise crack paths that are very similar to the reference results shown in Figs. 

27 and 30. 

 
Fig. 30. iFEM-PD damage predictions in critical area of laminate subjected to bending loading: 

damage prognosis. 
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In fact, both iFEM-PD (40×20) and (24×12) models generates almost the same damage 

contours in the same local regions shown in Fig. 27 at the 45t   time steps. Yet it may be 

important to notice that the amount of similarity in the damage contours is higher when the finer 

iFEM-PD model is used at 50t  . Regarding the magnitudes of the damage accumulations, both 

iFEM-PD models predict the same result of the PD solution at the time step of 45t  . However, 

for last step of the bending problem, 50t  , iFEM-PD analysis slightly underestimates the amount 

of the maximum damage at the crack tip in the bottom ply. Nevertheless, except for this small 

region, the spatial distributions of matrix damage values produced in iFEM-PD analyses are in 

excellent agreement with their reference PD solutions over the whole laminate. Hence, the iFEM-

PD hybrid structural health monitoring system can accurately prognose the damage/crack 

propagation in laminates exposed to bending loads using in-situ sensor-strain data only. 

3.3. Experimental study for crack monitoring of a woven laminate 

For experimental validation of the present approach, woven (twill fabric) carbon fiber 

reinforced composite plates with a central crack are prepared as shown in Fig. 31. The dimensions 

of the rectangular tensile specimens are 200×75 mm2 and glass fiber reinforced laminates with the 

size of 25×75 mm2 are adhered as tab at both ends of the specimens as illustrated in Fig. 31(a). 

Thus, the gauge length of each tensile sample becomes 150 mm after tabbing (Fig. 31b). For each 

specimen, a central crack with the length of 18.7 mm is cut using water jet. During the mechanical 

tests, the in situ full-field deformation and strain data are collected by DIC system. To this end, as 

depicted in Fig. 31(b), a random speckle pattern is applied on one side of the samples and a 

detectable high contrast region is created for the DIC camera. Here, the post-processing of the DIC 

images is accomplished with GOM Correlate software using facet and step sizes as 25 and 19 

pixels, respectively. A coarse and sparse sensor placement iFEM/iQS4 model of the specimen 

(conforming the 150×75 mm2 gauge/DIC region) is generated as illustrated in Fig. 31(b), where 

the discrete strain sensors are positioned at the center of the iQS4 elements having sensors. In this 

sparse model, only 40% of the iQS4 elements are fed with in-situ data, others have no experimental 

input for shape sensing analysis. Note that the weighting coefficients for membrane, bending and 

transverse-shear strains of the iQS4 elements with no sensor are set to 10-4 to maintain the strain 

connectivity between the elements having sensors. All three specimens are sequentially fixed to 

the universal test machine as depicted in Fig. 32(a), the load is introduced at a constant speed of 
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2mm/min, and DIC system is active for each sample during the tensile tests. Similar force-

displacement plots are observed for the tested specimens in Fig. 32(b), and almost identical 

fracture patterns of the samples are examined with the naked eye as shown in Fig. 31(a), which 

prove the accuracy and repeatability of the performed experimental tests. More details of the 

preparation of the test sample and experimental setup are given in our recent study [107]. 

 
Fig. 31. (a) Three specimens (with the size of 200×75) before and after tensile test and (b) 

geometry, speckle pattern and sensor placement of the specimens.  

 
Fig. 32. (a) Tensile test and DIC system set up and (b) strain-stress curve obtained from three 

specimen during the test. 
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The discrete real-time strain data obtained from sensors are the main input for the iFEM model 

to reconstruct the full-field displacements. Here, the continuous DIC strain data is used to represent 

collected data from the resistive strain gauges and/or FBG sensors at various locations on the 

surface of the test specimens. Namely, as input to iFEM simulation, the discrete strains at the 

sparse configuration in Fig. 31(b), i.e., corresponding to the yellow circles, are sampled from the 

continuous DIC strain information at each load increment during the tensile tests. It is also 

important to know that none of the iFEM models of the specimens considers the presence of crack 

in the laminate. Thus, no ‘a priori’ data regarding the discontinuity are provided to the iFEM 

model. Performing the iFEM analysis at pre-failure, failure, and post-failure moments, the full-

field displacements are reconstructed and subsequently compared with the continuous deformation 

results of DIC system as shown in Fig. 33. According to the variations of total displacement 

contours, excellent agreement between the DIC and iFEM results is apparent despite no 

information of crack in iFEM analysis.  

 
Fig. 33. Comparison of full-field total displacements, uT , predicted by iFEM and DIC analyses at 

t0 (pre-failure), t1 (failure), t2 (post-failure) load steps. 
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At the t0 (pre-failure) and t1 (failure) steps, the displacement contours of iFEM and DIC results 

are almost indistinguishable from each other, and percent different maximum displacements are 

calculated as, 2.4% and 6.2%, respectively. On the other hand, at the t2 (post-failure) step, the 

contours of the iFEM total displacement matches with the those of DIC, except details of the color 

pattern in the crack propagation region at the center of the specimen. Further, the magnitude of the 

maximum deformation is not predicted accurately with iFEM as compared to the DIC simulation. 

This important implication can be attributed that iFEM has no initial knowledge of central crack. 

Nonetheless, iFEM provides an intuition of crack propagation path with weak fluctuations in the 

composite specimens. To have a detailed view of the crack by zooming in its pattern, one can 

utilize iFEM-PD methodology.  

Even though the iFEM method itself does not provide detailed crack propagation output, it 

enables detection of the critical damaged region as well as the crack length, on which PD material 

points can be populated to run coupled iFEM-PD analysis. For this reason, von Mises strain maps 

monitored via iFEM analysis is leveraged to identify the exact damage position and its near-field 

regions within the composite specimen as shown in Fig. 34. In this figure, the maximum von Mises 

strain is found as 7653 µm/m at pre-failure stage. Although no previous information about 

discontinuities is provided to the iFEM methodology, the high stain gradient regions indicate 

significant damage presence at the middle of the laminate. Note that sudden variation of continuous 

von Mises strain maps were examined at failure moment, indicating growth of damage in 

horizontal direction [107]. According to these results, the damaged region is detected via iFEM 

methodology, and a horizontal crack is designated at the center of the plate (in region of von Mises 

strains exceeding 6000 µm/m) as shown in Fig. 34.  

Moreover, the peridynamic material points are populated in the near-field of critical 

damage/crack region, constituting the iFEM-PD model as sketched clearly in Fig. 34. For the PD 

model, the number of material points along x and y directions are 120 and 144, respectively. Thus, 

the discretization size, x , is equal to 0.625 mm. The horizon size is chosen as 3 x   . 

Moreover, according to von Mises strain results, the predicted crack with the size of 18.75 mm is 

placed to the center of iFEM-PD model. Since the woven composite plate demonstrates similar 

material properties along the horizontal and vertical directions, it is assumed that it satisfies 

transversely isotropic symmetry condition. Hence, the orthogonal xy-plane has the isotropic 
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symmetry behavior. The reason of this is that the elastic moduli along x and y directions are equal 

for woven composites [70-71, 107], where the details of the present material properties are 

provided.  

 
Fig. 34. Damage detection using von Mises strains predicted by iFEM and formation of PD 

material points in critical strain zones for coupled iFEM-PD analysis. 

Subsequently, the full-field iFEM displacements are applied as boundary conditions to the 

peridynamic model in the boundary region, chosen as 5 x , as depicted in Fig. 34. The deformation 

results obtained from iFEM at pre-failure, failure and post-failure stages are imposed as boundary 

conditions to peridynamic analysis. Note that the ADR method is adopted to solve the PD model 

quasi-statically for each failure stage. The damage/crack growth and displacement results obtained 

from iFEM-PD simulations are compared with the raw images taken via DIC cameras as shown in 

Fig. 35 at pre-failure, failure, and post-failure stages.  

According to DIC images at failure states, the composite specimen is split into two parts which 

present almost no deformations above and below to the pre-crack region, which is confirmed by 

the displacement results of iFEM-PD approach. As seen in Fig. 35, the maximum displacement 

obtained from horizontal boundary of the critical region at pre-failure stage is estimated as 0.41 

mm using iFEM-PD model, which is also observed as 0.42 mm from DIC measurements in Fig. 

33. Moreover, the maximum displacements at failure and post-failure stages are predicted as 0.49 

mm and 0.68 mm, respectively, in the iFEM-PD analysis. Their counterparts are observed as 0.51 

mm and 0.68 mm from DIC displacement contours in Fig. 33. Hence, the magnitude of the 

deformations (max ~0.7 mm) at the all-failure stage is minuscule as compared to the gauge length 
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of the specimen, 150 mm. Further, displacement contours produced by the iFEM-PD hybrid 

methodology are in very good agreement with those of DIC results. 

 
Fig. 35. Comparison of DIC crack propagation path and iFEM-PD damage (φM) and total 

displacement (uT) predictions at t0 (pre-failure), t1 (failure), t2 (post-failure) load steps within the 

critical zone of the laminate. 

Fig. 35 also presents peridynamic damage results in the laminated plate. These contours clearly 

demonstrate mode-I crack propagation path parallel to the horizontal edges of plate. The maximum 

damage value is found as ~0.4 at pre-failure stage whereas it is ~0.65 at failure stage. This value 

increases up to ~0.9 when the crack reached the boundaries at the post-failure stage. It is obvious 

that the plate is split into two parts at this stage. Accordingly, the damage/crack propagation path 

estimated by iFEM-PD almost perfectly coincides with those of DIC system. Hence, it can be 

concluded that the high accuracy of the iFEM-PD methodology is experimentally proved for both 

shape sensing and crack propagation monitoring in composite structures. 
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4. Conclusions 

In this research effort, a coupled iFEM-PD system is developed for real-time displacement 

monitoring and the damage growth diagnosis/prognosis of three-dimensional laminate structures 

by using only in situ strains (discrete experimental data) collected from sensors. The mathematical 

models of iFEM and PD approaches are respectively established for a quadrilateral inverse-shell 

element (iQS4) and bond-based nonlocal models of lamina/laminate, and their novel coupling is 

algorithmically scrutinized for specific computer implementation. The new SHM formulation 

developed herein is applicable to crack monitoring of a general class of plate structures made of 

laminated composite or brittle isotropic materials.  

The hybrid iFEM-PD system is numerically applied to monitor and analyze the mechanical 

behavior of a cracked lamina/laminate structures subjected to tensile and flexural loadings. In this 

context, the experimental input to be given to the iFEM-PD system is simulated using the direct 

PD analysis. Subsequently, this synthetic strain data is analyzed utilizing various coarse and fine 

iFEM sensor placement models. For each sensor network, full-field shape and strain sensing results 

are generated for the critical time steps of the crack propagation within the composite structures. 

In other words, the three-dimensional displacements that occur in the structure in case of crack 

propagation are calculated through performing iFEM analysis, and using this deformation 

information, full-field von Mises strains are obtained for all sensor placement configurations.  

Comparison of the deformation results produced by iFEM with reference solutions 

demonstrates high accuracy of iFEM-PD approach for displacement reconstruction during crack 

growth. Moreover, the full-field strains estimated by iFEM are employed to define the critical 

regions of the laminates, especially at the vicinity of the cracks, where the equivalent strains  

exceed 10000 µm/m. Providing iFEM deformation data obtained at the boundaries of this critical 

region to the PD model as the boundary condition enables the prognosis of the damage propagation 

within the critical region. In addition, the full-field deformations of the critical zone are reevaluated 

through the iFEM-PD hybrid system. Accordingly, the SHM results indicated that utilization of 

the nonlocal PD kinematics with the iFEM formulation enables accurate displacement and damage 

estimation within the laminate. Namely, precise displacement distribution is achieved as compared 

to the reference solution, thus validating the iFEM-PD for shape sensing in hot-spot regions of the 

damaged structures. Furthermore, the crack growth results obtained from the iFEM-PD system are 
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rigorously compared with the reference results, demonstrating the superior capabilities of this new 

damage/crack monitoring algorithm. The results in Sections 3.1 and 3.2 show that the cracks are 

propagated along with the fiber directions, indicating that the fibers are not damaged due to the 

small-scale imposed load and the matrix cracks are propagated through the fiber direction. 

Additionally, the underlying discretization and horizon sizes have no effect to the results as 

explained in our previous studies [97-99]. Nevertheless, the current formulation can be extended 

by using dual-horizon peridynamics [108-109] effectively for non-uniform discretization sizes in 

future studies. All in all, the numerical results verify the full-field displacement and strain 

monitoring capabilities of the iQS4 element for a growing crack in composites, and clearly 

demonstrate that the iFEM-PD methodology is robust for realistic SHM applications.  

In addition to the numerical verification, experimental validation of the iFEM-PD 

methodology is performed on a woven-fabric tensile test specimen. These specimens are prepared 

with a central crack and their fracture patterns are observed utilizing DIC contactless monitoring 

systems during the mechanical test. Moreover, iFEM-PD simulations of these specimens are 

conducted using coarse (low-fidelity discretization) and sparse (missing data) sensor placement 

iQS4 models, where several locations at the vicinity of the crack have no sensors. According to 

the results obtained in Section 3.3, the iFEM-PD methodology can predict a highly accurate 

position of the damage albeit no ‘a priori’ knowledge of the crack position in the iQS4 model. 

Comparison of the crack growth paths estimated by iFEM-PD and DIC systems reveals that the 

present SHM model is superior for crack monitoring in an experimental test of composite 

structures. Furthermore, the DIC images show that the fibers are broken in the woven fabric, which 

is identically predicted with the iFEM-PD approach. It is also observed that the sparse sensor 

placement model has no drawback on the accuracy of the reconstructed results, confirming the 

practical utility of the iFEM-PD methodology. Hence, it can be concluded that the findings of this 

study demonstrate the high potential of the iFEM-PD computational platform for real-time shape 

sensing and damage/crack propagation monitoring in engineering structures. Finally, it is 

important to restate that the present iFEM formulation is applicable for curved-shell structures 

whereas the present iFEM-PD methodology is only valid for straight plate structures due to the PD 

laminate model. To fully upgrade this methodology for shell structures, the PD formulation can be 

extended for curved structures with the help of references [110-111] in future works. 
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