Geometry-Driven Parametric Sensitivity Analysis for Free-Form Marine Shapes

(Work In Progress)

Shahroz Khan

Panagiotis Kaklis

Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde Glasgow, UK

PE GRAPES IearninG, pRocessing And oPtimising shapES Andrea Serani

Matteo Diez

CNR-INM, National Research Council -Institute of Marine Engineering, Rome, Italy

Motivation

Simulation-Driven Optimization (SDO)

Rises exponentially with design space dimensionality

Existing Approaches

Design Space Dimensionality Reduction

• Unsupervised – PCA, Auto-encoders

Latent **GEOMETRIC** features for lower dimensional representation of original design space.

• Supervised – Sensitivity Analysis (Sobol's method)

Parameters with high variability impact on **performance**.

Quantify uncertainty in performance.

Surrogate Modelling

Supervised – Deep/Machine Learning (PINN, NN, CNN, GAN)
 Bypass the design's evaluation with CFD/FEA.

IX International Conference on Computational Methods in Marine Engineering

[D'Agostino et al., 2020]

Principal Component Analysis (PCA)

[Bhatnagar et al., 2019]

[Umetani, 2017]

Autoencoders

[Wu et al., 2016]

Convolutional Neural Network (CNN)

Generative Adversarial Network (GAN)

Physics Informed Neural Network (PINN)

Drawbacks

Supervised Techniques

- Design-Space Dimensionality Reduction sensitivity analysis
- Surrogate Modelling

Require big datasets for reliable training

1 simulation \rightarrow 1 hour (low fidelity)

n-dimensional design space

100 simulations \rightarrow 100 hours

 $n \times 10$ design instance (least requirement for reliable training)

computational complexity still exists

Objective

• Compliment physics with computationally less expensive property?

quantity $\,\approx\,$ Physics and computationally less expensive

• Substituting design's physical properties by geometric properties (moments)?

• Can we make a preliminary decision on **sensitivity of parameters** with geometrical properties?

Methodology – Geometric Integrals

Geometric moments of a shape

- 1. are intrinsic properties of its underlying geometry
- 2. provide a unifying medium between its geometry and physics.

(l + m + n)th – order moment (**Riemann integrals**):

$$M_{lmn}(\mathcal{G}) = \iiint x^l y^m z^n \,\rho(x, y, z) \, dx \, dy \, dz$$

$$\rho(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in \mathcal{G} \\ 0 & \text{otherwise} \end{cases}$$

Geometric domain: ${\cal G}$

Methodology – Geometric Integrals

Moments are invariant to transformation (Translation, Scaling, Rotation,)

(l + m + n) - th order central moment:

$$\mu_{lmn}(\mathcal{G}) = \iiint (x - x_c)^l (y - y_c)^m (z - z_c)^n \, dx \, dy \, dz \qquad \text{(Invariant to translation)}$$

Methodology – Applications of Geometric Integrals

Computer-Aided Design and Computer Vision:

- Object Recognition [Atrevi et al., 2017]
- Shape Retrieval [Luciano & Hamza, 2019]
- Rigid Body Transformation [Bronstein & Bronstein, 2018]

Geometric foundation for many physical analyses:

- Structural analysis [Kim et al., 2007]
- Meshless physical analysis [Taber et al., 2018]
- Governing equations of motion [Newman, 2008]
- Fluid simulations [Jin et al., 2019]
- Hydrodynamic and Hydrostatic stability [Biran & Pulido, 2013]

[Bronstein & Bronstein, 2018]

[Jin et al., 2019]

[Taber et al., 2018]

[Fox et al., 2018]

Methodology – Parametric Sensitivity Analysis (PSA)

Sobol' total sensitivity [Borgonovoa & Plischkeb, 2016]

- Variance-based method
- Quantifies parameter's direct contribution to QoI variance
- Sensitivity indices

Sensitive parameters: Sensitivity Indices ≥ 0.05

Dimension reduction

Perform optimisation with sensitive parameters (reduced dimensionality)

Uncertainty Quantification

Refine the model to reduce variance caused by sensitive parameters

Methodology – Sensitivity Indices

Methodology – Sensitive Parameters

Sensitive/Significant Parameters

- Sensitivity indices greater than significant threshold ($\varphi = 0.05$).
- m significant parameters with $I \ge \varphi$.

If m < n (n: original number of design parameters) Construct m –dimensional design space

Test Case

DTMB 5415 Naval Ship Model

- Parameterised with 27 design parameters
- Objective:

Sensitivity of design parameters w.r.t. calm-water wave resistance coefficient (c_w)

Quantity	Value
Displacement	$0.549 m^3$
Length between perpendiculars	5.720 m
Beam	0.760 <i>m</i>
Draft	0.248 m
Longitudinal centre of gravity	2.881 m
Vertical centre of gravity	0.056 m
Water density	998.5 kg/m^3
Kinematic viscosity	1.09E-6 m^2/s
Gravity acceleration	9.803 m/s ²
Froude Number	0.250

• 27-Dimensional original design space

• Dataset Size:

9000 uniformly distributed designs – sampled with Monte Carlo method

• Hydrodynamic simulations:

- Performed with WARP (Wave Resistance Program), developed at CNR-INSEAN [Bassanini et al., 1994].
- Moments of Second Order:
 - Evaluated with Divergence Theorem [Krishnamurthy & McMains., 2011].

Results – Parametric Sensitivity

Top four sensitive parameters w.r.t. c_w are also sensitive w.r.t. 2nd order moments

Results - Surrogate Modelling

Gaussian process regression - [Williams & Rasmussen, 2006]

Hyper-parameter (θ) optimization using maximum likelihood method:

$$\theta_{optimum} = \arg \max \log p(\mathbf{y}|\theta) = -\mathcal{L}(\theta),$$

$$\mathcal{L}(\theta) = \frac{1}{2} \log|\mathbf{K}_D(\theta)| + \frac{1}{2} \mathbf{y}^T \mathbf{K}_D^{-1}(\theta) \mathbf{y} + \frac{n}{2} \log(2\pi)$$

K_D: Kernel function - Squared Exponential

Optimisation - Projected gradient decent method

$R^2 = 0.9576$ Cross-Validation MSE = 0.26836

Results – Optimisation

	PSA with c_w (Design Space 1)	PSA with 2 nd order moment (Design Space 2)
Sensitive parameters (Index>0.05)	7	7
Design space dimensionality	7	7
Optimisation Iterations	500	500
Optimised design c_w	5.2241e - 04	5.3578 <i>e</i> – 04
Difference (Absolute Percentage Error)		2.5589%
Computational Cost	~ 375 Hours	~9.5 Hours
Design Space 1 Orignal Optimised	Design Space 2 Orignal Optimised	6.4×10^4 $Average c_w with design space 1 Average c_w with design space 2max & min c_w with design space 2max & min c_w with design space 2average c_w with design space 2$

IX International Conference on Computational Methods in Marine Engineering

16

Iterations

Conclusions & Future Work

Conclusion:

Computationally efficient geometry-based quantity to compliment design's physics during parametric sensitivity analysis.

Future Work:

- Implementation sensitivity analysis with higher order moments, i.e., forth, fifth, etc.
- Integration of high-order moments in Surrogate modelling, especially during Physics-Informed learning.

QUESTIONS?

Funding

University of Strathclyde:

 European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant GRAPES (agreement No. 860843).

CNR-INM:

 US Office of Naval Research through NICOP grant N62909-18-1-2033.

https://www.shahrozkhan.info/research