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1 Introduction

There has been increasing and resurgent interests to treat McKean-Vlasov stochastic differential

equations (SDEs). The motivation stems from considerations of mean-field control, mean-field

games, as well as complex networked systems; see [3, 15, 24]. The idea of using mean-field models

has been around for a long time, one of the initial considerations was from statistical mechanics

to replace “interactions of a large number of particles” in a “many body” problem (known to be

notoriously difficult) by an average of the “bodies”. The first mathematical treatment to justify

such a replacement was [9]. The recent interest of mean-field models, mean-field controls, and

mean-field games has stimulated much of the study on McKean-Vlasov SDEs. A distinct feature of

such systems is the appearance of the probability laws in the coefficients of the resulting equations.

Consider a McKean-Vlasov SDE (also known as distribution-dependent SDE or mean-field SDE)

of the form

dX(t) = b(t,X(t),L (X(t)))dt+ σ(t,X(t),L (X(t)))dW (t), X(0) = ξ, (1.1)

where L (X(t)) denotes the law or distribution of X(t), b : [0, T ] × Rd × P2(Rd) → Rd and σ :

[0, T ] × Rd × P2(Rd) → Rd×d1 are Borel measurable functions (see Section 2 for the definition

of P2(Rd)), ξ is an F0-measurable random variable satisfying E|ξ|β < ∞ for any β > 0, and

W (t) is a d1-dimensional standard Brownian motion defined on the complete probability space

(Ω,F , {Ft}t≥0,P) with filtration {Ft}t≥0 satisfying the usual conditions. In this paper, we aim to

find numerical approximation of the solution of (1.1) under local conditions with respect to the

state variable.

To numerically approximate the solution of (1.1), we first introduce the following intermediate

system of stochastic differential equations

dX i,N (t) = b(t,X i,N (t), µX,Nt )dt+ σ(t,X i,N (t), µX,Nt )dW i(t), i = 1, 2, . . . , N, (1.2)

where (W i, X i(0))1≤i≤N are independent copies of (W,X(0)), initial condition Xi,N (0) = Xi(0),

and µX,Nt := 1
N

∑N
j=1 δXj,N (t) is the empirical measure of (Xj,N (t))1≤j≤N . The above system in

fact, stems from statistical physics and closely related to Dawson’s original work. In our recent

work [30], we treated switching diffusion systems with an additional random switching mechanism

and obtained a law of large number type result, with emphasis on the probabilistic aspect of

the problems. In this paper, we use (1.2) as a reference system to build numerical schemes. In

the literature, (1.2) is sometimes referred to as an interacting particle system, whereas the recent

interests in control systems theory, refer to (1.2) as a system with mean-field terms or a system with

mean-field interactions. The essence is that as N is getting large, the solution of (1.2) approximates

that of (1.1) in an appropriate sense, which is called the propagation of chaos.

To proceed, we present an EM numerical scheme to approximate the solution of (1.2), which in

turn, approximates the solution of (1.1). We partition the time interval [0, T ] into n subintervals

of equal length with hn := T
n , and let tnk = khn for any k = 0, 1, . . . , n. Compute the discrete

approximation Xi,N,n(tnk) of Xi,N (tnk) by setting Xi,N,n(0) = Xi,N (0) and defining

Xi,N,n(tnk+1) = Xi,N,n(tnk) + b(tnk , X
i,N,n(tnk), µX,N,ntnk

)hn

+ σ(tnk , X
i,N,n(tnk), µX,N,ntnk

)∆W i,n(k), i = 1, 2, . . . , N, (1.3)

where µX,N,ntnk
:= 1

N

∑N
j=1 δXj,N,n(tnk ) and ∆W i,n(k) := W i(tnk+1)−W i(tnk). In this work, we demon-

strate the strong convergence of the numerical scheme under rather weak conditions.

2



However, before the desired result can be obtained, we have to make sure that (1.1) is well

behaved. The existence and uniqueness of the solution of McKean-Vlasov SDEs have been investi-

gated intensively. The study of McKean-Vlasov SDEs was initiated in [25], inspired by the kinetic

theory of Kac [17]. An illustration of the general theory of McKean-Vlasov SDEs and their particle

approximations can be found in [38]. The existence and uniqueness of the weak solution to (1.1)

were shown with constant diffusion and bounded drift coefficient in [16]. Moreover, the existence

and uniqueness of the strong solution to (1.1) were established under the global Lipschitz condition

by using the fixed point theorem on the space of continuous functions with values in P2(Rd), for

example, in [1,7]. The existence and uniqueness were then obtained with one-sided global Lipschitz

drift coefficient and global Lipschitz diffusion coefficient in [34, 35, 40]. Under measure-dependent

Lyapunov condition and integrated Lyapunov condition, [12] proved the existence of a weak so-

lution, together with the pathwise uniqueness. It is worth mentioning that the global conditions

w.r.t. the state variable were used in [1, 7, 12,34,35,40].

Perhaps, a local condition was first introduced in [20], where the drift and diffusion coefficients

satisfy a global Lipschitz condition w.r.t. the state variable but a local Lipschitz condition w.r.t.

the measure. In this paper, we aim to treat (1.1) under local Lipschitz conditions w.r.t. the state

variable. More precisely, for a neighborhood of radius R, we use the following form of conditions:

Letting |x| ∨ |y| ≤ R, then

〈x− y, b(t, x, µ)− b(t, y, µ)〉 ≤ L(1)
R |x− y|

2 with L
(1)
R ≤ α1 logR,

‖σ(t, x, µ)− σ(t, y, µ)‖ ≤ L(2)
R |x− y| with L

(2)
R ≤

√
α2 logR,

and α1, α2 are positive constants. Note that the logarithmic growth condition on Lipschitz constants

were used in [11] and [41] to investigate the global flow for SDEs and the convergence rates of the

EM schemes for SDEs, respectively.

Compared to the classical SDEs, the local conditions w.r.t. the state variable, together with the

distribution-dependent coefficients create much difficulties. For the classical SDEs, it is well known

that local Lipschitz type conditions ensure the existence and uniqueness of the local solution.

This, together with some growth conditions such as the linear growth conditions, or monotone

conditions, or the Khasminskii-type conditions, implies the non-explosion of the solution leading to

existence and uniqueness of the global solution; see [26] and references therein. Nevertheless, the

distribution-dependent coefficients introduce fundamental difficulties because their solution cannot

be determined in a pathwise fashion. As a result, the standard truncation technique, the stopping

time technique, and the Yamada-Watanabe principle, etc. cannot be applied directly. In addition, if

the coefficients are locally Lipschitz, the method of the fixed point theorem generally fails. Inspired

by [20], to overcome the difficulties, we use interpolated Euler-like sequence and partition of sample

space. The key step of the argument is to prove the interpolated Euler-like sequence is Cauchy in

a proper space. In addition, we also obtain the uniqueness of the solution.

Once the existence and uniqueness are established, we focus on numerical approximations for

McKean-Vlasov SDEs under local Lipschitz conditions on drift and diffusion coefficients of the state

variable. Although there were numerous results on strong convergence of numerical approximations

for McKean-Vlasov SDEs, the conditions used are the global conditions w.r.t. the state variable.

To mention just a few, an explicit Euler scheme was developed in [4] to handle a specific McKean-

Vlasov SDE, but the convergence is established under the global conditions and constant diffusion

coefficient. Reference [35] investigated the strong convergence of the tamed EM scheme for McKean-

Vlasov SDEs, where the coefficients are of global w.r.t. the state variable. Later, the tamed Milstein
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scheme and adaptive EM scheme were developed for McKean-Vlasov SDEs; see [22, 23, 36]. In [2],

the authors established the strong convergence of the EM scheme by the Zvonkin transformation

when the drift coefficient is Hölder continuous w.r.t. the state variable.

Under non-Lipschitz conditions, the convergence rates of the EM schemes were obtained in [10].

However, empirical measure was not used in the reference system, thus the law is not computable.

Under the conditions of measurability and linear growth of the coefficients, strong convergence

of the EM scheme was proved in [42] using the Krylov estimate, whereas the law involved was

not simulated. To the best of our knowledge, to date, there is no result concerning the strong

convergence for McKean-Vlasov SDEs under local condition w.r.t. the state variable.

For the classical SDEs, the strong convergence of the EM scheme was proved under local Lipschitz

continuity and linear growth condition in [13]. Furthermore, the convergence rates of the EM scheme

for the classical SDEs with the coefficients satisfying local Lipschitz continuity and linear growth

condition were obtained in [41], in which the local Lipschitz constants satisfy the same logarithmic

growth condition as that of this paper. Compared to the classical SDEs, the main difference here is

the need to approximate distributions at every step. To proceed, the stochastic interacting particle

system (1.2) is used as a bridge. In particular, this paper establishes the propagations of chaos

under the local conditions w.r.t. the state variable.

The rest of the paper is arranged as follows. Section 2 introduces some preliminary preparations

and states main results. Section 3 obtains the existence and uniqueness of the solution to (1.1) using

an interpolated Euler-like sequence. Section 4 proves the strong convergence of the EM scheme

for system (1.2). An example is given to illustrate our results in Section 5. Finally, an appendix

containing the proofs of two lemmas is provided at the end of the paper.

2 Preliminaries and Main Results

Throughout the paper, unless otherwise specified, we use the following notation. Let | · | denote the

Euclidean norm and 〈·, ·〉 denote the scalar product in Rd. For a matrix A, denote the Frobenius

norm by ‖A‖ =
√

tr[AA>]. Owing to technical reasons, we restrict ourselves to the following

subspace of P(Rd)

P2(Rd) :=
{
µ ∈ P(Rd) : [µ]2 :=

∫
Rd

|x|2µ(dx) <∞
}
.

Note that for any x ∈ Rd, the Dirac measure δx belongs to P2(Rd). Moreover, P2(Rd) is a Polish

space under the L2-Wasserstein distance

W2(µ, ν) := inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|2π(dx, dy)
) 1

2
, µ, ν ∈ P2(Rd),

where C(µ, ν) is the collection of all couplings for µ and ν. In other words, π ∈ C(µ, ν) is a

probability measure on Rd × Rd such that π(· × Rd) = µ(·) and π(Rd × ·) = ν(·). In particular, if

µ = L (X) and ν = L (Y ) are the distributions of random variables X and Y respectively, then

W2(µ, ν)2 ≤
∫
Rd×Rd

|x− y|2L ((X,Y ))(dx, dy) = E|X − Y |2,

in which L ((X,Y )) represents the joint distribution of random vector (X,Y ); see [5, 7, 32,39].
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Denote by L2(Ω;Rd) the set of random variables X with values in Rd satisfying E|X|2 < ∞.

Consider a terminal time T <∞, and denote by C([0, T ];Rd) the collection of continuous functions

on [0, T ] with values in Rd, endowed with the supremum norm. Denote by L2(Ω;C([0, T ];Rd)) the

family of random variables X with values in C([0, T ];Rd) which satisfy E[sup0≤t≤T |X(t)|2] < ∞.

Then, L2(Ω;C([0, T ];Rd)) is a Banach space under the norm

‖X‖L2 :=
(
E
[

sup
0≤t≤T

|X(t)|2
]) 1

2
.

Throughout this paper, C, Cp, and CN denote positive constants which may be different in different

places, where the subscript p or N is used to emphasize that the constant depends on p or N .

Following [7,40], let us first recall the definition of a strong solution to the McKean-Vlasov SDE.

Definition 2.1. An Rd-valued stochastic process (X(t))0≤t≤T is a unique solution to equation

(1.1), if it satisfies the following properties:

(i) (X(t))0≤t≤T is {Ft}-adapted and continuous;

(ii)

∫ T

0
(|b(t,X(t),L (X(t)))|+ ‖σ(t,X(t),L (X(t)))‖2)dt <∞, P-a.s.;

(iii) X(t) = ξ +

∫ t

0
b(s,X(s),L (X(s)))ds+

∫ t

0
σ(s,X(s),L (X(s)))dW (s), t ∈ [0, T ],P-a.s.;

(iv) If (X̄(t))0≤t≤T is another solution with X̄(0) = ξ, then (X̄(t))0≤t≤T and (X(t))0≤t≤T are

indistinguishable, that is, P{X(t) = X̄(t) for all 0 ≤ t ≤ T} = 1.

Remark 2.1. If for any initial condition ξ satisfying E|ξ|2 < ∞, equation (1.1) has a unique

solution (X(t))0≤t≤T satisfying E|X(t)|2 < ∞ for any t ∈ [0, T ], then we say equation (1.1) has a

unique solution in L2(Ω;Rd), which implies that µt = L (X(t)) ∈ P2(Rd).

We need the following assumptions.

(H1) (One-sided local Lipschitz condition on the drift coefficient with respect to the state variable)

For each integer R ≥ 3, there exists a positive constant L
(1)
R ≤ α1 logR for some constant α1

such that for any t ∈ [0, T ], x, y ∈ Rd with |x| ∨ |y| ≤ R, and µ ∈ P2(Rd),

〈x− y, b(t, x, µ)− b(t, y, µ)〉 ≤ L(1)
R |x− y|

2.

(H2) (Local Lipschitz condition on the diffusion coefficient with respect to the state variable) For

each integer R ≥ 3, there is a positive constant L
(2)
R ≤

√
α2 logR for some constant α2 such

that for any t ∈ [0, T ], x, y ∈ Rd with |x| ∨ |y| ≤ R, and µ ∈ P2(Rd),

‖σ(t, x, µ)− σ(t, y, µ)‖ ≤ L(2)
R |x− y|.

(H3) (Global Lipschitz condition on the measure) There exists a positive constant L such that for

any t ∈ [0, T ], x ∈ Rd, and µ, ν ∈ P2(Rd),

|b(t, x, µ)− b(t, x, ν)| ∨ ‖σ(t, x, µ)− σ(t, x, ν)‖ ≤ LW2(µ, ν).
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(H4) (Joint continuity of the state and measure) For any t ∈ [0, T ], b(t, ·, ·) is continuous on

Rd × P2(Rd).

(H5) (Linear growth condition on the state and measure) There exists a positive constant K1 such

that for any t ∈ [0, T ], x ∈ Rd, and µ ∈ P2(Rd),

|b(t, x, µ)| ∨ ‖σ(t, x, µ)‖ ≤ K1(1 + |x|+W2(µ, δ0)),

where δ0 denotes the Dirac measure at 0.

It was mentioned in the Introduction that the local conditions w.r.t. the state variable and

the distribution-dependent coefficients may create trouble in the investigation of McKean-Vlasov

SDEs. To overcome the difficulties, we utilize interpolated Euler-like sequence and partition of

sample space to establish the existence and uniqueness of the solution to equation (1.1).

Theorem 2.2. Let Assumptions (H1)–(H5) hold. Then, for any F0-measurable random variable

ξ satisfying E|ξ|β < ∞ for any β > 0, equation (1.1) has a unique solution X(t) ∈ L2(Ω;Rd) for

t ∈ [0, T ] with the initial value X(0) = ξ. Moreover, for any p > 0, this solution satisfies

E
[

sup
0≤t≤T

|X(t)|p
]
<∞. (2.1)

We shall prove Theorem 2.2 by using interpolated Euler-like sequence in Section 3. One can

also refer to [33] for another method.

Due to distribution-dependence in (1.1), we consider its approximation by stochastic interacting

particle system (1.2). For N ≥ 1 and i = 1, 2, . . . , N , let (W i, X i(0))1≤i≤N be independent copies

of (W,X(0)). Consider the following non-interacting particle system associated with (1.1)

dX i(t) = b(t,X i(t),L (Xi(t)))dt+ σ(t,X i(t),L (Xi(t)))dW i(t), i = 1, 2, . . . , N, (2.2)

with the initial condition Xi(0). According to Theorem 2.2, one has L (Xi(t)) = L (X(t)), i =

1, 2, . . . , N . Furthermore, let us define [t]n = tnk for all t ∈ [tnk , t
n
k+1) and k = 0, 1, . . . , n − 1, then

the continuous-time version of EM scheme (1.3) can be written as,

Xi,N,n(t) = Xi,N,n(0) +

∫ t

0
b([s]n, X

i,N,n([s]n), µX,N,n[s]n
)ds

+

∫ t

0
σ([s]n, X

i,N,n([s]n), µX,N,n[s]n
)dW i(s), i = 1, 2, . . . , N. (2.3)

For the EM scheme (2.3), it is necessary to estimate the difference of the functions b(·, x, µ), σ(·, x, µ)

at different times. To this end, we assume the Hölder continuity of b and σ with respect to t.

(H6) (Hölder continuity in time with exponent α) There exist constants K2 > 0, ρ > 1, and

α ∈ (0, 1] such that for any x ∈ Rd, µ ∈ P2(Rd), and t1, t2 ∈ [0, T ],

|b(t1, x, µ)− b(t2, x, µ)| ∨ ‖σ(t1, x, µ)− σ(t2, x, µ)‖
≤ K2(1 + |x|ρ +W2(µ, δ0)ρ)|t1 − t2|α.

Theorem 2.3. Let Assumptions (H1)–(H6) hold. Then, the EM scheme (2.3) converges to the

non-interacting particle system (2.2), that is,

lim
N→∞

lim
n→∞

sup
1≤i≤N

E
[

sup
0≤t≤T

|Xi(t)−Xi,N,n(t)|2
]

= 0.
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The proof of Theorem 2.3 is in Section 4.

Remark 2.4. For the classical SDEs whose coefficients are independent of distribution, under the

global Lipschitz condition, the strong convergence rate of the EM scheme is O((1/n)1/2); see [19,26].

Under a local Lipschitz condition, in general, the strong convergence can be obtained and the

convergence rate requires additional conditions [13]. When the Lipschitz constants are of the order

O(logR) for the drift coefficient and O(
√

logR) for the diffusion coefficient, [41] obtained that the

same convergence rate as the global Lipschitz condition. However, for McKean-Vlasov SDEs, we

need to approximate the distribution L (X(t)) for each t ≥ 0 by the empirical measure. To do this,

the interacting particle system (1.2) is used as a bridge. Because the use of the local conditions

w.r.t. the state variable, both the propagation of chaos and the EM scheme associated with particle

system (1.2) cannot be used to prove the rate of convergence. Thus the convergence rate of the

numerical algorithms cannot be obtained. On the other hand, even without using the stochastic

interacting particle system as a bridge, making use of the time-discretization about the McKean-

Vlasov SDE, we still cannot prove the rate of convergence by using the same method as [41], because

the restriction of the stopping time arguments.

Remark 2.5. When the drift coefficient b and the diffusion coefficient σ satisfy the global conditions

w.r.t. the state variable, the strong convergence and the convergence rate were obtained with respect

to N and step size for McKean-Vlasov SDEs in [2,4,14,35]. In this paper, under the local conditions

w.r.t. the state variable, Theorem 2.3 provides a strong convergence result. If the global conditions

hold (L
(1)
R and L

(2)
R are independent of R), according to the proofs of Lemma 4.3, Lemma 4.4, and

Theorem 2.3, we can obtain the convergence rate with respect to N and step size. In other words,

our proofs recover the rate of convergence results under the global Lipschitz conditions w.r.t. the

state variable.

3 Existence and Uniqueness of Solutions

To prove Theorem 2.2, we use interpolated Euler-like sequence (only with respect to distributions,

it is different from the classical EM scheme) with equidistant partitions of [0, T ]. Then we show that

this Euler-like sequence is Cauchy in L2(Ω;C([0, T ];Rd)). The completeness of L2(Ω;C([0, T ];Rd))
enables us to conclude that there is an X : Ω→ C([0, T ];Rd), which is indeed the desired solution

to (1.1).

For any integer n ≥ 1, recall that hn = T
n , tnk = khn for k = 0, 1, . . . , n. Let X(n)(0) = ξ. In

what follows, we define X(n)(t) step-by-step on the intervals [0, tn1 ], (tn1 , t
n
2 ], . . ., (tnn−1, T ]. First, for

t ∈ [0, tn1 ], we consider the following classical SDE

dX(n)(t) = b(t,X(n)(t), µ
(n)
0 )dt+ σ(t,X(n)(t), µ

(n)
0 )dW (t), X(n)(0) = ξ ∈ L2(Ω;Rd), (3.1)

where µ
(n)
0 = L (X(n)(0)) = L (ξ). We start by showing the existence and uniqueness of the

solution to (3.1). Note that Assumptions (H1) and (H2) imply that

〈x− y, b(t, x, µ(n)
0 )− b(t, y, µ(n)

0 )〉 ≤ L(1)
R |x− y|

2

and

‖σ(t, x, µ
(n)
0 )− σ(t, y, µ

(n)
0 )‖ ≤ L(2)

R |x− y|,
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for any t ∈ [0, tn1 ], x, y ∈ Rd with |x| ∨ |y| ≤ R, and that Assumption (H5) gives

|b(t, x, µ(n)
0 )| ∨ ‖σ(t, x, µ

(n)
0 )‖ ≤ K1(1 + |x|+W2(µ

(n)
0 , δ0))

≤ K1

[
1 + (E|X(n)(0)|2)

1
2
]
(1 + |x|),

for any t ∈ [0, tn1 ] and x ∈ Rd. These, together with the existence and uniqueness of the solution to

the classical SDEs, imply that (3.1) has a unique solution on [0, tn1 ]; see [31, Theorem 3.1.1, p.44]

for details. Moreover, by virtue of the linear growth condition, for any p > 0, there is a positive

constant C such that

E
[

sup
0≤t≤tn1

|X(n)(t)|p
]
≤ C(1 + E|X(n)(0)|p). (3.2)

For the proof of estimate (3.2), see [26, Theorem 4.4, p.61] for details. Next, for t ∈ [tn1 , t
n
2 ], we

consider the following classical SDE

dX(n)(t) = b(t,X(n)(t), µ
(n)
tn1

)dt+ σ(t,X(n)(t), µ
(n)
tn1

)dW (t), X(n)(tn1 ) ∈ L2(Ω;Rd), (3.3)

where µ
(n)
tn1

= L (X(n)(tn1 )). According to Assumptions (H1), (H2), and (H5) as well as estimate

(3.2), the existence and uniqueness of the solution to (3.3) can be obtained by repeating the above

procedure and using (X(n)(tn1 ), µ
(n)
tn1

) in place of (X(n)(0), µ
(n)
0 ). Besides, for any p > 0,

E
[

sup
tn1≤t≤tn2

|X(n)(t)|p
]
≤ C

(
1 + E|X(n)(tn1 )|p

)
.

Therefore, we can define X(n) : [0, T ]→ L2(Ω;Rd) inductively. In addition, for any k = 0, 1, . . . , n−
1 and p > 0, we have

E
[

sup
tnk≤t≤t

n
k+1

|X(n)(t)|p
]
≤ C

(
1 + E|X(n)(tnk)|p

)
.

Moreover, for any n ≥ 1 and p > 0, one has

E
[

sup
0≤t≤T

|X(n)(t)|p
]

= E
[

max
0≤k≤n−1

sup
tnk≤t≤t

n
k+1

|X(n)(t)|p
]

≤
n−1∑
k=0

E
[

sup
tnk≤t≤t

n
k+1

|X(n)(t)|p
]
<∞, (3.4)

which implies that X(n) ∈ L2(Ω;C([0, T ];Rd)). It is worthwhile to mention that the bound in

(3.4) exists but may depend on n. However, for our purpose, it is necessary to show that the

bound in (3.4) is independent of n. To this end, recall that [t]n = tnk for all t ∈ [tnk , t
n
k+1) and

k = 0, 1, . . . , n− 1, then for any t ∈ [0, T ],

X(n)(t) = ξ +

∫ t

0
b(s,X(n)(s), µ

(n)
[s]n

)ds+

∫ t

0
σ(s,X(n)(s), µ

(n)
[s]n

)dW (s). (3.5)

By exploiting this type of expression, we can prove the following lemma which indicates that the

bound in (3.4) is independent of n.

Lemma 3.1. Let Assumptions (H1), (H2), and (H5) hold. Then, for any p > 0, there exists a

positive constant Cp, which is independent of n, such that

E
[

sup
0≤t≤T

|X(n)(t)|p
]
≤ Cp.
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Lemma 3.2. Assume that Assumptions (H1), (H2), and (H5) hold. Then, for any p ≥ 2, and

s, t ∈ [0, T ],

sup
n≥1

E|X(n)(t)−X(n)(s)|p ≤ Cp|t− s|
p
2 ,

where Cp is independent of n.

The proofs of the above two lemmas are relegated to the appendix. With these two lemmas

at hand, we proceed to prove an important lemma which indicates that {X(n)}n≥1 is a Cauchy

sequence in L2(Ω;C([0, T ];Rd)).

Lemma 3.3. Let Assumptions (H1)–(H3), and (H5) hold. The interpolated Euler-like sequence

{X(n)}n≥1 is Cauchy in L2(Ω;C([0, T ];Rd)), that is,

‖X(n) −X(m)‖L2 =
(
E
[

sup
0≤t≤T

|X(n)(t)−X(m)(t)|2
]) 1

2 → 0, as n,m→∞.

Proof. For any n,m ≥ 1, by (3.5) and using the Itô formula, we arrive at

|X(n)(t)−X(m)(t)|2 = I1(t) + I2(t) + I3(t), (3.6)

where

I1(t) =

∫ t

0
2〈X(n)(s)−X(m)(s), b(s,X(n)(s), µ

(n)
[s]n

)− b(s,X(m)(s), µ
(m)
[s]m

)〉ds,

I2(t) =

∫ t

0
‖σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(m)(s), µ
(m)
[s]m

)‖2ds,

I3(t) =

∫ t

0
2〈X(n)(s)−X(m)(s), σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(m)(s), µ
(m)
[s]m

)dW (s)〉.

For a sufficiently large R > 0, define

Ωn,m(R) =
{
ω ∈ Ω : sup

0≤t≤T
|X(n)(t)| ∨ sup

0≤t≤T
|X(m)(t)| ≥ R

}
.

Consequently, by the Chebyshev inequality and Lemma 3.1, we get that for any q > 0,

P(Ωn,m(R)) ≤ 1

Rq

(
E
[

sup
0≤t≤T

|X(n)(t)|q
]

+ E
[

sup
0≤t≤T

|X(m)(t)|q
])
≤ 2Cq

Rq
, (3.7)

where R > 0 and q > 0 are to be chosen later. Moreover, it follows from (3.7) that the estimate of

P(Ωn,m(R)) is independent of n and m. Therefore, the selected R and q are also independent of n

and m. For any t ∈ [0, T ], by Assumptions (H1), (H3), and (H5), the Hölder inequality, we obtain

E
[

sup
0≤s≤t

I1(s)
]

≤ 2E
[(

sup
0≤s≤t

∫ s

0
〈X(n)(r)−X(m)(r), b(r,X(n)(r), µ

(n)
[r]n

)

−b(r,X(m)(r), µ
(n)
[r]n

)〉dr
)
· IΩ\Ωn,m(R)

]
+2E

[(
sup

0≤s≤t

∫ s

0
〈X(n)(r)−X(m)(r), b(r,X(n)(r), µ

(n)
[r]n

)
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−b(r,X(m)(r), µ
(n)
[r]n

)〉dr
)
· IΩn,m(R)

]
+2E

[ ∫ t

0
|X(n)(s)−X(m)(s)||b(s,X(m)(s), µ

(n)
[s]n

)− b(s,X(m)(s), µ
(m)
[s]m

)|ds
]

≤ (2L
(1)
R + 2K1 + L) ·

∫ t

0
E|X(n)(s)−X(m)(s)|2ds

+8K1E
[ ∫ t

0

(
1 + |X(n)(s)|2 + |X(m)(s)|2 +W2(µ

(n)
[s]n

, δ0)2
)
ds · IΩn,m(R)

]
+3L

∫ t

0

(
W2(µ

(n)
[s]n

, µ(n)
s )2 +W2(µ(n)

s , µ(m)
s )2 +W2(µ(m)

s , µ
(m)
[s]m

)2
)
ds

≤ 2(L
(1)
R +K1 + 2L) ·

∫ t

0
E|X(n)(s)−X(m)(s)|2ds

+8TK1

(
E
[

sup
0≤s≤T

(
1 + |X(n)(s)|2 + |X(m)(s)|2 +W2(µ(n)

s , δ0)2
)2]) 1

2 (P(Ωn,m(R))
) 1

2

+3L

∫ t

0

(
E|X(n)(s)−X(n)([s]n)|2 + E|X(m)(s)−X(m)([s]m)|2

)
ds

≤ 2(L
(1)
R +K1 + 2L) ·

∫ t

0
E|X(n)(s)−X(m)(s)|2ds+ 16TK1

√
1 + 3C

(
P(Ωn,m(R))

) 1
2

+3L

∫ t

0

(
E|X(n)(s)−X(n)([s]n)|2 + E|X(m)(s)−X(m)([s]m)|2

)
ds. (3.8)

By Assumptions (H2), (H3), and (H5), using the same technique as (3.8) was proved, we get

E
[

sup
0≤s≤t

I2(s)
]
≤ E

[ ∫ t

0
‖σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(m)(s), µ
(m)
[s]m

)‖2ds
]

≤ 2
[(
L

(2)
R

)2
+ 3L2

]
·
∫ t

0
E|X(n)(s)−X(m)(s)|2ds

+48TK2
1

√
1 + 3C

(
P(Ωn,m(R))

) 1
2

+6L2

∫ t

0

(
E|X(n)(s)−X(n)([s]n)|2 + E|X(m)(s)−X(m)([s]m)|2

)
ds. (3.9)

Exploiting the Burkholder-Davis-Gundy inequality, the Young inequality, and (3.9), we then obtain

E
[

sup
0≤s≤t

I3(s)
]

≤ 6E
(∫ t

0
|X(n)(s)−X(m)(s)|2 · ‖σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(m)(s), µ
(m)
[s]m

)‖2ds
) 1

2

≤ 1

2
E
[

sup
0≤s≤t

|X(n)(s)−X(m)(s)|2
]

+36
[(
L

(2)
R

)2
+ 3L2

]
·
∫ t

0
E|X(n)(s)−X(m)(s)|2ds+ 864TK2

1

√
1 + 3C

(
P(Ωn,m(R))

) 1
2

+108L2

∫ t

0

(
E|X(n)(s)−X(n)([s]n)|2 + E|X(m)(s)−X(m)([s]m)|2

)
ds. (3.10)

Substituting (3.8)–(3.10) into (3.6) yields that

E
[

sup
0≤s≤t

|X(n)(s)−X(m)(s)|2
]
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≤
{

4(L
(1)
R +K1 + 2L) + 76

[(
L

(2)
R

)2
+ 3L2

]}
·
∫ t

0
E|X(n)(s)−X(m)(s)|2ds

+32TK1(1 + 57K1)
√

1 + 3C
(
P(Ωn,m(R))

) 1
2

+6L(1 + 38L)

∫ t

0
(E|X(n)(s)−X(n)([s]n)|2 + E|X(m)(s)−X(m)([s]m)|2)ds. (3.11)

In addition, for any s ∈ [0, T ], the result in Lemma 3.2 implies that

E|X(n)(s)−X(n)([s]n)|2 ≤ Chn and E|X(m)(s)−X(m)([s]m)|2 ≤ Chm.

These, together with (3.11), imply

E
[

sup
0≤s≤t

|X(n)(s)−X(m)(s)|2
]

≤
{

4(L
(1)
R +K1 + 2L) + 76

[(
L

(2)
R

)2
+ 3L2

]} ∫ t

0
E|X(n)(s)−X(m)(s)|2ds

+32TK1(1 + 57K1)
√

1 + 3C
(
P(Ωn,m(R))

) 1
2 + 6CTL(1 + 38L)(hn + hm).

Using the Grönwall inequality and noting L
(1)
R ≤ α1 logR, L

(2)
R ≤

√
α2 logR, and (3.7), we derive

that

E
[

sup
0≤s≤T

|X(n)(s)−X(m)(s)|2
]

≤ 32TK1(1 + 57K1)
√

1 + 3Ce4(K1+2L)T+228L2T

√
2Cq

R
q
2

R4(α1+19α2)T

+6CTL(1 + 38L)e4(K1+2L)T+228L2TR4(α1+19α2)T (hn + hm)

≤ C
√
Cq

R
q
2

R4(α1+19α2)T + CR4(α1+19α2)T (hn + hm). (3.12)

We note that R is independent of n and m, hn and hm converge to 0 as n,m → ∞. Letting

n,m→∞, it follows from (3.12) that

lim
n,m→∞

E
[

sup
0≤s≤T

|X(n)(s)−X(m)(s)|2
]
≤ C

√
Cq

R
q
2

R4(α1+19α2)T . (3.13)

Taking q > 0 sufficiently large for q > 8(α1 + 19α2)T , the right-hand side of (3.13) converges to 0

as R → ∞. That is, for any ε > 0, we can choose R := R(ε) > 0 sufficiently large, such that the

right-hand side of (3.13) is less than ε. Therefore, the arbitrariness of ε implies that

lim
n,m→∞

E
[

sup
0≤s≤T

|X(n)(s)−X(m)(s)|2
]

= 0,

which completes the proof.

With these lemmas at hand, we can proceed to prove Theorem 2.2.

Proof of Theorem 2.2. We divide it into the following three steps.
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Step 1: Existence. Note that L2(Ω;C([0, T ];Rd)) is complete. According to Lemma 3.3, there

exists an {Ft}-adapted continuous process (X(t))0≤t≤T such that

E
[

sup
0≤t≤T

|X(n)(t)−X(t)|2
]
→ 0, as n→∞. (3.14)

Note that X(n)(0) = ξ for any n ≥ 1. Then, it follows from (3.14) that X(0) = ξ, P-a.s. and

E
[

sup
0≤t≤T

|X(t)|2
]
≤ C. (3.15)

To prove that (X(t))0≤t≤T satisfies equation (1.1), we take the limit in (3.5). By the path continuity

and (3.14), we need only prove that the right-hand side of (3.5) converges in probability to

ξ +

∫ t

0
b(s,X(s), µs)ds+

∫ t

0
σ(s,X(s), µs)dW (s),

in which µs = L (X(s)) for any s ∈ [0, T ]. On the one hand, by Lemma 3.2 and (3.14), we have

lim
n→∞

sup
0≤s≤t

W2(µ
(n)
[s]n

, µs)
2

≤ 2 lim
n→∞

sup
0≤s≤T

E|X(n)(s)−X(n)([s]n)|2 + 2 lim
n→∞

E
[

sup
0≤s≤T

|X(n)(s)−X(s)|2
]

≤ 2C lim
n→∞

hn = 0.

On the other hand, for any s ∈ [0, T ],

lim
n→∞

E|X(n)(s)−X(s)|2 ≤ lim
n→∞

E
[

sup
0≤s≤T

|X(n)(s)−X(s)|2
]

= 0,

which implies that there exists a subsequence (still indexed by n for notational simplicity) such

that for any s ∈ [0, T ] and almost all ω ∈ Ω,

X(n)(s, ω)→ X(s, ω), as n→∞.

Hence, for any s ∈ [0, T ], by Assumption (H4) and the joint continuity of σ(s, ·, ·), we can derive

that for any s ∈ [0, T ] and almost all ω ∈ Ω,

b(s,X(n)(s, ω), µ
(n)
[s]n

)→ b(s,X(s, ω), µs), as n→∞ (3.16)

and

σ(s,X(n)(s, ω), µ
(n)
[s]n

)→ σ(s,X(s, ω), µs), as n→∞. (3.17)

Furthermore, according to Assumption (H5) and Lemma 3.1, for any A ∈ F ,

sup
n≥1

E
[
|b(s,X(n)(s), µ

(n)
[s]n

)| · IA
]
≤ K1 sup

n≥1
E
[
(1 + |X(n)(s)|+W2(µ

(n)
[s]n

, δ0)) · IA
]

≤ K1 sup
n≥1

[
E(1 + |X(n)(s)|+W2(µ

(n)
[s]n

, δ0))2
] 1
2
(
P(A)

) 1
2

≤ K1

√
3(1 + 2C)

(
P(A)

) 1
2 (3.18)
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and

sup
n≥1

E
[
‖σ(s,X(n)(s), µ

(n)
[s]n

)‖2 · IA
]
≤ 3K2

1

√
3(1 + 2C)

(
P(A)

) 1
2 . (3.19)

Consequently, by the dominated convergence (see [8, Theorem 4.5.4, p.101] or [37, Theorem 4,

p.188]) combined with (3.16) and (3.18), one obtains that for any s ∈ [0, T ],

lim
n→∞

E|b(s,X(n)(s), µ
(n)
[s]n

)− b(s,X(s), µs)| = 0.

Similarly, in view of (3.17) and (3.19), we get

lim
n→∞

E‖σ(s,X(n)(s), µ
(n)
[s]n

)− σ(s,X(s), µs)‖2 = 0.

Next, for any t ∈ [0, T ], Assumption (H5), together with (3.15) and Lemma 3.1, implies that

sup
n≥1

sup
s∈[0,t]

E
[
|b(s,X(n)(s), µ

(n)
[s]n

)− b(s,X(s), µs)|+ ‖σ(s,X(n)(s), µ
(n)
[s]n

)− σ(s,X(s), µs)‖2
]

≤ K1 sup
n≥1

sup
s∈[0,t]

E[2 + |X(n)(s)|+ |X(s)|+W2(µ
(n)
[s]n

, δ0) +W2(µs, δ0)]

+6K2
1 sup
n≥1

sup
s∈[0,t]

E[2 + |X(n)(s)|2 + |X(s)|2 +W2(µ
(n)
[s]n

, δ0)2 +W2(µs, δ0)2]

≤ 2K1

√
5(1 + C) + 12K2

1 (1 + 2C) ≤ C.

It suffices to show that(
[0, t] 3 s 7→ E|b(s,X(n)(s), µ

(n)
[s]n

)− b(s,X(s), µs)|
)
n≥1

and (
[0, t] 3 s 7→ E‖σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(s), µs)‖2
)
n≥1

are both uniformly integrable on [0, t]. Moreover, by virtue of the dominated convergence (see [8,

Theorem 4.5.4, p.101] or [37, Theorem 4, p.188]), we arrive at

lim
n→∞

E
∣∣∣ ∫ t

0
(b(s,X(n)(s), µ

(n)
[s]n

)− b(s,X(s), µs))ds
∣∣∣

≤ lim
n→∞

∫ t

0
E|b(s,X(n)(s), µ

(n)
[s]n

)− b(s,X(s), µs)|ds = 0,

and

lim
n→∞

E
∣∣∣ ∫ t

0
(σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(s), µs))dW (s)
∣∣∣2

= lim
n→∞

∫ t

0
E‖σ(s,X(n)(s), µ

(n)
[s]n

)− σ(s,X(s), µs)‖2ds = 0.

Therefore, by Definition 2.1 and (3.15), X(t) ∈ L2(Ω;Rd) is a solution to (1.1) for t ∈ [0, T ].

Step 2: Estimate (2.1). Let X(t) ∈ L2(Ω;Rd) be any solution to equation (1.1) for t ∈ [0, T ].

Then we note that E|X(t)|2 <∞ for any t ∈ [0, T ]. By the Lyapunov inequality, we prove that for

any p ≥ 2,

E
[

sup
0≤t≤T

|X(t)|p
]
<∞.
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For our goal, it is imperative to prove that the bound of E|X(t)|2 is independent of t. Therefore,

exploiting the Hölder inequality, one gets

|X(t)|2 ≤ 3
[
|ξ|2 + T

∫ t

0
|b(s,X(s), µs)|2ds+

∣∣∣ ∫ t

0
σ(s,X(s), µs)dW (s)

∣∣∣2].
For any t ∈ [0, T ], by the Burkholder-Davis-Gundy inequality, and then using Assumption (H5),

we can calculate that

E|X(t)|2 ≤ 3E|ξ|2 + 9K2
1 (T + 4)E

[ ∫ t

0

(
1 + |X(s)|2 +W2(µs, δ0)2

)
ds
]

≤ 3E|ξ|2 + 2 · 9K2
1 (T + 4)

∫ t

0

(
1 + E|X(s)|2

)
ds. (3.20)

Applying the Grönwall inequality to (3.20), we have

sup
0≤t≤T

E|X(t)|2 ≤ (1 + 3E|ξ|2)e2·9K2
1 (T+4)T .

In what follow, for any p ≥ 2, we calculate the pth moment of the solution (X(t))0≤t≤T . To this

end, for every R > 0, define the stopping time

τR = inf{t ∈ [0, T ] : |X(t)| ≥ R} ∧ T.

Using similar technique as (3.20) was proved, we compute that for any t ∈ [0, T ],

E
[

sup
0≤s≤t∧τR

|X(s)|p
]

≤ 3p−1E|ξ|p + 9p−1Kp
1 (T p−1 +MpT

p−2
2 )E

[ ∫ t∧τR

0

(
1 + |X(s)|p +W2(µs, δ0)p

)
ds
]

≤ 3p−1E|ξ|p + 9p−1Kp
1 (T p +MpT

p
2 )(1 + 3E|ξ|2)

p
2 e9K2

1 (T+4)Tp

+9p−1Kp
1 (T p−1 +MpT

p−2
2 )

∫ t

0

(
1 + E

[
sup

0≤r≤s∧τR
|X(r)|p

])
ds,

where Mp = [pp+1/2(p − 1)p−1]
p
2 . Note that τR ↑ T a.s. Then, employing the Grönwall inequality

and the Fatou lemma, we arrive at

E
[

sup
0≤s≤T

|X(s)|p
]
≤ lim inf

R→∞
E
[

sup
0≤s≤T∧τR

|X(s)|p
]
≤ Cp <∞.

Therefore, the required assertion follows.

Step 3: Uniqueness. Assume that (X(t))0≤t≤T and (X̄(t))0≤t≤T are two solutions to (1.1). Then,

by (2.1), for any p > 0, there exists positive constant Cp such that

E
[

sup
0≤t≤T

|X(t)|p
]
≤ Cp, E

[
sup

0≤t≤T
|X̄(t)|p

]
≤ Cp. (3.21)

First, for a sufficiently large R > 0, define

Ω(R) =
{
ω ∈ Ω : sup

0≤t≤T
|X(t)| ∨ sup

0≤t≤T
|X̄(t)| ≥ R

}
.
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According to the Chebyshev inequality and (3.21), we can get that for any q > 0,

P(Ω(R)) ≤ 1

Rq

(
E
[

sup
0≤t≤T

|X(t)|q
]

+ E
[

sup
0≤t≤T

|X̄(t)|q
])
≤ 2Cq

Rq
, (3.22)

where R > 0 and q > 0 are to be chosen later. Next, using the Itô formula, we have

|X(t)− X̄(t)|2 =

∫ t

0
2〈X(s)− X̄(s), b(s,X(s), µs)− b(s, X̄(s), νs)〉ds

+

∫ t

0
‖σ(s,X(s), µs)− σ(s, X̄(s), νs)‖2ds

+

∫ t

0
2〈X(s)− X̄(s), σ(s,X(s), µs)− σ(s, X̄(s), νs)dW (s)〉

=: J1(t) + J2(t) + J3(t), (3.23)

where νs = L (X̄(s)) for any s ∈ [0, T ]. Consequently, the uniqueness can be obtained by applying

the same technique as Lemma 3.3 was proved. This completes the proof.

Remark 3.4. We have established the existence and uniqueness of the solution for equation (1.1).

It will be interesting to examine such equations with random coefficients and an additional random

switching process. According to our method, if we consider the random coefficients b(t, x, µ, ω̃),

σ(t, x, µ, ω̃) (with ω̃ ∈ Ω̃), then we can still obtain the strong solution to equation (1.1) for all

ω̃ ∈ Ω̃; see [29] and [30] for the related works.

4 Convergence of the EM Algorithm

In this section, let us finish the proof of Theorem 2.3. To proceed, we first need to give some

auxiliary lemmas. The following lemma establishes the well-posedness of the stochastic interacting

particle system (1.2).

Lemma 4.1. Suppose that Assumptions (H1)–(H3), and (H5) hold. Then, for any N ≥ 1, there

exists a unique solution (Xi,N (t))0≤t≤T with the initial value Xi(0) to (1.2).

Proof. For x := (x>1 , x
>
2 , . . . , x

>
N )> ∈ RdN , t ∈ [0, T ], set

B(t,x) =
(
b
(
t, x1,

1

N

N∑
j=1

δxj

)>
, b
(
t, x2,

1

N

N∑
j=1

δxj

)>
, . . . , b

(
t, xN ,

1

N

N∑
j=1

δxj

)>)>
and

Σ(t,x) =


σ
(
t, x1,

1
N

∑N
j=1 δxj

)
0 · · · 0

0 σ
(
t, x2,

1
N

∑N
j=1 δxj

)
· · · 0

...
...

. . .
...

0 0 · · · σ
(
t, xN ,

1
N

∑N
j=1 δxj

)

 ,

where 0 represents a d× d1 null matrix. Then, (1.2) can be rewritten as

dXN (t) = B(t,XN (t))dt+ Σ(t,XN (t))dWN (t), (4.1)
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with the initial condition XN (0) = (X1,N (0)>, X2,N (0)>, . . . , XN,N (0)>)>, and WN (t) = (W 1(t)>,

W 2(t)>, . . ., WN (t)>)> is a d1N -dimensional Brownian motion. Note that

W2

( 1

N

N∑
j=1

δxj ,
1

N

N∑
j=1

δyj

)2
≤ 1

N

N∑
j=1

|xj − yj |2.

Therefore, on the one hand, it follows from Assumptions (H1)–(H3) that for any t ∈ [0, T ], and

x,y ∈ RdN with |x| ∨ |y| ≤ R,

〈x− y, B(t,x)−B(t,y)〉 =
N∑
i=1

〈
xi − yi, b

(
t, xi,

1

N

N∑
j=1

δxj

)
− b
(
t, yi,

1

N

N∑
j=1

δyj

)〉

≤ L
(1)
R

N∑
i=1

|xi − yi|2 + L
N∑
i=1

|xi − yi| ·W2

( 1

N

N∑
j=1

δxj ,
1

N

N∑
j=1

δyj

)
≤ (L

(1)
R + L)|x− y|2,

and

‖Σ(t,x)− Σ(t,y)‖ =
( N∑
i=1

∥∥∥σ(t, xi, 1

N

N∑
j=1

δxj

)
− σ

(
t, yi,

1

N

N∑
j=1

δyj

)∥∥∥2) 1
2

≤
(

2(L
(2)
R )2

N∑
i=1

|xi − yi|2 + 2L2
N∑
i=1

W2

( 1

N

N∑
j=1

δxj ,
1

N

N∑
j=1

δyj

)2) 1
2

≤
(

2(L
(2)
R )2|x− y|2 + 2L2

N∑
j=1

|xj − yj |2
) 1

2

≤
√

2(L
(2)
R )2 + 2L2 · |x− y|.

On the other hand, Assumption (H5) implies that for any t ∈ [0, T ], and x ∈ RdN ,

|B(t,x)|2 ∨ ‖Σ(t,x)‖2 =

N∑
i=1

∣∣∣b(t, xi, 1

N

N∑
j=1

δxj

)∣∣∣2 ∨ N∑
i=1

∥∥∥σ(t, xi, 1

N

N∑
j=1

δxj

)∥∥∥2

≤ K2
1

N∑
i=1

(
1 + |xi|+W2

( 1

N

N∑
j=1

δxj , δ0

))2

≤ 3K2
1

N∑
i=1

(
1 + |xi|2 +

1

N

N∑
j=1

|xj |2
)

≤ 6K2
1N(1 + |x|2). (4.2)

These, together with the existence and uniqueness of the solution to the classical SDEs, imply that

(4.1) has a unique solution on [0, T ] for any N ; see [31, Theorem 3.1.1, p.44] for details.

Note that the continuous-time EM scheme to (4.1) is given by

XN,n(t) = XN,n(0) +

∫ t

0
B([s]n,X

N,n([s]n))ds+

∫ t

0
Σ([s]n,X

N,n([s]n))dWN (s),
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where XN,n(0) = (X1,N,n(0)>, X2,N,n(0)>, . . . , XN,N,n(0)>)>. By virtue of the linear growth con-

dition (4.2), for any p ≥ 2, there is a positive constant CN such that

E
[

sup
0≤t≤T

|XN,n(t)|p
]
≤ CN . (4.3)

The following lemma reveals the pth moments of the stochastic interacting particle system and

the continuous-time EM scheme, defined by (1.2) and (2.3) respectively, are uniformly bounded.

Lemma 4.2. Suppose that Assumptions (H1)–(H3), and (H5) hold. Then for any p ≥ 2, there

exists a positive constant Cp, which is independent of n and N , such that

sup
1≤i≤N

E
[

sup
0≤t≤T

|Xi,N (t)|p
]
∨ sup

1≤i≤N
E
[

sup
0≤t≤T

|Xi,N,n(t)|p
]
≤ Cp.

This lemma can be established by using similar technique as Lemma 3.1, so we omit the proof.

The lemma below is concerned with the propagation of chaos for McKean-Vlasov SDEs under

the local conditions w.r.t. the state variable.

Lemma 4.3. Under Assumptions (H1)–(H5),

lim
N→∞

sup
1≤i≤N

E
[

sup
0≤t≤T

|Xi(t)−Xi,N (t)|2
]

= 0.

Proof. For any 1 ≤ i ≤ N and R > 0, define the stopping time

τ iR = inf{t ∈ [0, T ] : |Xi(t)| ∨ |Xi,N (t)| ≥ R}.

Then, by (1.2), (2.2), and using the Itô formula, we arrive at

|Xi(t ∧ τ iR)−Xi,N (t ∧ τ iR)|2 = I1,R(t) + I2,R(t) + I3,R(t), (4.4)

where

I1,R(t) = 2

∫ t∧τ iR

0
〈Xi(s)−Xi,N (s), b(s,X i(s), µis)− b(s,X i,N (s), µX,Ns )〉ds,

I2,R(t) =

∫ t∧τ iR

0
‖σ(s,X i(s), µis)− σ(s,X i,N (s), µX,Ns )‖2ds,

I3,R(t) =

∫ t∧τ iR

0
2〈Xi(s)−Xi,N (s), σ(s,X i(s), µis)− σ(s,X i,N (s), µX,Ns )dW (s)〉.

where µis = L (Xi(s)) for all s ∈ [0, T ]. In order to take supremum over the time and the expecta-

tion, we need to estimate E
[

sup0≤s≤t Ii,R(s)
]
, i = 1, 2, 3, respectively. For any t ∈ [0, T ], by virtue

of Assumptions (H1), (H3), and the Young inequality, we obtain

E
[

sup
0≤s≤t

I1,R(s)
]
≤ 2E

[
sup

0≤s≤t

∫ s∧τ iR

0
〈Xi(r)−Xi,N (r), b(r,X i(r), µir)− b(r,X i,N (r), µir)〉dr

]
+2E

[ ∫ t∧τ iR

0
|Xi(s)−Xi,N (s)| · |b(s,X i,N (s), µis)− b(s,X i,N (s), µX,Ns )|ds

]
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≤ 2L
(1)
R E

[ ∫ t∧τ iR

0
|Xi(s)−Xi,N (s)|2ds

]
+2LE

[ ∫ t∧τ iR

0
|Xi(s)−Xi,N (s)| ·W2(µis, µ

X,N
s )ds

]
≤ (2L

(1)
R + L)E

[ ∫ t∧τ iR

0
|Xi(s)−Xi,N (s)|2ds

]
+2LE

[ ∫ t∧τ iR

0

(
W2(µis, µ̃

X,N
s )2 +W2(µ̃X,Ns , µX,Ns )2

)
ds
]

≤ (2L
(1)
R + L) ·

∫ t

0
E|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2ds

+2L

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ 2LE

[ ∫ t∧τ iR

0
W2(µ̃X,Ns , µX,Ns )2ds

]
, (4.5)

where µ̃X,Ns := 1
N

∑N
j=1 δXj(s) is the empirical measure of (Xj(s))1≤j≤N and we have used the fact

that µis = µs. By Assumptions (H2) and (H3), using the same technique as (4.5) gives

E
[

sup
0≤s≤t

I2,R(s)
]
≤ E

[ ∫ t∧τ iR

0
‖σ(s,X i(s), µis)− σ(s,X i,N (s), µX,Ns )‖2ds

]
≤ 2

(
L

(2)
R

)2 · ∫ t

0
E|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2ds

+4L2

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ 4L2E

[ ∫ t∧τ iR

0
W2(µ̃X,Ns , µX,Ns )2ds

]
.(4.6)

Exploiting the Burkholder-Davis-Gundy inequality, the Young inequality, and (4.6), we then obtain

E
[

sup
0≤s≤t

I3,R(s)
]

≤ 6E
(∫ t∧τ iR

0
|Xi(s)−Xi,N (s)|2‖σ(s,X i(s), µis)− σ(s,X i,N (s), µX,Ns )‖2ds

) 1
2

≤ 1

2
E
[

sup
0≤s≤t

|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2
]

+ 36
(
L

(2)
R

)2 · ∫ t

0
E|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2ds

+72L2

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ 72L2E

[ ∫ t∧τ iR

0
W2(µ̃X,Ns , µX,Ns )2ds

]
. (4.7)

Substituting (4.5)–(4.7) into (4.4) yields that

E
[

sup
0≤s≤t

|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2
]

≤
[
2(2L

(1)
R + L) + 76

(
L

(2)
R

)2] · ∫ t

0
E
[

sup
0≤r≤s

|Xi(r ∧ τ iR)−Xi,N (r ∧ τ iR)|2
]
ds

+4L(1 + 38L)

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ 4L(1 + 38L)E

[ ∫ t∧τ iR

0
W2(µ̃X,Ns , µX,Ns )2ds

]
. (4.8)

Now let us estimate W2(µ̃X,Ns , µX,Ns )2. According to [35] and the definition of the L2-Wasserstein

distance,

W2(µ̃X,Ns , µX,Ns )2 ≤ 1

N

N∑
j=1

|Xj(s)−Xj,N (s)|2 · I{τ jR>s} +
1

N

N∑
j=1

|Xj(s)−Xj,N (s)|2 · I{τ jR≤s}.
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Thus, according to Theorem 2.2 and Lemma 4.2, one arrives at

E
[ ∫ t∧τ iR

0
W2(µ̃X,Ns , µX,Ns )2ds

]
≤ E

[ ∫ t

0
W2(µ̃X,Ns , µX,Ns )2ds

]
≤
∫ t

0
E
[

sup
0≤r≤s

|Xi(r ∧ τ iR)−Xi,N (r ∧ τ iR)|2
]
ds

+2

∫ T

0
(E(|Xi(s)|2 + |Xi,N (s)|2)2)

1
2 · (P(τ iR ≤ s))

1
2ds

≤
∫ t

0
E
[

sup
0≤r≤s

|Xi(r ∧ τ iR)−Xi,N (r ∧ τ iR)|2
]
ds+ CT · (P(τ iR ≤ T ))

1
2 , (4.9)

where we have used the fact that (Xj−Xj,N )1≤j≤N are identically distributed. Applying Theorem

2.2 and Lemma 4.2 again, we can compute that for any q ≥ 2,

P(τ iR ≤ T ) ≤ E
[
I{τ iR≤T}

·
|Xi(τ iR)|q + |Xi,N (τ iR)|q

Rq

]
≤ 1

Rq

(
E
[

sup
0≤t≤T

|Xi(t)|q
]

+ E
[

sup
0≤t≤T

|Xi,N (t)|q
])
≤ 2Cq

Rq
.

This, together with (4.8) and (4.9), we obtain

E
[

sup
0≤s≤t

|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2
]

≤
[
4L

(1)
R + 76

(
L

(2)
R

)2
+ 2L(3 + 76L)

]
·
∫ t

0
E
[

sup
0≤r≤s

|Xi(r ∧ τ iR)−Xi,N (r ∧ τ iR)|2
]
ds

+4L(1 + 38L)

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ CL(1 + 38L)T ·

√
2Cq

R
q
2

.

Note that L
(1)
R ≤ α1 logR and L

(2)
R ≤

√
α2 logR. Using the Grönwall inequality, yields

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2
]

≤ CR4(α1+19α2)T ·
∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ C

√
Cq

R
q
2

·R4(α1+19α2)T . (4.10)

Thus, by the Young inequality, Theorem 2.2, Lemma 4.2, and (4.10), we have that for any γ > 0,

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N (s)|2
]

≤ sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N (s)|2 · I{τ iR>T}
]

+ sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N (s)|2 · I{τ iR≤T}
]

≤ sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s ∧ τ iR)−Xi,N (s ∧ τ iR)|2
]

+ Cγ +
1

2γ
sup

1≤i≤N
P(τ iR ≤ T )

≤ CR4(α1+19α2)T ·
∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ C

√
Cq

R
q
2

·R4(α1+19α2)T + Cγ +
Cq
γRq

.

Then, by the result of [6, Lemma 1.9, p.16], one can obtain

E[W2(µs, µ̃
X,N
s )2] ≤ 4[µs]2 ≤ 4E

[
sup

0≤s≤T
|X(s)|2

]
<∞
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and

lim
N→∞

E[W2(µs, µ̃
X,N
s )2] = 0.

Note that R is independent of N . Letting N →∞, the Lebesgue dominated convergence theorem

implies that

lim
N→∞

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N (s)|2
]
≤ C

√
Cq

R
q
2

·R4(α1+19α2)T + Cγ +
Cq
γRq

. (4.11)

Letting q ≥ 2 be sufficiently large for q > 8(α1 +19α2)T , the first and third terms in the right-hand

side of (4.11) converge to 0 as R → ∞. Furthermore, the arbitrariness of γ yields the desired

conclusion. This completes the proof.

The following lemma shows the strong convergence of the continuous-time EM scheme w.r.t.

the stochastic interacting particle system (1.2).

Lemma 4.4. Suppose that Assumptions (H1)–(H6) hold and p ≥ 2. Then the EM scheme (2.3)

converges to the stochastic interacting particle system (1.2), that is,

lim
n→∞

sup
1≤i≤N

E
[

sup
0≤t≤T

|Xi,N (t)−Xi,N,n(t)|p
]

= 0.

Proof. By (1.2), (2.3), and using the Itô formula, one derives that

|Xi,N (t)−Xi,N,n(t)|p =

4∑
i=1

Λi(t), (4.12)

where

Λ1(t) = p

∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2〈Xi,N (s)−Xi,N,n(s),

b(s,X i,N (s), µX,Ns )− b([s]n, X i,N,n([s]n), µX,N,n[s]n
)〉ds,

Λ2(t) =
p

2

∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ(s,X i,N (s), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,N,n[s]n

)‖2ds,

Λ3(t) =
p(p− 2)

2

∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−4 · |(Xi,N (s)−Xi,N,n(s))>

×(σ(s,X i,N (s), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,N,n[s]n

))|2ds,

Λ4(t) = p

∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2〈Xi,N (s)−Xi,N,n(s),

σ(s,X i,N (s), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,N,n[s]n

)dW (s)〉.

For a sufficiently large R > 0, define

Ωi,N,n(R) =
{
ω ∈ Ω : sup

0≤t≤T
|Xi,N (t)| ∨ sup

0≤t≤T
|Xi,N,n(t)| ≥ R

}
.

Consequently, by the Chebyshev inequality and Lemma 4.2, we get that for any q ≥ 2,

P(Ωi,N,n(R)) ≤ 1

Rq

(
E
[

sup
0≤t≤T

|Xi,N (t)|q
]

+ E
[

sup
0≤t≤T

|Xi,N,n(t)|q
])
≤ 2Cq

Rq
, (4.13)

20



where R > 0 and q ≥ 2 are to be chosen later. Moreover, it follows from (4.13) that the estimate of

P(Ωi,N,n(R)) is independent of i, n, and N . Therefore, the selected R and q are also independent of

i, n, and N . For any t ∈ [0, T ], by Assumptions (H1), (H3), (H5), (H6), and the Hölder inequality,

we obtain

E
[

sup
0≤s≤t

Λ1(s)
]

≤ pE
[

sup
0≤s≤t

∫ s

0
|Xi,N (r)−Xi,N,n(r)|p−2〈Xi,N (r)−Xi,N,n([r]n),

b(r,X i,N (r), µX,Nr )− b([r]n, X i,N,n([r]n), µX,N,n[r]n
)〉dr

]
+pE

[
sup

0≤s≤t

∫ s

0
|Xi,N (r)−Xi,N,n(r)|p−2〈Xi,N,n([r]n)−Xi,N,n(r),

b(r,X i,N (r), µX,Nr )− b([r]n, X i,N,n([r]n), µX,N,n[r]n
)〉dr

]
≤ pE

[(
sup

0≤s≤t

∫ s

0
|Xi,N (r)−Xi,N,n(r)|p−2〈Xi,N (r)−Xi,N,n([r]n),

b(r,X i,N (r), µX,Nr )− b(r,X i,N,n([r]n), µX,Nr )〉dr
)
· IΩ\Ωi,N,n(R)

]
+pE

[(
sup

0≤s≤t

∫ s

0
|Xi,N (r)−Xi,N,n(r)|p−2〈Xi,N (r)−Xi,N,n([r]n),

b(r,X i,N (r), µX,Nr )− b(r,X i,N,n([r]n), µX,Nr )〉dr
)
· IΩi,N,n(R)

]
+pE

[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N (s)−Xi,N,n([s]n)|

×|b(s,X i,N,n([s]n), µX,Ns )− b([s]n, X i,N,n([s]n), µX,Ns )|ds
]

+pE
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N (s)−Xi,N,n([s]n)|

×|b([s]n, X i,N,n([s]n), µX,Ns )− b([s]n, X i,N,n([s]n), µX,N,n[s]n
)|ds

]
+pE

[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N,n(s)−Xi,N,n([s]n)|

×|b(s,X i,N (s), µX,Ns )− b([s]n, X i,N,n([s]n), µX,N,n[s]n
)|ds

]
≤ 4pL

(1)
R ·

∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds+ 4L

(1)
R ·

∫ t

0
E|Xi,N,n(s)−Xi,N,n([s]n)|pds

+2K1pE
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−1

×(1 + |Xi,N (s)|+ |Xi,N,n([s]n)|+W2(µX,Ns , δ0))ds · IΩi,N,n(R)

]
+2K1pE

[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N,n(s)−Xi,N,n([s]n)|

×(1 + |Xi,N (s)|+ |Xi,N,n([s]n)|+W2(µX,Ns , δ0))ds · IΩi,N,n(R)

]
+K2pE

[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−1(1 + |Xi,N,n([s]n)|ρ +W2(µX,Ns , δ0)ρ) · hαnds

]
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+K2pE
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N,n(s)−Xi,N,n([s]n)|

×(1 + |Xi,N,n([s]n)|ρ +W2(µX,Ns , δ0)ρ) · hαnds
]

+LpE
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N (s)−Xi,N,n([s]n)| ·W2(µX,Ns , µX,N,n[s]n

)ds
]

+2K1pE
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2 · |Xi,N,n(s)−Xi,N,n([s]n)|

×(1 + |Xi,N (s)|+ |Xi,N,n([s]n)|+W2(µX,Ns , δ0) +W2(µX,N,n[s]n
, δ0))ds

]
≤ [4pL

(1)
R + 2(3K1 +K2)(p− 1) + (2p + p− 1)L] ·

∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds

+4K1

∫ t

0
E[(1 + |Xi,N (s)|+ |Xi,N,n([s]n)|+W2(µX,Ns , δ0))p · IΩi,N,n(R)]ds

+2K2

∫ t

0
E[(1 + |Xi,N,n([s]n)|ρ +W2(µX,Ns , δ0)ρ)p] · hαpn ds

+4K1

∫ t

0
E[(1 + |Xi,N (s)|+ |Xi,N,n([s]n)|+W2(µX,Ns , δ0) +W2(µX,N,n[s]n

, δ0))
p
2

×|Xi,N,n(s)−Xi,N,n([s]n)|
p
2 ]ds

+
(
4L

(1)
R + 2K1 +K2 + 2pL

)
·
∫ t

0
E|Xi,N,n(s)−Xi,N,n([s]n)|pds

≤ [4pL
(1)
R + 2(3K1 +K2)(p− 1) + (2p + p− 1)L] ·

∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds

+Cp(L
(1)
R + 1) ·

∫ T

0
E|Xi,N,n(s)−Xi,N,n([s]n)|pds+ CpK2Th

αp
n

+Cp ·
∫ T

0

(
E|Xi,N,n(s)−Xi,N,n([s]n)|p

) 1
2ds+ CpK1T

(
P(Ωi,N,n(R))

) 1
2 . (4.14)

For any s ∈ [0, T ), there exists a k = 0, 1, . . . , n − 1, such that s ∈ [tnk , t
n
k+1). Hence, according to

(2.3), Assumption (H5), and Lemma 4.2, we can calculate that for any p ≥ 2,

E|Xi,N,n(s)−Xi,N,n([s]n)|p

= E
∣∣∣ ∫ s

tnk

b([r]n, X
i,N,n([r]n), µX,N,n[r]n

)dr +

∫ s

tnk

σ([r]n, X
i,N,n([r]n), µX,N,n[r]n

)dW i(r)
∣∣∣p

≤ 2p−1hp−1
n

∫ s

tnk

E|b([r]n, X i,N,n([r]n), µX,N,n[r]n
)|pdr

+2p−1MpE
(∫ s

tnk

‖σ([r]n, X
i,N,n([r]n), µX,N,n[r]n

)‖2dr
) p

2

≤ 6p−1Kp
1h

p−2
2

n (h
p
2
n +Mp)

∫ s

tnk

E[1 + |Xi,N,n([r]n)|p +W2(µX,N,n[r]n
, δ0)p]dr

≤ Cph
p
2
n .

This, together with (4.14), implies that

E
[

sup
0≤s≤t

Λ1(s)
]
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≤ [4pL
(1)
R + 2(3K1 +K2)(p− 1) + (2p + p− 1)L] ·

∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds

+CpT (L
(1)
R + 1)h

p
2
n + CpTh

p
4
n + CpK1T

(
P(Ωi,N,n(R))

) 1
2 + CpK2Th

αp
n . (4.15)

By Assumptions (H2), (H3), (H5), and (H6), using the same technique as (4.15) was proved, we

get

E
[

sup
0≤s≤t

(Λ2(s) + Λ3(s))
]

≤ p(p− 1)

2
E
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ(s,X i,N (s), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,N,n[s]n

)‖2ds
]

≤ 3p(p− 1)

2
E
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ(s,X i,N (s), µX,Ns )− σ(s,X i,N,n([s]n), µX,Ns )‖2ds · IΩ\Ωi,N,n(R)

]
+

3p(p− 1)

2
E
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ(s,X i,N (s), µX,Ns )− σ(s,X i,N,n([s]n), µX,Ns )‖2ds · IΩi,N,n(R)

]
+

3p(p− 1)

2
E
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ(s,X i,N,n([s]n), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,Ns )‖2ds

]
+

3p(p− 1)

2
E
[ ∫ t

0
|Xi,N (s)−Xi,N,n(s)|p−2

×‖σ([s]n, X
i,N,n([s]n), µX,Ns )− σ([s]n, X

i,N,n([s]n), µX,N,n[s]n
)‖2ds

]
≤ 6p(p− 1)

[(
L

(2)
R

)2
+ 3(K2

1 +K2
2 + L2)

]
·
∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds

+Cp(p− 1)T
[(
L

(2)
R

)2
+ L2

]
h

p
2
n + Cp(p− 1)K2

1T
(
P(Ωi,N,n(R))

) 1
2

+Cp(p− 1)K2
2Th

αp
n . (4.16)

By using the Burkholder-Davis-Gundy inequality, the Young inequality, and (4.16), we then obtain

E
[

sup
0≤s≤t

Λ4(s)
]
≤ 3pE

(∫ t

0
|Xi,N (s)−Xi,N,n(s)|2p−2

×‖σ(s,X i,N (s), µX,Ns )− σ([s]n, X
i,N,n([s]n), µX,N,n[s]n

)‖2ds
) 1

2

≤ 1

2
E
[

sup
0≤s≤t

|Xi,N (s)−Xi,N,n(s)|p
]

+ CppT
[(
L

(2)
R

)2
+ L2

]
h

p
2
n

+60p2
[(
L

(2)
R

)2
+ 3(K2

1 +K2
2 + L2)

]
·
∫ t

0
E|Xi,N (s)−Xi,N,n(s)|pds

]
+CppK

2
1T
(
P(Ωi,N,n(R))

) 1
2 + CppK

2
2Th

αp
n . (4.17)
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Substituting (4.15)–(4.17) into (4.12) yields that

E
[

sup
0≤s≤t

|Xi,N (s)−Xi,N,n(s)|p
]

≤
[
8pL

(1)
R + 132p2

(
L

(2)
R

)2
+ Cp

]
·
∫ t

0
E
[

sup
0≤r≤s

|Xi,N (r)−Xi,N,n(r)|p
]
ds

+Cp
[
L

(1)
R +

(
L

(2)
R

)2
+ 1
]
h

p
2
n + Cp

(
P(Ωi,N,n(R))

) 1
2 + Cph

αp
n + Cph

p
4
n . (4.18)

Note that L
(1)
R ≤ α1 logR, L

(2)
R ≤

√
α2 logR, and (4.13). By using the Grönwall inequality to

(4.18), one arrives at

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi,N (s)−Xi,N,n(s)|p
]

≤ Cp
[
L

(1)
R +

(
L

(2)
R

)2
+ 1
]
R4p(2α1+33pα2)T · h

p
2
n + Cp

√
Cq

R
q
2

R4p(2α1+33pα2)T

+CpR
4p(2α1+33pα2)T · hαpn + CpR

4p(2α1+33pα2)T · h
p
4
n . (4.19)

Note that R is independent of n, N , and hn → 0 as n → ∞. Then, taking the limit on the both

sides of (4.19), we get

lim
n→∞

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi,N (s)−Xi,N,n(s)|p
]
≤ Cp

√
Cq

R
q
2

R4p(2α1+33pα2)T . (4.20)

Letting q ≥ 2 be sufficiently large for q > 8p(2α1 +33pα2)T , the right-hand side of (4.20) converges

to 0 as R→∞. Therefore, the proof is complete.

Proof of Theorem 2.3. Note that for any t ∈ [0, T ],

|Xi(t)−Xi,N,n(t)|2 ≤ 2|Xi(t)−Xi,N (t)|2 + 2|Xi,N (t)−Xi,N,n(t)|2.

Therefore, by virtue of Lemmas 4.3 and 4.4, we complete the proof of Theorem 2.3.

Remark 4.5. If the drift b and the diffusion coefficient σ satisfy the global Lipschitz conditions

w.r.t. the state variable, that is, L
(1)
R and L

(2)
R are independent of R (We can rewrite them as L1

and L2), then the strong convergence with the corresponding convergence rate with respect to N

and step size can be obtained in Theorem 2.3. Indeed, according to the proofs of Lemmas 4.3 and

4.4,

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N,n(s)|2
]

≤ 2 sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N (s)|2
]

+ 2 sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi,N (s)−Xi,N,n(s)|2
]

≤ Ce4(L1+19L2
2)T ·

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ C

√
Cq

R
q
2

· e4(L1+19L2
2)T + Cγ +

Cq
γRq

+C
(
L1 + L2

2 + 1
)
e16(L1+33L2

2)Thn + C

√
Cq

R
q
2

e16(L1+33L2
2)T + Ce16(L1+33L2

2)Th2α
n

+Ce16(L1+33L2
2)Th

1
2
n .
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Letting R→∞ and using the arbitrariness of γ, one obtains

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N,n(s)|2
]
≤ C

∫ T

0
E[W2(µs, µ̃

X,N
s )2]ds+ Chn + Ch2α

n + Ch
1
2
n .

Recall that for a fixed s ∈ [0, T ] and some p > 4, there exists a positive constant C depending only

on T such that ∫
Rd

|x|pµs(dx) ≤ E
[

sup
0≤s≤T

|X(s)|p
]
≤ C.

This, together with the Glivenko-Cantelli theorem [7, Theorem 5.8, p.362], implies that

sup
1≤i≤N

E
[

sup
0≤s≤T

|Xi(s)−Xi,N,n(s)|2
]
≤ C


N−

1
2 + hn + h

1
2
n + h2α

n , d < 4,

N−
1
2 logN + h

1
2
n + hn + h2α

n , d = 4,

N−
2
d + hn + h

1
2
n + h2α

n , d > 4.

Therefore, we can obtain the rate of convergence under the global Lipschitz conditions w.r.t. the

state variable.

5 Example

Example 5.1. Assume that φ : Rd → Rd and ψ : Rd → Rd×d are Borel measurable functions given

by

φ(x) =


x1 sin

(
(log(1 + |x1|2 + |x2|2 + · · ·+ |xd−1|2))2

)
x2 sin

(
(log(1 + |x2|2 + |x3|2 + · · ·+ |xd|2))2

)
...

xd sin
(
(log(1 + |xd|2 + |x1|2 + · · ·+ |xd−2|2))2

)


and

ψ(x) =


x1 sin

((
log

(
1 + |x1|2

)) 3
2
)

x1 sin
((

log
(
1 + |x1|2 + |x2|2

)) 3
2
)
· · · x1 sin

((
log(1 + |x1|2 + |xd|2

)) 3
2
)

x2 sin
((

log(1 + |x2|2 + |x1|2
)) 3

2
)

x2 sin
((

log
(
1 + |x2|2

)) 3
2
)

· · · x2 sin
((

log
(
1 + |x2|2 + |xd|2

)) 3
2
)

.

.

.

.

.

.

.

.

.

xd sin
((

log(1 + |xd|2 + |x1|2
)) 3

2
)

xd sin
((

log(1 + |xd|2 + |x2|2
)) 3

2
)

· · · xd sin
((

log
(
1 + |xd|2

)) 3
2
)

 ,

respectively. Then, it is easily seen that for any x ∈ Rd,

|φ(x)| ≤ |x|, ‖ψ(x)‖ ≤
√
d|x|. (5.1)

Furthermore, φ and ψ are both continuously differentiable on Rd, and for any x ∈ Rd, we can

calculate that

‖(∂xφ)(x)‖ ≤
√
d
(
1 + 4 log

(
1 + |x|2

))
, (5.2)

and

‖(∂xψ)(x)‖ ≤ d
(

1 + 3
√

log
(
1 + |x|2

))
. (5.3)

Next, we consider the case d1 = d and the following McKean-Vlasov SDE

dX(t) = b(X(t),L (X(t)))dt+ σ(X(t),L (X(t)))dW (t), t ∈ [0, T ], (5.4)
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where b : Rd × P2(Rd) → Rd and σ : Rd × P2(Rd) → Rd×d are Borel measurable functions defined

by

b(x, µ) = B1x+B2φ(x) +B3

∫
Rd

yµ(dy) +B4ϕ(µ)

and

σ(x, µ) = Σ1ψ(x) + Σ2 · diag
{∫

Rd

yµ(dy)
}

+ Σ3diag{ϕ(µ)},

B1, B2, B3, B4, Σ1, Σ2, and Σ3 are deterministic d × d matrices, diag{x} represents a diagonal

matrix with diagonal elements x, and

ϕ(µ) =
(

sin
(∫

Rd

y1µ(dy)
)
, . . . , sin

(∫
Rd

ydµ(dy)
))>

.

This equation is nonlinear with respect to the measure µ. Assume that there exists a positive

constant K such that

max{‖B1‖, ‖B2‖, ‖B3‖, ‖B4‖, ‖Σ1‖, ‖Σ2‖, ‖Σ3‖} ≤ K.

For any F0-measurable random variable ξ satisfying E|ξ|β < ∞, β > 0, equation (5.4) has

a unique solution (X(t))0≤t≤T . To proceed, we first examine the conditions in Theorem 2.2 are

satisfied. According to (5.1) and the expressions of b and σ, Assumption (H5) can be verified easily.

Hence, we need only verify that b and σ satisfy Assumptions (H1)-(H4). Applying (5.2) and (5.3),

for any integer R ≥ 3, x, y ∈ Rd with |x| ∨ |y| ≤ R, and µ ∈ P2(Rd), one computes

|b(x, µ)− b(y, µ)| = |B1x+B2φ(x)− (B1y +B2φ(y))|

=
∣∣∣ ∫ 1

0
[B1 +B2(∂xφ)(y + ρ(x− y))](x− y)dρ

∣∣∣
≤

[
sup
|z|≤R

‖B1 +B2(∂xφ)(z)‖
]
· |x− y|

≤
[
‖B1‖+ ‖B2‖ ·

(
sup
|z|≤R

√
d
(
1 + 4 log

(
1 + |z|2

)))]
· |x− y|

≤
[
K +K

√
d
(
1 + 4 log

(
1 +R2

))]
· |x− y|

=: L
(1)
R |x− y|, (5.5)

and

‖σ(x, µ)− σ(y, µ)‖ = ‖Σ1ψ(x)− Σ1ψ(y)‖

=
∣∣∣ ∫ 1

0
[Σ1(∂xψ)(y + ρ(x− y))](x− y)dρ

∣∣∣
≤

[
sup
|z|≤R

‖Σ1(∂xψ)(z)‖
]
· |x− y|

≤ ‖Σ1‖ ·
[

sup
|z|≤R

d
(

1 + 3
√

log
(
1 + |z|2

))]
· |x− y|

≤ Kd
(

1 + 3
√

log
(
1 +R2

))
· |x− y|

=: L
(2)
R |x− y|.
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Moreover, we have that L
(1)
R ≤ 26K

√
d logR and L

(2)
R ≤

√
56K2d2 · logR. These imply that

Assumptions (H1) and (H2) are satisfied. In addition, applying [22, Lemma 5], for any µ, ν ∈
P2(Rd), one obtains

‖ϕ(µ)− ϕ(ν)‖ ≤
√
dW2(µ, ν) and ‖diag{ϕ(µ)} − diag{ϕ(ν)}‖ ≤

√
dW2(µ, ν).

Therefore, for any x ∈ Rd, and µ, ν ∈ P2(Rd), one computes

|b(x, µ)− b(x, ν)| =
∣∣∣B3

∫
Rd

yµ(dy) +B4ϕ(µ)−B3

∫
Rd

zν(dz)−B4ϕ(ν)
∣∣∣

≤ ‖B3‖ ·W2(µ, ν) + ‖B4‖ · ‖ϕ(µ)− ϕ(ν)‖
≤ K(1 +

√
d) ·W2(µ, ν),

and

‖σ(x, µ)− σ(x, ν)‖ =
∥∥∥Σ2 · diag

{∫
Rd

yµ(dy)
}

+ Σ3diag{ϕ(µ)}

−Σ2 · diag
{∫

Rd

zν(dz)
}
− Σ3diag{ϕ(ν)}

∥∥∥
≤ ‖Σ2‖ ·W2(µ, ν) + ‖Σ3‖ · ‖diag{ϕ(µ)} − diag{ϕ(ν)}‖
≤ K(1 +

√
d) ·W2(µ, ν).

These imply that Assumptions (H3) and (H4) are satisfied. Furthermore, one verifies that b does not

satisfy the one-sided global Lipschitz condition. However, by Theorem 2.2 in this paper, equation

(5.4) has a unique solution (X(t))0≤t≤T with X(0) = ξ, and for any p > 0,

E
[

sup
0≤t≤T

|X(t)|p
]
<∞.

By virtue of Theorem 2.3, the EM scheme of the stochastic interacting particle system converges

to non-interacting particle system associated with (5.4).

A Appendix: Proofs of Two Lemmas

Proof of Lemma 3.1. We adopt the approach in [26] to treat the distribution-dependent case. By

the Lyapunov inequality, for any n ≥ 1 and p ≥ 2, using the elementary inequality |a + b + c|p ≤
3p−1(|a|p + |b|p + |c|p) and the Hölder inequality, it follows from (3.5) that

|X(n)(t)|p ≤ 3p−1
[
|ξ|p +

∣∣∣ ∫ t

0
b(s,X(n)(s), µ

(n)
[s]n

)ds
∣∣∣p +

∣∣∣ ∫ t

0
σ(s,X(n)(s), µ

(n)
[s]n

)dW (s)
∣∣∣p]

≤ 3p−1
[
|ξ|p + T p−1

∫ t

0
|b(s,X(n)(s), µ

(n)
[s]n

)|pds+
∣∣∣ ∫ t

0
σ(s,X(n)(s), µ

(n)
[s]n

)dW (s)
∣∣∣p].

This, together with (3.4) and the Burkholder-Davis-Gundy inequality (see [18, Theorem 3.28, p.166]

or [27, Theorem 7.3, p.40]), implies that for every t ∈ [0, T ],

E
[

sup
0≤s≤t

|X(n)(s)|p
]

≤ 3p−1E|ξ|p + 3p−1T p−1E
[ ∫ t

0
|b(s,X(n)(s), µ

(n)
[s]n

)|pds
]
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+3p−1MpT
p−2
2 E

[ ∫ t

0
‖σ(s,X(n)(s), µ

(n)
[s]n

)‖pds
]

≤ 3p−1E|ξ|p + 9p−1Kp
1 (T p−1 +MpT

p−2
2 )E

[ ∫ t

0

(
1 + |X(n)(s)|p + E|X(n)([s]n)|p

)
ds
]

≤ 3p−1E|ξ|p + 2 · 9p−1Kp
1 (T p−1 +MpT

p−2
2 )

∫ t

0

(
1 + E

[
sup

0≤r≤s
|X(n)(r)|p

])
ds, (A.1)

where Mp = [pp+1/2(p− 1)p−1]
p
2 . Applying the Grönwall inequality to (A.1) yields that

E
[

sup
0≤s≤T

|X(n)(s)|p
]
≤ Cp.

It is easy to see that the positive constant Cp is dependent on p, T , and initial condition ξ, but

independent of n. Therefore, the desired assertion follows.

Proof of Lemma 3.2. We adopt the approach in [26, Theorem 4.3, p.61] to treat distribution-

dependent SDEs. Set 0 ≤ s ≤ t ≤ T . By the Hölder inequality, one gets

|X(n)(t)−X(n)(s)|p ≤ 2p−1(t− s)p−1

∫ t

s
|b(r,X(n)(r), µ

(n)
[r]n

)|pdr

+2p−1
∣∣∣ ∫ t

s
σ(r,X(n)(r), µ

(n)
[r]n

)dW (r)
∣∣∣p.

Taking the expectation on both sides, by the Burkholder-Davis-Gundy inequality and using As-

sumption (H5), we can then derive that

E|X(n)(t)−X(n)(s)|p ≤ 2p−1(t− s)p−1E
[ ∫ t

s
|b(r,X(n)(r), µ

(n)
[r]n

)|pdr
]

+2p−1Mp(t− s)
p−2
2 E

[ ∫ t

s
‖σ(r,X(n)(r), µ

(n)
[r]n

)‖pdr
]

≤ 6p−1Kp
1 (T

p
2 +Mp)(t− s)

p−2
2 E

[ ∫ t

s
(1 + |X(n)(r)|p + E|X(n)([r]n)|p)dr

]
≤ Cp(t− s)

p
2 .

This leads to the desired assertion and the proof is therefore complete.
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