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ABSTRACT

Thermovibrational flow in a differentially heated cubic cavity with vibrations applied in a direction parallel to the imposed temperature
gradient is investigated by solving numerically the governing equations for mass, momentum, and energy in their original nonlinear form. A
parametric analysis is conducted through the stepwise examination of the following degrees of freedom: magnitude of the Rayleigh number
and the thermal behavior of the sidewalls. A complete characterization of the emerging time-varying convective structures is attempted in
terms of spatial symmetries broken or retained, related temporal evolution, and global parameters, such as the Nusselt number. It is shown
that the intrinsically three-dimensional nature of the problem and its sensitivity to the thermal boundary conditions can have a remarkable
influence on the multiplicity of emerging solutions and the system temporal response.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078270

I. INTRODUCTION

The investigation into natural convection has been under way for
centuries. Since the works of Hadley,1 providing the first theory
explaining the behavior of convection currents on our planet or trade
winds, and the seminal experiments with shallow liquid layers placed
on a heated wall conducted by Rayleigh,2,3 the study of this specific
kind of fluid motion has become wide-spread due to its omnipresence
in nature and relevance to industrial processes. As a result of the afore-
mentioned landmark investigations, the general field of buoyancy con-
vection is nowadays overarched by two archetype configurations: the
Hadley flow, where a fluid cavity is heated from the side and subjected
to vertical steady gravity (often simply referred to as the laterally
heated-cavity problem) and Rayleigh–B�enard (RB) convection where
fluid is heated from below (yet in the presence of a steady vertical grav-
ity field).

In addition to these two forms of classic thermo-gravitational
convection, another variant (discovered much more recently) can be
obtained if in place of changing the relative direction of the tempera-
ture gradient and gravity, the latter is replaced with a time-varying
acceleration. This specific kind of fluid motion is generally known as

thermovibrational convection. Notably, when gravity is replaced with
(or superimposed onto) vibrations, in addition to the standard practice
of varying the strength of the resulting flow by increasing or decreasing
the temperature gradient across the system, two additional degrees of
freedom are unlocked. As the vibrations are defined as a sinusoidal
displacement in time, the flow they can produce can be modulated by
varying their amplitude and/or their frequency.

Initial studies on thermovibrational convection date back to the
1970s (Gershuni and co-workers4–10) when the concept of weightless-
ness started to attract interest due to the availability of relevant space-
craft for the execution of experiments in microgravity (sounding
rockets and later the space shuttle). Nowadays, studying the effects of
vibrations on fluid systems is of paramount importance as they are
representative of the influence that various inertial disturbances (g-jit-
ters) may have on available space platforms, such as the International
Space Station (ISS). These residual gravitational disturbances are of
different types. In particular, according to the classification elaborated
by Nelson11 (who considered oscillatory disturbances that are essen-
tially harmonic and periodic in nature), these can be quasi-steady (i.e.,
aerodynamic drag solar radiation pressure, etc.), transient (vehicle
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maneuvers, crew motions, etc.), and oscillatory (structural vibrations,
operation of machinery, etc.). The ISS is equipped with various
systems to mitigate these perturbations as they can be disruptive to
fluid-dynamic experiments (for a relevant analysis of the tolerability of
fluid experiments to them, the interested reader may consider, e.g.,
Refs. 12–17).

Most remarkably, following these attempts, the field of thermovi-
brational convection has evolved from its initial heartland of space-
experiment-supporting research into a completely independent disci-
pline attempting to discern how the nonlinearities present in fluid sys-
tems conspire to form organized spatial patterns. While the g-jitters
that occur on space platforms are typically high frequency and low
amplitude vibrations and therefore only occupy a small region of the
possible space of parameters, recent studies on these subjects have
revealed that when the entire spectrum of vibrations is considered,
many new fluid responses and related instabilities become possible,
which (due to their peculiar properties) have proven to be irresistible
to theoretical physicists.

Works treating this particular field of study can yet be separated
into two main classes akin to the two categories previously mentioned
(Hadley flow and RB convection) where vibrations are either perpen-
dicular or parallel to the temperature gradient across the cavity. In par-
ticular, the perpendicular configuration has enjoyed the most
popularity as this configuration is known as the most disruptive in
terms of fluid instabilities18–24 and due to its high relevance to certain
processes.25–27 As for what concerns the parallel configuration, Hirata
et al.,28 and more recently, Crewdson and Lappa29 have provided a
comprehensive map of possible system states and patterning behaviors
for a wide range of vibrational modes and Rayleigh numbers.

Unfortunately, however, these studies have been limited to two-
dimensional (2D) geometries, thereby filtering out the inherent com-
plexities typical of effective three-dimensional (3D) flows. In order to
fill this gap, in the present work the set of predictive links between
flow properties and related influential factors is expanded through
consideration of a real (3D) cavity. Given the lack of equivalent results
in the literature, in particular, a cubic enclosure is considered. This
specific choice is motivated by the availability of a significant amount
of existing data for the canonical case of standard Rayleigh–B�enard
convection (i.e., cubic enclosures uniformly heated from below and
cooled from above with vertical steady gravity), which can be consid-
ered for comparison and/or as a guide to interpret the still completely
unknown behavior of thermovibrational flow in similar conditions.

Along these lines, we wish to recall the earlier investigation by
Pallarès et al., who addressed the RB problem both numerically30 and
experimentally.31 In their studies, seven fundamental modes of con-
vection were identified for fluid motion driven by gravity in parallele-
pipedal cavities heated from below (these including single-roll,
two-roll and other toroidal roll-type states; we will provide a more
detailed description of these structures at a later stage in the present
work). The stability of these solutions was found to depend on the
Rayleigh number (Ra), Prandtl number (Pr) of the fluid, and the aspect
ratio of the cavity. Puigjaner et al.32,33 conducted a stability analysis of
the same problem and found that by increasing the strength of convec-
tion (i.e., Ra), a series of possible steady, stable (ST), and unstable pat-
terns emerge resulting in a complex bifurcation diagram. Despite some
differences in the related findings, the greatest merit of these valuable
efforts resides in the provided evidence that an apparently innocuous

problem, such as thermogravitational convection in a 3D cubic cavity,
can offer a relevant playground for the emergence of complex behav-
iors and the analysis of the underpinning nonlinearities.

Lappa34 argued that the discrepancies affecting Pallarès et al.31

and Puigjaner et al.32,33 should be justified when considering that the
transition from one solution to another, upon an increase in the
Rayleigh number, is dependent on the presence of thermal and/or
momentum boundary layers and the relative ratio of their thickness,
which in turn changes with the value of Pr and the specific thermal
behavior of the sidewalls. The effect of such conditions on the emerg-
ing flow structures has been investigated experimentally by Pallarès
et al.,31 for Pr¼ 130 over a range of moderate Rayleigh numbers
(Ra< 8� 104). Both adiabatic and conducting wall conditions were
found to yield similar results in terms of flow patterns and transitions
up to Ra� 5� 103. Beyond this threshold, however, the flow struc-
tures were observed to differ depending on the considered thermal
conditions and to occur at different values of the Rayleigh number. In
this regard, we wish also to cite the later study by Puigjaner et al.,35

who considered fully conducting walls for a wide range of Ra and Pr,
and provided relevant arguments about the influence of the thermal
conditions imposed on the sidewalls.

Motivated by this observational tide, we therefore concentrate on
thermovibrational convection in a cubic cavity driven by shaking
imposed in a direction parallel to the temperature gradient and assume
different types of thermal boundary conditions for the sidewalls.
Specifically, in addition to the canonical configurations where these
are either completely adiabatic or conducting, a hybrid situation is also
investigated where, while two opposing walls are adiabatic, the other
couple maintains a linear temperature profile. The ensuing numerical
results are presented in terms of flow structures, patterning behavior
and the (often not obvious) relationship that is established between
the forcing (the vibrations) and the temporal response of the flow.

II. MATHEMATICAL MODEL

The simple 3D cubic cavity considered in this study assuming
microgravity conditions is shown in Fig. 1. The bottom wall is cold
and the top wall is hot. As anticipated in Sec. I, the vibrations are
applied parallel to the temperature gradient and three thermal wall
conditions are investigated [Figs. 1(a)–1(c)].

A. Governing equations and their non-dimensional
form

The vibrations are modeled mathematically as a sinusoidal dis-
placement in time, characterized by the amplitude of the displacement
b (m) and the angular frequency of the vibrations x (rad/s), where x
¼ 2pf and f is the frequency in Hz. Mathematically, this gives

sðtÞ ¼ b sin ðxtÞn; (1)

where n is the direction vector of the vibrations (unit vector). The
time-varying acceleration (to be accounted for in the production term
of the momentum balance equation) is then obtained by taking the
second derivative of Eq. (1),

g ðtÞ ¼ gx sin ðxtÞn̂ ; (2)

where gx ¼ bx2.
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Integrating g(t) over one vibrational period (2p/x), one gets

x
2p

ð2p=x

0

gðtÞdt ¼ x
2p

gxn̂
ð2p=x

0

sin ðxtÞdt

¼ � 1
2p

gxn̂ cos ðxtÞ½ �2p=x0 ¼ 0: (3)

This indicates that the time-averaged value of the acceleration over
one vibration period is equal to 0.

The balance equations for mass, momentum, and energy under
the assumption of incompressible flow read

r � V ¼ 0; (4)

q
@V
@t

þ qr � ðVVÞ ¼ �rpþ lr2V þ qgðtÞ; (5)

@T
@t

þr � ðVTÞ ¼ ar2T; (6)

where V, p, and T are the problem primitive variables, i.e., velocity,
pressure, and temperature, respectively. Moreover, q is the fluid den-
sity, l is the fluid dynamic viscosity, and a is the fluid thermal diffusiv-
ity. Using the Boussinesq approximation, the density is considered
everywhere constant with the exception of the momentum production
(buoyancy) term at the right-hand side of Eq. (5), which is expanded
as

qgðtÞ ¼ q0 1� bTðT � T0Þ½ �gðtÞ; (7)

where To is a reference temperature, q0 is the density for T ¼ To, and
bT is the so-called thermal expansion coefficient by which variations
in the fluid density can be directly linked (via a linear relationship) to
the gradients of temperature in the fluid. By substituting this term into
the momentum equation, assuming that the individual term q0g is
absorbed into the modified pressure term and scaling all lengths by
the size of the cavity (L), the velocity by (a/L) the time by (L2/a) and
the pressure by (q0a

2/L2), all these equations can be cast in compact
(non-dimensional) form as

r � V ¼ 0; (8)

@V
@t

¼ �rp�r � VV½ � þ Prr2V � PrRaxT sin ðXtÞn̂ ; (9)

@T
@t

þr � VT½ � ¼ r2T; (10)

where Pr is the well-known Prandtl number,

Pr ¼ �

a
(11)

(� being the fluid kinematic viscosity given by the ratio of dynamic vis-
cosity and fluid density, i.e., �¼l/q0). Moreover, Rax appearing in the
buoyancy term is the vibrational Rayleigh number, analogue to the
classical Rayleigh number used in standard gravitational convection
problems (Ra), namely,

Rax ¼ ðbx2bTDTL
3Þ

�a
: (12)

Finally, X is the non-dimensional angular frequency of the vibrations
defined as

X ¼ xL2

a
¼ 2p

P
; (13)

where P is the non-dimensional period of vibrations.

B. Boundary and initial conditions

At t¼ 0, the velocity field across the cavity for all cases is 0,

Ux ¼ Uy ¼ Uz ¼ 0 and T ¼ y for

0 � x � 1; 0 � y � 1; 0 � z � 1: (14)

Moreover, a linear temperature profile is assumed along y (this reflects
the widespread practice of performing experiments in space on fluids
subjected to vibrations after having “thermalized” the fluid container,
i.e., after having established a diffusive distribution of temperature in
order to filter out transient thermal effects).

The boundary conditions for t> 0 are reported in the following.
No-slip conditions are applied for all the solid walls everywhere.
Moreover, different thermal boundary conditions are considered

depending on the chosen setup (as shown in Fig. 1). In particular, for
the case illustrated in Fig. 1(a) the sidewalls are adiabatic

@T
@x

¼ 0 for z ¼ 0; z ¼ 1 and t > 0; (15a)

FIG. 1. Sketch of the considered geometry and related thermal boundary conditions: (a) all lateral walls are perfectly adiabatic, (b) two lateral walls are perfectly conducting,
and the front and back walls are adiabatic, and (c) all sidewalls are perfectly conducting.
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@T
@z

¼ 0 for x ¼ 0; x ¼ 1 and t > 0: (15b)

For the case illustrated in Fig. 1(b), the sidewalls in the z-plane are per-
fectly conducting and the walls in the x-plane are adiabatic,

@T
@x

¼ 0 for z ¼ 0; z ¼ 1 and t > 0; (16a)

T ¼ y for x ¼ 0; x ¼ 1 and t > 0: (16b)

For the case illustrated in Fig. 1(c), all the sidewalls are perfectly con-
ducting, i.e.,

T ¼ y for x ¼ 0; x ¼ 1 and z ¼ 0; z ¼ 1 and t > 0: (17)

Finally, different constant temperatures are set for all three cases at
y¼ 0 and y¼ 1,

T ¼ 0 for y ¼ 0; 0 � x � 1; 0 � z � 1 and

T ¼ 1 for y ¼ 1; 0 � x � 1; 0 � z � 1:
(18)

III. NUMERICAL METHOD

The numerical simulations presented in this work have been pro-
duced by solving the balance equations presented in Sec. II [Eqs.
(8)–(10)], using a finite volume method for incompressible flow. In
particular, the computational platform OpenFOAM has been used.
This relies on the well-known PISO algorithm (pressure implicit split
operator) to ensure adequate pressure–velocity coupling. The details
of this time marching procedure can be found in a number of works
previously published by the present authors (see, e.g., Ref. 29).
However, for completeness, the basic principles of the method are also
briefly reported here.

A. Pressure-based approach

The PISO algorithm pertains to a class of projection methods,
where in the first instance the pressure (p) is artificially removed from
the momentum equation giving rise to the following equation:

@V�

@t
¼ �r � VV½ � þ Prr2V � PrRaxT sin ðXtÞn̂ ; (19)

where only the velocity field requires solving for. This velocity field is,
however, only provisional as it does not account for pressure and is
simply used to initiate the time marching procedure. It also does not
satisfy the incompressibility constraint set by the continuity equation
[Eq. (8)]. To overcome this, the Hodge decomposition theorem is used
to split V� into two contributions. This theorem states that any vector
field can be decomposed into a divergence-free contribution and the
gradient of a scalar potential, giving

V� ¼ V þ Crp; (20)

where C is a constant. As p is still unknown and assuming C ¼ Dt,
Eq. (20) can then be substituted into the continuity equation (8) giving

r2p ¼ 1
Dt

r �V �: (21)

This equation can be used after the integration of Eq. (19) to cal-
culate the pressure. If the effective physical velocity is imposed on the

boundary of the domain hosting the fluid, in particular, homogeneous
boundary conditions can be considered for it, i.e., @p/@n¼ 0 (where in
this case n denotes the direction perpendicular to the boundary). Once
the pressure is known, a “physical” divergence free velocity is finally
calculated using Eq. (20). As for what concerns the numerical schemes
employed, we have exploited upwind and central differencing schemes
in space for the convective and diffusion terms, respectively.
Moreover, a multicore processing approach has been implemented
where the domain is decomposed into four sub-domains (by cutting it
with transverse perpendicular planes located at x¼ 0.5 and z¼ 0.5,
respectively). A fixed time step has been used for the time integration,
satisfying the condition Dt ¼ 2p=Npx where Np is the number of
time steps over the vibrational period (P ¼ 2p=x). By setting
Np ¼ 3257, the twofold objective of ensuring reasonable solution accu-
racy and algorithm numerical stability has been met.

B. Validation and grid refinement

A cross-validation approach has been adopted in the present
work because limited literature or benchmark solutions exist for ther-
movibrational convection (especially for the case where vibrations are
parallel to the temperature gradient; an exception being the authors
previous study,29 which however was validated for a different value of
Pr). Given this drawback, most conveniently, the ability of
OpenFOAM to capture properly the dynamics of interest has been
verified through comparison with the results obtained using an in
house explicit finite volume solver.34 For simplicity and to save com-
putational time, this assessment has been carried out for a 2D square
cavity with conducting sidewalls. The average Nusselt number across
the hot wall and both the vertical and horizontal velocity components
at the point (0.75,0.75) of the cavity have been compared.

As quantitatively substantiated by Table I and the velocity signals
reported in Figs. 2 and 3, a satisfactory agreement has been found (we
wish to highlight that the small discrepancy affecting the velocity sig-
nals determined with the two different computational platforms must
be ascribed to the different location of the primitive variables on the
computational grid, this being based on a collocated and a staggered
grid approach in OpenFOAM and the explicit finite volume solver by
Ref. 34, respectively).

Thereafter, a mesh refinement study has been carried out on the
3D cavity with adiabatic sidewalls for Rax ¼ O(106). In order to make
the overall process more efficient, some theoretical criteria have been
applied in the attempt to estimate “a priori” the required number of
grid points. First, given the tendency of thermal convection to display
turbulent behavior when the Rayleigh number attains high values, the
so-called Kolmogorov length scale has been evaluated as a possible

TABLE I. Comparison of current results with those obtained with the in-house code
for the fully conducting 2D case Rax ¼ 4.00� 104, X ¼ 5, Pr¼ 7, grid size
100� 100 (Numean indicates the time-averaged value of the Nusselt number).

Solver Numax Numean

OpenFOAM 3.350 1.575
In-house code 3.310 1.650
Results difference in % 1.19% 4.78%
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measure or “indication” of the needed resolution (see, e.g., Refs. 29, 36,
and 37)

fRa ¼ 1:336 Rað Þ�0:32
: (22)

In such a context, it is worth recalling that this length scale pro-
vides a restrictive condition in terms of non-dimensional size of the
mesh (Dxc), i.e., it is expected to satisfy the condition Dxc < fRa. This
constraint can be easily used to determine accordingly the number of
divisions required across the domain as. Ndiv1 ¼ 1=fRa. Assuming the
worst condition, i.e., the maximum value of the vibrational Rayleigh
number being considered in the present work, Rax ¼ 8.34� 105,
Ndiv1 ¼ 1=ð1:61� 10�2Þ ’ 62. From this, we have deemed it neces-
sary to perform a mesh refinement study allowing the number of divi-
sions to range in a certain neighborhood of this value. Moreover, since

it is known that for these high values of Ra and a relatively high value
of Pr, thermal boundary layers are prone to develop across the top and
bottom wall of the cavity, the number of cells required in this bound-
ary layer has also been taken into account following the criteria pro-
vided by Shishkina et al.,38

NBL ffi 0:35Ra0:15: (23)

A correlation about the thickness of the thermal boundary layer can
be found in the earlier study by Russo and Napolitano,39

dthBL ffi Ra�1=4: (24)

From these two relationships, we have calculated: NBL ¼ 2.70 and
dthBL¼ 3.31� 10�2. Using these two values, for a uniform grid, the
number of divisions has finally be determined as

Ndiv2 ¼
NBL

dthBL
; (25)

which gives Ndiv2 ¼ 81.75.
With these theoretical requirements in hand, a mesh refinement

study has been carried out. Including first a mesh containing 603 ele-
ments and followed by 803, 1003, and so on. The ensuing results shown
in Fig. 4 have been taken when the flow is the most disturbed. It can
be noted that the data for the 603 and 803 are similar; however, as in
these cases the theoretical requirement outlined by Ndiv2 ¼ 81.75 is
only just satisfied, a further jump of 20 divisions has been considered.
As from 803 to 1003 a significant variation in value can still be
observed, a further jump to 1203 has been implemented. The results
obtained with the 1003 and 1203 meshes are indecipherable, and there-
fore, the 1003 mesh has finally been chosen as the required mesh for
Rax ¼ 8.34� 105.

IV. RESULTS

In this section, the outcomes of six individual simulations are
presented. These cases encompass the three types of heating config-
urations defined in Sec. II B for two different orders of magnitude
of Rax (namely, Rax ¼ 8.34� 104 and Rax ¼ 8.34� 105). Before
starting to deal with such findings, we wish to recall that, as shown
by Hirata et al.,28 and Crewdson and Lappa,29 even under the

FIG. 2. Vertical velocity signals (Uy) for the case Rax¼ 4� 104, X¼ 5 and
Pr ¼ 7 for OpenFOAM and the in-house code. A grid size of 100 � 100 is used.

FIG. 3. Horizontal velocity signals (Uy) for the case Rax ¼ 4� 104, X ¼ 5 and
Pr¼ 7 for OpenFOAM and the in-house code. A grid size of 100 � 100 is used.

FIG. 4. Mesh refinement study. Comparison
of the non-dimensional horizontal velocity
and non-dimensional temperature across a
line starting at point (0, 0.5, 0.5) ending at
(1, 0.5, 0.5), for t¼ 0.1P.
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constraint of two-dimensionality, a rich map of solutions is possible
in systems where the vibrations are set parallel to the temperature
gradient when both the vibrational Rayleigh number and frequency
of vibration are varied. By allowing these systems to develop in a
realistic 3D space, an even larger set of states must therefore
be expected. In turn, these can differ in regard to the instantaneous
spatial organization (the flow structure and associated symmetries)
and the related evolution in time (the system “temporal” response).
Given the inherent complexity of the problem, in the following a
peculiar approach is implemented where an attempt is made to
treat these (spatial and temporal) aspects in a separated manner
(however, still creating the relevant links as necessary).

The cases are setup as per Fig. 1, and the fluid parameters are
shown in Table II.

Given the otherwise intractable scale of the problem, without loss
of generality, the angular frequency of the vibrations is fixed to
X ¼ 50, a value for which (as illustrated in Sec. IVA) the flow is
expected to develop a remarkable degree of unsteadiness.

A. Fluid response and velocity signals

Before entering into a discussion regarding the three-
dimensional textural transitions affecting the patterning behavior, in
Sec. IVA the velocity signals obtained from probes (similar to those
exploited for the validation study) are used to identify the regime
embodied by the flow. Along these lines, it should be pointed out that
four possible solutions or regimes have previously been recognized in
the 2D study by Hirata et al.:28 synchronous (SY), subharmonic (SU),
non-periodic (NP), and stable (ST). Two additional solutions were
reported in the later analysis by Crewdson and Lappa,29 namely, the

synchronous and periodic or synchronous and non-periodic (SY-P or
SY-NP) solutions.

Two of these possible behaviors can yet be recognized in the
results obtained for the 3D configuration examined in the present
work. These include the SY-P and SU regimes. For the former (SY-P),
the flow repeats itself periodically. For the latter (the SU case), the fre-
quency of repetition of the fluid behavior is halved with respect to the
forcing frequency, resulting in a period twice as long as the forcing
period.

In particular, Fig. 5 shows the velocity signals for the lower value
of Rax considered here (Rax ¼ 8.34� 104), where the SY-P regime is
evident for all the three variants of thermal boundary conditions
defined in Sec. II B.

Additional insights can be gathered from Fig. 6, where it can be
seen that the signals appear to be of the type SY-NP (displaying turbu-
lent bursts) as the Rayleigh number is increased by one order of mag-
nitude. A closer inspection of these signals further reveals that a SU
regime is enabled for case (b) (indeed, the periodicity in shape of the
signal is repeated every two periods in this case).

On the basis of this initial assessment (relying solely on argu-
ments based on the time response of the flow), it may therefore be
concluded that when 3D configurations are considered, a change in
the thermal boundary conditions can cause a remarkable variation in
the temporal behavior of the flow. As illustrated in detail in Secs. IVB
and IVC, such responses are intimately coupled with a variety of tex-
tural transitions in the flow structure, which deserve their own
treatment.

B. Flow structure characterization for small Rayleigh
numbers

In order to support the reader’s understanding of such dynamics
(before diving into a purely spatial characterization of them), it is
worth recalling some key aspects of thermal convection which will
prove very useful later for their interpretation. In particular, it is
instructive to recall that this kind of fluid motion is governed by the
same equations everywhere in space, yet it takes a form that has peri-
odic spatial variations, with “nodes” (velocity or temperature
extremes) positioned at given points. Physicists say that it
“spontaneously breaks space-translation symmetry.” As already
explained to a certain extent in Sec. I, this useful concept can be used
as a tool to characterize or categorize the flows in certain universality
classes, which transcend the specific nature of the considered flow (be
it driven by steady gravity or vibrations). Section IVB1 is, therefore,

TABLE II. Fluid parameters.

Parameter Value Units

Specific heat capacity (Cp) 2.84� 103 (J/K)
Thermal conductivity (k) 8.64� 10–2 [W/(mK)]
Fluid density (q) 7.89� 102 (kg m�3)
Thermal expansion coefficient (bT) 1.25� 10–3 (
C�1)
Kinematic viscosity (�) 2.70� 10–7 (m2 s�1)
Thermal diffusivity (a) 3.86� 10–8 (m2 s�1)
Prandtl number (Pr) 7 (� � �)

FIG. 5. Vertical velocity components (Uy) recorded at the center of the cavity (0.5, 0.5, 0.5) for (a) the fully adiabatic case, (b) the case where the front and back of the cavity
are adiabatic and the two sidewalls are conducting, and (c) the case where all sidewalls are conducting for Rax ¼ 8.34� 104.
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dedicated to the provision of some necessary propaedeutical argu-
ments along these lines.

1. Textural transitions and patterning behaviors

Having completed a sketch of the observed temporal response of
the flow in Sec. IVA, the focus is now shifted to the specific spatial
behavior of the fluid over one vibrational period. Along these lines,
starting with the case where Rax ¼ 8.34� 104 and all four sidewalls
are set as adiabatic, Fig. 7 shows the related evolution of the fluid
streamlines. As the reader will immediately realize by inspecting this
figure, most conveniently, we have reported the sequence of snapshots
of the flow structure in conjunction with the signal already shown in
Fig. 5. This is instrumental in making evident that the degree of com-
plexity displayed by the system strongly depends on the considered
specific sub-region of the period. In particular, a relatively wide sub-
interval exists where convection can be considered relatively weak
(almost quiescent situation, hereafter referred to as “quasi-stationary
state”), whereas its amplitude greatly grows as conditions are exam-
ined that correspond (or are located in proximity to) to the signal
peak.

Accordingly, we split the analysis into two parts, the first part,
being the time over which the fluid is quasi-stationary (where the flow
adopts a resting configuration and the velocity of the fluid is minimal)
and second, the time region where the aforementioned convective
pulse occurs. Looking at Fig. 7, the first and last frames show that the
resting configuration of the flow is essentially a singular toroidal roll.

During the convective phase, the toroidal roll symmetry is maintained;
however, the roll becomes more compact at first and then undergoes a
series of minor textural transitions before regaining its resting configu-
ration. In particular, a more detailed impression of the streamline
behavior at t¼ 0.3P as well as the distribution of the related velocity
components Ux, Uz and Uy in the xz plane (at y¼ 0.5) can be gathered
from Fig. 8.

Toward the end to identify universality classes in these behaviors,
reference could be made to meaningful classifications introduced in
the past for classical RB convection. Relevant examples of this modus
operandi can be found, e.g., in the work by Mizushima40 and
Mizushima and Adachi41 for the case of 2D RB flow.

When moving to the 3D case (i.e., the cubic cavity shown in
Fig. 1), however, the simple criteria valid for 2D configurations
become rather inadequate (only partially able to account for certain
properties of the flow). A more exhaustive characterization approach
may, therefore, be based on the (seven) fundamental modes that
Pallarès et al.30 originally identified for standard RB convection in a
cubic enclosure in the range 3.5� 103 < Ra< 6� 104 for Pr¼ 0.71,
10, and 130. These solutions are denoted in the following with Sn with
n being an integer ranging between 1 and 7; see Table III and Fig. 9.

Additional structures were identified by Puigjaner et al.;32 how-
ever, a description of their geometric qualities is not provided here
(these included the modes S9 and S11–S15).

As the reader will realize by inspecting Table III and Fig. 9, these
solutions essentially reflect the symmetries of the group D4h

¼ Z2�D4. In particular, the sub-group D4 includes the symmetries of

FIG. 6. Vertical velocity components recorded at the center of the cavity (0.5, 0.5, 0.5) for (a) the fully adiabatic case, (b) the case where two sidewalls are adiabatic and two
are conducting, and (c) the case where all sidewalls are conducting and Rax ¼ 8.34� 105.

FIG. 7. Streamlines across one period of
vibration for Rax ¼ 8.34� 104 and the
case where all sidewalls are adiabatic (the
blue color represents a lower velocity and
the red color represents a higher velocity
at a given point in time, color bars are
omitted for brevity).
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FIG. 8. Snapshots of flow streamlines (top) and velocity components across the mid-plane of the cavity (bottom) for the case where all sidewalls are adiabatic and
Rax ¼ 8.34� 104 at t¼ 0.3P.

TABLE III. Description of flow structures identified by Pallarès et al.,30,31 and Puigjaner et al.32

Structure names Pallarès et al.30 Puigjaner et al.33

S1 Single roll
S2 Single roll oriented diagonally
S3 Single roll elongated toward two opposite horizontal edges
S4 Nearly toroidal roll
S5 Four roll structures, each one with its

axis perpendicular to one sidewall
S6 Two parallel rolls
S7 Structure S3 with merged ascending currents
S8 Two asymmetric counter-rotating

rolls aligned along one of the x¼ z diagonals (similar to S2)
S10 Two asymmetric counter-rotating rolls aligned along one of the

x¼ z diagonals, similar to S8 possessing no symmetry element

FIG. 9. Flow structure characteristics in the xz plane (i.e., a plane perpendicular to gravity) for 3D RB convection, the dashed lines represent the roll axis and the solid lines
represent the axes of symmetry, the hatched area indicates the region of positive vertical velocity, and the blank area represents a negative vertical velocity.
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a regular polygon with four vertices. In turn, these consist of the mir-
ror reflections with respect to the middle (x¼ 1/2 and z¼ 1/2) and
diagonal (x¼ z and z¼ 1�x) vertical planes and related combinations.
In the framework of this sub-group, the solution corresponding to the
toroidal roll (dominant in the quasi-stationary regime) might be,
therefore, considered as a fundamental mode S4 (Pallarès et al.,30 see
Table III). The symmetry with respect to the horizontal mid-plane
(y¼ 0.5), however, must be also considered. Unlike the other symme-
tries pertaining to the above-mentioned dihedral sub-group D4, which
are also applicable to the temperature field, this symmetry obviously
applies only to the velocity field (it is equivalent to rotations of the

velocity field of an angle p around one of the x or z horizontal direc-
tions in the y¼ 1/2 plane; the reader may consider Puigjaner et al.,33

for an exhaustive mathematical description of all these groups of sym-
metry, which is not reported here for the sake of brevity).

Looking forward to the next cases, we omit the representation
of the velocity signal as, from Fig. 5, we know that the three cases
display a high degree of similarity from a temporal point of view.
Figure 10 illustrates the corresponding evolution of convective
modes for the other two boundary condition configurations (still
for Rax ¼ 8.34� 104).

In particular, in Fig. 10(a), a planar configuration along the z axis
of four separate rolls can be recognized. This quadrupolar roll configu-
ration is a well-known solution in 2D thermovibrational studies,
reported early on by Gershuni et al.6 A somehow similar steady state
has been found by Pallarès et al.,30,31 (S5), described as a four roll
structure, where however each roll axis is perpendicular to one side-
wall. In the present case [Fig. 10(a)], the axes of rotation of the rolls
are perpendicular only to the two conducting sidewalls, thus resulting
in a planar structure rather than the S5 mode where symmetry was
found about the diagonal x¼ z. A graphical representation of the rest-
ing configuration shown in Fig. 10(a), akin to the classification style of
Pallarès et al.31 is provided in Fig. 11.

The symmetry with respect to the y¼ 1/2 midplane is embodied
here where an even number of rolls is found along the x and y axis,
with no rolls found along the z axis due to the planar (almost 2D)
nature of the flow.

The advent of the convective phase, for the case shown in
Fig. 10(a), brings about a transition from the four-roll to a two-roll
planar convective configuration followed by the planar structure
disappearing past t¼ 0.3P. This next convective mode (shown in more
detail in Fig. 12) is the result of the fluid motion attempting to over-
come the constraining boundary conditions and form a toroidal struc-
ture, similar to that seen for the fully adiabatic situation (however,
bound by the sidewalls a fully toroidal structure is not achieved).
Finally, the resting configuration is reestablished.

The next figure of the sequence (Fig. 13) refers to the case where
all four sidewalls are conducting. As a fleeting glimpse into this figure
[and Fig. 10(b)] would confirm, during the resting phase, the flow
adopts a hybrid configuration of the fully adiabatic case and the half
adiabatic, half conducting case. The toroidal S4 structure seen in Fig. 9
is still visible, however, the cavity hosts two torii instead of one. In this
case, the symmetry with respect to the y¼ 1/2 plane can be therefore

FIG. 10. Velocity streamlines for Rax ¼ 8.34� 104 where (a) the front and back
walls of the cavity are set to adiabatic while the other two sidewalls are set to be
perfectly conducting, and (b) all sidewalls are perfectly conducting, where the blue
color represents a lower velocity and the red color represents a higher velocity at a
given point in time. The top part of the panels (a) and (b) correspond to the resting
configuration of the flow before and after the convective burst, where the velocity of
the fluid is close to zero (i.e., a quasi-stationary state is attained, as explained in
the text).

FIG. 11. Graphical depiction of the convective state for the case where the two
sidewalls are conducting and the front and back wall are adiabatic, in keeping with
the description method of Pallarès et al.31
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FIG. 12. Snapshots of flow streamlines (top) and velocity components across the mid-plane of the cavity (bottom) for the case where the sidewalls are conducting and the front
and back of the cavity are adiabatic for Rax ¼ 8.34� 104 at t¼ 0.3P.

FIG. 13. Snapshots of flow streamlines (top) and velocity components across the mid-plane of the cavity (bottom) for the case where all sidewalls are conducting for
Rax ¼ 8.34� 104 at t¼ 0.3P.
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recognized if the flow is observed from the front and side view of the
cavity. For what concerns the transitional behavior during the convec-
tive phase, the stages of evolution are similar to those found for the
fully adiabatic case; however, past t¼ 0.3P, the dominant convective
mode is compressed at the lower half of the cavity preceding the
advent of small rolls eventually responsible for the two separate torii
visible in the resting configuration.

On the basis of this initial set of results, the following conclusions
can, therefore, be drawn. When comparing the effects of the three
types of boundary conditions on the flow, it becomes evident that the
fully adiabatic and fully conducting cases bare much similarity as sym-
metry about the x and z axis at the zx mid-plane is maintained
through both the resting and the convective phases. However, an addi-
tional transitional structure is observed for the fully conducting side-
wall case. By contrast, the case with two adiabatic and two conducting
sidewalls is different as the flow structure is essentially planar in the
quasi-stationary regime.

Another striking analogy applies to the configuration with the
conducting walls. For both the hybrid case and the fully conducting
sidewall case, an antisymmetry emerges along the y axis. This leads to
the classic quadrupolar field in the case with hybrid thermal boundary
conditions (displaying a planar four roll structure) and produces a
dual-toroidal structure in the fully conducting situation.

However, as the reader will easily realize by taking a closer look
at Figs. 7, 8, 10, 12, and 13, due to the complexity of the structures
observed during the convective phase (when the fluid is not at rest),
the application of earlier classifications, such as those developed by
Pallarès et al.,30,31 is not always possible.

For this reason, in Secs. IVB 2 and IVC, a further level of analysis
is implemented through the consideration of specific aspects emerging
from observation of the profiles of the different velocity components
and/or the related distributions (maps) in certain planes as a function
of time.

In particular, Fig. 14 shows the lines over which the velocity pro-
files are taken. The x, y, and z velocity components (Ux, Uy, and Uz)
are taken over both (dashed) centerlines for all three cases.

2. Velocity profiles and emerging symmetries

Starting with the fully adiabatic case, Fig. 15 depicts the velocity
profiles taken at intervals of 0.1P over one vibrational period. The
highest velocity magnitude occurs at t¼ 0.3P for both the vertical and
horizontal components. Figure 15(a) shows a positive Ux over the first
half of the x axis and a negative Ux over the second half of the x axis,
indicating that the center of the cavity acts as an attractor for the dura-
tion of the entire period. The profile displayed in Fig. 15(b) exhibits a
positive vertical velocity Uy at the center of the cavity indicating an
upward motion of the fluid. This is in agreement with the arguments
provided earlier about the flow observed to be circulating up and out-
ward from the center of the cavity.

The Uz velocity profiles are not provided, and neither is the Ux

velocity along the z axis, owing to the fact the flow adopts the toroidal
structure, and therefore such information would be redundant (Ux

along the x axis¼ Uz along the z axis, and Ux ¼ 0 along the z axis¼ 0
and Uz along the x axis¼ 0 and finally Uy along the x axis ¼ Uy along
the z axis; Fig. 16 shows the velocity fields confirming that these equal-
ities hold for y¼ 0.5).

For the situation where two sidewalls are conducting and the front
and back walls are adiabatic, we look first at the horizontal velocity com-
ponents (Ux) and (Uz). Unlike the fully adiabatic case, this case does not
display perfect agreement between the Ux and Uz velocity profiles.
This is seen in Fig. 17 and confirmed in Figs. 19(a) and 19(b). The verti-
cal velocity profile, however, can be seen to vary significantly
depending on the sampling axis, as shown in Fig. 18.

FIG. 14. Top view of the cavity showing the two centerlines of the zx plane
(dashed) over which the velocity profiles are taken.

FIG. 15. Velocity profiles of (a) Ux and (b)
Uy along the x axis for Rax ¼ 8.34� 104

and the case where all sidewalls are
adiabatic.
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FIG. 16. Top view of (a) horizontal velocity component (Ux), (b) horizontal velocity component (Uz), and (c) vertical velocity component (Uy) at y¼ 0.5, for the case
Rax ¼ 8.34� 104 where all sidewalls are adiabatic at t¼ 0.3P.

FIG. 17. Velocity profiles of (a) Ux along
the x axis and (b) Uz along the z axis for
Rax ¼ 8.34� 104 and the case where
the front and back walls are adiabatic and
the other two sidewalls are conducting.

FIG. 18. Velocity profiles of Uy along (a) the
x axis and (b) the z axis for Rax ¼ 8.34
� 104 and the case where the front and
back walls are adiabatic and the other two
sidewalls are conducting.
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Having found many similarities between the fully adiabatic and
fully conducting case during the convective pulse stage, related results
are not described in this section for brevity.

C. High Rayleigh number

Looking now at the second value of the vibrational Rayleigh num-
ber considered in the present study (Rax ¼ 8.34� 105), it is worth
starting from the simple remark that similarly to the previous case, the
flow embodies either a quasi-stationary state or a convective burst (this
being illustrated in Fig. 20). The convective burst, however, displays a
much more complex behavior as the fluid is more disturbed during
this part of the period in comparison with the equivalent behavior seen
for the lower value of Rax. If the Rayleigh number is increased by one
order of magnitude, a myriad of solutions emerge and disappear.

Here, we look first at the resting configurations for all three
boundary conditions. In particular, as qualitatively substantiated by
Fig. 21, the resting configurations for the case Rax ¼ 8.34� 105 with

adiabatic sidewalls are identical to the equivalent configurations identi-
fied in Sec. IVB for Rax ¼ 8.34� 104.

Figure 22 naturally complements Fig. 20 by revealing the evolu-
tion of the system over one vibrational period and the related multiplic-
ity of solutions excited during the convective stage (burst). Looking
first at the panel t¼ 0, the toroidal structure is accompanied by a quasi-
stationary fluid and a linear temperature distribution along the y axis.

As evident in the close-up in Fig. 23, although the fluid pattern
displays symmetry about the x and z axes at the zx mid-planes, at
t¼ 0.1P the convective burst is enabled and the application of the con-
cepts developed by Pallarès et al.30,31 becomes rather challenging.

Moving through the period, the symmetry of the system and the
number of rolls and their orientation seem to vary in a relatively ran-
dom way. The temporal behavior of the flow is reported in Fig. 24,
where the velocity profiles of all three cases are shown. The velocities are
taken over a line cutting through the center of the cavity as per Fig. 14.

Looking first at the vertical velocity component (Uy) taken paral-
lel to the x axis, symmetry is visible with respect to the center of the

FIG. 20. Streamlines colored by velocity
magnitude, across one period of vibration
for Rax ¼ 8.34� 105 and the case where
all walls are adiabatic.

FIG. 19. Top view of (a) horizontal velocity component (Ux), (b) horizontal velocity component (Uz) and (c) vertical velocity component (Uy), for Rax ¼ 8.34� 104 and the
case where the front and back walls are adiabatic and the other two sidewalls are conducting at t¼ 0.3P.
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cavity (x¼ 0.5), where a peak in velocity is seen for all three cases,
excepting at t¼ 0.3P for the fully adiabatic wall case. This is also
observed when looking at vertical velocity component taken parallel to
the z axis, reported in Fig. 25(a).

With exception of this momentary break in symmetry, the verti-
cal velocity profiles are inherently symmetrical and remain so at least
until t¼ 0.4P. After this point, the velocity of the fluid is low compared
to the first instances of the convective burst (t¼ 0.P to 0.4P). Even
though the velocity is low, many textural transitions are observed (as
evident in Fig. 22) while the fluid settles from the convective state to
the quasi-stationary state. As for the horizontal velocity components,
the temporary asymmetry observed in the vertical velocity component
in the fully adiabatic case is widespread through the whole period indi-
cating that for the case where all walls are adiabatic, the fluid is more
prone to breaks in symmetry than for the situation when conducting
sidewalls are considered. Looking at Figs. 26(b), 26(c), 27(b), and
27(c), symmetry is apparent about the center of the sampling line.

For the sake of completeness, following other authors,42,43 the
spatiotemporal maps providing a visualization of the symmetry (or
asymmetry) embodied by the flow over time are also included
(Figs. 28–30).

The asymmetry embodied by the fully adiabatic case can be rec-
ognized in Figs. 28(a), 28(d), 29(a), 29(d), and 30(d). However, a near
symmetrical pattern is maintained for the vertical velocity component
along the x axis for the fully adiabatic case [Fig. 30(a)].

Moving on to the next two cases, the half conducting half adia-
batic and the fully conducting configuration, it is worth noting that
both situations present a high level of symmetry for the horizontal
velocity components, especially at the point where the fluid is most
disturbed [as the reader will realize by inspecting Figs. 28(b), 28(c),
29(e), and 29(f)]. It is noticeable, however, that the horizontal velocity
Ux sampled over the z axis [Figs. 28(e) and 28(f)] and the horizontal
velocity Uz sampled over the x axis [Figs. 29(b) and 29(c)] show a
velocity which is close to 0, indicating that a possible symmetry axis as
shown in Figs. 16(a), 16(b), 19(a), and 19(b), is maintained over the
whole period. Finally, an additional relevant remark can be made

regarding the periodicity of the hybrid case. For all maps pertaining to
this case, the period over which the fluid repeats itself is twice that of
the forcing period. This is in agreement with the velocity signals pro-
vided in Sec. IVA.

D. Thermal response

This section is finally devoted to an analysis of the thermal
response of the system. Along these lines, Fig. 31 shows the ratio of
heat transfer due to convection over that of conduction along a given
boundary, i.e., the Nusselt number (Nu) for the hot wall, where

Nuðx; tÞ ¼
ð1

0

@Tðx; z; tÞ
@y

dz and Nu ¼
ð1

0

Nuðx; tÞdx: (26)

Similarly to the velocity signals, the Nu signal associated with the lower
value of Rax is of the type SY-P, whereas the responses associated with
the higher value of Rax, although still technically classifiable as SY-P,
border on the verge of the SY-NP regime where a turbulent burst
appears after the convective peak. It must be noted that the behavior
related to the heat transfer of the system is quasi-identical when compar-
ing the different sidewall conditions, especially when the value of Rax is
increased.

Temperature maps are also included here for all considered cases.
Focusing first on Fig. 32 (Rax ¼ 8.34� 104), perfect agreement is
observed between the thermal behavior of the flow along the x and z
axes for the situation where all four walls are either adiabatic or con-
ducting; this is, however, not the case when a higher value of Rax is
examined (Fig. 33).

Indeed, a slight deviance is observed in the temperature profile
across the z axis in this case, also detectable in the velocity maps pro-
vided in Figs. 28–30.

V. CONCLUSION

Although numerous investigations have been carried out in the
general area of thermal convection, an insightful and complete

FIG. 21. Streamlines colored by velocity magnitude, taken during the sub-period when the flow embodies a quasi-stationary state for Rax ¼ 8.34� 105, and (a) the case
where all walls are adiabatic, (b) the case where two sidewalls are conducting and the other two sidewalls are adiabatic, and (c) the case where all sidewalls are conducting
(the blue color represents a lower velocity and the red color represents a higher velocity).
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FIG. 22. Velocity magnitude, streamlines, and temperature contours for Rax ¼ 8.34� 105, all walls are adiabatic.
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FIG. 22. (Continued.)

FIG. 23. Contour of velocity magnitude at
(a) t¼ 0.1P and (b) t¼ 0.2P for Rax
¼ 8.34� 105, where all walls are
adiabatic.

FIG. 24. Non-dimensional vertical velocity (Uy) across the length of the cavity along the centerline of the zx plane, parallel to the x axis at y¼ 0.5, for Rax ¼ 8.34� 105, where
(a) the sidewalls are adiabatic, (b) the front and back walls are adiabatic and the other two sidewalls are conducting, and (c) all sidewalls are conducting.
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FIG. 25. Non-dimensional vertical velocity (Uy) across the length of the cavity along the centerline of the zx plane, parallel to the z axis at y¼ 0.5, for Rax ¼ 8.34� 105 where
(a) the sidewalls are adiabatic, (b) the front and back walls are adiabatic and the other two sidewalls are conducting, and (c) all sidewalls are conducting.

FIG. 26. Non-dimensional horizontal velocity (Ux) across the length of the cavity along the centerline of the zx plane at y¼ 0.5. Plane-parallel to the x axis at y¼ 0.5, for
Rax ¼ 8.34� 105, where (a) the sidewalls are adiabatic, (b) the front and back walls are adiabatic and the other two sidewalls are conducting, and (c) all sidewalls are conducting.

FIG. 27. Non-dimensional horizontal velocity (Uz) across the length of the cavity along the centerline of the zx plane at y¼ 0.5. Plane-parallel to the z axis at y¼ 0.5, for
Rax ¼ 8.34� 105, where (a) the sidewalls are adiabatic, (b) the front and back walls are adiabatic and the other two sidewalls are conducting, and (c) all sidewalls are conducting.
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FIG. 28. Horizontal velocity component Ux along the x axis [(a)–(c)] and the z axis [(d)–(f)] for all three boundary conditions and Rax ¼ 8.34� 105.

FIG. 29. Horizontal velocity component Uz along the x axis [(a)–(c)] and the z axis [(d)–(f)] for all three boundary conditions and Rax ¼ 8.34� 105.

FIG. 30. Vertical velocity component Uy along the x axis [(a)–(c)] and the z axis [(d)–(f)] as per Fig. 14, for all three boundary conditions and Rax ¼ 8.34� 105.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 014108 (2022); doi: 10.1063/5.0078270 34, 014108-18

VC Author(s) 2022

https://scitation.org/journal/phf


FIG. 31. Nusselt number across the hot wall for (a) Rax ¼ 8.34� 104 and (b) Rax ¼ 8.34� 105.

FIG. 32. Non-dimensional temperature (T) along the x axis [(a)–(c)] and the z axis [(d)–(f)] for all three boundary conditions and Rax ¼ 8.34� 104.

FIG. 33. Non-dimensional temperature (T) along the x axis [(a)–(c)] and the z axis [(d)–(f)] for all three boundary conditions and Rax ¼ 8.34� 105.
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understanding of the properties of the specific variant driven by time-
varying accelerations has hitherto been unclear. This study is a contri-
bution to improve the present unsatisfactory situation, especially for
what concerns the poorly considered situation in which vibrations are
parallel to the imposed temperature gradient.

The strategy undertaken in earlier work of the present authors
based on the numerical solution of the two-dimensional
Navier–Stokes and energy equations has been further pursued by
allowing the flow to develop in a realistic 3D physical domain for
which the problem of pattern selection has long been a theoretical puz-
zle even for the canonical case of standard steady RB convection.

The simulations have shown that an increase in the system (spa-
tial) dimensionality has a dramatic influence on the richness of the
fundamental modes of convection that can be excited. These can be
partially grouped in different categories according to some existing
classifications based on various symmetries that are broken or retained
and the number of convective structures present at the same time in
the physical domain. Along these lines, we have referred directly to the
existing literature for RB convection in cubic cavities just to encourage
readers to follow up various details and recognize the analogies and
differences with this parent category of thermal flows. Given the
intrinsically time-varying nature of thermovibrational convection in
systems where the vibrations and the temperature gradient are concur-
rent, many of these convective states can be produced for a fixed value
of the vibrational Rayleigh number and given thermal boundary con-
ditions. Although two well-defined convective stages can always be
identified in the period of vibrations (one corresponding to an almost
quiescent quasi-stationary state, and another where a convective pulse
occurs), however, the enabled modes are not mutually exclusive, nor
are they truly progressive. Moreover, their multiplicity tends to be
enhanced as the vibrational Rayleigh number is increased and the con-
vective pulse is turned into a turbulent burst.

The numerical simulations have also revealed that, despite this
multiplicity, some control on the morphology of the emerging convec-
tive structures can be exerted by forcing the system a priori to break or
adhere to some spatial symmetries by imposing non-uniform thermal
boundary conditions along the sidewalls. An ordered combination of
adiabatic and conducting walls can indeed limit the ability of the flow
to produce toroidal states in favor of more two-dimensional solutions.
The intentional use of hybrid thermal boundary conditions can also be
instrumental in inducing changes in the temporal response of these
systems, causing a shift from synchronous (flow oscillating at the same
frequency of the forcing) to sub-harmonic (period doubling bifurca-
tion) behaviors or vice versa. Moreover, we have shown that cases con-
taining a pair or two pairs of conducting sidewalls are more stable
than the configuration with adiabatic sidewalls.

An exciting prospect for the future is to enrich this problem with
the addition of solid particles, thereby giving rise to a new line of inquiry
running in parallel with that where the interplay of thermovibrational
effects and particle inertial effects in cubic cavities with vibrations perpen-
dicular to the temperature gradient has been found to support fascinating
particle self-organization phenomena (formation of highly ordered,
high-resolution structures with the morphology of quadric surfaces44–48).
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