Supporting Expensive Physical Models With Geometric Moment Invariants to Accelerate Sensitivity Analysis for Shape Optimisation

Shahroz Khan

Panagiotis Kaklis

Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde Glasgow, UK Andrea Serani

Matteo Diez

CNR-INM, National Research Council -Institute of Marine Engineering, Rome, Italy

A J GRAPES learninG, pRocessing And oPtimising shapES

Motivation

Simulation-Driven Optimization (SDO)

Rises exponentially with the **dimension of the Design space**

Existing Approaches

Design Space Dimensionality Reduction

Unsupervised – PCA, Auto-encoders Latent **GEOMETRIC** features

Supervised – Sensitivity Analysis

Parameters with high variability impact on performance.

[D'Agostino et al., 2020]

Principal Component Analysis (PCA)

[Bhatnagar et al., 2019]

Autoencoders

Convolutional Neural Network (CNN)

Generative Adversarial Network (GAN)

Surrogate Modelling

Supervised – Deep/Machine Learning (PINN, NN, CNN, GAN) . Bypass the design's evaluation with CFD/FEA.

Physics Informed Neural Network (PINN)

Drawbacks

Supervised Techniques

- Design-Space Dimensionality Reduction sensitivity analysis
- Surrogate Modelling

Need big datasets for reliable training (High-dimensional problems)

• High fidelity simulation: single run is expensive

computational complexity still exists

Objective

• Support physics with computationally less expensive property?

quantity $\,\approx\,$ Physics and computationally less expensive

Geometric integrals (moments)

• A preliminary decision on **sensitivity of parameters** with geometrical properties?

Applications of Geometric Integrals (moments)

Computer-Aided Design and Computer Vision:

- Object Recognition [Atrevi et al., 2017]
- Shape Retrieval [Luciano & Hamza, 2019]
- Rigid Body Transformation [Bronstein & Bronstein, 2018]

Geometric foundation for many physical analyses:

- Structural analysis [Kim et al., 2007]
- Meshless physical analysis [Taber et al., 2018]
- Governing equations of motion [Newman, 2008]
- Fluid simulations [Jin et al., 2019]
- Hydrodynamic and Hydrostatic stability [Biran & Pulido, 2013]

[Bronstein & Bronstein, 2018]

[Jin et al., 2019]

[Taber et al., 2018]

[Fox et al., 2018]

Methodology – Geometric Integrals

Geometric moments of a shape

- 1. are intrinsic properties of its underlying geometry
- 2. provide a medium for interoperability between geometry and physics.

(l + m + n)th – order moment (**Riemann integrals**):

$$M_{lmn}(\mathcal{G}) = \iiint x^l y^m z^n \,\rho(x, y, z) \, dx \, dy \, dz$$
$$\rho(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in \mathcal{G} \\ 0 & \text{otherwise} \end{cases}$$

Geometric domain: ${\cal G}$

Zeroth order moment: M_{000} = volume of G

Methodology – Geometric Integrals

Moments are variant to transformation (Translation, Scaling, Rotation,)

(l + m + n) - th order central moment:

 $MI^{lmn}(\mathcal{G}) = \iiint (x - x_c)^l (y - y_c)^m (z - z_c)^n \, dx \, dy \, dz \qquad \text{(Invariant to translation)}$

where x_c , y_c and z_c are the centroidal coordinates of \mathcal{G}

 $(MI^{lmn}(\mathcal{G})$ can be also regularised in order to become invariant to uniform scaling)

$$\mathcal{MI}^{s} = [\mathbf{MI}^{2}, \mathbf{MI}^{3}, ..., \mathbf{MI}^{s}]$$

shape signature vector containing all component of moments up to s^{th} order

MI^{*s*} contain all moments $MI^{lmn}(\mathcal{G})$ such that l + m + n = s

Methodology – Sensitive Parameters

Sensitive/Significant Parameters

- Global Variance-Based Sensitivity Analysis (Sobol's Method)
- Sensitivity indices of each parameter w.r.t. Qol (Geometric Moments)
- Sensitive parameters: sensitivity indices \geq threshold (φ)

Test Case

DTMB 5415 Naval Ship Model

- Parametric modeler of GMF type depending on 27 design parameters
- GMF (global modification function) is a grid modification approach
- Objective:

Optimised design for

calm-water wave resistance coefficient (c_w)

Quantity	Value
Displacement	0.549 m ³
Length between perpendiculars	5.720 m
Beam	0.760 <i>m</i>
Draft	0.248 m
Longitudinal centre of gravity	2.881 m
Vertical centre of gravity	0.056 m
Water density	998.5 kg/m^3
Kinematic viscosity	1.09E-6 m^2/s
Gravity acceleration	9.803 m/s ²
Froude Number	0.250

- 27-Dimensional original design space
- Dataset Size:

9000 uniformly distributed designs – sampled with Monte Carlo method

Results – Parametric Sensitivity

All parameters sensitive w.r.t. 4th order moments (\mathcal{MI}^4) are also sensitive w.r.t. c_w

- 6 lower dimensional design space with \mathcal{MI}^4
- 7 lower dimensional design space with c_w

Results – Optimisation

Conclusions & Future Work

Conclusion:

Moments can be used to replace/complement design's physics for parametric sensitivity analysis.

Future Work:

- New test cases with different ships, parametric modelers and solvers
- Test the influence of specific $(MI^{k00}(\mathcal{G}))$ or higher-order (>4) moments
- Investigate theoretically the correlation between moments and the physical model adopted by our solvers
- Integrate moments in surrogate modelling, especially during Physics-Informed learning.

QUESTIONS?

Funding

University of Strathclyde

G R A P E GRAPES S learninG, pRocessing And oPtimising shapES

European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant.

The Royal Society

C N R - I N M

US Office of Naval Research through NICOP grant N62909-18-1-2033.