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Abstract

Earthquake records collected at dense arrays of strong-motion stations are often uti-
lized in microzonation studies to evaluate the changes in site response due to varia-
bility in site conditions across a region. These studies typically begin with calculating
Fourier spectral amplification(s) and then transition to performing engineering site
response analyses. It has proven difficult to utilize Fourier spectral amplification(s) to
define the appropriate elastic response spectr(um)/(a) for a site or sites. This is
because, first, the ground motions recorded at these strong-motion stations have
lower intensity and hence do not show the nonlinear site effects observed during
higher-intensity earthquakes and, second, Fourier and response spectral amplitudes
measure different aspects of ground motions. The strong-motion stations in
Anchorage, Alaska, have been recording earthquakes in the region for the last three
decades. This study utilizes a database of 95 events from 2004 to 2019 to calculate
Fourier spectral amplifications at 35 stations using the generalized inversion tech-
nique (GIT). Estimated response spectra have been evaluated at each site by applying
those Fourier spectral amplifications to a response spectrum of a reference station
through random vibration theory (RVT). Correction factors are also applied within
the approach to account for nonlinear site effects. This RVT-based approach is tested
using ground motions recorded during the Myy 7.1 2018 Anchorage Earthquake, and
close matches between measured and predicted response spectra are found. The
method is then compared with site response analyses using a calibrated 1D equiva-
lent linear (EQL) model of the Delaney Park Downhole Array site. Estimated spectra
using the RVT-based approach are, finally, compared with those using Next
Generation Attenuation Subduction (NGA-Sub) and NGA-West2 ground-motion
models. The proposed method provides a coherent and straightforward way to use
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GIT-derived Fourier spectral amplifications to directly estimate site-specific response
spectra, accounting for nonlinear site effects and without requiring engineering char-
acterization of subsurface soil conditions.
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Introduction

The city of Anchorage, located in southcentral Alaska, is Alaska’s most populous city,
with approximately half of the state’s population. Southcentral Alaska is situated in a very
active tectonic region near the edges of the North American and the subducting Pacific
plates. This region was significantly impacted by the 1964 Moment Magnitude (M) 9.2
Great Alaska Earthquake (Hansen, 1965), the second-largest earthquake on record
(USGS.gov, 2020). Since the 1970s, strong-motion sensors have been installed in
Anchorage for a better understanding of ground-motion variability across the city.
Several studies have performed site response analyses in the frequency domain through
methods such as standard spectral ratio (SSR) and horizontal to vertical spectral ratio
(HVSR) (see, e.g. Borcherdt, 1970 and Ghofrani and Atkinson, 2014, for a discussion of
these techniques) using the recorded ground motions at strong-motion stations. However,
many of these stations have not been appropriately characterized through subsurface soil
studies. Fourier amplitude spectra (FAS) of the recorded ground motions are used to com-
pute SSR and HVSR. Although newer ground motion models and other tools are utilizing
FAS more often (e.g. Bayless and Abrahamson, 2019), engineers often prefer response
spectra, rather than FAS, because they better predict building and other structural
responses. It should be noted that FAS more closely represent free-field ground motions
compared with response spectra because response spectra are filtered through single-
degree-of-freedom oscillators. This article aims to provide a methodology to utilize the
results from spectral amplification studies, even from those primarily based on data from
low-magnitude earthquakes, to estimate site response spectra that account for nonlinear
soil behavior and without requiring detailed soil characterization. This will allow the engi-
neering community to utilize, more efficiently, years of measured ground motions to
understand engineering site response, especially at sites with poorly characterized soil
conditions.

The following sections begin by presenting the tectonic setting and geologic conditions
in Anchorage, followed by a description of the strong-motion data set used in this study. A
brief description of the time history processing and Fourier spectral amplification analysis
of the data set is provided. Then the methodology to calculate site response spectra utiliz-
ing Fourier spectral amplification results, combined with random vibration theory (RVT),
is described. Several examples of its use are then presented and evaluated, with a final dis-
cussion on other potential applications.

Tectonic setting and seismicity

Alaska is situated in one of the most tectonically active regions globally with, for example,
the Alaska Earthquake Center (AEC) recording more than 54,000 earthquakes across the
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Figure 1. The tectonic setting of Southcentral Alaska, including contours of the interface between the
North American and the subducting Pacific plates (using Slab 2.0; Hayes, 2018) and crustal faults as
identified by Koehler (2013). The colored circles indicate the epicenters of the earthquakes used in this
study, which have been divided into intraslab, interface, and crustal events.

state in 2018 (AEC, 2021), including the Myw 7.1 Anchorage Earthquake (Figure 1).
Anchorage sits at the edge of the North American plate, where the Pacific plate converges
at a rate of 55 mm/year (Haeussler, 2008). This region, known as the Alaska-Aleutian
megathrust, experiences, on average, an My, 7 or greater earthquake every 11 years (West
et al., 2020).

Several sources, including the interface, intraslab, and crustal sources, are responsible
for these earthquakes (Wesson et al., 2007). The intraslab events within the subducting
Pacific plate are the most common. As an example, the 2018 My 7.1 Anchorage
Earthquake was an intraslab event. In addition, several crustal sources can impact
Anchorage, including the Castle Mountain Fault north of Anchorage, which is estimated
to be capable of an My 7 to 7.5 earthquake (Koehler, 2013; Wesson et al., 2007).

Geology

The geologic setting below Anchorage is as intricate as the tectonic setting, as it has been
greatly affected by the advances and retreats of various glaciers in the region, resulting in
complex soil stratigraphy. The simplified surficial geology is presented in Figure 2. The
Chugach Mountains, composed of lightly metamorphosed greywacke, rise at the city’s
eastern border (Wilson et al., 2012). Dense glacial till overlies the greywacke and is found
at the surface in the lower reaches of the Chugach Mountains to the east, but it is encoun-
tered at depth to the west (Combellick, 1999; Updike and Ulery, 1986). Glacial outwash
and alluvial deposits are found in the northern portion of Anchorage, often overlying gla-
cial till.
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Figure 2. A simplified geologic map of Anchorage with strong-motion station locations. Hatching
identifies the site class based on estimated Vs3o (Thornley et al., 2021c). A 10 m isopach line is added
from Combellick (1999) to show the geologic break in Bootlegger Cove Formation (BCF) thickness,
where the BCF becomes thinner to the east of the line.

The Bootlegger Cove Formation (BCF), due to glaciolacustrine deposition, consists of
various facies of sand, silt, and clay (Updike and Ulery, 1986). The BCF is found in the
city’s central and western portions. The more sensitive clay layers of the BCF have been
identified as the weak soil that caused significant deformations and slope failures in the
1964 Great Alaska Earthquake. The BCF ranges in thickness up to 60 m, with its deepest
portions found in the city’s western-central part (Ulery and Updike, 1983). The BCF
grades to deltaic deposits of silt and fine sand on the western edge of Anchorage. The
shear-wave velocities of the BCF are dependent on the facies, with the facies (generally
located in the central-western portion of the city) having shear-wave velocities less than
180 m/s to the stiffer facies having shear-wave velocities greater than 360 m/s. The variabil-
ity of these subsurface soil conditions affects the site response across Anchorage (Thornley
etal., 2021b).

Strong-motion stations and data set

The current Anchorage network consists entirely of modern digital accelerometers (mostly
Kinemetrics Basalt sensors) with sampling rates of 200 Hz. The 35 strong-motion stations
used for this study are distributed across various surficial geologic conditions, as shown in
Figure 2. Station K216, located within the Chugach Mountains (Figure 2), is located on a
rock outcrop and is commonly used as a rock reference station. The other stations used in
this study are located at soil sites. Additional details for the strong-motion stations are
provided in Table 1 in the electronic supplement. These stations are operated and main-
tained with collaboration between the AEC and the United States Geological Survey
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Table I. Ground motions utilized for the DPDA calibrated model comparison with the RVT-based
technique

Event® Station® Magnitude® V3o Maximum Shear  Shear Strain  Surface
(m/s)*  Strain (%)° Index (%)°  PGA (g)°
Duzce, Turkey Lamont 1060 7.14 782 0.020 0.022 0.06
Chi-Chi, Taiwan  TTNO025 7.62 705 0.019 0.016 0.06
Hector Mine Hector 7.13 726 0.202 0.170 0.33
Kocaeli, Turkey =~ Gebze 7.51 792 0.091 0.124 0.17

Time histories and station data from PEER (2021). Maximum shear strain and surface PGA are calculated in the Strata
DPDA model.

?Data from PEER (2021) NGA-West2 Ground Motion Database.

PResults from the DPDA EQL.

(USGS). In addition to surface strong-motion stations, the Delaney Park Downhole Array
(DPDA), operated by the University of California Santa Barbara and identified as Station
8040, was installed in 2004 (Figure 2). This comprises a surface sensor and six subsurface
accelerometers sensors at varying depths of up to 60 m below the ground surface. Between
2005 and early 2019, approximately 95 earthquakes within 300 km, ranging from My 4.5
to Mw 7.1, were recorded at the strong-motion stations across Anchorage. The accelera-
tion time histories were processed prior to performing data analysis. A detailed account of
the full processing of the data is described in Thornley et al. (2021b). In all, 1,727 three-
component records from the 95 events were retained after processing for this analysis.

Site spectral amplification evaluation

Once processed, the data set for the 35 strong-motion stations and 95 events was used to
evaluate the site response variability across Anchorage. The generalized inversion tech-
nique (GIT), which was first developed by Andrews (1986), was utilized to perform the
analysis. GIT is an efficient method for estimating the spectral amplification of many sites
compared with a selected reference site (e.g. Bindi et al., 2017; Dutta et al., 2003;
Laurenzano et al., 2019; Oth et al., 2009; Parolai et al., 2000). One of the benefits of GIT
is its ability to use a large number of earthquakes at a large number of stations and obtain
spectral amplification results at each station, even when not all stations recorded all earth-
quakes. The GITANES (Version 1.3) package, implemented in MATLAB by Klin (2019),
was used for this analysis.

While three-component time histories are used as inputs to GITANES, only the hori-
zontal orthogonal components (E-W for the east-west component and N-S for the north-
south component) are used to calculate the response spectral amplification functions
(SAFs). The two orthogonal SAFs were combined using the following equation to calcu-
late an equivalent average spectral amplification function (EAF) over the selected range of
frequencies (f) for each station evaluated:

EAF(f)= \/§ [SAF 5w (/) +SAFy_s(f)): (1)

The EAF for each station represents the spectral amplification compared with the
selected reference station (Station K216 in this study). The range of frequencies utilized in
this study ranged from 0.25 to 10 Hz or 0.1 to 4 s, which roughly covers the natural
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Figure 3. Fourier spectral amplification (ratio of the selected site and the reference site) for a station
located on a shallow soil deposit over dense glacial till (a) and a station with more than 40 m of variable
soil, including soft silts and clays, over dense glacial till (b). The gray shading indicates the calculated
standard error.

periods of buildings between 1 and 40 stories, encompassing the range of building types in
Anchorage.

Once the spectral amplifications are calculated for each of the strong-motion stations,
they can be used to understand the variability of site response across Anchorage, which is
related to the changes in geologic conditions, especially from east to west (Thornley et al.,
2021b). For example, the EAF for a site in eastern Anchorage (K212), with a shallow soil
layer over dense glacial till (Combellick, 1999), is presented in Figure 3a, and the EAF for
a station in western Anchorage, with a BCF thickness of more than 20 m and more than
40 m to dense glacial till (Updike and Ulery, 1986), is presented in Figure 3b. In general,
the stations in the eastern portion of the city have higher spectral amplifications at higher
frequencies, indicating stiff sites (higher shear-wave velocities), while the western portion
has much higher spectral amplifications at lower frequencies, signifying softer sites (thick
soil sites with lower shear-wave velocities).

In addition to the spectral amplifications presented in Thornley et al. (2021b), estimates
of Vg30 have also been assessed for the strong-motion stations (Thornley et al., 2021c). The
Vg3 estimates allow the city to be subdivided into different site classes based on the build-
ing code categories. The work presented in this article builds on the results of Thornley
et al. (2021b and 2021c). The interested reader is referred to those articles for further details
related to the database, methods, and results.

Engineering site response using random vibration theory

Engineering site response analyses commonly use tools such as equivalent linear (EQL)
and nonlinear analyses to estimate how earthquake ground motions are amplified as they
travel through the soil profile (Hashash et al., 2015; NASEM, 2012; Régnier et al., 2018;
Stewart et al., 2014). EQL analyses using computer programs such as SHAKE91 (Idriss
and Sun, 1992) take input ground motions in the time domain and use frequency domain
transfer functions to calculate the soil effects on the ground motion. It is important to note
that EQL analyses do not provide accurate results at large strains (i.e. strains from earth-
quakes that produce very large ground motions), and nonlinear analysis can improve the
accuracy of the assessed site response. The main advantages of EQL analysis are its
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simplicity and that it requires few parameters, principally shear-wave velocity, unit weight,
and shear modulus reduction and damping curves, to be defined for the discrete soil layers
at a site. Rathje and Kottke (2008) explained that performing EQL analyses requires a
large number of input ground motions at the base of the soil deposit to obtain a robust
estimate of site amplification. Introducing RVT allows using a single input FAS to calcu-
late the site response (Rathje and Kottke, 2008). The input FAS is still transferred through
the soil column, but the transfer function outputs a surface FAS, which is converted
through RVT to a response spectrum for the site.

RVT was introduced into seismology by Hanks and McGuire (1981). Since that time,
developments by Boore (1983), Boore and Joyner (1984), and Boore (2003), among others,
have allowed for improved implementation in EQL software such as Strata (Kottke and
Rathje, 2008). These improvements account for differences in duration and tectonic
regime. At its most basic level, RVT utilizes Parseval’s theorem and extreme value statistics
to transfer ground motions between the frequency domain and time domain and provide a
median site response estimate (Kottke et al., 2019). While RVT allows the calculation of
response spectra from FAS, inverse RVT (IRVT) calculates FAS from response spectra.

Proposed methodology

To perform EQL analyses, it is critical to understand the subsurface soil conditions at a
site. Thornley et al. (2019) calibrate an EQL model for the DPDA site, and Thornley et al.
(2020) showed that this calibrated model could successfully match measured site response
for the 2018 My 7.1 Anchorage Earthquake using both EQL and nonlinear methods
because the shear strains were low enough to arrive at good results from both methods.
However, the calibration required knowledge of the subsurface profile and testing of sev-
eral shear modulus and damping curves. In EQL analysis using RVT, a soil column is still
required to estimate the profile’s transfer function. As mentioned previously, few strong-
motion stations in Anchorage have subsurface characterization for depths greater than
10 m, and these sites, especially in western Anchorage, have soil deposits with depths of
more than 50 m. Therefore, it is not appropriate to perform site response analysis using
only shallow borings and Vg3 estimates.

Site spectral amplification studies provide a means to estimate the missing link at sites
that do not have adequate characterization to perform microzonation with EQL or non-
linear methods. These studies commonly use a reference site and calculate the amplifica-
tion at each site with respect to that reference. These spectral amplifications are an analog
of the transfer function used in an EQL analysis for a site. Using an input FAS, RVT
techniques can provide a tool for evaluating the site response at a strong-motion station
regardless of quality or availability of soil characterization. This technique offers a method
to estimate site response that does not require the same level of site characterization as is
required for EQL analysis. This may be especially beneficial for sites with complex subsur-
face conditions or sites with poorly characterized subsurface conditions.

When calculating spectral amplifications in GIT, a reference station is selected, which is
often a rock site with a Vg3 greater than 760 m/s (site class BC) in active tectonic regions.
The spectral amplification for each site with respect to the reference site provides an
approach to estimate the site response anticipated in a subsequent earthquake. However,
because these results are in the frequency domain, it is challenging to utilize standard engi-
neering choices of input spectra (e.g. uniform hazard spectra), such as those presented in
building codes that provide the basis of estimating seismic demand for design.
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Figure 4. Process for using RVTand IRVT to utilize spectral amplifications to estimate site-specific
response spectra given the response spectrum for a reference site. Step |, the selection of the input
response spectrum, begins in the lower right-hand corner. IRVT is performed in Step 2. Step 3 involves
taking the FASwmi» developed in Step 2 and applying the Site Ratio using Equation 2 to calculate FASg,foce.
Step 3 is analogous to the process used in standard EQL analysis, where an input ground motion is
applied at the bottom of the soil model and the output of the soil model is a surface spectrum (dashed
arrows). Step 4 is to perform RVT to calculate the Soil Site response spectrum. T is the spectral period,
Sa is spectral acceleration, and|A| is Fourier spectral amplitude.

Generalized approach

The RVT approach proposed in this study can be used for site response analyses at sites
where strong ground motions have been recorded. The following describes the general
process. This is followed by examples of the approach’s use in several applications. As a
starting point, a rock-outcrop ground motion is selected as the input response spectrum (a
5% damped oscillator is assumed throughout the study). IRVT converts the selected input
response spectrum to a FAS (FASwimin), removing the surface effects of the selected rock-
outcrop ground motion. Once in the frequency domain, the spectral amplification results,
from GIT for a selected site, are applied to the FASy;,;, to estimate the surface FAS
(FASsurface) using the following equation:

FASSurface, i,j :EAFi,jXFASW[thin, ref,j» (2)

where i is the site, j is the frequency of interest, and ref'is the reference site. Then RVT is
used to convert the site response from the FASg,. .. to obtain the site-specific response
spectrum.

This process allows the utilization of spectral amplifications calculated with GIT to be
utilized directly into engineering studies without geotechnical characterization of the typi-
cal soil properties, as is required by EQL analysis. The process is shown graphically in
Figure 4.
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Figure 5. Measured and RVT-based response spectra for four strong-motion stations using the My, 7.1
Anchorage earthquake. For reference, the grey line indicates the K216 (reference site) response spectrum.
The stations represent stiffer (site class C) to softer sites (site class DE) in (a.) through (d.), respectively.

Application of the proposed methodology

To test this methodology, ground motions recorded during the 2018 My 7.1 Anchorage
Earthquake at Station K216 and several strong-motion stations in Anchorage are used.
The orthogonal response spectra at Station K216 (Step 1) are converted to FAS using
IRVT (Step 2). In this instance, the two orthogonal horizontal components were combined
after performing IRVT using Equation 1. The GIT spectral amplifications for the event,
also presented by Thornley et al. (2021a) for each site, are applied to the FAS (FASwiin)
at Station K216 to calculate each site’s FAS (FASs,,fac.), as described in Step 3. Using
RVT, the site FAS is converted to the response spectrum for the site (Step 4). It should be
noted that there are several options to modify the duration, magnitude, damping, and
other parameters in Strata. Provided, however, the user consistently uses the same para-
meters for IRVT and RVT calculations, the results achieved in Step 4 remain unaffected.
The results are compared in Figure 5 to the response spectra calculated from the ground
motions recorded at each site. This process was performed for several other earthquakes
of lower magnitudes recorded in Anchorage, and similar good matches were achieved.

In general, the match between observed and the RVT approach response spectra is
close, although not exact. The locations of the peaks and their amplitudes are generally
similar. As an example, Station 8040 (Figure 5c) has a maximum difference of 39% at 1.3
s, but an average difference of less than 16%. Station K212 (Figure 5a) has a maximum
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Figure 6. Measured and EAF-based response spectra at Station K208.

difference of less than 20% with an average of 5%. These differences may be attributed to
several reasons, including the potential effects of using the EAF (Equation 1) to combine
the two orthogonal components.

To verify the appropriateness of the RVT-based approach, an evaluation was also per-
formed to consider the results of the EAF (with frequency converted to period) applied
directly to the reference site response spectrum without the use of RVT. A comparison of
the measured response spectrum and the EAF-based response spectrum is presented in
Figure 6. EAF-based response spectrum does not provide a reasonable fit, as there are sev-
eral periods where the spectra differ by factors of two or more, which is supported by dif-
ferences in FAS and response spectra (e.g. Bora et al., 2016). The RVT-based approach
provides consistently similar results to the measured response spectra.

Nonlinear site effects

Nonlinear site response, due to the response of soil undergoing large strains, is an impor-
tant aspect of any model for large earthquake ground motions. As described in Thornley
et al. (2021a), the 2018 My 7.1 Anchorage Earthquake resulted in nonlinear site response
at the strong-motion stations with lower Vg39. Numerous ground-motion models (GMM:s)
attempt to include both linear and nonlinear site responses. Several current GMMs do this
by using the following equation:

Fs=In(Fp,) +In(Fy), (3)

where Fg is the site amplification; F,, is the linear term of the site amplification as a result
of small shear strain; and F,; is the nonlinear term that accounts for the large shear strain
response of the soil at the site. This combination of terms is discussed in Seyhan and
Stewart (2014), Harmon et al. (2019), and Parker et al. (2020), among others.

As presented by Hashash et al. (2018), site response analyses within the western United
States (WUS) show that the F,, term has a greater impact on the response spectrum at
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periods less than 1 s. The impacts of nonlinear site response tend to affect softer sites (i.e.
sites with smaller Vg3(). Seyhan and Stewart (2014) found that the F,; term has the largest
impact at a period of approximately 0.3 s. As shown in subsequent sections, the F,, term
results in a reduction of the spectral accelerations for the Anchorage study, especially at
sites in classes D and DE.

The response spectra for each station calculated by the RVT-based approach have been
developed using numerous moderate-magnitude earthquakes. As suggested previously,
only one or two events may have caused nonlinear response at some of the strong-motion
stations. Due to their great epicentral distances and/or small magnitudes, the other events
caused minor or no nonlinear site response at the stations evaluated. The spectral amplifi-
cation used in this study is considered to be the F,;, term, as nonlinear effects were found,
through a sensitivity analysis, to have an insignificant impact on the average site response
(Thornley et al., 2021b). Accounting for potential nonlinearity using terms provided by
Seyhan and Stewart (2014) will reduce the likelihood of overestimating short-period spec-
tral accelerations using the RVT-based approach.

Comparison with EQL site response modeling

To further validate the RVT-based approach, the following section presents a comparison
with the results of EQL analyses using selected earthquake ground motions. As mentioned
previously, a calibrated EQL model has been developed for the DPDA. Four ground
motions from shallow crustal earthquakes recorded at surface sites with Vg3, greater than
700 m/s were selected from the PEER (2021) database (Table 1) and are considered as ref-
erence sites recording large earthquakes for this study due to their Vg3¢ values. The
response spectrum was calculated for each time history and utilized in Step 1 of the RVT-
based analysis as the reference station, and the surface response for Station 8040 was cal-
culated. The same time history was applied as an outcrop motion for use in the DPDA
model. In addition to the Fj, response term, the RVT-based response spectrum was
adjusted to account for F,,, as described above.

The resulting response spectra for the RVT-based approach and the EQL analysis are
presented in Figure 7. The input response spectrum for each event is also plotted to pro-
vide a comparison of input and output spectra. The model presented by Thornley et al.
(2019) and Thornley et al. (2020) was not modified and the EAF, as presented in Thornley
et al. (2021b), was used for the RVT-based approach. The results presented in Figure 7
show that the periods of the peaks match and that accounting for nonlinear effects reduces
the spectral accelerations to better match the amplitude of the EQL results. Between peri-
ods of about 0.3 s and 0.6 s, the RVT-based model tends to overpredict the site response,
when compared with the DPDA model. This may reflect the ground motions used to
develop the EAF but is more likely related to more complex site response being captured
by the RVT-based approach than can be captured by a 1-D EQL analysis. In addition to
characteristics related to the ground motions, the maximum shear strain within the soil
column and ground surface PGA are presented in Table 1. The shear strain index (I,), esti-
mated by PGV,,/Vs3q (Idriss, 2011), is calculated to verify the appropriateness of the EQL
model. Kim et al. (2016) found that EQL results with I, < 0.1% provide similar results to
nonlinear analyses. The results in Figure 7c and d may be better approximated using a
nonlinear model. However, for this study, the results show that the DPDA EQL model
provides a similar response. The PGAs presented in Table 1 were used to calculate the
nonlinear site modifications.
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Figure 7. The results of the comparison between the DPDA EQL model and the RVT-based approach
using the four records presented in Table | as input motions. The results using the 1999 Chi-chi event
are shown in (a.), 1999 Duzce, Turkey event in (b.), 1999, Hector Mine in (c.), and the 1999 Kocaeli,
Turkey event in (d.). Note the change in vertical scale in (c.) and (d.).

Ground motion model comparison

With the validation of the RVT-based technique for local earthquakes and as a substitute
for EQL analyses, a logical next step is to consider further application of the method.
Recently, two Next Generation Attenuation Subduction (NGA-Sub) GMMs were released
by Parker et al. (2020) and Kuehn et al. (2020). Because of the proximity of Anchorage to
the subduction zone, the high rate of earthquake activity, and the likelihood of damaging
earthquakes, subduction interface earthquakes account for 36% of the earthquake hazard
for Anchorage, according to the disaggregated hazard of the “Dynamic: Alaska 2007
(v2.1.2)” hazard model presented by USGS.gov (2021). This model indicates a My 9.2
interface earthquake at a rupture depth (rryp) of 36 km as the modal scenario. Using this
earthquake as a test case, site response spectra estimated using the NGA-Sub GMMs are
compared here to response spectra using the RVT-based technique.

The NGA-Sub hazard characterization tool (Mazzoni, 2020) was used to calculate the
response spectrum for the site class BC, where the Vg3 is 760 m/s, and the estimated Vg3q
values were used at the strong-motion stations. The Parker et al. (2020) and Kuehn et al.
(2020) models (Global variants) were equally weighted. The site class BC response
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Figure 8. Response spectra for the NGA-Sub GMMs for the Myy 9.2 event. The solid red line corrects
for nonlinearity using the factors recommended by Parker et al. (2020) and the dashed red lines using
the factors of Seyhan and Stewart (2014). The results show a range of site response values from the
stiffer (site class C) site in (a.) through a softer site (site class DE) in (d.).

spectrum was used in Step 1 (Figure 4) as the reference site response spectra. The EAF; ;
for each station (Step 3) was used to calculate the soil site response spectra. The PGA esti-
mated by the GMMs is then used to calculate F,; using the approach presented by Parker
et al. (2020) and the soil site response spectra are adjusted to account for nonlinear site
response. The comparison between the two approaches is presented in Figure 8.

The results indicate that the RVT technique provides similar results to the NGA-Sub
estimates, but the proposed technique provides additional site-specific details related to
amplification behavior at each site. Utilizing the nonlinear modification, the RVT-based
spectral accelerations are reduced at shorter periods and the shapes of the overall spectra
are similar to those estimated by NGA-Sub. Even when the nonlinear response is
accounted for, the site-specific response spectra tend to be above the median GMM esti-
mate for periods below 1 s. However, the response spectra are within one standard devia-
tion of the median, indicating a reasonable match. Modification of the factors utilized in
the calculation of F,; may help improve the fit. Figure 8 shows the differences when using
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Figure 9. Response spectra for strong-motion stations in Anchorage by site class. A range of results for
different site classes are shown, with Site Class C (a.), Site Class CD (b.), Site Class C (c.), and Site Class DE (d.).

F,; factors recommended by Parker et al. (2020) and Seyhan and Stewart (2014), indicated
by the solid red lines and dashed red lines, respectively. A fit closer to the NGA-Sub
GMM median values is achieved using the Seyhan and Stewart (2014)F,,; term, especially
at softer sites (i.e. site class D and DE).

The EAF results from the strong-motion stations were also divided by site class (defined
by Vg3 estimated by Thornley et al., 2021¢). The range of response spectra for the strong-
motion stations, divided by site class, is presented in Figure 9 along with the median and
+1 standard deviation (shaded region) spectra. The response spectra in Figure 9 have not
been adjusted to account for possible nonlinear site effects.

The average EAF for each site class was then used to estimate an average response
spectrum for each site class similar to the process described above. The average Vg3 for
each site class was used to calculate the NGA-Sub GMM response spectra (Table 2). The
results for the four site classes are presented in Figure 10. The Seyhan and Stewart (2014)
nonlinear adjustment provides a closer fit between the site class response spectra and the
NGA-Sub GMM response spectra.
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Table 2. Vs3q ranges by site class proposed by BSSC (2019) and Anchorage strong-motion station
estimates used in this study

Site Class Vs30 Range Strong-motion Strong-motion Number of
(BSSC 2020) (m/s) Station Vs3g Station Vs3g Strong-motion
Range (m/s) Average (m/s) Stations
C 440 — 640 465 — 594 516 10
CDh 300 — 440 315-439 376 9
D 215-300 224 - 285 244 10
DE 150 - 215 167 -213 196 4

Additional strong-motion station details are provided in the electronic supplement (Table ES-1). BSSC: Building
Sciences Safety Council.
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Figure 10. Median response spectra for the combination of strong-motion stations in Anchorage by
site class comparing the NGA Sub GMMs for the My 9.2 event and the RVT-based approach. A range of
results for different site classes are shown, with Site Class C (a.), Site Class CD (b.), Site Class C (c.), and
Site Class DE (d.). The solid red line corrects for nonlinearity using the factors recommended by Parker
et al. (2020) and the dashed red line for Seyhan and Stewart (2014).
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Figure 1 1. Median response Spectra for the combination of Anchorage site classes comparing the

NGA-West2 GMMs for the Myy 7.5 event and the RVT-based approach. A range of results for different
site classes are shown, with Site Class C (a.), Site Class CD (b.), Site Class C (c.), and Site Class DE (d.).

Crustal earthquake sources have also been included in the Alaska hazard model. The
Castle Mountain Fault, north of Anchorage (Figure 1), is estimated to be able to produce
strike-slip events up to My 7.5 (Wesson et al., 2007). This scenario earthquake was used
to compare the results of the four equally weighted soil site NGA-West2 GMMs
(Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and
Youngs, 2014) and the RVT technique. This is evaluated in a similar fashion to the site
class approach presented above. The F,,; term is developed using the factors suggested by
Seyhan and Stewart (2014) for crustal earthquakes. The results of this comparison are pro-
vided in Figure 11. As shown previously, the nonlinear effect is minimal for site classes C
and CD (Figure 11a and 11b) and the general shape of the spectral accelerations matches
well with the shape and amplitude of the median NGA-West2 spectra. Figure 11c and 11d
show the nonlinear effects for a My 7.5 crustal earthquake 65 km from Anchorage may
not be as prevalent as suggested by the substantial reduction in spectral accelerations at
shorter periods and the nonlinear term may not be appropriate when crustal earthquakes
at greater distances are used.
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Discussion and application

One of the limitations of microzonation studies is the need for proper engineering charac-
terization of the subsurface soil, especially at strong-motion stations, to draw conclusions
about sites within the vicinity that have similar subsurface conditions. As described here,
the Anchorage strong-motion network does not have this level of characterization. Still,
unlike regional strong-motion networks, such as in the central and eastern United States
(CEUS), the Anchorage network has recorded numerous moderate to strong earthquakes.
The use of RVT techniques with GIT-derived spectral amplification allows the characteri-
zation of site response without additional subsurface characterization, as shown in Figure
5. This is especially beneficial because even with the proper characterization of subsurface
conditions, the selection of shear modulus reduction and damping curves can have a sig-
nificant impact on the results of EQL analyses.

As mentioned previously, one of the benefits of the use of spectral amplification mea-
sured at the strong-motion stations is that the site response, especially in the linear range,
is accounted for in the results. This is beneficial when performing site response analysis,
whether EQL or nonlinear. The results allow for calibration of site models under small
strain before extending those models to the nonlinear realm. This can also support a meth-
odology for selecting and applying shear modulus reduction and damping curves for
regional soil types so that a model for a strong-motion station can be applied to other sites
within a region. A limitation of this method is that it requires several recordings from
numerous strong-motion stations to obtain stable results, and a new construction does not
necessarily have a corresponding strong-motion station. However, for microzonation stud-
ies, which have utilized EQL in the past, this methodology may provide additional insight
into the variations in regional site response and its characterization.

When utilizing the RVT-based methodology, several aspects should be considered. As
presented in Kottke et al. (2019), care should be taken when calculating input FAS from
response spectra. Reference site response spectra may need to be upsampled to achieve
appropriate FAS representation. In addition, unlike GMM applications using RVT, para-
meters such as magnitude, duration, and other modifications do not need to be accounted
for in this method, provided that the parameters used in Step 2 and Step 4 (Figure 4) are
the same. The results of GIT provide standard error estimates, which can be utilized to
evaluate the uncertainty of results for future studies. Finally, the spectral amplification
used in this study resulted primarily from smaller-magnitude earthquakes that provide lin-
ear site response, allowing for the subsequent application of the F),; term. Care should be
given to the selection of earthquakes for the GIT analysis so that nonlinear response is not
accounted for twice. On the other hand, if the ground motions used in the GIT analysis
already account for nonlinear response (Figure 4) then F,;, may not need to be applied.

Conclusions

The use of Fourier spectral amplification results directly in geotechnical engineering stud-
ies has been limited. This is because there has been no coherent and simple approach to
transfer the Fourier spectral amplification results to the response spectral-domain more
common in engineering studies. The methodology presented in this study provides the
opportunity to directly utilize Fourier spectral amplification to estimate response spectra
for strong-motion stations without the need for engineering characterization of subsurface
conditions. The methodology, shown here to be compatible with individual earthquakes,
can be extended to incorporate the results from numerous earthquakes to capture average
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site response. While the initial results provide the linear response, applying a nonlinear
term allows for the correction of site response to include nonlinear effects on the response
spectrum.
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