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a b s t r a c t 

In this paper, a novel way of modeling uncertainty on demand in the single-item dynamic lot sizing 

problem is proposed and studied. The uncertainty is not related to the demand quantity, but rather to 

the demand timing, i.e., the demand fully occurs in a single period of a given time interval with a given 

probability and no partial delivery is allowed. The problem is first motivated and modeled. Our modeling 

naturally correlates uncertain demands in different periods contrary to most of the literature in lot sizing. 

Dynamic programs are then proposed for the general case of multiple demands with stochastic demand 

timing and for several special cases. We also show that the most general case where the backlog cost 

depends both on the time period and the stochastic demand is NP-hard. 
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. Introduction 

This paper tackles a single-item dynamic lot sizing problem, 

.e., quantities to be produced or replenished on a finite planning 

orizon discretized in periods must be determined to satisfy time- 

arying demands. The total cost, which combines fixed setup costs 

nd variable inventory and production costs, is to be minimized. 

ecause we consider uncertainty, backlog costs associated with de- 

aying the satisfaction of uncertain demands in a period are also 

ncluded in the total cost. 

Handling the uncertainty of parameters in planning problems 

s a challenging task. A straightforward way (though naive and of- 

en costly) is to use buffers to cover for random events, such as 

afety stocks to cover for larger demands than expected in produc- 

ion and inventory planning. Another classical and more complex 

pproach is to explicitly consider the probability distributions of 

he stochastic parameters and to minimize the total expected cost. 

ost of the literature in lot sizing investigates deterministic prob- 

ems, see, e.g., Brahimi, Absi, Dauzère-Pérès, & Nordli (2017) for 

n excellent review of single-item problems, Doostmohammadi & 

kartunalı (2018) for a recent theoretical overview on complex 

ulti-item problems, and Meistering & Stadtler (2017) for a re- 

ent overview of problems with rolling schedules. Recent surveys 

n stochastic lot sizing can be found in Tempelmeier (2013) and 
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loulou, Dolgui, & Kovalyov (2014) . In stochastic lot sizing prob- 

ems, the total expected (discounted or not) cost is often mini- 

ized (or respectively, profit maximized). A set of scenarios can 

e used to model the problem effectively, as in Guan & Miller 

2008) to design a polynomial time algorithm for the most sim- 

listic case of a single item, or as in Golari, Fan, & Jin (2017) to de-

elop a sophisticated decomposition approach for real-world prob- 

ems with multi-stage decision making. An alternative to expected 

ost is to use service levels, modeled through chance constraints, 

s in Tempelmeier (2007) . 

In their survey, Brahimi et al. (2017) show (see Table 2) that 

he vast majority of the research literature in single-item stochastic 

ynamic lot sizing investigate stochastic demands with a particu- 

ar focus on volumes. Stochastic demands have been taken in ac- 

ount in some lot sizing models with pricing decisions ( Federgruen 

 Heching, 1999; Thomas, 1974 ), and stochastic costs and yield 

ave also been studied in combination with stochastic demands, 

.g., in Huang & Ahmed (2010) . On the other hand, stochastic lead 

imes have very rarely been considered. In their work, Huang & 

üçükyavuz (2008) address the single-item problem with stochas- 

ic lead times and propose a dynamic programming algorithm that 

s polynomial in the size of the scenario tree to solve the problem, 

hich was later improved by Jiang & Guan (2011) . It is also note- 

orthy to remark the approximation algorithms proposed by Levi 

 Shi (2013) for lot sizing problems with stochastic lead times. 

We note that robust optimization approaches have also been 

sed to handle demand uncertainties in lot sizing since the ear- 

ier works of Ben-Tal, Golany, Nemirovski, & Vial (2005) and 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2021.12.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.12.027&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kerem.akartunali@strath.ac.uk
mailto:dauzere-peres@emse.fr
https://doi.org/10.1016/j.ejor.2021.12.027
http://creativecommons.org/licenses/by/4.0/


K. Akartunalı and S. Dauzère-Pérès European Journal of Operational Research 302 (2022) 221–229 

B

a

A

t

i

l

S

i

s

p

a

s

o

Y

i

w

n

l

r

w

w

w

u

g

o

H

t

o

t

s

c

p

t

t

i

d

t

p

t

i

s

e

u

a  

t

s

o

k

w

i

t

t

b

f

i

h

S

g

a

d

d

&

g

r

p

e

d

c

t

i

m

s

i

o

l

a

c

m

d

d

c

a

i

s

i

I

c

a

p

f

2

i

d

m

s

x

y

i

w

t

s

p  

u

z

n

s

d  

b  

n

p  

H

 

n

t  

d  

c  

e  
ertsimas & Thiele (2006) . The exact min-max decomposition 

pproach of Bienstock & Özbay (2008) is further extended by 

ttila, Agra, Akartunalı, & Arulselvan (2021) to include uncertain- 

ies in returns in a remanufacturing setting. Though limited due to 

ts static nature, Wei, Li, & Cai (2011) propose a robust LP formu- 

ation, and the general dynamic programming framework of Agra, 

antos, Nace, & Poss (2016) is shown to work effectively in lot siz- 

ng problems. Distributionally robust optimization has also been 

hown to be an effective tool for two-stage decision making in 

ractice ( Zhang, Shen, & Son, 2016 ). However, even more notice- 

ble than the stochastic lot sizing literature, the focus has been 

olely on uncertainties in the volume of demand. A recent review 

f the broad field of robust optimization can be found in Gorissen, 

aniko ̆glu, & den Hertog (2015) . 

Our problem setting significantly differs from previous stud- 

es, and partly answers one of the main criticisms associated 

ith the modeling of stochastic demands in lot sizing problems, 

amely that uncertain demands in different periods are uncorre- 

ated. Stochastic demands are usually considered as independent 

andom variables, which is unrealistic in many practical settings, 

here an increase of the demand in one period is often associated 

ith a decrease of the demand in another period. In our modeling, 

e consider that the demands are deterministic in terms of vol- 

mes but that their timing might be stochastic. More precisely, a 

iven demand quantity might occur in a window of multiple peri- 

ds, with a given probability to fully occur in each of these periods. 

ence, stochastic demands are naturally correlated due to the fact 

hat the total demand on the horizon is deterministic while the 

ccurrences of the demands are stochastic. 

Stochastic demand timing can be observed in a range of prac- 

ical settings. In particular, this happens when a client company 

ends orders for a product to a supplier company, when the client 

ompany’s product inventory level is empty. The order to the sup- 

lier is fixed, typically related to the inventory capacity of the cus- 

omer. Hence, the supplier company knows very well the quantity 

hat will be either picked up by or delivered to a customer, but 

s not able to know exactly when, although an interval of several 

ays is known. This is particularly noticeable in operational or tac- 

ical production and inventory planning over several weeks with 

eriods of a day, where demand and order quantities are well es- 

ablished, and is a typical context in process industries, which sat- 

sfy the demands of other industries. For example, this case is ob- 

erved for non-mixable cement products that can be stored (see, 

.g., Christiansen et al. (2011) ) or calcium carbonate slurry prod- 

cts (see, e.g., Dauzère-Pérès et al. (2007) ), where it is known that 

 vessel, a train, or a truck will arrive in an interval of several days

o be completely filled. 

Hence, order management is an interesting context, where 

tochastic demand timing is relevant. When a company has a list 

f potential customers’ orders, predicted from historical data, with 

nown quantities and time windows in which they should occur 

ith their corresponding probabilities, solving the problem stud- 

ed in this paper will provide the most efficient plan to answer 

hese orders. Significant potential losses due to future orders can 

hus be estimated, and necessary actions to avoid these losses can 

e taken. 

More generally, manufacturers may be able to very efficiently 

orecast the demand quantity from a given retailer in the upcom- 

ng weeks, which must be delivered in a single period, but will 

ave more difficulty to forecast the exact timing of such demand. 

tochastic demand timing as considered in this paper models this 

eneral context. 

We remark that the time windows considered in this paper 

re different from the demand (or delivery) time windows intro- 

uced in Lee, Çetinkaya, & Wagelmans (2001) , and from the pro- 

uction time windows introduced in Dauzère-Pérès, Brahimi, Najid, 
222 
 Nordli (2002) . Demand time windows specifically correspond to 

race periods, in which demands can be delivered without incur- 

ing holding or backlog costs, whereas this is not the case in our 

roblem. On the other hand, production time windows require that 

ach demand quantity be produced within a specified time win- 

ow, while there are no such constraints in our problem. However, 

ombining stochastic demand timing with demand or production 

ime windows could be a potential area for future investigation. 

The problem is first formalized and analyzed in Section 2 . Then, 

n Section 3 , we study the simplest possible case of stochastic de- 

and timing, i.e., a single interval, in order to facilitate the discus- 

ion of more complex cases later. A polynomial dynamic program 

s proposed and some properties are introduced. The general case 

f stochastic demand timing with multiple intervals is then ana- 

yzed in Section 4 , where some additional results are presented 

nd a dynamic program of exponential complexity in the worst 

ase is proposed. We show that this dynamic program is polyno- 

ial in the realistic case, where production costs are time indepen- 

ent and the ratio between inventory and backlog costs is time in- 

ependent, and also in the case where probability distributions are 

onvex. We then study in Section 5 two special cases with further 

ssumptions on the intervals of stochastic demand timing: Firstly, 

n Section 5.1 , we assume the intervals to be non-overlapping, and 

econdly, in Section 5.2 , we assume that a dominance order ex- 

sts between the intervals. Both cases are shown to be polynomial. 

n Section 6 , we extend the results of the previous sections to the 

ase where the backlog cost depends not only on the period but 

lso on the quantity of stochastic demand, and establish its com- 

lexity to be N P -hard. Finally, we conclude with key remarks and 

uture research directions in Section 7 . 

. Problem modeling 

Let us consider the single-item uncapacitated dynamic lot siz- 

ng problem with a planning horizon of T periods in the classical 

eterministic sense, as follows: 

in 

T ∑ 

t=1 

f t y t + 

T ∑ 

t=1 

h t s t + 

T ∑ 

t=1 

c t x t (1) 

.t. x t + s t−1 − s t = D t t = 1 , . . . , T (2) 

 t ≤ M t y t t = 1 , . . . , T (3) 

 t ∈ { 0 , 1 }; x t ≥ 0 ; s t ≥ 0 t = 1 , . . . , T (4) 

For any period t , variables x t and s t represent production and 

nventory quantities, respectively, and binary y t variables indicate 

hether a production setup takes place or not. The objective (1) is 

o find a minimum cost production plan, where the total cost con- 

ists of fixed setup costs f t (charged only if production is strictly 

ositive, i.e., y t = 1 ), per unit inventory holding costs h t , and per

nit production costs c t , respectively, for all periods in the hori- 

on. We also assume all cost parameters to be strictly positive, i.e., 

o “free lunch”. The flow balance constraints (2) ensure on-time 

atisfaction of demand D t , whereas the relationship between pro- 

uction and setup variables is set by (3) , where M t is an upper

ound on x t , e.g., M t = 

∑ T 
� = t D � . Finally, the integrality and non-

egativity constraints are provided by (4) . Let us recall that this 

roblem has a complexity of O (T log T ) , see, e.g., Wagelmans, van

oesel, & Kolen (1992) . 

In addition to the deterministic demands D t , ∀ t ∈ [1 , T ] , that

eed to be satisfied on time, we simultaneously consider stochas- 

ic demand timing as follows. Let [ l i , u i ] ⊂ [1 , T ] be an interval, in-

exed by i , where it is certain that a demand of d i will fully oc-

ur, i.e., at once, in one period, with a probability of p i t ≥ 0 for

ach period t ∈ [ l i , u i ] and such that 
∑ u i 

t= l p 
i 
t = 1 . Note that p i t = 0
i 
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or t ≤ l i − 1 and t ≥ u i + 1 . Let I be the set of such intervals with

tochastic demand timing in the planning horizon and, for ease of 

otation, let |I| = n . 

In this paper, we make the following realistic assumptions: 

• No backlog is allowed for deterministic demands and, accord- 

ingly, no backlog is allowed for any stochastic demand quan- 

tity d i after period u i . Note that, however, stochastic demand 

quantity d i may be satisfied with inventory carried from before 

l i , while backlogging is allowed within the interval [ l i , u i ] with

a variable backlog cost b t . In Section 6 , the more general case

where the variable backlog cost b i t also depends on d 
i is dis- 

cussed. 
• Partial delivery of any stochastic demand quantity d i is not al- 

lowed, i.e., d i products must be delivered to the customer in 

one and only one period. Hence, each stochastic demand tim- 

ing can be seen as a separate order, and the backlog cost is 

counted until d i is fully satisfied. Note that the problem is easy 

to solve if partial delivery is allowed, as one can simply solve 

in that case a classical lot sizing problem with demand p i t d 
i in 

period t . 
• As it is usually the case and w.l.o.g., backlog is more costly than 

inventory, i.e., b t > h t ∀ t . 

For any period t ∈ [ l i , u i ] , the expected stochastic demand quan-

ity to satisfy is p i t d 
i . As this stochastic demand quantity cannot be

roduced after u i , we note that, for any t ≤ u i and per unit pro-

uced, the expected inventory is 
∑ u i 

l= t+1 
p i 
l 
(if one unit of product 

as already been produced) and the expected backlog is 
∑ t−1 

l= l i p 
i 
l 

if one unit of product has not been produced yet). Hence, the ex- 

ected holding and backlog cost for producing one unit of product 

o satisfy d i in period t is denoted by EC i (t) , which can be defined

s follows for any t ≤ u i : 

C i (t) = 

u i ∑ 

l= t 
h l 

u i ∑ 

k = l+1 

p i k + 

t−1 ∑ 

l= l i 
b l 

l ∑ 

k = l i 
p i k (5) 

Note that the first and second terms of (5) correspond to the 

xpected holding and backlogging costs, respectively. Also, note 

hat the first term is equal to 0 for t = u i , and the second term

s equal to 0 for t ≤ l i . Next, we present a numerical example to

llustrate the problem. 

xample 1. Consider a problem with five periods and two stochas- 

ic demand timing intervals, i.e., T = 5 , n = 2 . For the sake of sim-

licity, let the cost parameters be time independent, and let h t = 

 . 5 , b t = 6 , f t = 25 and c t = 8 , t = 1 , . . . , 5 . The remaining parame-

er values are given as follows: 

t 1 2 3 4 5 

D t 4 0 10 6 9 

p 1 t 0.45 0.35 0.2 0 0 d 1 = 7 , [ l 1 , u 1 ] = [1 , 3] 

p 2 t 0 0 0.3 0.7 0 d 2 = 5 , [ l 2 , u 2 ] = [3 , 4] 

We first note that in period 5, at most 9 units will be produced, 

.e., the deterministic demand of period 5, and no stochastic de- 

and. On the other hand, in the first three periods, d 1 and/or d 2 

an be produced, while in period 4, d 2 can be produced, in ad- 

ition to any deterministic demand that is produced. To illustrate 

5) , we provide the following detailed calculations for the cases of 

roducing in period t when l i < t < u i , t < l i and t = u i : 

EC 1 (2) = h 2 p 
1 
3 

+ b 1 p 
1 
1 

= 1 . 5 ×0 . 2 + 6 ×0 . 45 = 3 

EC 2 (1) = h 1 (p 
2 
3 + p 2 4 ) + h 2 (p 

2 
3 + p 2 4 ) + h 3 p 

2 
4 = 1 . 5 ×1 + 1 . 5 ×1 + 

 . 5 ×0 . 7 = 4 . 05 

EC 1 (3) = b 1 p 
1 
1 

+ b 2 (p 
1 
1 

+ p 1 
2 
) = 6 ×0 . 45 + 6 ×0 . 8 = 7 . 5 

Recall that these are unit costs for expected holding and back- 

ogging costs. For example, producing one unit of d 1 in period 2 
223 
ill incur an expected cost of 3, in addition to the unit production 

ost of 8 and fixed cost of 25. �

The inventory variable s t is a stochastic variable since d 
i is 

tochastic, and thus modeling our problem by extending the model 

1) - (4) is not trivial. Hence, as it is common in lot sizing, we

ropose to formalize our problem with the variables in [0 , 1] z lt ,

he fraction of the deterministic demand D t produced in period 

 ≤ t , and z i 
l 
, the fraction of the stochastic demand quantity d i pro-

uced in period l ≤ u i . In order to illustrate the development of our 

odel, we first reformulate the deterministic model (1) - (4) using 

he z lt variables, which are linked to the original production vari- 

bles as follows: 

 l = 

T ∑ 

t= l 
z lt D t , l = 1 , . . . , T . (6) 

Then, the deterministic model becomes: 

in 

T ∑ 

t=1 

f t y t + 

T ∑ 

t=1 

t ∑ 

l=1 

(c l + 

t−1 ∑ 

k = l 
h k ) z lt D t (7) 

 . t . 

t ∑ 

l=1 

z lt = 1 t = 1 , . . . , T (8) 

T ∑ 

t= l 
z lt D t ≤ M l y l l = 1 , . . . , T (9) 

 t ∈ { 0 , 1 } t = 1 , . . . , T (10) 

 ≤ z lt ≤ 1 t = 1 , . . . , T ; l = 1 , . . . , t (11) 

e remark that the objective (1) is rewritten as (7) using (6) and 

he fact that inventory variables are no longer explicitly used. Con- 

traints (8) ensure that the deterministic demands are satisfied in 

he horizon, and constraints (9) correspond to constraints (3) using 

6) . 

Then, using z i 
l 
associated with the stochastic demand quanti- 

ies, we next state the relationship between the original produc- 

ion variables and the new variables in a similar fashion to (6) : 

 l = 

T ∑ 

t= l 
z lt D t + 

∑ 

i ∈I; l≤u i 

z i l d 
i , l = 1 , . . . , T . (12)

Our problem can then be modeled as follows: 

in 

T ∑ 

t=1 

f t y t + 

T ∑ 

t=1 

t ∑ 

l=1 

(c l + 

t−1 ∑ 

k = l 
h k ) z lt D t + 

∑ 

i ∈I 

u i ∑ 

l=1 

(c l + EC i (l)) z 
i 
l d 

i 

(13) 

 . t . (8) , (11) 

u i ∑ 

l=1 

z i l = 1 i ∈ I (14) 

T ∑ 

t= l 
z lt D t + 

∑ 

i ∈I; l≤u i 

z i l d 
i ≤ M l y l l = 1 , . . . , T (15) 

 t ∈ { 0 , 1 } t = 1 , . . . , T (16) 

 ≤ z i ≤ 1 i ∈ I; l = 1 , . . . , u i (17) 
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In a similar fashion to (7) , the objective (1) is rewritten as 

13) using (12) and (5) . Constraints (14) ensure that the stochas- 

ic demand quantities are produced in the horizon similar to con- 

traints (8) for deterministic demands. Constraints (15) correspond 

o constraints (3) using (12) . 

Next, we remark the following result. 

roposition 1. arg min EC i (t) ∈ [ l i , u i ] . 

roof. First, note that the first term of (5) is strictly decreasing 

ver [1 , u i ] since h t > 0 ∀ t , while the second term of (5) is strictly

ncreasing over [ l i , u i ] since b t > 0 ∀ t . To prove that the minimum

f EC i (t) is attained in [ l i , u i ] , it is sufficient to observe that the

econd term of (5) is 0 for t ≤ l i while the first term of (5) attains

ts lowest value over [1 , l i ] at t = l i . �

In the remainder of the paper, and for the sake of simplicity, we 

se the notation t ∗
i 
to indicate the period where the minimum of 

C i (t) is attained, i.e. t 
∗
i 

= arg min EC i (t) . In case of multiple peri-

ds attaining this minimum, we assume that t ∗
i 
indicates the earli- 

st such period. Finally, we note that the problem can be rewritten 

ith only stochastic demand quantities by considering that p i t = 1 

nd l i = t = u i for D t . 

. Stochastic demand timing with a single interval 

In this section, we assume that there is a single interval i with 

tochastic demand timing, with a demand quantity of d i through- 

ut the planning horizon. Because backlog on d i is only allowed 

efore u i , d 
i is either produced before or at l i , i.e., no backlog cost

s incurred, or between l i + 1 and u i , i.e., both inventory and back-

og costs are incurred. 

The following theorem states that there is an optimal solu- 

ion in which d i is not produced in multiple periods, and that if 

tochastic demand quantity is produced, it is not produced in isola- 

ion from deterministic demand, thus limiting the number of states 

n the dynamic program. 

heorem 1. There is always an optimal solution, where demand d i 

s produced in a single period t ≤ u i . Moreover, x t ≥ d i + D t holds

hen there are no speculative production costs, i.e., c t + 

∑ t ′ −1 
� = t h � ≥

 t ′ , ∀ t , t ′ ∈ [1 , T ] such that t < t ′ . 

roof. Let us consider an optimal solution where d i is produced 

n two periods t ′ and t ′′ , i.e. the setups costs f t and f t ′ are both
ncurred. It can be observed that the expected total cost can be 

educed by producing d i only in period t ′ if c t ′ + EC i (t 
′ ) ≤ c t ′′ +

C i (t 
′′ ) or only in period t ′′ if c t ′′ + EC i (t 

′′ ) ≤ c t ′ + EC i (t 
′ ) . Next,

ssume that d i is produced in period t in an optimal solution, 

nd x t = d i . Then, if D t > 0 , production in a period t ′ < t must in-

lude D t . However, producing D t in t would save (c t ′ + 

∑ t−1 
� = t ′ h � −

 t ) D t , where c t ′ + 

∑ t−1 
� = t ′ h � − c t ≥ 0 when production costs are not

peculative. �

Theorem 1 is used in all the dynamic programs proposed in this 

aper by only considering solutions where the quantity d i of each 

tochastic demand timing interval [ l i , u i ] is produced in a single

eriod. Moreover, as shown in the proof of Proposition 1 , the min- 

mum of EC i (t) over [1 , l i ] is reached at l i . Hence, we consider in

he dynamic programs that the decisions to produce d i are made 

etween l i and u i , even if d 
i is produced between 1 and l i − 1 . 

To solve the case with a single stochastic demand timing in- 

erval, the main change from the dynamic program of Wagner & 

hitin (1958) is that two states are managed for t ∈ [ l i + 1 , u i ] , de-

ending on whether the decision of producing d i has already been 

aken or not. Hence, we make the following state definition for 

ach period t and indicator parameter sd i ∈ { 0 , 1 } in order to de-
ive the dynamic programming algorithm: 
224 
G (t, sd i ) : The value of the optimal solution for the horizon

[1 , t − 1] , where sd i = 1 indicates the case of demand d i being

already produced before t , and sd i = 0 indicates the case of de- 

mand d i not being produced yet. 

By problem definition, G (1 , 0) = 0 holds, and we also note that

or t ≤ l i , only sd 
i = 0 is allowed, whereas for t ≥ u i + 1 , only sd i =

 is allowed. Next, we define c t ′ k = c t ′ + 

∑ k −1 
l= t ′ h l to represent the 

ost of meeting one demand unit of period k by producing in pe- 

iod t ′ , where t ′ ≤ k . The recursion is then formally defined as fol-

ows: 

• For t ≤ l i (i.e., d 
i is still not produced): 

G (t, 0) = min 
t ′ ≤t−1 

( 

G (t ′ , 0) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k 

) 

• For l i + 1 ≤ t ≤ u i (i.e., d 
i is produced or not): 

G (t, 0) = min 
t ′ ≤t−1 

( 

G (t ′ , 0) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k 

) 

G (t, 1) = min 
t ′ ≤t−1 

( 

G (t ′ , 0) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k + d i (c t ′ + EC i (t 

′ )) , 

G (t ′ , 1) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k 

) 

• For t ≥ u i + 1 (i.e., d i must be produced): 

 (t, 1) = min 

( 

min 
t ′ ≤u i 

( 

G (t ′ , 0) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k + d i (c t ′ + EC i (t 

′ )) 

)

min 
t ′ ≥l i +1 

( 

G (t ′ , 1) + f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k 

) ) 

. 

The optimal cost will be given by G (T + 1 , 1) . Following the

 (T logT ) algorithms proposed in Wagelmans et al. (1992) for the 

ase without backlogging cost, and in van Hoesel (1991) , Aggarwal 

 Park (1993) and Federgruen & Tzur (1993) for the case with 

acklogging cost, it is straightforward to observe that our dynamic 

rogram can also be implemented with a complexity of O (T logT ) . 

ote that it is also possible to first solve the problem in O (T logT )

ith only the deterministic demands, and if there is already a 

etup in period t ∗
i 
, then the stochastic demand quantity can be 

dded. Finally, we remark that if the production costs are non- 

peculative, then the complexity reduces to O (T ) , in line with pre- 

ious results such as presented in Wagelmans et al. (1992) . 

. General case of stochastic demand timing 

First, we investigate the general case of stochastic demand tim- 

ng, in order to propose a general purpose dynamic programming 

lgorithm. As we will discuss later, this algorithm will be im- 

roved from a computational complexity perspective when more 

estricted but realistic special cases are considered. 

Starting from the simplest case discussed in Section 3 , the first 

bvious step for generalization is to consider multiple intervals 

ith stochastic demand timing. Then, one can observe that such 

ntervals may also have overlaps. Less obvious is a case when 

here is no particular order between such overlapping intervals, 

nd therefore, we next define an essential property, in order to dif- 

erentiate different cases of overlapping intervals. 

efinition 1. Let d i and d j be two demands with stochastic timing. 

f 
∑ t 

l=1 p 
i 
l 
≥ ∑ t 

l=1 p 
j 

l 
∀ t ∈ [ l j , u i ] , then we say that d i dominates d j .
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xample 2. Consider a problem with five periods and three 

tochastic demand timing intervals, i.e., T = 5 , n = 3 . Assume we

re given the following data for these intervals: 

t 1 2 3 4 5 

p 1 t 0.1 0.5 0.4 0 0 [ l 1 , u 1 ] = [1 , 3] 

p 2 t 0 0.3 0.2 0.5 0 [ l 2 , u 2 ] = [2 , 4] 

p 3 t 0 0 0.6 0.2 0.2 [ l 3 , u 3 ] = [3 , 5] 

Demand d 1 dominates d 2 since 0 . 1 + 0 . 5 ≥ 0 . 3 and 0 . 1 + 0 . 5 +
 . 4 ≥ 0 . 3 + 0 . 2 both hold. On the other hand, neither d 2 nor d 3 

ominate the other, since 0 . 3 + 0 . 2 ≤ 0 . 6 holds while 0 . 3 + 0 . 2 +
 . 5 ≥ 0 . 6 + 0 . 2 is true. �

In this section, we look into the general case with multiple in- 

ervals of stochastic demand timing, where we do not have any 

ominance relationship between the overlapping intervals. 

Let us also introduce the following definition, where we assume 

hat EC i (t) = + ∞ if t ≥ u i + 1 . 

efinition 2. Let σi denote the sequence of length T for de- 

and d i in which periods are ranked in non-decreasing order of 

he production and expected unit holding and backlog cost c t + 

C i (t) . More precisely, ∀ k = 2 , . . . , T , either i) c σi (k ) 
+ EC i (σi (k )) >

 σi (k −1) + EC i (σi (k − 1)) or ii) both c σi (k ) 
+ EC i (σi (k )) = c σi (k −1) +

C i (σi (k − 1)) and σi (k ) > σi (k − 1) hold. 

xample 3. Using the first interval (i.e., i = 1 ) from Example 2 ,

uppose that c 1 + EC 1 (1) = 12 , c 2 + EC 1 (2) = 11 and c 3 + EC 1 (3) =
5 (note this is simply + ∞ for periods 4 and 5). Then, by a slight

buse of notation, our ordering vector is σ1 = (2 , 1 , 3 , 4 , 5) . �

Then, we propose the following result. 

heorem 2. For two demands with stochastic timing d i and d j , if 

i = σ j , then there is an optimal solution in which d i and d j are pro-

uced in the same period. 

roof. From Theorem 1 , we know that there is an optimal solution 

n which d i is produced in a single period t ′ and d j is produced
n a single period t ′′ . If σi = σ j and t 

′′ 
 = t ′ then, by definition of
i , the solution is only optimal if c t ′ + EC i (t 

′ ) = c t ′′ + EC i (t 
′′ ) , other-

ise the solution could be strictly improved by producing both de- 

ands d i and d j in t ′ if c t ′ + EC i (t 
′ ) < c t ′′ + EC i (t 

′′ ) or in t ′′ if c t ′ +
C i (t 

′ ) > c t ′′ + EC i (t 
′′ ) . Finally, because c t ′ + EC i (t 

′ ) = c t ′′ + EC i (t 
′′ ) ,

t is possible to change the solution and keep the same total cost 

y producing both demands d i and d j in t ′ or in t ′′ . �

Theorem 2 implies that, for two stochastic demand timings 

uch that σi = σ j and u i < u j , there is an optimal solution in which

 j is not produced between u i + 1 and u j . Note also that there are

 (T !) possible different sequences of periods in σi . 

.1. Dynamic program for the general case 

Let (sd 1 , · · · , sd n ) be a vector of binary parameters, where sd i 

s defined for each stochastic demand timing interval i ∈ I in the 

ame fashion as in Section 3 . Then, for the general dynamic pro- 

ram, we define G (t, (sd 1 , · · · , sd n )) , which indicates the value of

he optimal solution for the horizon [1 , t − 1] and the specific vec- 

or (sd 1 , · · · , sd n ) . 

Note that a vector (sd 1 , · · · , sd n ) is classified as valid at period

(or equivalently, G (t, (sd 1 , · · · , sd n )) is valid) if: 

• sd i = 0 for all i ∈ I such that t ≤ l i , 
• sd i = 0 or sd i = 1 for all i ∈ I such that t ∈ [ l i + 1 , u i ] , and 
• sd i = 1 for all i ∈ I such that t ≥ u i + 1 . 

By definition, G (1 , (sd 1 , · · · , sd n )) = 0 holds, where sd i = 0 , ∀ i ∈
. Let SD (t) denote the set of valid vectors at period t . For each 
225 
ector (sd 1 , · · · , sd n ) ∈ SD (t) , the recursion for G (t, (sd 1 , · · · , sd n ))

s formally defined as follows: 

 (t, (sd 1 , · · · , sd n )) = min 
t ′ ≤t−1 , 

(sd ′ 1 , ··· ,sd ′ n ) ∈ SD (t ′ ) 

(
G (t ′ , (sd ′ 1 , · · · , sd ′ n )) 

+ f t ′ + 

t−1 ∑ 

k = t ′ 
c t ′ k D k + 

∑ 

i ∈I: 
sd i −sd ′ i =1 

d i (c t ′ + EC i (t 
′ )) 

)
(18) 

Note that Theorem 1 remains valid in this case, as one can ex- 

end these results by simply applying them to any interval i ∈ I . 
ence, the optimal cost for the full problem is given by G (T + 

 , (sd 1 , · · · , sd n )) , where sd i = 1 , ∀ i ∈ I . We remark that, when

 = 1 , i.e., there is a single interval, it is easy to observe that this

eneral dynamic program exactly maps to the one described in 

ection 3 : G (t, sd i ) is reduced to a single stochastic demand tim-

ng while the validity arguments for sd i remain (though now for a 

ingle interval), and the cost of producing d i is only applied when 

d i value is changed from 0 to 1 in the new time period. 

The complexity of the dynamic program is 

 (T max t∈ [1 ,T ] | SD (t) | ) . The value of max t∈ [1 ,T ] | SD (t) | is dis-

ussed in Lemma 1 . 

emma 1. In the worst case, max t∈ [1 ,T ] | SD (t) | ∼ O ( min { 2 n , T ! } ) 
roof. The worst case can be reached in two different ways: 

1. If there exists t ∈ [1 , T ] such that t ∈ [ l i + 1 , u i ] , ∀ i ∈ I , i.e., all n
intervals intersect with each other at least in one period. This 

leads to O (2 n ) combinations. 

2. Following Theorem 2 , it is possible to combine demands with 

the same sequence σi in the same indicator sd i in the dynamic 

programming algorithm. This leads to a maximum of O (T !) 

combinations. This is essentially a preprocessing stage to the 

algorithm. 

�

Therefore, the time complexity of the algorithm may be expo- 

ential in n and in T . However, as stochastic demand intervals will 

e short in most practical settings (no more than 4 or 5 periods), 

 small number of intervals should be overlapping in any period t , 

eading to small sets SD (t) . For example, in case all demand in- 

ervals are different from each other (i.e., no two intervals have 

he same starting and ending points) and the number of periods of 

ach interval is limited to m periods, then SD (t) = O (m 
2 ) . More-

ver, if at most k intervals are overlapping in any period t , then 

he complexity of the dynamic program is O (T 2 k ) . Moreover, as 

e will see in Sections 4.2 and 4.3 for practical general cases, as 

ell as in Section 5 for some relevant special cases, this time com- 

lexity can be effectively reduced to polynomial. 

.2. Time independent production costs and time independent ratio 

etween inventory and backlog costs 

An interesting case in practice appears when the ratio between 

he unit inventory and backlog costs in each period is time in- 

ependent, i.e., h t = αt h and b t = αt b with αt > 0 ∀ t (or, equiv-

lently, h t /b t = h/b, ∀ t). Moreover, we assume time independent 

roduction costs, i.e., c t = c, ∀ t ∈ [1 , T ] . Although this case is more

estricted than the general case that does not specify cost func- 

ions or other key parameters of the problem, it is very common 

n practice, where hard to quantify backlog costs are often defined 

n terms of inventory holding costs. Moreover, its limitations are 

inimal, as there is no specification on how the actual cost levels 

ould vary from one period to another, and time independent pro- 

uction costs are a common setting in the lot sizing literature. Be- 

ause production costs are time independent, they can be ignored 
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n the remainder of this section. Finally, as discussed in this sec- 

ion, this case can be solved in polynomial time. A more special 

ase worth remarking is when the inventory and backlog costs are 

ime independent, i.e., αt = 1 ∀ t . 

First, we note the step change from t to t + 1 : 

(t) = EC i (t + 1) − EC i (t) = 

( 

u i ∑ 

l= t+1 

h l 

u i ∑ 

k = l+1 

p i k + 

t ∑ 

l= l i 
b l 

l ∑ 

k = l i 
p i k 

) 

−
( 

u i ∑ 

l= t 
h l 

u i ∑ 

k = l+1 

p i k + 

t−1 ∑ 

l= l i 
b l 

l ∑ 

k = l i 
p i k 

) 

= b t 

t ∑ 

k = l i 
p i k − h t 

u i ∑ 

k = t+1 

p i k 

Because 
∑ u i 

k = t+1 
p i 
k 

= 1 − ∑ t 
k = l i p 

i 
k 
, the expression above can be 

ewritten: 

(t) = (h t + b t ) 
t ∑ 

k = l i 
p i k − h t (19) 

Note that (19) can also be used to show Proposition 1 , since 

(t) = −h t < 0 when t ≤ l i − 1 . For the case of time independent

atio, we can rewrite the expression (19) as follows: 

(t) = αt 

(
(h + b) 

t ∑ 

k = l i 
p i k − h 

)
(20) 

heorem 3. If the ratio between the inventory and backlog costs is 

ime independent, i.e., h t = αt h and b t = αt b ∀ t, then EC i (t) is strictly

ecreasing until t = t ∗
i 
and strictly non-decreasing after t = t ∗

i 
. More-

ver, if inventory and backlog costs are time independent, i.e., αt = 1 

 t, then EC i (t) is convex. 

roof. We first observe that, in (20) , 
∑ t 

k = l i p 
i 
k 
is strictly increasing 

ith t when l i ≤ t ≤ u i (while being 0 when t ≤ l i − 1 , as noted ear-

ier). Since h + b > 0 , the value of �(t) , starting from −αt h < 0 at

 = l i − 1 , will also be strictly increasing. Hence, either (i) t = t ∗
i 

≤
 i − 1 holds due to the first observation of (h + b) 

∑ t 
k = l i p 

i 
k 

≥ h at

 , or (ii) t ∗
i 

= u i holds if EC i (u i ) − EC i (u i − 1) < 0 . In case (i), note

hat (h + b) 
∑ t 

k = l i p 
i 
k 

= h is possible, and hence the function EC i (t)

s strictly non-decreasing (rather than strictly increasing). This con- 

ludes the proof of the first claim. 

Next, consider the case of αt = 1 . Note that we can further sim-

lify (20) by eliminating αt . Then, we have: 

C i (t + 1) = EC i (t) + (h + b) 
t ∑ 

k = l i 
p i k − h 

C i (t + 2) = EC i (t) + (h + b) 
t ∑ 

k = l i 
p i k − h + (h + b) 

t+1 ∑ 

k = l i 
p i k − h 

here the second equation is simply the definition of �(t + 

) with EC i (t + 1) substituted using the first equation. Since 
 t 
k = l i p 

i 
k 

≤ ∑ t+1 
k = l i p 

i 
k 
, it is possible to observe that EC i (t + 2) +

C i (t) ≥ 2 EC i (t + 1) . This concludes the convexity of EC i (t) . �

The case of a convex EC i (t) function can be associated to the 

ractical setting where, as one moves further away from t = t ∗
i 
, not

nly the expected cost increases, but also the rate of the cost in- 

reases. 

In line with the previous literature, we next define a regenera- 

ion interval [ t 1 , t 2 ] as an interval of periods such that production

akes place in periods t 1 and t 2 while no production occurs in pe- 

iods t , t < t < t . Then, we have the following result. 
1 2 

226 
roposition 2. Given a regeneration interval [ t 1 , t 2 ] , let I t 1 ,t 2 = { i ∈
 : t 1 ≤ t ∗

i 
≤ t 2 } . If the ratio between the inventory and backlog costs

s time independent, and production costs are time independent, then 

n an optimal solution involving regeneration interval [ t 1 , t 2 ] , for every

 ∈ I t 1 ,t 2 , d i will be produced either at t 1 or t 2 . 

roof. First, note that the production of d i for any i ∈ I i 1 ,i 2 cannot
ake place in a period t < t 1 (or t > t 2 ), since EC i (t) ≥ EC i (t 1 ) (or

C i (t) ≥ EC i (t 2 ) , respectively) due to Theorem 3 and the fact that

roduction costs are time independent. Since production of d i for 

ny i ∈ I takes place in a single period in an optimal solution due 

o Theorem 1 , and since, by definition, there is no production in 

ny period t such that t 1 < t < t 2 , d 
i will be produced either in t 1 

f EC i (t 1 ) ≤ EC i (t 2 ) , or in t 2 otherwise. �

Next, we discuss how to use this result to define a dynamic pro- 

ram of polynomial complexity particularly due to the significantly 

educed number of linkages between states. First, we note that the 

umber of valid states is reduced, since now a state is valid only 

f sd i = 0 for all i ∈ I such that t ≤ t ∗
i 
(rather than t ≤ l i ). Next, in

rder to account for the regeneration intervals, we replace SD (t ′ ) 
ith SD (t ′ , t) in the recursion (18) of the dynamic program, where 

e define any valid SD (t ′ , t) as follows: 

• If t ′ ≤ t ∗
i 

≤ t − 1 and EC i (t 
′ ) ≤ EC i (t) , then sd 

i = 1 must hold at

t , 
• If t ′ ≤ t ∗

i 
≤ t − 1 and EC i (t 

′ ) > EC i (t) , then sd 
i = 0 must hold at

t , 
• If t ′ ≥ t ∗

i 
+ 1 , then sd i = 1 must hold at t . 

Note that the first case means that d i must be produced at t ′ 
since it is cheaper at t ′ ) whereas the second case means that d i 

ill be not produced at t ′ . In the third case, if sd i = 0 holds at t ′ ,
hen d i must be produced at t ′ since producing at t will be more 

xpensive (whereas if sd i = 1 holds at t ′ , it means production of d i 

s already completed earlier.) 

With this transformation of valid states as well as interactions 

etween them, we first note that, given an interval i ∈ I with 

tochastic demand timing, the optimal decision regarding a re- 

eneration interval [ t 1 , t 2 ] is trivial, unless t 1 ≤ t ∗
i 

≤ t 2 − 1 holds.

ote that there are O (T 2 ) nontrivial regeneration intervals satis- 

ying t 1 ≤ t ∗
i 

≤ t 2 − 1 , and for each of these regeneration intervals, 

e can pre-compute the set of valid vectors SD (t 1 , t 2 ) as shown

bove, i.e., by calculating whether it is cheaper to produce d i at 

he start or the end of the regeneration interval. With n intervals 

n total, this would result in at most O (nT 2 ) computational effort. 

orollary 1. In the case of time independent production costs and 

ime independent ratio between inventory and backlog costs, the dy- 

amic program has a worst case complexity of O (nT 2 ) . 

.3. Time independent production costs and convex probability 

istributions 

We next consider the case where the probability distribution 

or any stochastic demand timing is convex between l i and u j . 

hen, it is straightforward to observe that EC i (t) is convex, in 

he same fashion as in Theorem 3 when αt = 1 ∀ t . Therefore, 

roposition 2 holds in this case as well, and the worst case com- 

lexity of the dynamic program is O (nT 2 ) , as given in Corollary 1 . 

. Special cases of stochastic demand timing 

In this section, we study two relevant special cases of stochastic 

emand timing, which enable us to derive very effective dynamic 

rogramming algorithms due to the significant reduction of valid 

tates. 
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.1. Stochastic demand timing with non-overlapping intervals 

First, we consider the case where none of the intervals with 

tochastic demand timing overlap, i.e., ∀ i, j ∈ I either l i ≥ u j + 1 or

 j ≥ u i + 1 holds. Let the set I be arranged in an increasing order 

.r.t. time, i.e., if l i ≥ u j + 1 for i, j ∈ I , then i > j. For the sake of

onvenience, we use G (t, (sd 1 , · · · , sd n )) as well as the set of valid

ectors at period t , denoted by SD (t) , in line with the general case 

efined in Section 4.1 . 

First, let us formalize an important result for this case, which is 

rucial for the effectiveness of the dynamic program, significantly 

imiting the state space. 

emma 2. For any period t, either | SD (t) | = 2 or | SD (t) | = 1 holds.

roof. To observe this result, let us first note that there are three 

ossible cases for any given period t: i) there exists i ∈ I such 

hat t ∈ [ l i + 1 , u i ] , ii) there exists i ∈ I such that t = l i , iii) there

oes not exist any i satisfying i) or ii). For i), by definition, 

he only valid vectors are (sd j = 1 , ∀ j ≤ i − 1 ; sd j = 0 , ∀ j ≥ i ) and

sd j = 1 , ∀ j ≤ i ; sd j = 0 , ∀ j ≥ i + 1) , hence | SD (t) | = 2 . For ii), by

efinition, the only valid vector is (sd j = 1 , ∀ j ≤ i − 1 ; sd j = 0 , ∀ j ≥
 ) , hence | SD (t) | = 1 . For iii), let i ′ = max { j ∈ I| l j ≤ t − 1 } , i.e., the
argest index of the interval starting before t . In this case, there 

s only one valid vector, which is (sd j = 1 , ∀ j ≤ i ′ ; sd j = 0 , ∀ j ≥
 
′ + 1) . �

In order to establish the complexity of the dynamic program, 

e first observe that n ≤ T due to the non-overlapping nature of 

he intervals. Moreover, due to Lemma 2 , note that, in the worst 

ase (i.e., when each period is covered by an interval with stochas- 

ic demand timing), the state space network will have the same 

tructure with O (T ) nodes as the worst case with a single interval

iscussed in Section 3 . Therefore, we conclude this section with 

he following result. 

orollary 2. In case of non-overlapping intervals, the dynamic pro- 

ram has a worst case complexity of O (T log T ) . 

.2. Stochastic demand timing with dominant overlapping intervals 

In this section, we assume that Property 1 is satisfied for any 

air of stochastic demand timings with quantities of d i and d j in I , 
.e. either d i dominates d j or the opposite. Let us also assume that 

he set I is arranged in an increasing order w.r.t. to the dominance 

roperty, i.e., if d j is dominated by d i , then j is ranked after i in I .
e next state the key theoretical results for this case. 

heorem 4. Assume that demand d i dominates demand d j , i.e. 
 t 
l=1 p 

i 
l 
≥ ∑ t 

l=1 p 
j 

l 
∀ t, and let t i and t j be the production periods of

 
i and d j , respectively, in an optimal solution. Then, either i) t i ≤ t j 

olds, or ii) both EC i (t 
i ) = EC i (t 

j ) and EC j (t 
i ) = EC j (t 

j ) hold. 

In words, the theorem states that in any optimal solution, we 

ill either produce d i latest in the same period as d j , or the timing

f the production of d i or d j is interchangeable between t i and t j 

ithout any cost implication, i.e., d i can be produced in t j , or d j 

an be produced in t i , or both. 

roof. Let t i > t j and E C i (t 
i ) 
 = E C i (t 

j ) . Since d i is produced in

 
i (rather than in t j ) and EC i (t 

i ) 
 = E C i (t 
j ) , E C i (t 

i ) < EC i (t 
j ) holds,

hereas EC j (t 
i ) ≥ EC j (t 

j ) holds since d j is produced in t j (rather

han in t i .) By using these relations and equation (5) , we have 

C i (t 
i ) − EC i (t 

j ) = −
t i −1 ∑ 

l= t j 
h l 

u i ∑ 

k = t j +1 

p i k + 

t i −1 ∑ 

l= t j +1 

b l 

l ∑ 

k = l i 
p i k < 0 (21)
227 
C j (t 
i ) − EC i (t 

j ) = −
t i −1 ∑ 

l= t j 
h l 

u j ∑ 

k = t j +1 

p j 
k 
+ 

t i −1 ∑ 

l= t j +1 

b l 

l ∑ 

k = l j 
p j 
k 

≥ 0 (22)

hen, we have 

t i −1 ∑ 

= t j +1 

b l 

l ∑ 

k = l j 
p j 
k 

≥
t i −1 ∑ 

l= t j 
h l 

u j ∑ 

k = t j +1 

p j 
k 

≥
t i −1 ∑ 

l= t j 
h l 

u i ∑ 

k = t j +1 

p i k > 

t i −1 ∑ 

l= t j +1 

b l 

l ∑ 

k = l i 
p i k 

here the first and third inequalities follow (21) and (22) , respec- 

ively, and the second inequality follows the dominance property. 

owever, by the dominance property, we also have 

t i −1 ∑ 

= t j +1 

b l 

l ∑ 

k = l i 
p i k ≥

t i −1 ∑ 

l= t j +1 

b l 

l ∑ 

k = l j 
p j 
k 

hich is a contradiction. The same argument follows when 

C j (t 
i ) 
 = EC j (t 

j ) holds instead of EC i (t 
i ) 
 = EC i (t 

j ) . �

heorem 5. Assume that demand d i dominates demand d j . If ∃ t
.t. 

∑ t ′ 
l=1 p 

i 
l 
= 

∑ t ′ 
l=1 p 

j 

l 
, ∀ t ′ ≤ t, and if there is an optimal solution in

hich d j is produced before period t, then there is an optimal solution 

n which both d i and d j are produced in the same period. 

roof. Follows from Theorem 4 . �

Finally, we note the following result, which follows from 

heorem 5 . 

orollary 3. If, for demands d i and d j , 
∑ t 

l=1 p 
i 
l 
= 

∑ t 
l=1 p 

j 

l 
∀ t, i.e.,

hey follow exactly the same distribution, then there is an optimal so- 

ution in which d i and d j are produced in the same period. 

A very useful aspect of Corollary 3 is that stochastic demand 

imings satisfying these conditions can be merged into a single de- 

and. In the remainder of this subsection, we assume that all such 

emands are already combined into single demands. 

Using G (t, (sd 1 , · · · , sd n )) and the set of valid vectors at pe-

iod t , denoted by SD (t) , in line with the general case defined in 

ection 4.1 , we formalize the following result for the complexity of 

he dynamic program. 

emma 3. In the worst case, max t∈ [1 ,T ] | SD (t) | ∼ O (n ) 

This is quite straightforward to observe due to the fact that if 

d i = 0 for any time period t , then sd j = 0 , ∀ j ∈ I s.t. i < j. In order

o establish the complexity of the dynamic program, we note that 

n the worst case (i.e., when each period has n states), the state 

pace network will have O (nT ) nodes in a structure similar to the 

ase with non-overlapping intervals, albeit with n layers. Hence, 

e conclude this section with the following result. 

orollary 4. In case of dominant overlapping intervals, the dynamic 

rogram has a worst case complexity of O (nT log T ) . 

. Extension to demand-dependent backlog cost 

In this section, we extend our previous results to the more gen- 

ral case where each stochastic demand timing can be seen as an 

rder with a specific backlog cost, i.e. b i t now depends both on pe- 

iod t and on stochastic demand quantity d i . This case naturally 

tems from the varying importance of satisfying different orders 

or, likely, different customers) on time, and provides planners and 

ecision makers a more customized solution. 

Next, we discuss the impact of considering b i t instead of b t in 

rder to extend previous results: 

• In Section 2 , it is straightforward to extend the model by re- 

placing b l by b 
i 
l 
in the definition of EC i (t) , and Proposition 1 re-

mains true. 
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• Because only a single stochastic demand timing is considered, 

the analysis and results in Section 3 remain valid in this case 

as well. 
• With respect to the general case of Section 4 , it is easy 

to observe that the general dynamic program proposed in 

Section 4.1 does not change. The analysis and results of 

Section 4.2 remain valid when the time independence of the 

ratio between the unit inventory and backlog costs in each pe- 

riod is redefined as b i t = αt b 
i with αt > 0 ∀ t and ∀ i (or, equiva-

lently, h t /b 
i 
t = h/b i , ∀ t and ∀ i ). It is also straightforward to see

that the discussion on the case with convex probability distri- 

butions presented in Section 4.3 remains valid. 
• Finally, let us now consider the two special cases studied in 

Section 5 . The analysis conducted in Section 5.1 in the case of 

non-overlapping intervals remains valid. On the other hand, the 

notion of dominance between stochastic demand timings, de- 

fined in Section 5.2 ( Definition 1 ), is no longer sufficient to de-

rive the results in Section 5.2 , which we discuss next. 

efinition 3. Let d i and d j be two demands with stochastic tim- 

ng. If EC i (t) ≥ EC j (t) ∀ t = 1 , . . . , T , then we say that d i strongly

ominates d j . 

In comparison to Definition 1, Definition 3 proposes a stricter 

efinition of dominance, and this can be employed to replace 

heorems 4 and 5 with Theorems 6 and 7 , and Corollary 3 with

orollary 5 . We note that Lemma 3 and Corollary 4 still remain 

alid. 

heorem 6. Assume that demand d i strongly dominates demand d j , 

nd let t i and t j be the production periods of d i and d j , respec-

ively, in an optimal solution. Then, either i) t i ≤ t j holds, or ii) both 

C i (t 
i ) = EC i (t 

j ) and EC j (t 
i ) = EC j (t 

j ) hold. 

heorem 7. Assume that demand d i strongly dominates demand d j . 

f ∃ t s.t. EC i (t 
′ ) = EC j (t 

′ ) , ∀ t ′ ≤ t, and if there is an optimal solution

n which d j is produced before period t, then there is an optimal so- 

ution in which both d i and d j are produced in the same period. 

orollary 5. If, for demands d i and d j , EC i (t) = EC j (t ) ∀ t , then there

s an optimal solution in which d i and d j are produced in the same 

eriod. 

We omit the proofs of these results, as they can be easily car- 

ied out in the same fashion as the proofs of Section 5.2 . Finally,

e conclude this section with the following important complex- 

ty result, which shows that the problem studied in this section is 

 P -hard. 

heorem 8. The dynamic lot sizing problem with stochastic demand 

iming is N P -hard when the backlog cost b i t depends both on period 

and on the quantity of stochastic demand, d i . 

roof. Consider the Uncapacitated Facility Location (UFL) problem, 

hich is N P -hard and can be stated as follows: Given F facili- 

ies, each with a fixed opening cost αt , t ∈ F and no capacity, and C

lients with unit demand and unit service cost of βti for each client 

 ∈ C and each facility t ∈ F , find the subset of facilities to open

hat will serve all clients with the minimum total cost. Given an 

nstance of the uncapacitated facility location, we will show that 

his problem can be reduced to an instance of our problem. 

First, we create a dummy first period (period 0), and then map 

acilities of UFL to periods starting from period 1, and map clients 

f UFL to intervals with stochastic demand timing, hence creating 

 problem with F + 1 periods and C intervals, each interval i span- 

ing the whole horizon, i.e., � i = 0 , u i = F + 1 . Then, we can make

he following assignments of parameters in our problem: 

D t : = 0 , c t := 0 , ∀ t ∈ [0 , F ] ; f 0 := M; f t := αt , ∀ t ∈ [1 , F ] ;
228 
d i : = 1 , ∀ i ∈ [1 , C] 

ere, M is a sufficiently big number so that production never takes 

lace in period 0. Note that these assignments result in a dynamic 

ot sizing problem without z lt variables and instead only with y t 
nd z i t variables. In order to finalize the problem reduction, we 

ake the following assignment: 

p i t := 

1 

F + 1 
, ∀ t ∈ [0 , F ] , ∀ i ∈ [1 , C] ; EC i (t) := βti , ∀ t ∈ [1 , F ] , ∀ i ∈ [1 , C] 

hen, specific b i t and h t values can be calculated by solving F ×C

inear equations ( ∀ t ∈ [1 , F ] , ∀ i ∈ [1 , C] ) of (5) with assigned βti val-

es and F ×C + C unknowns ( b i t and h t , respectively), where the 

rst set of equations for t = 1 involve the i -specific parameter b i t .

t is straightforward to see that a solution of UFL is equivalent 

o a solution of the single-item dynamic lot sizing problem with 

tochastic demand timing. �

We make a final remark that the proof relies on the fact that 

he parameters b i t are defined separately for each i . Therefore, the 

roof is not valid when b i t = b t ∀ i as in the original problem, which

eaves its complexity open. 

. Conclusions and perspectives 

An original and relevant way of modeling stochastic demands in 

ot sizing problems is proposed and studied in this paper. The un- 

ertainty is not on the demand quantity but rather on the timing 

t which the demand will occur and should be satisfied. More pre- 

isely, the demand quantity of each stochastic demand is known 

nd fully occurs with a given probability in a single period of a 

iven interval and no partial delivery is allowed. In our modeling, 

tochastic demands are naturally correlated since a stochastic de- 

and occurring in a period will not occur in another period. Dy- 

amic programs are proposed to solve several cases of the single- 

tem dynamic lot sizing problem with stochastic demand timing. 

he case with a single interval is first solved, followed by the gen- 

ral case, the practical case where the ratio between the inven- 

ory and backlog costs is time independent and the case where 

robability distributions are convex. Finally, the cases with non- 

verlapping intervals and with dominant overlapping intervals are 

olved. Note that all the dynamic programs presented in the paper 

ould be extended to the case with backlog costs on deterministic 

emands and on stochastic demand timings after the last period 

n their interval. We also study the general case where the vari- 

ble backlog cost depends both on the period and on the quantity 

f stochastic demand, and show that the resulting problem is N P - 

ard. 

Many research avenues are worthwhile investigating from this 

ovel stochastic setting in lot sizing. First, although we believe 

t is N P -hard, the complexity of the general problem with back- 

og costs that are independent of the quantity of stochastic de- 

and remains an open question to study. Second, the capacitated 

ase with multiple products could be solved using a Lagrangian 

euristic, such as the ones proposed in Trigeiro, Thomas, & Mc- 

lain (1989) and Brahimi, Dauzère-Pérès, & Najid. (2006) , by relax- 

ng the capacity constraints and solving the resulting single-item 

roblems with the dynamic programs proposed in this paper. An- 

ther interesting extension of our work is to consider the case 

here 
∑ u i 

t= l i 
p i t < 1 , i.e., there is a probability that demand d i may

ot occur at all. In this case, the total demand on the planning 

orizon also becomes uncertain. This implies that some produc- 

ion quantity aimed at satisfying d i might end up remaining in the 

nventory and thus could be used to satisfy other demands in the 

lanning horizon. A last related research perspective would be to 

nalyze the case with lost sales, where answering a demand too 

ate would also result in products remaining in the inventory. 
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