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Abstract. Accurate, reliable, and computationally inexpensive models
of the dynamic state of combustion engines are a fundamental tool to dis-
cover new engine designs, develop optimal control strategies, and monitor
their performance. The use of those models would allow to improve the
engine cost-efficiency trade-off, operational robustness, and environmen-
tal impact. To address this challenge, two state-of-the-art alternatives in
literature exist. The first one is to develop high fidelity physical models
(e.g., mean value engine, zero-dimensional, and one-dimensional models)
exploiting the physical principles that regulate engine behaviour. The
second one is to exploit historical data produced by the modern engine
control and automation systems or by high-fidelity simulators to feed
data-driven models (e.g., shallow and deep machine learning models)
able to learn an accurate digital twin of the system without any prior
knowledge. The main issues of the former approach are its complexity and
the high (in some case prohibitive) computational requirements. While
the main issues of the latter approach are the unpredictability of their
behaviour (guarantees can be proved only for their average behaviour)
and the need for large amounts of historical data. In this work, following
a recent promising line of research, we describe a modelling framework
that is able to hybridise physical and data driven models, delivering a
solution able to take the best of the two approaches, resulting in accu-
rate, reliable, and computationally inexpensive models. In particular, we
will focus on modelling the dynamic state of a four-stroke diesel engine
testing the performance (both in terms of accuracy, reliability, and com-
putational requirements) of this solution against state-of-the-art physical
modelling approaches on real-world operational data.
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1 Introduction

In recent years the maritime industry has been challenged by several issues.
The volatile bunker prices affect cargo transportation costs and the shipowners’
competitiveness and operations viability [1]. Strict regulations are in place to
limit emissions [2] with the aim of reducing CO2 emissions from shipping by
40-50% [3,4]. As a result of this combination, energy efficiency and environmen-
tal sustainability of maritime operations are currently the primary challenges
to be faced by the maritime industry. Shipowners and operators are adopting
several measures to lower fuel consumption and associated emissions [5, 6], and
researchers in the field are developing innovative technologies and methods that
can increase the environmental efficiency and cost-effectiveness of ship opera-
tions [7, 8].

Improvements in energy efficiency can be obtained by a variety of design and
retrofit measures [9, 10], such as hull design optimisation [11, 12], adoption of
alternative fuels [5], and alternative energy sources [13], as well as operational
measures [7, 14], including speed optimisation [15–17], better capacity utilisa-
tion [7], and advanced route planning execution methods [18,19].

Nevertheless, it is widely known that for the majority of the vessels operating
today, the main engines and to a lesser extent the auxiliary engines are the main
factors of energy losses [20,21]. For this reason, engine manufacturers are focusing
on further increasing Diesel Engine (DE) power density and enhancing operating
performance [6].

Identifying and adopting new technologies in marine DEs is limited by the
expensive design [21], prototyping and experimentation processes [22]. To mit-
igate these issues, computational models have been developed to simulate the
physical processes occurring in a DE under steady-state [23] and transient condi-
tions [24] as a rapid and cost-effective prototyping tool [25]. A common effort in
the development of all computational models is towards improving their accuracy
and reliability [26]. As such, the model verification, calibration, and validation
processes occupy a central role, based on which the predictive capabilities of the
model are assessed to justify its use for the application of interest [27].

In the literature it is possible to find three main approaches to the DEs: Phys-
ical Models (PMs), Data-Driven Models (DDMs), and Hybrid Models (HMs).
PM requires a deep knowledge of the physical phenomena [28,29]. The higher is
the detail in the modelling of the equations which describe the physical phenom-
ena, the higher is the expected accuracy of the results and the computational
time required for the simulation. The second approach, instead, infers the desired
model directly from historical data collected by on board machinery and does
not require any a-priori knowledge of the underlying physical phenomena [30].
However, since these models are not supported by any physical interpretation,
they need a significant amount of data to be built. The third approach is a
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combination of the previous ones and it is based on the integration of a PM
and DDM into a single model. The DDM model compensates for the secondary
effects not modelled by the PM and the PM helps the DDM in reducing the
amount of historical data required to train it [31].

A literature review on PMs, DDMs, and HMs for DE is reported in Section 2
showing that a complete and clear description of a modelling framework able to
hybridise PMs and DDMs is not yet readily available. For this reason, this chap-
ter is devoted to the presentation of this framework combining the computational
efficiency of the 0D PM with the level of accuracy of the DDM.

With this goal in mind, first a 0D DE model will be proposed and validated
for both steady-state and transient operations. This analysis will underline the
high predictive capabilities of the PM in steady-state operations, and will also
reveal the limited predictive capabilities under transient operation. Subsequently,
different DDMs will be developed, tested, and compared. These models will
leverage the information encapsulated in historical data to produce accurate
predictions on a set of performance parameters of the DE. Finally, we will present
the hybridisation framework where a set of HMs will be proposed, leveraging on
both the DDMs and the PM previously developed. The authors will showcase the
performance in terms of accuracy, reliability, and computational requirements of
the HMs, clearly demonstrating the superiority of the proposed hybridisation
framework on a comprehensive dataset containing real operational data from a
marine DE for a time period of approximately 3 years.

The rest of the paper is organised as follows. Section 2 presents the state-
of-the-art in PMs, DDMs, and HMs for marine DEs. Section 3 describes the
hybridisation framework, starting from the theory of the PMs and DDMs and
then going into the details of the HMs. Section 4 presents a specific DE case study
and the related historical data available. Section 5 demonstrates the advantages
and disadvantages of the different approaches presented in Section 3. Section 6
concludes this work.

2 Related Work

This section is devoted to the review of PMs, DDMs, and HMs for marine DEs.
Note that the models can be categorised also according to other criteria [28].
The choice that we made reflects the experience and knowledge on the subject.

2.1 Physical Models

PMs are the most traditional models for DE development, design, optimisa-
tion, and performance evaluation with extensive work carried out over several
decades [29]. Many insightful reviews on this subject can be found [25, 29, 32].
All these reviews agree on the fact that the choice of the most suitable model
strongly depends on the scope of work, the application requirements, and the
available computational tools [33]. In general, to the best of the authors knowl-
edge, PMs achieve errors well within the tolerance margins provided by engine
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manufacturers in steady state conditions, whereas reported results during tran-
sient operations tend to be less accurate.

Among PMs, Mean Value Engine Models (MVEMs) are a common choice
when low computational effort is required [34–39]. MVEMs are approximate
first-principle models that adequately predict engine performance parameters,
and are prevalent in applications in which the engine is considered as just one
component of a wider system, or for control strategies development [32,35,40–47].

MVEM can be classified in the following two categories: (a) not consider-
ing the engine manifolds dynamics; (b) including the engine manifold dynamics.
Category (a) employs only two differential equations for calculating the engine
and TC rotational speeds. Category (b) employs additional equations to cal-
culate the pressure and temperature of the engine manifolds. MVEMs employ
simpler approaches to estimate the engine parameters on an engine cycle basis.
These models are employed in cases where calculations of low computational cost
are required, with the most common example being the engine control system
design. 0D models employ a more detailed formulation and are capable of pre-
dicting the in-cycle variations of the engine parameters. The latter are employed
in the cases where the in-cylinder parameters (pressure, temperature, composi-
tion) variations are required leading to a more accurate estimation of the engine
performance parameters. Authors of [48] developed a control-oriented MVEM for
a large two-stroke engine with Exhaust Gas Recirculation (EGR), with relative
errors under 3.35% for steady state operations. A similar study was performed
by the authors of [49], who also developed an MVEM for control strategy de-
sign, reporting errors smaller than 5% for all engine parameters under steady
state conditions. In both these studies [48, 49], the authors did not report re-
sults under transient operation, nevertheless general trends of the real engine
parameters were adequately captured. The authors of [50] exploited an MVEM
to investigate the performance of a medium-speed DE during preliminary design.
The results of the in-cylinder process showed good correspondence with the test
data across all process parameters, including in-cylinder temperatures, with sat-
isfactory accuracy and adaptability to variable operating conditions. Authors
of [51] studied back pressure effects on the performance of a marine DE, by
means of an MVEM. Although quantitative performance metrics for the model
are not reported, the graphical representation of the results indicates average
relative percentage errors of around 4% for the turbine inlet temperature across
all operating conditions.

More sophisticated approaches, with respect to MVEMs, are zero-dimensional
(0D), one-dimensional (1D), and three-dimensional (3D) models that operate on
a per-crank basis [25]. These approaches are more computationally demanding
compared to MVEMs, however they can predict the detailed gas processes inside
the cylinders [52–54]. Authors of [55] investigated a two-stroke marine DE with
emphasis on part load operating conditions using a 0D model validated against
experimental data obtained from engine shop tests in steady state operations.
Very small errors were reported for loads between 25% to 100%, ranging between
0.6% to 2%. Authors of [23] also developed a 0D model, with a similar validation
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approach, reporting a root mean square deviation of approximately 1% across
all engine performance parameters. Authors of [56] compared the capabilities of
Seiliger-based and double Wiebe function-based 0D models to capture hydrogen-
natural gas combustion in a marine engine for different fuel blends and engine
loads. In this study, very small errors were reported for in-cylinder process pa-
rameters, ranging between 0.1% - 2.4%.

Several attempts to combine MVEM and 0D, 1D, or 3D models have been
proposed, enhancing the predictive abilities of MVEMs with lower computational
requirements than their 0D, 1D, or 3D counterparts [21,34,57–59].

In fact, in cases where low computational cost is required whilst the pre-
dictive capability for the engine in-cylinder parameters must be retained, ap-
proaches combining MVEMs and 0D models have been employed. In such cases,
one engine cylinder (typically the closed cycle) is modelled by employing the 0D
approach and interfaced with the MVEM. This provides the advantage of negat-
ing the extensive calibration process of the MVEM (which is typically based on
data derived from either experiments or simulations with more detailed models)
required to predict the engine performance parameters. For instance, authors
of [21] combined MVEM and 0D models to investigate the propulsion behaviour
of a handymax-size product carrier under constant and variable engine speed op-
erations. The model was validated against experimental data from the engine’s
shop tests, for loads ranging between 50% - 110%. High accuracy was reported,
with errors ranging between 1.9% - 2.7%. Furthermore, the authors concluded
that their proposal provides a favourable time-accuracy trade-off and it can be
used in cases where information, not provided by an MVEM, is required.

The integration of a 1D with a Computational Fluid Dynamics (CFD) based
3D model was proposed by the authors of [60]. The authors conducted a para-
metric investigation of a large four-stroke dual-fuel marine DE to identify the
pre-injection effects on the engine combustion, knocking, and emission parame-
ters. This modelling approach was validated under steady-state conditions in 4
points within a range of 25% - 100% of the nominal load. Near-zero deviation was
reported for most parameters, whereas the maximum deviation for NOx emis-
sions was about 2%. Finally, the authors of [61] aimed to improve the in-cylinder
fuel/air mixing process of heavy-duty DEs, which they modelled utilising CFD
methods. Their simulations were validated in terms of the spray liquid / vapour
penetration, heat release rate, and in-cylinder pressures, at various operational,
and environmental conditions, reporting very low discrepancies.

When it comes to computational requirements, MVEMs are calibrated by
using data from measurements or more detailed models. They typically exhibit
absolute errors of less than 2%. However, outside the calibration envelope, their
performance deteriorates. For 0D/1D models (where 0D refers to modelling the
in-cylinder processes or volumes, whereas 1D refers to the modelling of pipes
and manifolds), the expected typical errors are in the range of ±5%. The more
significant errors are exhibited for predicting the exhaust gas temperature and
emissions, whereas errors for the other engine performance parameters are typ-
ically in the range ±3%. Finally, evaluating the error is challenging for CFD
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models as the available measured parameters are pretty limited in most cases
(typically the in-cylinder pressure diagram). However, the model set-up process
consists of several steps (geometry, injection and mixing process, meshing studies
in fixed combustion chambers (bombs), testing of various existing sub models)
culminating in the set up of the final model version. In addition, several quanti-
tative verification studies are typically carried out, thus providing confidence to
the users that the model performance is appropriate.

We can conclude then that PMs can adequately capture most process pa-
rameters of a DE under a broad range of operating conditions. However, there
is a clear trade-off between accuracy and computational requirements. In fact,
the most detailed 3D models cannot run in real-time, whereas MVEMs lack
accuracy, especially during transient operations.

2.2 Data-Driven Models

DDMs have been successfully applied in a variety of maritime applications, pro-
vided that the necessary quality and quantity of historical data is actually avail-
able [30,54,62–69].

For instance, [70] developed an Artificial Neural Network (ANN) to study
the relative contribution of several operating parameters to the performance of
a DE. The authors utilised 4000 steady-state operating points to train the ANN,
generated by means of numerical simulation, covering the entire envelope of the
DE. Although the authors did not provide quantitative results regarding the
model accuracy, graphical representation showed a relative difference of approx-
imately 5%. Authors of [71] developed an ANN to predict the NOx emissions of
a DE under transient operation. Highly accurate results were reported, with the
developed ANN being able to predict NOx with errors around 1.6%, comparable
to the accuracy of physical NOx measurement devices, with typical error mar-
gins of 1%. The ability of ANNs to predict performance parameters of a DE was
also demonstrated by the authors of [72] predicting a variety of performance pa-
rameters and emissions with coefficient of determination (R2) values over 0.95.
A hydrogen dual-engine for automotive applications was the case study of the
authors of [73]: ANNs proved to be extremely efficient, with near-zero errors
being reported for the prediction of specific fuel consumption and a variety of
emissions. A similar study was conducted by the authors of [74] employing an
ANN to predict the emissions and various performance parameters of a spark
ignition engine fueled with butanol-gasoline blends. In this study, ANNs were
able to predict the performances of the engine with very high R2 values.

DDMs are frequently used in the field of condition monitoring of DEs, as they
are extremely efficient at detecting and isolating faults and have proven to in-
crease the reliability and decrease the probability of producing false alarms [75].
For instance, authors of [76] developed 3 ANNs for fault detection and diagnosis
of a DE, utilising only the pressure signal of the injection rail. They demonstrated
that the proposed ANNs were able to detect and isolate the faulty injector of
the electronic fuel system with 100% classification accuracy in offline training
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scenarios and near 100% accuracy in online scenarios. The authors of [77] pro-
posed a random convolutional ANN for health monitoring of DEs, relying on
vibration measurements. Considering the very high accuracy of the developed
ANN on this task, the authors concluded that, compared to traditional meth-
ods based on signal analysis techniques and shallow classifiers, their approach
can automatically learn high-level representative features from the raw vibration
signals and eliminate the necessity of the time-consuming manual feature extrac-
tion. A similar study was performed by the authors of [78] presenting a Bayesian
ANN-based approach for fault isolation in a DE fuel injection system under
the presence of uncertainties. With the proposed approach, the authors demon-
strated that symptoms under multiple faults could be decoupled into symptoms
corresponding to each individual fault. This greatly reduced the prior knowledge
needed for the diagnosis, decreased the complexity of the application, and sig-
nificantly improved computational efficiency. The authors of [79] demonstrated
the ability of DDMs to predict and isolate faults. More specifically, the authors
showed that when proper fault detection and isolation test designs are selected,
even the relatively simple combination of principal component analysis and k-
nearest neighbours classifier could provide satisfactory results in fault detection.
Likewise, the authors of [75] trained an ANN employing a new estimation strat-
egy known as the smooth variable structure filter to detect the engine’s faults.
This approach demonstrated stability and generalisation accuracy exhibiting im-
proved performance compared with the first order back propagation algorithm
and similar performance compared with the extended Kalman filter. Fault de-
tection was also the scope of the work of the authors of [80] where a noise-based
method based on ANNs and wavelet packet analysis was presented. The authors
concluded that ANNs are effective for feature extraction of engine fault noises
in time and frequency domains, and are powerful for sound feature classifica-
tion and recognition of the engine’s faults. A further example is reported by
the authors of [63] where multiple DDMs for weakly supervised marine dual
fuel engines health monitoring were designed, presented, and tested. The pro-
posed framework relied on a digital twin of the engine or on novelty detection
algorithms which were compared against state-of-the-art fully supervised ap-
proaches. Utilising data from the validated simulation model of [54], the authors
demonstrated that their approach can overcome the problematic requirement
for a large amount of labelled samples, that are rarely available, with a decrease
in performance of less than 1% compared to state-of-the-art fully-supervised
approaches.

2.3 Hybrid Models

HMs are a quite recent modelling approach, especially in the maritime field, and
just very few works showed the advantages of a hybrid approach, with respect to
pure PMs and DDMs [30,38,39,81]. For instance, in [62] the authors show that it
is possible to effectively predict fuel consumption with HMs. Moreover, in [30,81],
the authors also attempted to model the engine exhaust gas temperature with
HMs under steady state and transient conditions.
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Authors of [82] compared the performance of a PM, a DDM, and an HM
to predict dynamic combustion control parameters of a Reactivity Controlled
Compression Ignition engine across five engine loads. The parameters included
the start of combustion, the 50% mass fraction burnt crank angle, and combus-
tion peak pressure. The authors compared the model predictions with measured
data from experiments, concluding that the prediction capability of the HM was
far superior to the DDM and PM across all parameters.

Authors of [83] developed an HM to predict several performance parame-
ters of Homegeneous Charge Compression Ignition (HCCI) engines. Namely, the
the 50% mass fraction burnt crank angle, the indicated mean effective pressure,
exhaust temperature, and concentration of CO, total unburned hydrocarbons
and NOx. The proposed HM combined a PM and 3 ANNs, designed to min-
imise computational time requirements, with minimal sacrifice in accuracy. The
authors compared the predictions of the proposed HM with experimental data
at 309 steady state and transient conditions for two HCCI engines, concluding
that the HM offered approximately 80% better accuracy compared to the PM,
or 60% compared to the DDM.

As expected, the amount of literature available on the HMs is limited, being
this a relatively new and still partially explored research field. Moreover, focusing
on the marine DE applications, to the authors best knowledge, a complete and
clear description of a modelling framework for marine DEs able to hybridise PMs
and DDMs is not yet readily available.

3 Modelling

This section is devoted first to the presentation of a state-of-the-art 0D PM (see
Section 3.1) and DDM (see Section 3.2). Then the hybridisation framework is
presented together with the proposed HM (see Section 3.3).

3.1 Zero Dimensional Diesel Engine Model

The DE PM has been developed utilising a modular approach, in which the en-
gine scavenging air and exhaust gas receivers are modelled as control volumes,
whereas the compressor and turbine are modelled as flow elements. The exhaust
receiver contains states for pressure p, temperature T , and exhaust gas compo-
sition g. The gas composition of the air path has been assumed constant. The
engine boundaries are modelled using fixed fluid elements of constant pressure
and temperature, and shaft elements are utilised to compute the rotational speed
of the turbocharger ωtc and crankshaft ωe. Finally, for the in-cylinder process
we exploited a two-zone 0D approach, with state quantities being the in-cylinder
pressure, temperature, gas composition, and air-fuel equivalence ratio λ for each
zone. The layout and state variables of the developed model are presented in
Figure 1. The governing equations of all relevant components is discussed in the
the following.
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(ṗ ,V̇ ,Ṫ , ġout , λ̇ )u , b
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Fig. 1: Layout of the PM with all relevant components and state variables.

Gas composition and properties - The working fluid of the engine is con-
sidered to be a mixture of the following 11 species: CO2, H2O, N2, O2, CO, H2,
O, H, OH, NO, and N. As such, the concentration vector in an arbitrary control
volume is defined as

g =

[
mCO2

,mH2O
,mN2

,mO2
,mCO,mH2

,mO,mH,mOH,mNO

]
mtot

, (1)

where mi is the mass flow of species i and mtot =
∑11

i=1 mi. Arbitrarily, N is not
included in the concentration vector since it can be computed as the remaining
part, to ensure that the mass conservation law is not violated and to act as a
sanity check of the numerical integration.

The thermodynamic properties of the gas are calculated using the NASA
polynomials [84], under the assumption of a thermally perfect gas. The concen-
tration along the air path is assumed constant and equal to the standard air
concentration.

Control Volumes - The control volumes are modelled using the open thermo-
dynamic system concept [85,86] which use as inputs p, T , and the composition of
the working medium contained in the adjacent elements. Considering the control
volumes as cylindrical solenoids (neglecting dissociation effects and the kinetic
energy of the flows entering / exiting the receivers) and assuming ideal gas, the
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change of rate in the mass stored in the volume m can be expressed as

dm

dt
=

∑
i

ṁin,i −
∑
j

ṁout,j , (2)

where ṁi is the mass flow rate of stream i and the subscripts in, out refer to flows
entering and exiting the control volume respectively. Note that, the mass rate
of change does not need to be integrated since it only represents the difference
between entering and exiting mass flow rates.

The temperature rate of change is derived from the energy conservation as

dT

dt
=

Q̇+
∑

i mhin,i −
∑

j mhout,j − udm
dt

mcv
, (3)

where mh refers to the enthalpy flow rate (entering mhin,i and exiting mhout,i

for the stream i), Q̇ = kA(T − Tamb) represents the heat transfer from the
control volume to the surrounding environment, with k being the heat transfer
coefficient, A = πd2/4 being the heat transfer area, and u is the internal energy.

The heat transfer coefficient can be computed as [25]

k = 0.024
κ

d

[
1−

(
d

l

) 2
3

]
Re0.786Pr0.45, (4)

where l and d refer to the length and inner diameter of the control volume and
κ being the heat conductivity, evaluated as

κ = 3.65182 10−4T 0.748. (5)

The Prandtl number Pr has been kept constant and equal to 0.731 and the
Reynolds number Re is evaluated on the average mass flow rate of the input and
output streams ṁavg as

Re =
ṁavgd

Aν
, (6)

with ν being the kinematic viscosity computed as

ν = 5.17791 10−7T 0.62. (7)

Due to to the lack of information regarding the geometry of the control volumes,
their inner diameters d and lengths l are considered as calibration parameters.

Moreover, considering the control volume as a well-stirred mixer, the dynam-
ics of the concentration states can be derived as [87]

∂gout
∂t

=
RT

pV

∑
j

(
gin,j − gout

)
ṁin,j , (8)

where R = R(g, T ) is the gas mixture constant, V is the control volume, gin,j is
the composition of gas of the input stream j, and gout is the composition of gas
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of the output stream. Note that in the case of the scavenging air receiver, under
the simplification of constant fresh air composition, these derivatives have been
set to zero.

The pressure of the working medium contained in each control volume is
calculated using the ideal gas law equation, from which the pressure’s rate of
change can be computed as

dp

dt
=

R

V

(
T
dm

dt
+m

dT

dt

)
. (9)

Valves - The mass flow rate through a valve is computed assuming subsonic
flow through a flow restriction [86], with the valve opening signal (lift) uv as
input

ṁv=Aeff(uv)
p√
RT

Ψ, Ψ=


Π

1
γ

√
2γ
γ−1

(
1−Π

γ−1
γ

)
, if Π>

(
2

γ+1

) γ
γ−1

√
γ
(

2
γ+1

) γ+1
2(γ−1)

, otherwise

, (10)

where uv is chosen as the percentage lift of the valve, Π refers to the ratio of
the static pressure downstream of the restriction to the upstream stagnation
pressure, γ = γ(g, T ) is the ratio of specific heats of the medium, and Aeff =
µ(uv)Aref refers to the effective area of the valve computed as the product of a
reference area Aref with the appropriate flow coefficient µ(uv) [86].

The bypass valve is assumed to be activated if the pressure on the compressor
exceeds 90% of the surge limit for the instantaneous flow rate. Furthermore, we
have assumed a linear opening characteristic, with the reference area considered
as a calibration parameter. For the intake and exhaust valves, we utilised a non-
linear characteristic, parameterised on the basis of the maximum cross-flow area
of the inlet Aiv and exhaust valves Aev and the crank-angle duration that the
valve stays at its maximum lift denoted as vmdiv and vmdev [25].

Air cooler, Air Filter, and Exhaust Pipe - Pressure losses in all these
components, as well as air cooler effectiveness, have been modelled as quadratic
functions of their corresponding input mass flow rate [42,46]

∆pac=
2∑

i=0

ṁi
accac,i, ∆paf=

2∑
i=0

ṁi
afcaf,i,

∆pep=
2∑

i=0

ṁi
epcep,i, ϵac=

2∑
i=0

ṁi
accace,i, (11)

where the subscripts ac, af, and ep refer to the air cooler, air filter, and exhaust
pipe, respectively. cac,i, caf,i, cepi

, and cace,i are considered calibration parame-
ters.
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As a consequence, the temperature at the air cooler outlet is given by

T out
ac = ϵacTw + (1− ϵac)T

in
ac , (12)

where ϵac refers to the heat exchanger effectiveness, Tw corresponds to the tem-
perature of the cooling water, and T in

ac is the temperature of the working medium
at the inlet.

Turbocharger - The engine is equipped with two turbocharging units operat-
ing in parallel to supply the engine with sufficient air mass flow. We modelled the
compressor using its steady state performance map, which provides the relations
between the compressor performance variables: reference flow rate, pressure ra-
tio, reference speed, and isentropic efficiency. The rotational speed and pressure
ratio are considered as inputs to the model, which allows the computation of the
reference flow rate ṁ and isentropic efficiency ηc as reported in [21,88]

ṁ = fmc

(
Πc, T

in
c , ωtc

)
, ηc = fηc

(
Πc, T

in
c , ωtc

)
, (13)

where fmc
and fηc

are functions that have been interpolated based on the the
compressor maps, representing the compressor mass flow rate and efficiency,
respectively. Πc is the pressure ratio of the compressor, and T in

c is the compressor
inlet temperature. After accounting for pressure losses in the air cooler and air
filter, Πc can be computed as

Πc =
psc +∆pac
pamb −∆paf

, (14)

where psc is the pressure of the scavenging receiver and pamb is the ambient
pressure. The temperature at the outlet of the compressor is given by [85]

T out
c = T in

c

1 +
Π

γ−1
γ

c − 1

ηc

 . (15)

For the turbine, we exploited its swallowing capacity and efficiency maps, which
allow the calculation of the turbine flow rate ṁt and isentropic efficiency ηt as

ṁt = fmt

(
Πt, T

in
t , ωtc

)
, ηt = fηt

(
Πt, T

in
t , ωtc

)
. (16)

where fmt
and fηt

are functions that have been interpolated based on the the
turbine maps, representing the turbine mass flow rate and efficiency, respectively.
Πt is the pressure ratio of the turbine, and T in

t is the turbine inlet temperature.
The turbine pressure ratio is computed by taking the exhaust pipe pressure
losses ∆pep into account as

Πt =
per

pamb +∆pep
, (17)
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where per is the pressure of the exhaust receiver. The temperature at the turbine
outlet T out

t can be computed from the turbine isentropic efficiency definition as

T out
t = T in

t ηt

(
1−Π

γ−1
γ

t

)
, (18)

The rotational speed of the turbochargers ωtc is a model state, defined by the
power balance between compressor and turbocharger as

dωtc

dt
=

Ptη
mech
tc − Pc

Jtcωtc
, (19)

where Pt = ṁt∆ht, Pc = ṁc∆hc refer to the turbine and compressor power,
respectively, with ∆ht, ∆hc being the enthalpy difference between the inlet and
outlet of the turbine and compressor. Jtc refers to the turbocharger shaft inertia
and ηmech

tc corresponds to the mechanical efficiency of the turbocharger unit, ac-
counting for friction losses. Jtc and ηmech

tc are considered calibration parameters.

Cylinder - For the in-cylinder process, apart from the assumptions on the
working medium described before, we have further neglected valve leakage and
blow-by. Furthermore, the temperatures at the cylinder wall Tcw, head Thw,
piston wall Tpw, liner wall Tlw, exhaust valve wall Tevw, as well as the injected fuel
temperature Tf are considered all uniform and constant. In fact, the temperature
variations of the inner cylinder surface during the thermodynamic cycle are
trivial compared to the temperature variations of the combustion gases [89,90].
Moreover, we have assumed a uniform cylinder pressure and that the combustion
chamber volume consists of two combustion zones. The burned zone contains
incompletely oxidised fuel (denoted with the subscript b), whereas the unburned
zone containis air and fuel (denoted with the subscript u). Each zone is spatially
homogeneous, separated by a massless and infinitesimally thin flame, and no heat
transfer takes place between the two zones. A schematic of the two combustion
zone model is presented in Figure 2. The main equations governing the two
combustion zone model include the conservation of mass

dm

dθ
=

dmu

dθ
+

dmb

dθ
=

dmf

dθ
+

dma

dθ
(20)

where the subscripts u and b refer the the unburned and burned zone, respec-
tively, and the subscripts a, f refer to air and fuel, respectively. The equations
of state for the working medium in each zone can be be described as

pVu = muRuTu, pVb = mbRbTb, (21)

and the evolution of volumes derivative with respect to crank angle in the two
zones as

dV

dθ
=

dVu

dθ
+

dVb

dθ
, (22)
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Fig. 2: Energy flow of the two combustion zone model.

in which the instantaneous cylinder volume can be expressed as a function of
crank-angle θ according to the kinematics of the crankshaft as [25,86]

V (θ)=Vc+B2π

4
(lr+a−s(θ)) , s(θ)=a+cos θ+

√
l2r − a2 sin θ2, (23)

where Vc = Vs/(CR − 1) is the combustion chamber volume, Vs is the stroke
volume, CR is the geometric compression ration, B is the bore diameter, lr is
the connecting rod length, and a is the crank radius.

Finally, the energy conservation equations for each combustion zone can be
expressed as

d(muuu)

dθ
= −p

dVu

dθ
−

∑
i

dQui

dθ
− hu

dmb

dθ
(24)

d(mbub)

dθ
= −p

dVb

dθ
−
∑
i

dQbi

dθ
+ hu

dmb

dθ
+

dQf

dθ
(25)

where
∑

i
dQi

dθ for each one of the combustion zones refers to the summation of
heat transfer rates through the engine’s different parts surfaces in contact with
the cylinder gases and

dQf

dθ refers to the heat release rate.
Burn fraction and heat release rate in internal combustion engines are mostly

governed by functions based on the law of Normal distribution of continuous ran-
dom variables. In this context, one of the most popular functions is the Wiebe
function [91, 92]. While the Wiebe function by no means describes the complex
fuel air mixing in the diesel combustion process, it can provide valuable ther-
modynamic input for the model in terms of a realistic shape of the heat release.
In this work, we have exploited a double-Wiebe profile for the premixed and
diffusive combustion processes [93,94] as [25]

dQf,1

dθ
= Qf,1α(m1 + 1)

(
θ − θSOC1

∆θCD,1

)m1

e
−αi

(
θ−θSOC1
∆θCD1

)m1+1

, (26)

dQf,2

dθ
= Qf,2α(m2 + 1)

(
θ − θSOC2

∆θCD,2

)m2

e
−α2

(
θ−θSOC2
∆θCD2

)m2+1

, (27)
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Qf,1 = qQf,tot, Qf,2 = (1− q)Qf,tot,
dQf,tot

dθ
=

dQf,1

dθ
+

dQf,2

dθ
, (28)

where α is a factor related to the percentage of the total energy added with the
fuel at the end of combustion ηconv,total as

α = − ln (1− ηconv,total) , (29)

its value is related to the combustion efficiency and it was assumed equal to
6.9 as suggested in [46, 95]. Moreover, Qf,tot = mfLHVf represents the total
thermal energy of the fuel released during combustion, q is the fraction of heat
release of the first Wiebe profile, θSOC,i to the start of combustion, m1 and m2

are the Vibe form factors, and ∆θCD,i the combustion duration for each Wiebe
profile. For the latter, the estimation of the ignition delay ∆θid is required, for
example according to [96] as

∆θid = 6ne10
−3

(
aIGD +

(
p−0.7bIGD + p−1.8cIGD

)
e

7800
6.9167RT 1.0197

)
, (30)

where ne is the engine rotational speed (expressed in Hz). The constants aIGD,
bIGD, cIGD are treated as calibration parameters.

In Eqns. (26) and (27), the constants m1, m2, ∆θCD1
, and ∆θCD2

for each
Wiebe profile are calibrated at the engine reference point (subscript ref) and
updated for other operating points according to [97]

m=(mref+∆m)

(
θIGD,ref

θIGD

)aVM
(
ne,ref

ne

)bVM
(

pIVC

pIVC,ref
· VIVC

VIVC,ref
·TIVC,ref

TIVC

)cVM

−∆m, (31)

∆θCD=∆θCD,ref

(
λref

λ

)aCD
(

ne

ne,ref

)bCD

, (32)

The constants aCD, bCD, aVM, bVM, cVM are regarded as calibration parameters,
since their values are known to vary between engines of different types and sizes
as reported in [25]. The subscripts IVC,ref and IVC refer to the inlet valve closing
point at engine reference speeds ne,ref and operating speed ne, respectively.

The heat transfer between the mass trapped in the cylinder and the sur-
rounding areas is calculated according to the standard Newtonian relation for
convective heat transfer, as∑

i

dQui

dθ
= kcsa

∑
i

Ai(T (θ)− Ti), (33)

with i = {cw, hw, pw, lw, evw} referring to cylinder, head, piston, liner, and
exhaust valve wall. The heat transfer coefficient kcsa is evaluated according to [25,
98]

kcsa = 127.93p0.8v0.8B−0.2T−0.53, (34)

where v is a representative velocity evaluated taking into account the mean
piston speed cm = 2Lsne (Ls is the stroke length), and the compression induced
turbulence as [25]

v = c1cm + c2
VcTIC

pICVIC
(p− p0), (35)
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where p0 is the cylinder pressure during motored operation, computed over a
polytropic relation from the cylinder volume according to [25]. The constants
c1, c2 are functions of the intake swirl cc/cm, according to Table 1. cc/cm is
considered as a calibration parameter. The subscript IC refers to the cylinder
conditions at the start of compression, when the intake valve closes. We exploited

Table 1: Coefficients for Woschni’s heat transfer model of Eqs.(34), (35).

Phase c1[−] c2[m/sK]

Intake - exhaust 6.18 + 0.417 cc/cm 0

Compression
2.28 + 0.308 cc/cm

0
Combustion - expansion 3.24 10−3

the method of Chen and Flynn [99] for the evaluation of the friction losses,
according to which the friction mean effective pressure FMEP accounts for the
effect of engine speed through a quadratic law. The effect of engine load is
represented through the maximum in-cylinder pressure pmax, while the energy
drawn by accessories and all the other invariable factors is accounted for by a
constant term, as

FMEP = cf,1 + cf,2pmax + cf,3ne + cf,4n
2
e (36)

where coefficients cf,1 - cf,4 are considered as calibration parameters.
The instantaneous cylinder torque is then computed by using the gross cylin-

der torque, through the cylinder indicated work, and cylinder torque due to fric-
tion. Since all cylinders are considered to operate under the same conditions,
the brake power is computed using the current engine speed, multiplied by the
cylinder torque and the number of cylinders in the engine.

The combustion products are evaluated exploiting the method of Rakopoulos
et al. [100], due to its minimal computational time requirements and reasonable
agreement with experiments. For the burning zone, given its volume, temper-
ature, mass of fuel burnt and mass of air entrained, the concentration of each
species can be evaluated by solving a 11× 11 non-linear system obtained from 7
non-linear equilibrium equations and 4 linear atom balance equations. This sys-
tem is converted to a 4× 4 non-linear system which can be solved efficiently by
any root-finding algorithm (in this study, the Newton-Raphson method [101]).
Finally, thermal NO has been evaluated according to the extended Zeldovich
mechanism, for which the reaction rates were selected according to [102].

Eqns. (20)-(28) form a system of first order differential equations of the form
F (θ,y, ẏ) = 0 that is solved for each crank angle step by using the classic
Runge-Kutta method [101].

Sensor Dynamics - The thermal inertia of the temperature sensors which are
mounted on the outer surface of the exhaust pipes, is modelled according to [87]
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as
dTs

dt
=

T − Ts

τs
, (37)

where Ts refers to the temperature including the sensor dynamics, and T is
the temperature of the working medium in the engine. The time constant τs is
considered as a calibration parameter. Dynamic response for all other sensors
has been neglected, as it is known to be in the order of milliseconds [103].

Calculation Procedure - Inputs towards the cylinder model include the pres-
sure, temperature, the medium composition from the scavenging manifold, the
pressure of the exhaust manifold, engine rotational speed, and fuel injected per
cycle from the governor. Subsequently, the cylinders air and exhaust gas mass
flow rates, pressures, temperatures, the composition of the exhaust gas, and the
equivalence ratio of the exhaust gas exiting the cylinders are calculated. Ad-
ditional outputs include the energy flow of the exhaust gas exiting cylinders,
the indicated power, the friction power, brake power torque, brake specific fuel
consumption, and engine brake efficiency.

For all the other components (i.e., control volumes or flow elements) the
following structure is employed. Inputs required for the flow elements are utilised
from the adjacent flow receiver or fixed fluid structures for the engine boundaries
which include the necessary parameters to fully characterise the working medium
state (temperature, pressure, composition). Subsequently, mass and energy flows
through the flow elements are computed and provided to the adjacent control
volumes. In addition, the absorbed compressor torque and produced turbine
torque are calculated and used as inputs to the turbocharger shaft element,
which derives the turbocharger speed, which, in turn, is provided to the turbine
and compressor blocks.

This framework forms an additional system of first order differential equa-
tions in the form F (t,y, ẏ) = 0, that is solved for each time step by using the
classic Runge-Kutta method [101]. In total, the model contains 50 states over two
major integration steps. Parameters include the geometric data of the engine,
the intake and exhaust valves profiles, the compressor and turbine performance
maps, the bypass valve geometric and control details, constants present in any
sub-model, and the ambient conditions for the engine boundaries. Finally, initial
values are also required for the engine and turbocharger rotational speeds, and
the temperature, pressure and composition of the working medium contained in
the scavenging and exhaust manifolds.

Model Parameterisation - The proposed model contains internal feedback
systems, hence the modelling errors of any subsystems will be propagated and
amplified towards the rest of the model. For instance, errors in the exhaust tem-
perature will affect the turbine power production, which will in turn alter the
scavenging pressure, and this finally will modify the exhaust temperature pre-
diction anew. Due to this fact, balancing out the complete model by readjusting
the model parameters is essential to obtain an overall accurate model [87].
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17



18 Coraddu, A. et al.

The calibration process is treated as an optimisation problem, with the ob-
jective being to minimise the error between the model estimated outputs and
the available measurements.

Formally, we seek the solution of the following continuous, non-convex prob-
lem

argmin
ϕ

L̂(ϕ,Dn) =
M∑
i=1

l(h(xi,ϕ),yi), (38)

s.t. ϕmin ≤ ϕ ≤ ϕmax

where h refers to the outputs of the PM, ϕ is the set of parameters that need
to be estimated from a given bounded space Φ, xi refers to the measurements
corresponding with the model inputs, and yi refers to the measurements corre-
sponding with the model outputs. L̂(ϕ,Dn) is the empirical error of the model
h on the dataset Dn = {(x1,y1), · · · , (xn,yn)}, measured according to a loss
function ℓ(h(x, θ),y).

We have adopted the absolute relative error, given by

ℓ (h (xi,θ) ,yi) =
S∑

j=1

∣∣∣∣∣yji − hj(xi,θ)

yji

∣∣∣∣∣ (39)

Note that, because y is a vector, the loss function of Eq. (39) refers to the sum
of relative errors of all model outputs j = (1, · · · , S) and their corresponding
measured values.

Given the nature of the problem, a Derivative-Free Optimisation (DFO)
method must be exploited, as obtaining or estimating the derivatives of the
physical models with respect to the parameters is a computationally and time-
intensive procedure. The literature on DFO methods is quite large, with a variety
of algorithms that can solve different classes of problems [104–106].

In this work, we leveraged an algorithm from the class of directional direct
search methods: the Mesh-Adaptive Direct Search (MADS) algorithm, which is
a local optimisation technique with established convergence theory under some
mild assumptions [107, 108]. MADS is an extension of the Generalized Pattern
Search algorithm [109, 110], specifically developed to handle non-smooth black-
box problems. It is an iterative method that uses a discretisation of the solution
space, called the mesh, to select and evaluate new trial points, given an initial
iterate. Each iteration consists of two steps: the search and the poll, followed
by a parameter update step. If the search step succeeds (i.e., the selected trial
point improves upon the current iterate), then this trial point becomes the new
iterate and the poll step is skipped. If the search step fails, the poll step becomes
mandatory. The poll is used to choose mesh points near the current iterate
and to evaluate their objective and constraint values. If the poll fails to find
a better solution, the update step will reduce the mesh size and the poll size,
to concentrate near the current iterate. The mesh size is the parameter that
scales the space discretization and the poll size is the maximum distance allowed
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between a trial point and the current iterate. On the other hand, once a better
solution is found, the pol step terminates and the update step increases the mesh
size. This process is repeated until a stopping condition is satisfied.

Given that our problem is highly non-linear and non-convex, there is no
guarantee that the solution obtained corresponds to the global optima [106]. In
order to ensure the quality of the final solution the algorithm has been started
from a number of different initial points, and from all solutions obtained, the
best one has been chosen [111].

The dynamic behaviour of the model is largely defined by the turbocharger
inertias, the control volume sizes, and the time constants of the temperature
sensors. The optimisation algorithm was initialised by a single starting point
with suitable values of the turbocharger inertia corresponding to other engines
of this size, whereas the values of the control volumes have been set to reasonable
values based on the real pipe volume sizes from the engine design drawings.

3.2 Data Driven Models

In the proposed context of developing a fast yet accurate dynamic model of a
four-stroke marine DE, a general modelisation framework can be defined, char-
acterised by an input space X ⊆ Rd, an output space Y ⊆ Rb, and an unknown
relation µ : X → Y to be learned [112, 113]. For what concerns this work, X
is composed by the measurements available from the engine monitoring system
(see Section 4), while the output space Y refers to the target features accounting
for the engine fuel consumption, turbocharger rotational speed, turbine outlet
temperature, and exhaust manifold temperature (see Section 4).

In this context, the authors define the model h : X → Y as an artificial
simplification of µ. Analogously to what has been done in Section 3.1 we will
assume to know all the information until time t0 to make a prediction of the
quantity of interest. In particular, we will consider all the information in [t0 −
∆, t0] (see Figure 3). ∆ represents how much history of the different available
data we want to exploit to make predictions. ∆ is an hyperparameter for which
an optimal value exists: too much history (too large ∆) will make us face with
the curse of dimensionality while too little history (too small ∆) will limit our
ability to make accurate predictions [112–114].

The model h, as described in Section 1 can be obtained with different kinds
of techniques, for example, requiring some physical knowledge of the problem,
as in PMs (see Section 3.1), or the acquisition of large amounts of data, as
in DDMs or using both information (see Section 3.3). In this section we will
use a state-of-the-art DDM. Between the DDMs it is possible to identify two
families of approaches [112, 115]. The first one, comprising traditional Machine
Learning methods, needs an initial phase where the features must be defined
a-priori from the data via feature engineering or implicit or explicit feature map-
ping [112, 116, 117]. The second family, which includes deep learning methods,
automatically learns both the features and the models from the data [115]. For
small cardinality datasets and outside particular applications (e.g., computer vi-
sion and natural language processing) Deep Learning does not perform well since
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Fig. 3: Input and output variables of the DDMs.

they require huge amount of data to be reliable and to outperform traditional
Machine Learning models [118,119].

In the Machine Learning maps the problem our problem can be easily mapped
in a typical regression problem [117,120]. In fact, ML techniques aim at estimat-
ing the unknown relationship µ between input and output through a learning
algorithm AH which exploits some historical data to learn h and where H is
a set of hyperparameters which characterises the generalisation performance
of A [114]. The historical data consists on a series of n examples of the in-
put/output relation µ and are defined as Dn = {(x1, y1), · · · , (xn, yn)} where
x ∈ X and y ∈ Y.

In this paper we will leverage on a Machine Learning model coming from the
Kernel Methods family called Kernel Regularised Least Squares (KRLS) [121].
The idea behind KRLS can be summarised as follows. During the training phase,
the quality of the learned function h(x) is measured according to a loss function
ℓ(h(x), y) [122] with the empirical error

L̂n(h) =
1

n

n∑
i=1

ℓ(h(xi), yi). (40)

A simple criterion for selecting the final model during the training phase could
then consist in simply choosing the approximating function that minimises the
empirical error L̂n(h). This approach is known as Empirical Risk Minimization
(ERM) [120]. However, ERM is usually avoided in Machine Learning as it leads
to severe overfitting of the model on the training dataset. As a matter of fact,
in this case the training process could choose a model, complicated enough to
perfectly describe all the training samples (including the noise, which afflicts
them). In other words, ERM implies memorisation of data rather than learning
from them. A more effective approach is to minimise a cost function where the
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trade-off between accuracy on the training data and a measure of the complexity
of the selected model is achieved [123], implementing the Occam’s razor principle

h∗ : min
h

L̂n(h) + Λ C(h). (41)

In other words, the best approximating function h∗ is chosen as the one that is
complicated enough to learn from data without overfitting them. In particular,
C(·) is a complexity measure: depending on the exploited Machine Learning ap-
proach, different measures are realised. Instead, Λ ∈ [0,∞) is a hyperparameter,
that must be set a-priori and is not obtained as an output of the optimisation
procedure: it regulates the trade-off between the overfitting tendency, related to
the minimisation of the empirical error, and the underfitting tendency, related
to the minimisation of C(·). The optimal value for Λ is problem-dependent, and
tuning this hyperparameter is a non-trivial task, as will be discussed later in this
section. In KRLS, models are defined as

h(x) = wTφ(x), (42)

where φ is an a-priori defined Feature Mapping (FM) [112] allowing to keep the
structure of h(x) linear. The complexity of the models, in KRLS, is measured
as

C(h) = ∥w∥2, (43)

i.e., the Euclidean norm of the set of weights describing the regressor, which is
a standard complexity measure in ML [112, 121]. Regarding the loss function,
the square loss is typically adopted because of its convexity, smoothness, and
statistical properties [122]

L̂n(h) =
1

n

n∑
i=1

ℓ(h(xi), yi) =
1

n

n∑
i=1

[h(xi)− yi]
2
. (44)

Consequently, Problem (41) can be reformulated as

w∗ : min
w

n∑
i=1

[
wTφ(x)− yi

]2
+ Λ∥w∥2. (45)

By exploiting the Representer Theorem [124], the solution h∗ of the Problem (45)
can be expressed as a linear combination of the samples projected in the space
defined by φ

h∗(x) =
n∑

i=1

ιiφ(xi)
Tφ(x). (46)

It is worth underlining that, according to the kernel trick, it is possible to re-
formulate h∗(x) without an explicit knowledge of φ, and consequently avoiding
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the curse of dimensionality of computing φ, by using a proper kernel function
K(xi,x) = φ(xi)

Tφ(x)

h∗(x) =
n∑

i=1

ιiK(xi,x). (47)

Several kernel functions can be retrieved in literature [125, 126], each one with
a particular property that can be exploited based on the problem under exam.
Usually the Gaussian kernel is chosen

K(xi,x) = e−γ∥xi−x∥2

, (48)

because of the theoretical reasons described in [127,128] and because of its effec-
tiveness [118,119]. γ is another hyperparameter, which regulates the nonlinearity
of the solution that must be tuned as explained later. Basically the Gaussian
kernel is able to implicitly create an infinite dimensional φ and thanks to this,
the KRLS are able to learn any possible function [127]. The KRLS problem of
Eq. (45) can be reformulated by exploiting kernels as

ι∗ : min
ι

∥Qι− y∥2 + ΛιTQι, (49)

where y = [y1, . . . , yn]
T , ι = [ι1, . . . , ιn]

T , the matrix Q such that Qi,j =
K(xj ,xi), and the identity matrix I ∈ Rn×n. By setting the gradient equal
to zero w.r.t. ι it is possible to state that

(Q+ ΛI) ι∗ = y, (50)

which is a linear system for which effective solvers have been developed over the
years, allowing it to cope with even very large sets of training data [129].

The problems that still have to be faced is how to tune the hyperparameters
of the approach (Λ, γ, and ∆− for the second DT) and to estimate the perfor-
mance of the final model. Model Selection (MS) and Error Estimation (EE) deal
exactly with these problems [114]. Resampling techniques are commonly used
by researchers and practitioners since they work well in most situations and this
is why we will exploit them in this work [114]. Other alternatives exist, based
on the Statistical Learning Theory, but they tend to underperform resampling
techniques in practice [114]. Resampling techniques are based on a simple idea:
the original dataset Dn is resampled once or many (nr) times, with or without
replacement, to build three independent datasets called learning, validation and
test sets, respectively Lr

l , Vr
v , and T r

t , with r ∈ {1, · · · , nr} such that

Lr
l ∩ Vr

v = ⊘, Lr
l ∩ T r

t = ⊘, Vr
v ∩ T r

t = ⊘, Lr
l ∪ Vr

v ∪ T r
t = Dn. (51)

Subsequently, to select the best hyperparameters’ combination H = {Λ, γ, (∆−)}
in a set of possible ones H = {H1,H2, · · · } for the algorithm AH or, in other
words, to perform the MS phase, the following procedure has to be applied:

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lr
l ),Vr

v ), (52)
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where h = AH(Lr
l ) is a model built with the algorithm A with its set of hyper-

parameters H and with the data Lr
l , and where M(h,Vr

v ) is a desired metric.
Since the data in Lr

l are independent from the data in Vr
v , H∗ should be the

set of hyperparameters which allows achieving a small error on a data set that
is independent from the training set. Then, to evaluate the performance of the
optimal model which is h∗

A = AH∗(Dn) or, in other words, to perform the EE
phase, the following procedure has to be applied:

M(h∗
A ) =

1

nr

nr∑
r=1

M(AH∗(Lr
l ∪ Vr

v ), T r
t ). (53)

Since the data in Lr
l ∪ Vr

v are independent from the ones in T r
t , M(f∗

A ) is
an unbiased estimator of the true performance, measured with the metric M ,
of the final model [114]. In this work we will rely on Complete k-fold cross

validation which means setting nr ≤
(
n
k

)(n−n
k

k

)
, l = (k − 2)nk , v = n

k , and t = n
k

and the resampling must be done without replacement [114]. Note that, in our
application, we have a further constraint in terms of dependence in time between
the samples. For this reason, when resampling the data form Dn we actually keep
data of different periods in Lr

l , Vr
v , and T r

t [113].
For what concerns the metric M that we will use in our paper we will rely

on the Mean Absolute Error (MAE), the Mean Absolute Percentage of Error
(MAPE) and the Pearson Product-Moment Correlation Coefficient PPMCC [130].
Since in regression it is quite hard to synthesise the quality of a predictor in a
single metric we will also rely on visualisation techniques like the scatter plot
and histograms [131].

3.3 Hybrid Models

In this section we would like to depict a framework able to take into account both
the physical knowledge about the problem encapsulated in the PMs of Section 3.1
and the information hidden in the available data as the DDMs of Section 3.2,
into account. For this purpose authors will start from a simple observation: a
HM, based on the previous observation, should be able to learn from the data
without being too different, or too far away, from the PM.

From the Data Science and Machine Learning point of view, this requirement
can be straightforwardly mapped in a typical ML Multi Task Learning (MTL)
problem [132–136]. MTL aims at simultaneously learning two concepts, in this
case the PM and the available data, through a learning algorithm AH which ex-
ploits the data in Dn to learn a function h which is both close to the observation,
the data Dn and the PM, namely its forecasts.

Consequently, in this case a slightly different scenario is presented where the
dataset is composed by a triple of points Dn = {(x1, y1, p1), · · · , (xn, yn, pn)}
where pi is the output of the PM in the point xn with i ∈ {1, · · ·, n}. The target is
to learn a function able to approximate both µ, namely the relation between the
input x ∈ X and the output y ∈ Y, and the PM, namely the relation between
the input and the output of the PM. Two tasks have to be learned. For this
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purpose there are two main approaches: the first approach is called Shared Task
Learning (STL) and the second Independent Task Learning (ITL). While the
latter independently learns a different model for each task, the former aims to
learn a model that is common between all tasks. A well-known weakness of these
methods is that they tend to generalise poorly on one of the two tasks [132]. In
this work, authors show that an appealing approach to overcome such limitations
is provided by MTL [132–136]. This methodology leverages on the information
between the tasks to learn more accurate models.

In order to apply the MTL approach to this case, it is possible to modify the
KRLS problem of Eq. (45) to simultaneously learn a shared model and a task
specific model which should be close to the shared model. In this way, authors
obtain a model which is able to simultaneously learn the two tasks. The model
that authors are interested in is the shared model, while the task specific models
are just used as a tool. A shared model is defined as

h(x) = wTφ(x), (54)

and two task specific models as

hi(x) = wT
i φ(x), i ∈ {y, p}. (55)

Then, it is possible to state the MTL version of Eq. (45), as follows

w∗,w∗
y,w

∗
p : min

w,wy,wp

n∑
i=1

[
wTφ(x)− yi

]2
+

[
wTφ(x)− pi

]2
+

n∑
i=1

[
wT

y φ(x)− yi
]2

+
[
wT

p φ(x)− pi
]2

+ Λ∥w∥2 + κ(∥w −wy∥2 + ∥w −wp∥2), (56)

where Λ is the usual regularization of KRLS and κ ∈ [0,∞), instead, is another
hyperparameter that forces the shared model to be close to the task specific
models. Basically the MTL problem of Eq. (56) is a concatenation of three
learning problems solved with KRLS plus a term which tries to keep a relation
between all the three different problems.

By exploiting the kernel trick as in KRLS, it is possible to reformulate Prob-
lem (56), as follows

ι∗ : min
ι

∥∥∥∥∥∥∥∥

Q Q 0 0
Q Q 0 0
0 0 Q 0
0 0 0 Q

 ι−


y
p
y
p


∥∥∥∥∥∥∥∥
2

+ ιT


(Λ+ 2κ)Q (Λ+ 2κ)Q −κQ −κQ
(Λ+ 2κ)Q (Λ+ 2κ)Q −κQ −κQ

−κQ −κQ κQ 0
−κQ −κQ 0 κQ

 ι, (57)
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where p = [p1, . . . , pn]
T . The solution of this problem is again equivalent to

solving a linear system
Q+ (Λ+ 2κ)I Q+ (Λ+ 2κ)I −κI −κI
Q+ (Λ+ 2κ)I Q+ (Λ+ 2κ)I −κI −κI

−κI −κI Q+ κI 0
−κI −κI 0 Q+ κI

 ι∗ =


y
p
y
p

 . (58)

The function that the authors are interested in, the shared one, can be expressed
as follows

h(x) = wTφ(x) =
n∑

i=1

(ιi + ιi+n)K(xi,x). (59)

What changes here, with respect to the MS phase of the DDM described in
Section 3.2, is the MS phase where just Λ, γ, and also κ need to be tuned.

4 Case Study and Dataset Description

In this work, as a case study, we have exploited data acquired from a naval ves-
sel equipped with a MAN B&W V28-33D medium speed four-stroke DE. The
engine has 12 cylinders with 0.28m bore and 0.33m stroke, with a Maximum
Continuous Rating (MCR) of 5.4MW at 1000rpm and two turbochargers (TCs)
operating in parallel to deliver the necessary air. The main characteristics of the
engine are summarised in Table 2. The engine is characterised by a power-to-

Table 2: Main characteristics of the MAN 12 V28-33D engine.

Feature Value Unit

Cylinders V12, 16, 20 [-]
Bore diameter 280 [mm]
Stroke length 330 [mm]
Number of cylinders 12 [-]
Revolutions per cycle 2 [-]
Engine speed at MCR 1000 [rpm]
Brake power at 60% MCR 3240 [kW]
Brake power at 80% MCR 4320 [kW]
Brake power at MCR 5400 [kW]
Mean Effective Pressure 26.9 [bar]
Mean Piston Speed 11 [m/s]
Specific Fuel consumption (100% load) 191 [g/KWh]

weight and power-to-installation space ratios favourable to fast mono-hull and
multi-hull vessels, offshore patrol vessels with either single or twin engine-gear-
propeller systems or corvettes, frigates and destroyers with combined propulsion
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plant configurations, such as COmbined Diesel And Diesel (CODAD), COm-
bined Diesel Or Gas (CODOG), and COmbined Diesel And Gas (CODAG).
The DE under investigation is installed on board one of the the Holland Class
Oceangoing Patrol Vessels. The propulsion system of the vessel consists of two
shafts with Controllable Pitch Propellers (CPP), a gearbox, and one DE per
shaft, as shown in Figure 4. This configuration is typical for multi-function ships

Main Diesel Engine 
No.2

Main Diesel Engine 
No.1

G
ea
rb
ox

G
ea
rb
ox

Shaftline

Shaftline

CPP
Propeller

CPP
Propeller

Fig. 4: Propulsion System Layout for the Holland Class Oceangoing Patrol Ves-
sels.

that require silent, manoeuvrable, highly reliable and low emission propulsion.

The Patrol vessel is equipped with a data logging system which is used by
the Royal Netherlands Navy both for on-board monitoring and control and for
land-based performance analysis. The dataset utilised consists of two different
data sources: standard measurements (steady-state) performed during Shop Tri-
als (ST) that have been exploited to calibrate the PM model (see Section 3.1),
and operational data originating from the vessel’s data logging system, used by
the ship operator for performance monitoring purposes, which has been exploited
to evaluate the performance of the PM model in dynamic conditions (see Sec-
tion 3.1), and to train, validate, and test the DDMs and HMs (see Sections 3.2
and 3.3). Operational measurements are sampled at 3Hz for approximately 3 cal-
endar years for a total of 7900 hours of operations. A summary of the available
measurements is reported in Table 3.

It should be noted that fuel consumption is measured using a mass flow meter
which is known to be more accurate of the more common volume flow meters as
it eliminates uncertainty on fuel density. However, measurements of fuel specific
energy content are not available. Unfortunately, the energy content of a com-
pound fuel can vary in quality among markets, a variation which is known to be
in the order of ±2 MJ/kg, or approximately ±5% [62]. Moreover, measurements
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Table 3: Measurements available from the engine monitoring system,

Variable Name Symbol Unit

Time stamp t [hh:mm:ss]
Governor Position Gp [-]
Engine Rotational Speed ne [rpm]
Engine Torque Me [kNm]
Charge Air Temperature at Scavenging Receiver Tsc [oC]
Charge Air Temperature at Compressor Outlet Tc,out [oC]
Charge Air Temperature at Compressor Inlet Tc,in [oC]
Exhaust Gas Temperature at Turbine Outlet Tt,out [oC]
Main Bearing No. 1 Temperature Tb,1 [oC]
Main Bearing No. 2 Temperature Tb,2 [oC]
Main Bearing No. 3 Temperature Tb,3 [oC]
Main Bearing No. 4 Temperature Tb,4 [oC]
Main Bearing No. 5 Temperature Tb,5 [oC]
Main Bearing No. 6 Temperature Tb,6 [oC]
Main Bearing No. 7 Temperature Tb,7 [oC]
Lube Oil Compartment No. 1 Temperature Tl,1 [oC]
Lube Oil Compartment No. 2 Temperature Tl,2 [oC]
Lube Oil Compartment No. 3 Temperature Tl,3 [oC]
Lube Oil Compartment No. 4 Lube Oil Temperature Tl,4 [oC]
Lube Oil Compartment No. 5 Lube Oil Temperature Tl,5 [oC]
Lube Oil Engine Inlet Temperature Tle,in [oC]
Lube Oil Engine Outlet Temperature Tle,out [oC]
High-Temperature Sea Cooling Water - Inlet Tht,in [oC]
High-Temperature Sea Cooling Water - Outlet Tht,out [oC]
Low-Temperature Sea Cooling Water - Inlet Tlt,in [oC]
Low-Temperature Sea Cooling Water - Outlet Tlt,out [oC]
Fuel Oil Supply Temperature Tf [oC]
Charge Air Temperature at Compressor Outlet - Bank A TA

c,out [oC]
Charge Air Temperature at Compressor Outlet - Bank B TB

c,out [oC]
Charge Air Temperature at Compressor Inlet - Bank A TA

c,in [oC]
Charge Air Temperature at Compressor Inlet - Bank B TB

c,in [oC]
Charge Air Engine Inlet Pressure pca,in [Pa]
Charge Air Engine Inlet Temperature Tca,in [oC]
Fuel Consumption ṁf [kg/h]
TC rotational speed Ntc [rpm]
Turbine Outlet Temperature Tt,out [oC]
Exhaust Receiver Temperature Ter [oC]

regarding the ambient conditions of the engine’s surrounding environment are
also not available, as well as the uncertainty of the measurements performed
during the ST.
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5 Experimental Results

In this section, we exploited the data described in Section 4 to test the models
developed in Section 3. To begin with, calibration results of the PM described in
Section 5.1 are reported. Then a comparison of the performance of PMs, DDMs,
and HMs in operational dynamic conditions is reported.

5.1 Zero Dimensional Diesel Engine Model Calibration Results

The PM model validation has been carried out taking into account both the
standard (steady-state) measurements performed during ST and Stationary Op-
erations (SO). To identify SO, the dataset was first split into a set of time
intervals of continuous operation. Within each interval, operation under station-
ary conditions is defined as any continuous set of measurements for which the
rotational speed and load of the engine vary by less than 1%, for a period of
at least 3 hours. For each of these stationary conditions, the last 10 minutes of
measurements were extracted and the median value of each signal was computed.
This allowed us to summarise each stationary operation as one value per signal,
for a total of 256 stationary operation points.

To perform the calibration and validation of the PM we exploited a subset
of the data reported in Table 3. In particular, Table 4 reports the subset of the
data source exploited as input, as validation on ST and SO, and comparison
with the DDM and HM in transient analysis.

Table 4: Subset of data source from Table 3 exploited as PM inputs, validation
on ST and SO, and comparison with the DDM and HM in transient analysis.

Variable Name Symbol Unit

Input
Engine Rotational Speed ne [rpm]
Governor Position Gp [rpm]

O
u
tp
u
t

fo
r

S
T

a
n
d
S
O

V
a
li
d
a
ti
o
n

Compressor Outlet Pressure pc,out [Pa]
Compressor Outlet Temperature Tc,out [kg/h]
Turbine Outlet Pressure pt,out [Pa]
Turbine Outlet Temperature Tt,out [oC]
Scavenging Receiver Temperature Tsc [oC]
TC Rotational Speed ntc [Hz]
Maximum Cylinder Pressure pmax [Pa]
Specific Fuel Consumption sfc [g/kWh]

O
u
tp
u
t

fo
r

T
ra
n
si
en

t
A
n
a
ly
si
s Fuel Consumption ṁf [kg/h]

TC Rotational Speed Ntc [Hz]
Turbine Outlet Temperature Tt,out [oC]
Exhaust Receiver Temperature Ter [oC]

The performance metrics discussed in Section 3.2 are reported in Table 5 on
the ST dataset.
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Table 5: PM Performance metrics on the ST.

Variable Name Symbol Unit MAE MAPE [%] PPMCC

Compressor Outlet Pressure pc,out [Pa] 1.2 · 103 0.363 1.000
Compressor Outlet Temperature Tc,out [K] 2.750 0.638 1.000
Turbine Outlet Pressure pt,out [Pa] 62.354 0.060 1.000
Turbine Outlet Temperature Tt,out [K] 0.066 0.010 1.000
Scavenging Manifold Temperature Ts,in [K] 0.393 0.122 0.979
Turbocharger Rotational Speed ntc [Hz] 4.302 0.041 0.989
Cylinder Maximum Pressure pmax [Pa] 1.1 · 105 0.981 0.999
Specific Fuel Consumption sfc [g/kWh] 1.207 0.056 0.988

The reported performances indicate that the model can capture all measure-
ments well within 1% for engine loads ranging between 20% and 100%. The
maximum combustion pressure shows the highest errors, with a MAPE equal
to 0.981%. The lowest discrepancy between the PM and the measurements is
reported for the temperature at the turbine outlet, with a MAPE of only 0.01%,
well within the uncertainty of most conventional thermocouples used for this
application. The prediction accuracy for all other variables is equally good re-
gardless of the subsystem considered.

Regarding the validation of the model in SO, we have to consider that the
performance of the PM have been assesses on a dataset representing the be-
haviour of the engine during sailing. Unfortunately, a holistic comparison on the
performance of the PM on the ST and SO dataset is not possible as only a subset
of signals is available for this second validation as reported in Table 6.

Variable Name Symbol Unit MAE MAPE [%] PPMCC

Compressor Outlet Temperature Tc,out [K] 11.545 2.752 0.643
Turbine Outlet Temperature Tt,out [K] 3.798 1.199 0.342
Scavenging Manifold Temperature Tsc,in [K] 17.545 2.570 -0.145
Turbocharger Rotational Speed ntc [Hz] 12.013 3.506 0.881
Specific Fuel Consumption sfc [g/kWh] 4.400 2.178 0.514

Table 6: Performance metrics on PM - SO dataset.

Nevertheless, the metrics reported in Table 6 reveal that the PM is still able
to capture the performances of the DE in real operations. In fact, the MAPE
on the compressor outlet temperature has increased from 0.638% on the ST to
2.752% on SO. Similarly, the scavenging manifold and turbine outlet temper-
atures have increased from 0.122% and 0.01% to 1.2% and 2.6%, respectively.
Moreover, a similar decrease in prediction capability can be observed for the
specific fuel consumption and turbocharger rotational speed, with the MAPEs
increasing from 0.041% and 0.056% to 3.5% and 2.2%, respectively. Finally, a
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visual impression of the results reported in Tables 5 and 6 is reported in Figure 5
for various engine loading conditions.

5.2 Physical Model, Data Driven Model, and Hybrid Model

This section is devoted to the comparison between the PM, DDM, and HM. As
a first step we have to detail the inputs and the outputs of the DDM and HM.
For this purpose Table 7 reports the subset of Table 3 exploited ad inputs and
outputs of the DDM and HM.

Table 7: Subset of data source from Table 3 exploited as inputs and outputs of
the DDM and HM.

Symbol

In
p
u
t

V
a
ri
a
b
le
s

fo
r
D
D
M
s

a
n
d
H
M
s

ne Tl,4 Tsc Tl,5 Tc,out Tle,in

Tc,in Tle,out Tt,out Tht,in Tb,1 Tht,out

Tb,2 Tlt,in Tb,3 Tlt,out Tb,4 Tf

Tb,5 TA
c,out Tb,6 TB

c,out Tb,7 TA
c,in

Tl,1 TB
c,in Tl,2 pca,in Tl,3 Tca,in

O
u
tp
u
t

V
a
ri
a
b
le
s

fo
r
D
D
M
s

a
n
d
H
M
s ṁf

Ntc

Tt,out

Ter

Then we have to report the hyperparametes ranges for the DDM and HM.
For the DDM the set of hyperparameters tuned during the MS phase are H
= {γ, Λ} chosen in H = {10−4.0, 10−3.8, · · · , 10+4.0} × {10−4.0, 10−3.8, · · · ,
10+4.0}. For the DDM the set of hyperparameters tuned during the MS phase
are H = {γ, Λ,κ} chosen in H = {10−4.0, 10−3.8, · · · , 10+4.0} × {10−4.0, 10−3.8,
· · · , 10+4.0} × {10−4.0, 10−3.8, · · · , 10+4.0}.

All the tests have been repeated 30 times, and the average results are reported
together with their t-student 95% confidence interval, to ensure the statistical
validity of the results.

Table 8 reports the performance (measured with the MAE, MAPE, and
PPMCC) of the different models (PM, DDM, and HM) for different values of
∆ ∈ {0, 10, 20, 30} for the different targets to to predict (ṁf , Ntc, Tt,out, and
Ter). Note that ∆ = 0 means that the authors do not exploit time series infor-
mation from the past, for ∆ > 0 there is no PM result. Moreover, to improve the
readability and better understand the quality of the results, Figures 6-9 reports
for ∆ = 0 the scatter plot (measured and predicted values) and an example of
trend in time (measured and predicted values) for the different targets using
the different models (in this case PM, DDM, and HM). Moreover, Figures 10-13
report for the value of ∆ characterised by the best results in terms of accuracy
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(a) Compressor Outlet Pressure (b) Compressor Outlet Temperature

(c) Turbine Outlet Pressure (d) Turbine Outlet Temperature

(e) Scavenging Manifold Temperature (f) TC Rotational Speed

(g) Maximum Cylinder Pressure. (h) Specific Fuel Consumption.

Fig. 5: PM verification in steady-state conditions (ST and SO).
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(∆ = 20) the scatter plots (measured and predicted values) and examples of
trend in time (measured and predicted values) for DDM and HM.

Compared to the PM, the proposed DDMs are more accurate in predicting
the four targets (ṁf , Ntc, Tt,out, and Ter), even without taking into account past
information (∆ > 0). A substantial decrease of the errors can be observed from
Table 8 across all the targets. Considering ṁf , we can observe a MAPE decrease
from 26.93% (PM) to 6.30% (DDM), to 4.89% (HM). The same general trend
can be reported for Ntc, Tt,out, and Ter.

Moreover, when taking into account past information (∆ > 0), from the error
metrics reported in Table 8 we can observe:

– ṁf - 90% MAPE reduction from 26.93% ± 1.54% to 2.50% ± 0.15%
– Ntc - 93% MAPE reduction from 15.39% ± 0.75% to 0.94% ± 0.05%
– Tt,out - 80% MAPE reduction from 2.53% ± 0.13% to 0.48% ± 0.02%
– Ter - 88% MAPE reduction from 4.81% ± 0.15% to 0.56% ± 0.03%

From Figures 6 to 9 it is possible to observe that DDMs are capable of
fully capturing the transient behaviour of the fuel consumption (see Figure 6b),
the turbocharger rotational speed mechanical transient (see Figure 7b), and the
thermodynamic transients of both the turbine outlet gases (see Figure 8b) and
exhaust manifold (see Figure 9b). Also from the results depicted in Figures 6-9,
it can be also observed that the DDMs are characterised by both lower bias and
lower variance, with respect to the PM. The optimal time window (∆) is found
for a value equal to 20 seconds. For this value, minimal error metrics among all
DDMs occur. According to Table 8, for this time window, the MAPE for ṁf is
as low as 1.79%± 0.08%, for Ntc the MAPE is 0.83%± 0.05%, for Tt,out and Ter

the same metric is identical and equal to 0.40%± 0.01%. Furthermore, from the
scatter plot of Figures 10a, 11a, 12a, and 13a, it can be observed that minimum
variance is achieved.

It should be noted that, although DDMs are computationally demanding in
the training phase, they are characterised by lower computational complexity
in the feed-forward phase, as they just require matrix manipulation methods,
in contrast with the solution of a system of first order differential equations
that the PM requires (see Section 3.1). The combination of both accurate and
fast predictions, makes DDMs an ideal candidate for real-time performance and
condition estimation. However, the necessary data to reach this level of perfor-
mance is rather high as reported in [65, 66], which makes this type of models
applicable only after extensive measurement campaigns have been undertaken.
In addition, another disadvantage of DDMs is the lack of interpretability as it
is not supported by any physical interpretation [117].

To overcome those limitations we proposed the use of HMs. These allow the
exploitation of both the mechanistic knowledge of the underlying physical prin-
ciples from the PM, and any available measurements taken during the operation
of the vessel. An advantage of the HMs is their ability to exploit the coarse,
but physically supported, predictions of the PM. Therefore, HMs have much
smaller requirements regarding the use of actual measurements for the learning
phase [62]. While they will still require a measurement campaign in order to be
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Table 8: Indexes of performances (MAE, MAPE, and PPMCC) of the different
models (PMs, DDMs, and HMs) for different ∆ ∈ {0, 10, 20, 30} for the different
quantities to predict. Note that ∆ = 0 means that the authors do not exploit
time series information from the past, for ∆ > 0 there is no PM result.

∆ Model MAE [°C] MAPE [%] PPMCC

Fuel Consumption ṁf [kg/h]

0
PM 76.62± 4.37 26.93± 1.54 0.98± 0.01
DDM 24.11± 1.39 6.30± 0.38 0.99± 0.01
HM 18.64± 0.98 4.89± 0.17 1.00± 0.01

10
DDM 9.55± 0.43 2.50± 0.15 1.00± 0.01
HM 7.64± 0.48 2.01± 0.08 1.00± 0.01

20
DDM 6.83± 0.34 1.79± 0.08 1.00± 0.01
HM 5.42± 0.25 1.43± 0.09 1.00± 0.01

30
DDM 11.36± 0.57 2.98± 0.15 1.00± 0.01
HM 9.09± 0.60 2.39± 0.12 1.00± 0.01

TC Rotational speed Ntc [rpm]

0
PM 2090.10± 78.43 15.39± 0.75 0.97± 0.01
DDM 302.62± 21.42 2.18± 0.15 1.00± 0.01
HM 214.44± 9.54 1.53± 0.08 1.00± 0.01

10
DDM 130.12± 7.63 0.94± 0.05 1.00± 0.01
HM 102.22± 4.02 0.74± 0.04 1.00± 0.01

20
DDM 114.57± 6.63 0.83± 0.05 1.00± 0.01
HM 91.78± 4.59 0.66± 0.02 1.00± 0.01

30
DDM 157.90± 7.20 1.13± 0.06 1.00± 0.01
HM 124.01± 7.58 0.90± 0.06 1.00± 0.01

Turbine Outlet Temperature Tt,out [oC]

0
PM 9.66± 0.57 2.53± 0.13 0.92± 0.01
DDM 3.80± 0.20 0.97± 0.05 0.99± 0.01
HM 3.18± 0.22 0.81± 0.05 0.99± 0.01

10
DDM 1.89± 0.12 0.48± 0.02 1.00± 0.01
HM 1.54± 0.09 0.39± 0.02 1.00± 0.01

20
DDM 1.58± 0.11 0.40± 0.01 1.00± 0.01
HM 1.27± 0.04 0.32± 0.02 1.00± 0.01

30
DDM 2.26± 0.11 0.57± 0.03 1.00± 0.01
HM 1.76± 0.10 0.45± 0.02 1.00± 0.01

Exhaust Manifold Temperature Ter [oC]

0
PM 19.92± 1.06 4.81± 0.15 0.96± 0.01
DDM 5.02± 0.19 1.13± 0.04 0.99± 0.01
HM 3.94± 0.24 0.88± 0.05 0.99± 0.01

10
DDM 2.51± 0.12 0.56± 0.03 1.00± 0.01
HM 1.99± 0.07 0.45± 0.03 1.00± 0.01

20
DDM 1.78± 0.10 0.40± 0.01 1.00± 0.01
HM 1.43± 0.05 0.32± 0.01 1.00± 0.01

30
DDM 3.23± 0.19 0.73± 0.05 1.00± 0.01
HM 2.57± 0.11 0.58± 0.03 1.00± 0.01
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(a) PM

(b) DDM

(c) HM

Fig. 6: Scatter plot (measured vs predicted) and trend in time for the ṁf (kg/h)
output feature using the different models (PMs, DDMs, and HMs) with ∆ = 0.
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(a) PM

(b) DDM

(c) HM

Fig. 7: Scatter plot (measured vs predicted) and trend in time for the Ntc (rpm)
output feature using the different models (PMs, DDMs, and HMs) with ∆ = 0.
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(a) PM

(b) DDM

(c) HM

Fig. 8: Scatter plot (measured vs predicted) and trend in time for Tt,out (oC)
output feature using the different models (PMs, DDMs, and HMs) with ∆ = 0.
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(a) PM

(b) DDM

(c) HM

Fig. 9: Scatter plot (measured vs predicted) and trend in time for Ter (
oC) output

feature using the different models (PMs, DDMs, and HMs) with ∆ = 0.
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(a) DDM

(b) HM

Fig. 10: Scatter plot (measured vs predicted) and trend in time for ṁf (kg/h)
output feature using the different models (DDMs and HMs) with ∆ = 20.
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(a) DDM

(b) HM

Fig. 11: Scatter plot (measured vs predicted) and trend in time for Ntc (oC)
output feature using the different models (DDMs and HMs) with ∆ = 20.
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(a) DDM

(b) HM

Fig. 12: Scatter plot (measured vs predicted) and trend in time for Tt,out (oC)
output feature using the different models (DDMs and HMs) with ∆ = 20.
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(a) DDM

(b) HM

Fig. 13: Scatter plot (measured vs predicted) and trend in time for Ter (oC)
output feature using the different models (DDMs and HMs) with ∆ = 20.
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deployed, they can be reliably used already after a few months worth of mea-
surements, in contrast with pure DDMs that would require at least half a year
of available data, before they can be exploited.

The novelty introduced by the HMs led to more accurate predictions of the
four targets compared to the rest of the models (PM and DDMs), regardless
of the time window considered (∆), as can be seen from Table 8. Furthermore,
the same table shows that the optimal model is an HM with a time window of
20 seconds, which achieves MAPEs of 1.43% ± 0.09% for ṁf , 0.66% ± 0.02%
for Ntc, 0.32% ± 0.02% for Tt,out, and 0.32% ± 0.01% for Tt,out. This is also
supported by Figures 10b, 11b, 12b, and 13b, which show representative time-
series of the predictions of the four considered targets (ṁf , Ntc, Tt,out, and
Ter) for time windows of 20 seconds. Finally, it can be noted that the variance
has been completely eliminated, whereas the bias has been reduced to near-zero
levels.

6 Conclusions and Future Perspectives

In this work the authors focused their attention on demonstrating a novel mod-
elling framework for the hybridisation of physical and data driven models. The
proposed framework is capable of delivering accurate, reliable, and computa-
tionally inexpensive models suitable for real-time performance assessment and
condition monitoring applications. State-of-the-art data-driven methods have
been presented, able to exploit the information provided by on-board measure-
ments from one Holland Class Oceangoing Patrol Vessel, provided by the Royal
Netherlands Navy and Damen Schelde Naval Shipbuilding. First, a 0-D physi-
cal model of a medium speed two-stroke diesel engine (MAN 12 V28-33D) was
described in detail and validated against measured data. The results reported
in Section 5.1 showed that the automatic calibration processes for stationary
operations can provide suitable parameter values to adjust the model’s response
to the measured signals, capturing the stationary engine operation for a wide
span of loads, ranging between 20% to 100%. The stationary relative errors are
in general below 3.5% for the validation data. Nonetheless, the physical model
proved to be not accurate enough to capture the engine behaviour in transient
conditions. In this respect, the dynamic validation reported in Section 5.2 showed
that the physical model model is capable of following the measured engine sig-
nals during transients, nonetheless, its response is not accurate. Moreover, its
complexity depend upon computational requirements that are sometimes pro-
hibitive, preventing the use of the physical model in real time applications.

Therefore, data-driven models have been discussed and proposed in Sec-
tion 3.2, for predicting the behaviour of the engine, with a focus on four different
targets: i) fuel consumption, ii) turbocharger rotational speed, iii) turbine outlet
temperature, and iv) exhaust receiver temperature. The models proved to be
very accurate, with the enhanced capability of exploiting time series informa-
tion from the past, achieving relative errors below 1% on the validation data,
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across all the considered output features. However, due to their nature, these
data-driven models are hard to interpret.

To overcome the limitations of both the physical and the data-driven models,
we proposed a hybrid approach that can take into consideration past information,
capable of improving accuracy, easily interpreted, and have low computational
time requirements. The hybridisation of physical and data driven models proved
to be extremely accurate, achieving even lower errors when compared to the
simple data-driven approach. These hybrid models can potentially also be used
to improve accuracy of predictions for operation in other conditions than the
measured ones, as purely data-driven models cannot be used for extrapolation,
but the physical model contribution will improve hybrid model performance
during extrapolation. While the hybrid approach will still require a measurement
campaign in order to be deployed, this approach can be reliably used based on
a significantly smaller dataset in comparison with the pure data-driven models,
for the same average error, as shown in Section 5.2.
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