
AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 31

V
viewpoints

P
H

O
T

O
 B

Y
 T

O
B

I
N

 F
R

I
C

K
E

/F
L

I
C

K
R

next big step will come from technolo-

gies outside the framework of silicon

hardware and binary logic. Quantum

computing is now being developed on

an international scale, with active re-

search and use from Google and NASA

as well as numerous universities and

national laboratories, and a proposed

€1 billion quantum technologies flag-

ship from the European Commission.

Biological computing is also being de-

veloped, from data encoding and pro-

T
E CHN OLOGY CHANG ES SCI-

E N CE . In 2016, the scientific

community thrilled to news

that the LIGO collaboration

had detected gravitational

waves for the first time. LIGO is the

latest in a long line of revolutionary

technologies in astronomy, from the

ability to ‘see’ the universe from radio

waves to gamma rays, or from detect-

ing cosmic rays and neutrinos (the

Laser Interferometer Gravitational-

Wave Observatory—LIGO—is an NSF-

supported collaborative effort by the

U.S National Science Foundation and

is operated by Caltech and MIT). Each

time a new technology is deployed,

it can open up a new window on the

cosmos, and major new theoretical de-

velopments can follow rapidly. These,

in turn, can inform future technolo-

gies. This interplay of technological

and fundamental theoretical advance

is replicated across all the natural sci-

ences—which include, we argue, com-

puter science. Some early computing

models were developed as abstract

models of existing physical computing

systems. Most famously, for the Turing

Machine these were human ‘comput-

ers’ performing calculations. Now, as

novel computing devices—from quan-

tum computers to DNA processors,

and even vast networks of human ‘so-

cial machines’—reach a critical stage

of development, they reveal how com-

puting technologies can drive the ex-

pansion of theoretical tools and mod-

els of computing. With all due respect

to Dijkstra, we argue that computer

science is as much about computers as

astronomy is about telescopes.

Non-standard and unconventional

computing technologies have come to

prominence as Moore’s Law, that pre-

viously relentless increase in comput-

ing power, runs out. While techniques

such as multicore and parallel pro-

cessing allow for some gains without

further increase of transistor density,

there is a growing consensus that the

Viewpoint
The Natural Science
of Computing
As unconventional computing comes of age, we believe
a revolution is needed in our view of computer science.

DOI:10.1145/3107924 Dominic Horsman, Vivien Kendon, and Susan Stepney

Image of the Laser Interferometer Gravitational-Wave Observatory 40m beam tube.

32 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

mented in the physical device itself.

Neural nets, for example, can be mod-

eled using real-valued activation func-

tions, and arguments have been made

that these networks are in actuality

computing those real values to arbi-

trary precision, and hence far outper-

forming the capabilities of standard

computers. In practice, however, such

purely abstract infinite real-valued pre-

cision is completely outside the physi-

cal capabilities of the device: it can nei-

ther be observed, nor exploited.

Computing theory should not be

imposed top-down without taking

into account the physical theory of the

device: computer science is not math-

ematics. The computing ability of the

system is not always identical with the

computing capability of the physical

device theory: computer science is not

physics. What is it, then? We believe

that it has features of both, consisting

in the complex interplay of mathemat-

ics and physical theory through a cru-

cial relation: representation.

Understanding computers can be

seen as the key to understanding com-

puter science. A computer crosses

the boundary between the abstract

domain of logic/computation, and

the physical realm of semiconductors

or quantum ions or biological mol-

ecules; and it does so in a way that

we can precisely characterize. Con-

sider part (a) of the the figure here, in

which a ‘compute cycle’ starts with an

abstract problem, such as adding two

numbers, or finding prime factors, or

calculating a shortest path. Usually ex-

pressed in some high-level language,

this is then encoded into the comput-

er’s native language. This encoding is

still in essence an abstract process: the

description of the computation has

been transformed from one language

to another. Now the actual computer is

brought in, and the native language in-

put is instantiated in the target physi-

cal device. The device is configured,

and the physical processes of com-

puting initialized. Then the computer

runs, as a physical process with a physi-

cal output in the final state of the com-

puter. To find the output of the com-

putation, we ask to what abstract state

the physical one corresponds: which

state of the program is represented by

the physical state of the computer?

This is then (abstractly) decoded from

cessing in DNA molecules, to neuro-

silicon hybrid devices and bio-inspired

neural networks, to harnessing the

behavior of slime molds. The huge ad-

vance of the internet has enabled ‘so-

cial machines’—Galaxy Zoo, protein

FoldIt, Wikipedia, innumerable citizen

science tools—all working by network-

ing humans and computers, to perform

computations not accessible on cur-

rent silicon-based technology alone.

What all these devices, from the

speculative to the everyday, share

is that they currently lie beyond the

reach of conventional computer sci-

ence. Standard silicon-based technol-

ogy is built on a toolkit of theoretical

models and techniques, from lambda

calculi through to programming, com-

pilation, and verification. These tools

seem to be largely inaccessible to the

new technologies. How do you pro-

gram a slime mold? What is the assem-

bly language of protein folding? How

do you compile for a human in a social

machine? New technologies may be

one or more of stochastic, continuous

time, continuous space, sloppy, asyn-

chronous, temperature dependent,

sub-symbolic, evolving systems, with

computationally complex encodings

and decodings, and one shot construc-

tion-and-execution.
Without the ability to define and

characterize how and when comput-

ing is happening in these systems, and

then to import or develop the full suite

of theoretical tools of computer sci-

ence, we claim that the information-

processing capabilities of these devices

will remain underexploited. We believe

we need an extended computer sci-

ence that will enable us to treat these

systems with theoretical and practical

rigor to unlock their potential, and also

to enable us to combine them with ex-

isting technology to make scalable and

hybrid devices.

Computer science has histori-

cally been conceived and developed

around abstract Turing Machines and

equivalent calculi. This discrete, sym-

bolic logical, deterministic underly-

ing model is realized equivalently, but

differently, in one specific technology,

the von Neumann stored program ar-

chitecture. This technology has proved

so successful, and is now so ubiqui-

tous, that other models of computing

have tended to be ignored; one ex-

ample is Shannon’s largely forgotten

GPAC computational model, based on

the technology of differential analys-

ers. As a consequence of using only a

single model, standard approaches to

computing abstract away the physical

implementation, leaving a theoretical

computer science that is frequently

viewed as a branch of mathematics,

rather than as a physical science that is

expressed in mathematical language.

With little connection to actual physi-

cal devices, this theoretical framework

can be at a loss when faced with non-

standard computing systems. Often

the response is to impose top-down

a standard bit-and-logic-gate frame-

work, in the belief that this is the way

to compute. The delicate systems in

a quantum computer, for instance,

can be forced to act like standard bits

obeying classical logic. However, these

devices gain their real power when

allowed to act as natively ‘quantum

bits,’ or qubits, with their own quan-

tum logic gates. It is as inefficient (or

simply impossible) to impose the stan-

dard computing framework on many

nonstandard systems as it would be to

use a sophisticated optical telescope

to detect cosmic neutrinos. We do not

believe that we can unlock the true

potential of unconventional systems

by forcing them into the mold of stan-

dard computing models.

While traditionally computer sci-

ence tends to view itself as a branch

of mathematics, the field of uncon-

ventional computing has tended to go

too far the other way, seeing comput-

ing merely as an outgrowth of physics,

or chemistry, or biology. Arguments

around computing power often over-

focus on the physical theory of the

device, rather than what can be imple-

It is inefficient
(or simply impossible)
to impose the
standard computing
framework on many
nonstandard systems.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 33

viewpoints

modeled, gives the abstract specifi-

cation to be instantiated; this engi-

neering in turn requires a sufficiently

good scientific understanding of the

system’s properties. Not all abstract

systems that can be imagined denote

something in the physical world (“the

present king of France”), or can be

physically instantiated (faster-than-

light travel).

Just like a telescope, a computer is

a highly engineered device. LIGO went

through many years of testing of its

various components before scientists

were happy that it would function as a

gravitational wave detector. With the

tests complete, it can now be used as

a telescope to observe the universe in

terms of those ripples. Similarly, com-

puters require engineering before they

can be used for computation: we need

to be confident that their physical be-

havior parallels that of the abstract

program so that the device can be used

to predict its outcome (there can be en-

gineering bugs in hardware). Comput-

ers start with computer science: with

experiments on novel substrates and

with new ways of performing comput-

ing. Only once that cycle is complete,

and we know enough about how the

system behaves, can a new device be en-

gineered to instantiate a computation.

What does AR theory mean for our

understanding of computer science?

We claim that we now have a way to

understand that computational logic

arises from the physical structure of

a potential computing substrate, and

that it may vary widely across different

classes of substrate. Computer science,

in addition to its theoretical compo-

nent, covers both the experimentation

the abstracted output to a language to

answer the original problem. The com-

puter has output the solution.

If a computer is a good one, and

running without errors, the aim of the

compute cycle is to parallel the physi-

cal and abstract behaviours. The solu-

tion is an abstract answer to an abstract

question; were it possible to “run” the

program entirely abstractly, then the

solution could be found without in-

cluding any physical device in the cy-

cle, be that an engineered computer, or

a pencil-and-paper based human emu-

lation. Computers are used as a physi-

cal proxy for this abstract mapping.

A good computer is engineered such

that the result of letting the physical

dynamics run will parallel the abstract

behavior of the program. A computer is

a device that manipulates the physical

instantiation of abstract concepts, in

order to solve problems. It is not iden-

tical with a computation: computation

is abstract, a computer is physical, and

they relate through (nontrivial) repre-

sentation and instantiation.

This centrality of representation

is the core of a new formalism devel-

oped by the authors: Abstraction/Rep-

resentation Theory (AR theory). With

diagrams such as part (a) of the figure

here, and an associated algebraic-like

structure, AR theory is a toolkit for

the foundations of computer science,

and beyond. The complex interplay

of mathematics, physical theory, and

representation is not confined to the

field of computing. It also drives the

mechanism of experimental testing of

abstract theories throughout the natu-

ral sciences. We can, for instance, give

a diagram for the relation between as-

tronomy and telescopes, with crucial

similarities and differences to com-

puting. Part (b) of the figure shows

how theory and experiment relate in

the LIGO experiment. Again abstract

and physical are parallel, but now the

process of running the experiment

starts with the physical apparatus,

rather than with an encoding of an ab-

stract computational problem. There

is an abstract representation of the ap-

paratus in the theory of gravitational

waves: that it can detect them. Also in

the abstract realm there is a theoreti-

cal prediction for how the apparatus

will behave if such waves indeed exist.

If the experiment is successful, as with

LIGO, then the theory and the abstract

interpretation of the physical outcome

coincide up to some error margin ε. If

a theory is sufficiently good, the physi-

cal system can be removed altogether:

abstract theory can be used to predict

physical behavior.

Looking at these two diagrams, we

uncover a deep truth. Just as a math-

ematical theory allows us to predict

physical behavior, in a computer the

physical behavior of a device is used

to ‘predict’ the result of an abstract

computation. Computing and natural

science are fundamentally linked; the

link is technology. Notice the direction

of the arrows of representation in the

two diagrams. In an experiment, they

go only one way, upward: this is the

representation of physical systems by

an abstract model. In computing there

is another type of relation: instantia-

tion of abstract theory in physical sys-

tems. Instantiation is more complex

than modelling, and requires engineer-

ing to construct a system that, when

Computers and telescopes: The interplay of abstract theory/programming and physical devices in (a) computing and (b) physical sciences

(given here by the LIGO experiment).

Problem

input

computer

initial state

computer

final state

LIGO

initial state

LIGO

final state

Abstract

Physical

Abstract

Physical

(a) (b)

Solution

output
theoretical

model

gravity wave

detected

encode

instantiate

device

runs

experiment

runs

theoretical

prediction

represent represent represent

decode

34 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

ology—and even, with the interactions

of social machines, for networks of

human beings. We believe this could

be of immediate practical importance

to scientists in those areas, enabling

them to describe high-level function-

ing of complex systems, and to find

new and unforeseen connections be-

tween disparate systems and scenari-

os. These process languages could be

as revolutionary for the physical sci-

ences as for computer science.

Computers have come a long way

since the days of valves and punched

cards. Now computer science itself is

branching off in new directions with

the development of unconventional

computing technologies. As the do-

main of computer science grows, as

one computational model no longer

fits all, its true nature is being revealed.

Just like astronomy, computer science

could describe physical systems in ab-

stract language with predictive power,

and thereby drive forward the dual in-

terplay of technology and theoretical

advancement. New computers could

inform new computational theories,

and those theories could then help us

understand the physical world around

us. Such a computer science would in-

deed be a natural science.

Further Reading

Copeland, J. et al. Time to reinspect the

foundations? Commun. ACM 59, 11 (Nov.

2016), 34–36.

Horsman, C. et al. When does a physical

system compute? In Proceedings of the

Royal Society of London, 470:20140182,

2014.

Horsman, D.C. Abstraction/Representation

Theory for heterotic physical computing.

In Philosophical Transactions of the Royal

Society, 373:20140224, 2015.

Horsman, D.C. Abstraction and

representation in living organisms: When

does a biological system compute? In G.

Dodig-Crnkovic and R. Giovagnoli, Eds.

Representation and Reality in Humans,

Animals, and Machines. Springer, 2017.

Dominic Horsman (dominic.horsman@durham.ac.uk) is
a Postdoctoral Research Associate at the University of
Durham, U.K.

Vivien Kendon (viv.kendon@durham.ac.uk) is a Reader in
the Department of Physics at the University of Durham, U.K.

Susan Stepney (susan.stepney@york.ac.uk) is Professor
of Computer Science in the Department of Computer
Science, University of York, U.K.

Copyright held by authors.

and engineering phases of computing,

as well as the eventual use in deploy-

ment as a computer. This understand-

ing tells us to use an experimental and

engineering process when developing

new formal models and methods of

computer sciences for our new devices,

paralleling the process of developing

new models and instruments to tackle

new phenomena in rest of the natural

sciences. A computational logic for

a system arises, but we then abstract

away from the specific device to a for-

mal model of it. Programming these

new devices is then a matter of look-

ing for a natural internal process logic

of the system, as opposed to forcing a

one-size-fits-all model of computation

onto some candidate computing sys-

tem. Rather than looking to impose

top-down the machinery of standard

logic gates, we should look at the natu-

ral behaviour of the system and what

‘gates’ or subroutines or problem-solv-

ing it is intrinsically good at. By extract-

ing an intrinsic computational logic of

their physical components we can har-

ness the true potential of unconven-

tional computers.

Using our physical understanding

of a substrate to inform a computa-

tional logic does not mean that such

a logic is the only one possible. Just

as a quantum computer can run as ei-

ther quantum or classical, other non-

standard systems may be capable of

supporting multiple computational

models. This again is found through-

out the natural sciences: for example,

in physics a particular system might

be modelled as a continuous fluid, or

as a collection of discrete particles.

With different potential computa-

tional representations of a system un-

der investigation, the key is to extract

out the ones that do something useful

and novel and better than other sub-

strates—and then use that computa-

tional theory to engineer our next gen-

eration of computers.

We can then go further. With an ab-

stract computational language that de-

scribes the native operation of uncon-

ventional devices, we would then have

a logical language in which to describe

the physical systems themselves, even

outside a specifically computational

device. Computer science could then

provide high-level logical process lan-

guages for physics, chemistry, and bi-

ACM

Journal on

Computing and

Cultural

Heritage

◆ ◆ ◆ ◆ ◆

JOCCH publishes papers of

significant and lasting value in

all areas relating to the use of ICT

in support of Cultural Heritage,

seeking to combine the best of

computing science with real

attention to any aspect of the

cultural heritage sector.

◆ ◆ ◆ ◆ ◆

www.acm.org/jocch

www.acm.org/subscribe

