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next big step will come from technolo-

gies outside the framework of silicon 

hardware and binary logic. Quantum 

computing is now being developed on 

an international scale, with active re-

search and use from Google and NASA 

as well as numerous universities and 

national laboratories, and a proposed 

€1 billion quantum technologies flag-

ship from the European Commission. 

Biological computing is also being de-

veloped, from data encoding and pro-

T
E CHN OLOGY CHANG ES SCI-

E N CE .  In 2016, the scientific 

community thrilled to news 

that the LIGO collaboration 

had detected gravitational 

waves for the first time. LIGO is the 

latest in a long line of revolutionary 

technologies in astronomy, from the 

ability to ‘see’ the universe from radio 

waves to gamma rays, or from detect-

ing cosmic rays and neutrinos (the 

Laser Interferometer Gravitational-

Wave Observatory—LIGO—is an NSF-

supported collaborative effort by the 

U.S National Science Foundation and 

is operated by Caltech and MIT). Each 

time a new technology is deployed, 

it can open up a new window on the 

cosmos, and major new theoretical de-

velopments can follow rapidly. These, 

in turn, can inform future technolo-

gies. This interplay of technological 

and fundamental theoretical advance 

is replicated across all the natural sci-

ences—which include, we argue, com-

puter science. Some early computing 

models were developed as abstract 

models of existing physical computing 

systems. Most famously, for the Turing 

Machine these were human ‘comput-

ers’ performing calculations. Now, as 

novel computing devices—from quan-

tum computers to DNA processors, 

and even vast networks of human ‘so-

cial machines’—reach a critical stage 

of development, they reveal how com-

puting technologies can drive the ex-

pansion of theoretical tools and mod-

els of computing. With all due respect 

to Dijkstra, we argue that computer 

science is as much about computers as 

astronomy is about telescopes. 

Non-standard and unconventional 

computing technologies have come to 

prominence as Moore’s Law, that pre-

viously relentless increase in comput-

ing power, runs out. While techniques 

such as multicore and parallel pro-

cessing allow for some gains without 

further increase of transistor density, 

there is a growing consensus that the 

Viewpoint 
The Natural Science  
of Computing 
As unconventional computing comes of age, we believe  
a revolution is needed in our view of computer science.

DOI:10.1145/3107924 Dominic Horsman, Vivien Kendon, and Susan Stepney

Image of the Laser Interferometer Gravitational-Wave Observatory 40m beam tube.



32    COMMUNICATIONS OF THE ACM    |   AUGUST 2017  |   VOL.  60  |   NO.  8

viewpoints

mented in the physical device itself. 

Neural nets, for example, can be mod-

eled using real-valued activation func-

tions, and arguments have been made 

that these networks are in actuality 

computing those real values to arbi-

trary precision, and hence far outper-

forming the capabilities of standard 

computers. In practice, however, such 

purely abstract infinite real-valued pre-

cision is completely outside the physi-

cal capabilities of the device: it can nei-

ther be observed, nor exploited. 

Computing theory should not be 

imposed top-down without taking 

into account the physical theory of the 

device: computer science is not math-

ematics. The computing ability of the 

system is not always identical with the 

computing capability of the physical 

device theory: computer science is not 

physics. What is it, then? We believe 

that it has features of both, consisting 

in the complex interplay of mathemat-

ics and physical theory through a cru-

cial relation: representation.

Understanding computers can be 

seen as the key to understanding com-

puter science. A computer crosses 

the boundary between the abstract 

domain of logic/computation, and 

the physical realm of semiconductors 

or quantum ions or biological mol-

ecules; and it does so in a way that 

we can precisely characterize. Con-

sider part (a) of the the figure here, in 

which a ‘compute cycle’ starts with an 

abstract problem, such as adding two 

numbers, or finding prime factors, or 

calculating a shortest path. Usually ex-

pressed in some high-level language, 

this is then encoded into the comput-

er’s native language. This encoding is 

still in essence an abstract process: the 

description of the computation has 

been transformed from one language 

to another. Now the actual computer is 

brought in, and the native language in-

put is instantiated in the target physi-

cal device. The device is configured, 

and the physical processes of com-

puting initialized. Then the computer 

runs, as a physical process with a physi-

cal output in the final state of the com-

puter. To find the output of the com-

putation, we ask to what abstract state 

the physical one corresponds: which 

state of the program is represented by 

the physical state of the computer? 

This is then (abstractly) decoded from 

cessing in DNA molecules, to neuro-

silicon hybrid devices and bio-inspired 

neural networks, to harnessing the 

behavior of slime molds. The huge ad-

vance of the internet has enabled ‘so-

cial machines’—Galaxy Zoo, protein 

FoldIt, Wikipedia, innumerable citizen 

science tools—all working by network-

ing humans and computers, to perform 

computations not accessible on cur-

rent silicon-based technology alone.

What all these devices, from the 

speculative to the everyday, share 

is that they currently lie beyond the 

reach of conventional computer sci-

ence. Standard silicon-based technol-

ogy is built on a toolkit of theoretical 

models and techniques, from lambda 

calculi through to programming, com-

pilation, and verification. These tools 

seem to be largely inaccessible to the 

new technologies. How do you pro-

gram a slime mold? What is the assem-

bly language of protein folding? How 

do you compile for a human in a social 

machine? New technologies may be 

one or more of stochastic, continuous 

time, continuous space, sloppy, asyn-

chronous, temperature dependent, 

sub-symbolic, evolving systems, with 

computationally complex encodings 

and decodings, and one shot construc-

tion-and-execution.
Without the ability to define and 

characterize how and when comput-

ing is happening in these systems, and 

then to import or develop the full suite 

of theoretical tools of computer sci-

ence, we claim that the information-

processing capabilities of these devices 

will remain underexploited. We believe 

we need an extended computer sci-

ence that will enable us to treat these 

systems with theoretical and practical 

rigor to unlock their potential, and also 

to enable us to combine them with ex-

isting technology to make scalable and 

hybrid devices.

Computer science has histori-

cally been conceived and developed 

around abstract Turing Machines and 

equivalent calculi. This discrete, sym-

bolic logical, deterministic underly-

ing model is realized equivalently, but 

differently, in one specific technology, 

the von Neumann stored program ar-

chitecture. This technology has proved 

so successful, and is now so ubiqui-

tous, that other models of computing 

have tended to be ignored; one ex-

ample is Shannon’s largely forgotten 

GPAC computational model, based on 

the technology of differential analys-

ers. As a consequence of using only a 

single model, standard approaches to 

computing abstract away the physical 

implementation, leaving a theoretical 

computer science that is frequently 

viewed as a branch of mathematics, 

rather than as a physical science that is 

expressed in mathematical language. 

With little connection to actual physi-

cal devices, this theoretical framework 

can be at a loss when faced with non-

standard computing systems. Often 

the response is to impose top-down 

a standard bit-and-logic-gate frame-

work, in the belief that this is the way 

to compute. The delicate systems in 

a quantum computer, for instance, 

can be forced to act like standard bits 

obeying classical logic. However, these 

devices gain their real power when 

allowed to act as natively  ‘quantum 

bits,’ or qubits, with their own quan-

tum logic gates. It is as inefficient (or 

simply impossible) to impose the stan-

dard computing framework on many 

nonstandard systems as it would be to 

use a sophisticated optical telescope 

to detect cosmic neutrinos. We do not 

believe that we can unlock the true 

potential of unconventional systems 

by forcing them into the mold of stan-

dard computing models.

While traditionally computer sci-

ence tends to view itself as a branch 

of mathematics, the field of uncon-

ventional computing has tended to go 

too far the other way, seeing comput-

ing merely as an outgrowth of physics, 

or chemistry, or biology. Arguments 

around computing power often over-

focus on the physical theory of the 

device, rather than what can be imple-

It is inefficient  
(or simply impossible) 
to impose the 
standard computing 
framework on many 
nonstandard systems.
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modeled, gives the abstract specifi-

cation to be instantiated; this engi-

neering in turn requires a sufficiently 

good scientific understanding of the 

system’s properties. Not all abstract 

systems that can be imagined denote 

something in the physical world (“the 

present king of France”), or can be 

physically instantiated (faster-than-

light travel). 

Just like a telescope, a computer is 

a highly engineered device. LIGO went 

through many years of testing of its 

various components before scientists 

were happy that it would function as a 

gravitational wave detector. With the 

tests complete, it can now be used as 

a telescope to observe the universe in 

terms of those ripples. Similarly, com-

puters require engineering before they 

can be used for computation: we need 

to be confident that their physical be-

havior parallels that of the abstract 

program so that the device can be used 

to predict its outcome (there can be en-

gineering bugs in hardware). Comput-

ers start with computer science: with 

experiments on novel substrates and 

with new ways of performing comput-

ing. Only once that cycle is complete, 

and we know enough about how the 

system behaves, can a new device be en-

gineered to instantiate a computation. 

What does AR theory mean for our 

understanding of computer science? 

We claim that we now have a way to 

understand that computational logic 

arises from the physical structure of 

a potential computing substrate, and 

that it may vary widely across different 

classes of substrate. Computer science, 

in addition to its theoretical compo-

nent, covers both the experimentation 

the abstracted output to a language to 

answer the original problem. The com-

puter has output the solution.

If a computer is a good one, and 

running without errors, the aim of the 

compute cycle is to parallel the physi-

cal and abstract behaviours. The solu-

tion is an abstract answer to an abstract 

question; were it possible to “run” the 

program entirely abstractly, then the 

solution could be found without in-

cluding any physical device in the cy-

cle, be that an engineered computer, or 

a pencil-and-paper based human emu-

lation. Computers are used as a physi-

cal proxy for this abstract mapping. 

A good computer is engineered such 

that the result of letting the physical 

dynamics run will parallel the abstract 

behavior of the program. A computer is 

a device that manipulates the physical 

instantiation of abstract concepts, in 

order to solve problems. It is not iden-

tical with a computation: computation 

is abstract, a computer is physical, and 

they relate through (nontrivial) repre-

sentation and instantiation.

This centrality of representation 

is the core of a new formalism devel-

oped by the authors: Abstraction/Rep-

resentation Theory (AR theory). With 

diagrams such as part (a) of the figure 

here, and an associated algebraic-like 

structure, AR theory is a toolkit for 

the foundations of computer science, 

and beyond. The complex interplay 

of mathematics, physical theory, and 

representation is not confined to the 

field of computing. It also drives the 

mechanism of experimental testing of 

abstract theories throughout the natu-

ral sciences. We can, for instance, give 

a diagram for the relation between as-

tronomy and telescopes, with crucial 

similarities and differences to com-

puting. Part (b) of the figure shows 

how theory and experiment relate in 

the LIGO experiment. Again abstract 

and physical are parallel, but now the 

process of running the experiment 

starts with the physical apparatus, 

rather than with an encoding of an ab-

stract computational problem. There 

is an abstract representation of the ap-

paratus in the theory of gravitational 

waves: that it can detect them. Also in 

the abstract realm there is a theoreti-

cal prediction for how the apparatus 

will behave if such waves indeed exist. 

If the experiment is successful, as with 

LIGO, then the theory and the abstract 

interpretation of the physical outcome 

coincide up to some error margin ε. If 

a theory is sufficiently good, the physi-

cal system can be removed altogether: 

abstract theory can be used to predict 

physical behavior.

Looking at these two diagrams, we 

uncover a deep truth. Just as a math-

ematical theory allows us to predict 

physical behavior, in a computer the 

physical behavior of a device is used 

to ‘predict’ the result of an abstract 

computation. Computing and natural 

science are fundamentally linked; the 

link is technology. Notice the direction 

of the arrows of representation in the 

two diagrams. In an experiment, they 

go only one way, upward: this is the 

representation of physical systems by 

an abstract model. In computing there 

is another type of relation: instantia-

tion of abstract theory in physical sys-

tems. Instantiation is more complex 

than modelling, and requires engineer-

ing to construct a system that, when 

Computers and telescopes: The interplay of abstract theory/programming and physical devices in (a) computing and (b) physical sciences 

(given here by the LIGO experiment). 
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ology—and even, with the interactions 

of social machines, for networks of 

human beings. We believe this could 

be of immediate practical importance 

to scientists in those areas, enabling 

them to describe high-level function-

ing of complex systems, and to find 

new and unforeseen connections be-

tween disparate systems and scenari-

os. These process languages could be 

as revolutionary for the physical sci-

ences as for computer science.

Computers have come a long way 

since the days of valves and punched 

cards. Now computer science itself is 

branching off in new directions with 

the development of unconventional 

computing technologies. As the do-

main of computer science grows, as 

one computational model no longer 

fits all, its true nature is being revealed. 

Just like astronomy, computer science 

could describe physical systems in ab-

stract language with predictive power, 

and thereby drive forward the dual in-

terplay of technology and theoretical 

advancement. New computers could 

inform new computational theories, 

and those theories could then help us 

understand the physical world around 

us. Such a computer science would in-

deed be a natural science. 
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and engineering phases of computing, 

as well as the eventual use in deploy-

ment as a computer. This understand-

ing tells us to use an experimental and 

engineering process when developing 

new formal models and methods of 

computer sciences for our new devices, 

paralleling the process of developing 

new models and instruments to tackle 

new phenomena in rest of the natural 

sciences. A computational logic for 

a system arises, but we then abstract 

away from the specific device to a for-

mal model of it. Programming these 

new devices is then a matter of look-

ing for a natural internal process logic 

of the system, as opposed to forcing a 

one-size-fits-all model of computation 

onto some candidate computing sys-

tem. Rather than looking to impose 

top-down the machinery of standard 

logic gates, we should look at the natu-

ral behaviour of the system and what 

‘gates’ or subroutines or problem-solv-

ing it is intrinsically good at. By extract-

ing an intrinsic computational logic of 

their physical components we can har-

ness the true potential of unconven-

tional computers.

Using our physical understanding 

of a substrate to inform a computa-

tional logic does not mean that such 

a logic is the only one possible. Just 

as a quantum computer can run as ei-

ther quantum or classical, other non-

standard systems may be capable of 

supporting multiple computational 

models. This again is found through-

out the natural sciences: for example, 

in physics a particular system might 

be modelled as a continuous fluid, or 

as a collection of discrete particles. 

With different potential computa-

tional representations of a system un-

der investigation, the key is to extract 

out the ones that do something useful 

and novel and better than other sub-

strates—and then use that computa-

tional theory to engineer our next gen-

eration of computers.

We can then go further. With an ab-

stract computational language that de-

scribes the native operation of uncon-

ventional devices, we would then have 

a logical language in which to describe 

the physical systems themselves, even 

outside a specifically computational 

device. Computer science could then 

provide high-level logical process lan-

guages for physics, chemistry, and bi-
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