
ar
X

iv
:1

01
0.

47
05

v1
 [

qu
an

t-
ph

]
 2

2
O

ct
 2

01
0

Spatial search using the discrete time quantum

walk

Neil B. Lovett, Matthew Everitt, Matthew Trevers, Daniel Mosby, Dan
Stockton, and Viv Kendon

School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
pynbl@leeds.ac.uk, V.Kendon@leeds.ac.uk

Abstract. We study the quantum walk search algorithm of Shenvi,
Kempe, and Whaley [PRA 67 052307 (2003)] on data structures of one to
two spatial dimensions, on which the algorithm is thought to be less effi-
cient than in three or more spatial dimensions. Our aim is to understand
why the quantum algorithm is dimension dependent whereas the best
classical algorithm is not, and to show in more detail how the efficiency
of the quantum algorithm varies with spatial dimension or accessibility
of the data. Our numerical results agree with the expected scaling in 2D
of O(

√
N logN), and show how the prefactors display significant depen-

dence on both the degree and symmetry of the graph. Specifically, we
see, as expected, the prefactor of the time complexity dropping as the
degree (connectivity) of the structure is increased.

1 Introduction

The promise of quantum computers to provide fundamentally faster computation
is dependent both on being able to build a quantum computer of a useful size,
and on finding algorithms it can run that are faster than any classical algorithm.
Since some of the most efficient classical algorithms are based on random walks,
a natural place to look for faster quantum algorithms is to see if there is a faster
quantum version of a random walk. This approach was pioneered by Ambainis
et al. [1] and Aharonov et al. [2], who proved that a discrete time quantum
walk on the line or cycle spread or mixed, respectively, quadratically faster than
a classical random walk. Continuous time quantum walks were introduced by
Farhi and Gutmann [3] and provide the same algorithmic speed up as discrete
time quantum walks. We concentrate on the discrete time walk in this paper,
since it is more convenient for numerical calculations.

One of the first algorithmic applications of quantum walks was searching of
unsorted databases. Shenvi et al. [4] proved a discrete quantum walk can replicate
the performance of Grover’s search algorithm [5] by finding a marked item among
a total of N in O(

√
N) steps. The quantum walk search is now a standard tool

in the development of quantum algorithms, for reviews see Ambainis [6] and
Santha [7].

In this work, we are interested in the case where the data to be searched
is also physically restricted in how it can be accessed. For example, to read a

2

particular item from a magnetic tape, it is necessary to wind through the tape
until the correct position is reached. Data stored on a hard disk is arranged in
concentric rings on spinning disks: the heads move sideways across the rings and
then the item can be read within the next revolution of the disk. This is quicker
than reading data on a magnetic tape, but still requires a significant amount of
time per item. A classical search of data stored on tape has to work through
the tape from one end to the other, testing each item in turn to see if it is the
required one. In fact, this is the optimal classical strategy for any arrangement
of unsorted data on any storage medium. Finding a particular item requires in
the worst case all the items to be checked, and on average half of the items will
be examined before the marked one is located. This gives a classical running
time of O(N).

The quantum walk search algorithm of Shenvi et al. [4] arranged the data
to be searched as the nodes of a graph on which the quantum walk then prop-
agated. Specifically, they used a hypercube (of dimension ⌈log2N⌉), for which
the quantum walk can be solved analytically [8]. They proved their quantum
walk search can equal the quadratic speed up over classical searching given by
Grover’s search algorithm [5] – this is known to be optimal [9]. Improvements
by Potoček et al. [10] bring the actual running time of the quantum walk search
algorithm very close to the optimal one.

The hypercube is a highly connected structure, which doesn’t correspond
to physically realistic storage media. Motivated by this observation, study of
lower dimensional search began with Benioff [11], who considered the additional
cost of the time taken for a robot searcher moving between different spatially
separated data items. Aaronson and Ambainis [12] then produced a quantum
algorithm that finds a marked item in O(

√
N) for data arranged on lattices of

dimension greater than two, and O(
√
N log3/2N) for a square lattice (dimension

D = 2). Work by Childs and Goldstone [13, 14] and Ambainis et al. [15] found
quantum walk algorithms with the same running time for D > 2 and a small
improvement to O(

√
N logN) for D = 2. Tulsi [16] recently improved this again

to O(
√
N logN) with a modified approach using ancilla qubits. Recent results

from Magniez et al. [17] have shown that this result is unlikely to be improved.
They show that the hitting time of a quantum walk is quadratically faster than
the hitting time of a classical randomwalk for classical walks which are reversible.
They prove this speed up is actually tight and cannot be improved upon for a
large class of quantum walks where the unitary is a reflection. The classical
hitting time on a 2D lattice using a reversible random walk is O(N logN). We
can see how the O(

√
N logN) run time of [16] fits this result exactly. In his recent

work, Tulsi is able to find the marked state with constant probability, O(1), using
a modified version of the Shenvi et al. search algorithm with ancillas. Magniez
et al. [17] extend this work and show how to find the marked state with constant
probability in the same improved time, O(

√
N logN), for any quantum walk

based on a reversible, ergodic (a stationary distribution can be found) classical
random walk. These results and others in recent papers from Santha [7] and

3

Patel et al. [18] show it is unlikely that this extra
√
logN factor in the run time

can be removed.

When we first started this work, our aim was to investigate whether the
lower bound of O(

√
N logN) previously shown for the 2D lattice was tight. We

were looking to gain insight into what happens between D = 1, where simple
arguments show that no speed up is expected, and D = 3, where the quantum
speed up is known to be optimal. Since then, Magniez et al. [17] and Krovi et
al. [19] have proved that it wasn’t and have shown the optimal lower bound on
a 2D lattice is O(

√
N logN), which our results confirm. We were also interested

in how dependent the prefactors of the runtime were on the connectivity of
the structure. Using numerical techniques, we have been able to study other
regular two dimensional structures with varying connectivity. Our results on
these structures also confirm the two dimensional scaling of O(

√
N logN), but

show how the prefactors change in relation to connectivity.

The quantum walk search algorithm has a strong dependence on the spatial
dimension of the structure to be searched. The best known classical search algo-
rithms show no such dimensional dependence. These classical algorithms are not
based on classical walks but just search each item in sequence, until the marked
state is found. Search algorithms based on classical walks are not optimal, for ex-
ample, a random walk on a cycle would have a run time of O(N2). Quantum walk
search algorithms have been proved by Magniez et al. [17] to be quadratically
faster than classical searches by random walks which are reversible and ergodic.
Krovi et al. [19] extended this proof to require only that the classical random
walk be reversible. In the example of the walk on the cycle, reversibility means
the walk has a probability to propagate in both clockwise and anti-clockwise
directions. The dimensional dependence of quantum walk searching thus follows
a similar dependence in classical random walk based search algorithms.

We are also interested in how important the symmetry of the database ar-
rangement is for searching using quantum walks. For a quantum walk crossing a
hypercube, or the special “glued trees” graph of [20], it is known that defects in
the graph can seriously disrupt the efficiency of the quantum walk [21–24]. The
marked state is treated as a type of symmetry breaking in the dynamics of the
quantum walk, so other distinguished parts of the data structure (such as the
end of the tape, or the edge of the hard disk) might distract the quantum walk
from finding the desired marked state.

We begin in section 2 by reviewing the quantum walk on the line as intro-
duced by Ambainis et al. [1]. We describe how the coin toss operation can be
varied to provide the broken symmetry for the marked state, as was done by
Shenvi et al. [4] in their original quantum walk search algorithm. We summarise
the basic properties of the quantum walk on the line, to introduce the concept
of quantum walks and how they differ from classical random walks. We then
move on in section 3 to quantum walks on a two-dimensional Cartesian lattice,
in order to review the quantum walk search algorithm of Shenvi et al. [4] in a
context where it gives a good speed up over the best classical algorithms. This
has been solved analytically by Ambainis et al. [15]. By using numerical simu-

4

lation, this allows us to explore the actual scaling with the size of the system
and compare this with the bounds proved previously [12, 15]. We also varied the
form of the coin operator applied to the marked state, to explore the sensitivity
of the algorithm to the exact coin operator used.

We return to the line in section 4 to explore the behaviour of quantum walk
search algorithms in one spatial dimension. Previous work by Szegedy [25] using
his Markov chain based quantum walk shows that it only ‘finds’ the marked
state in time O(N) with probability 1/N . Obviously, this is of no use as every
other state on the line will also have probability 1/N , just like the original
superposition. We confirm this numerically for the Shenvi et al. [4] quantum
walk search algorithm, describing in detail how boundaries and different forms
of the coin operators for both the marked state and general evolution of the
quantum walk affect the behaviour. In section 5 we apply our numerical studies
to structures with a different degree at each vertex, while still remaining in two
spatial dimensions, namely the hexagonal lattice (each vertex having degree 3),
a 2D Cartesian lattice with diagonals added (degree 8), and a Bethe lattice of
degree 3. We report in detail how the quantum walk search algorithm success
probabilities and run times vary compared with the plain 2D Cartesian lattice
studied in section 3. Finally, we discuss our results and plans for future work in
section 6.

2 Quantum walk on the line

A discrete time quantum walk on the line is defined in direct analogy with a
classical random walk: there is a walker carrying a coin which is tossed each time
step and the walker steps left or right according to the heads or tails outcome
of the coin toss. We denote the basis states for the quantum walk as an ordered
pair of labels in a “ket” |x, c〉, where x is the position and c ∈ {0, 1} is the state
of the coin. A unitary coin operator is used at each time step and then a shift
operation is applied to move the walker to its new positions. The simplest coin
toss is the Hadamard operator H , defined by its action on the basis states as

H | x, 0〉 = 1√
2
(| x, 0〉+ | x, 1〉)

H | x, 1〉 = 1√
2
(| x, 0〉− | x, 1〉), (1)

and the shift operation S acts on the basis states thus

S | x, 0〉 =| x− 1, 0〉
S | x, 1〉 =| x+ 1, 1〉. (2)

5

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Position

P
ro

ba
bi

lit
y

Fig. 1. Classical (crosses) and quantum (solid line) probability distributions for walks
on a line after 100 timesteps. Only even positions are shown since odd positions are
zero. Initial state for the quantum walk of (|0〉+ i|1〉)/

√
2.

The first three steps of a quantum walk starting from the origin are as follows

(SH)3 | 0, 0〉 = (SH)2S
1√
2
(| 0, 0〉 + | 0, 1〉)

= (SH)2
1√
2
(| −1, 0〉 + | 1, 1〉)

= (SH)S
1

2
(| −1, 0〉 + | −1, 1〉 + | 1, 0〉 − | 1, 1〉)

= SH
1

2
(| −2, 0〉 + | 0, 1〉 + | 0, 0〉 − | 2, 1〉)

= S
1√
8
(| −2, 0〉 + | −2, 1〉 + | 0, 0〉 − | 0, 1〉 + | 0, 0〉 + | 0, 1〉 − | 2, 0〉 + | 2, 1〉)

=
1√
8
(| −3, 0〉 + | −1, 1〉 + 2 | −1, 0〉 − | 1, 0〉 + | 3, 1〉). (3)

As the walk progresses, quantum interference occurs whenever there is more than
one possible path of t steps to the position. This can be both constructive and
destructive, as shown in eq. (3), which causes some probabilities to be amplified
or decreased at each timestep. This leads to the different behaviour compared
to its classical counterpart: the position of a walker following a classical random
walk on a line spreads out in a binomial distribution about its starting point.
Both classical and quantum distributions are illustrated after 100 steps in fig. 1.
It is clear in fig. 1 that the quantum walk spreads faster. Ambainis et al. [1]
proved that the quantum walk spreads in O(t) compared to a classical random
walk which spreads in O(

√
t).

Adding some decoherence into this basic walk [26] actually helps for some
applications. A nearly smooth “top hat” distribution can be obtained with a
small amount of decoherence, which is useful for random sampling in Monte-

6

Carlo simulations as an example. This also gives us a clue about how to use a
quantum walk for searching. The “top-hat” is obtained after starting at a single
location. Pure unitary dynamics are reversible, so if we run the quantum walk
backwards from a uniform distribution on all points, we might expect it will
go to being approximately located at a single point. Of course, it doesn’t know
which single point to converge on unless we mark it in some way: we do this
with a different coin operator. If the coin operator allows the marked state to
retain more probability than it passes on, this creates a bias in the walk at this
point. This can be done with a biased Hadamard coin operator

Hδ =

(√
δ

√
1− δ√

1− δ −
√
δ

)

, (4)

where
√
. is the positive root, and Hδ acts only on the coin state. The value

of δ determines how much of the incoming probability is sent in each direction.
Taking δ = 1 gives the σz operation; the unbiased Hadamard operator eq. (1)
corresponds to δ = 1/2; and δ = 0 gives the σx (spin flip) operator,

σx =

(

0 1
1 0

)

. (5)

Since this search algorithm doesn’t provide any speed up on the line, we next
describe how it works on a two-dimensional Cartesian lattice. The behaviour of
the quantum walk search on a line will then be compared in section 4.

3 Two-dimensional Cartesian lattice

A quantum walk in a higher dimension needs a larger coin, with one coin dimen-
sion for each choice of direction at the vertices. The shift operator is enlarged
in a similar straightforward way from the version in eq. (2). As in the quantum
walk search algorithm of Shenvi et al. [4], as solved by Ambainis et al. [15] for
the 2D Cartesian lattice, we use a symmetric coin operator based on Grover’s
diffusion operator,

G(d) =

2
d . . .

2
d

...
. . .

...
2
d . . .

2
d

− Id, (6)

where Id is the identity matrix and d is the size of the coin. In the case of a
square lattice, d = 4 for the four choices of direction at each lattice site, and
eq. (6) reduces to

G(4) =
1

2

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

. (7)

7

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Lattice width
Lattice length 0

5
10

15
20

0
5

10
15

20
0

0.05

0.1

0.15

0.2

0.25

Lattice lengthLattice width

P
ro

ba
bi

lit
y

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

0.15

0.2

0.25

Lattice lengthLattice width

P
ro

ba
bi

lit
y

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

0.15

0.2

0.25

Lattice lengthLattice width

P
ro

ba
bi

lit
y

Fig. 2. Probability distribution of a discrete time quantum walk search on 400 vertices
arranged in a 20× 20 square with periodic boundary conditions, evolved for 0, 10, 20
and 32 timesteps. The marked vertex is at position 190.

We also need a different coin for the marked state. As we show later, it is optimal
to invert the phase of the G(4) coin operator,

G(4)
m =

1

2

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

. (8)

To carry out the quantum walk search algorithm, we start with the quantum
walker in an equal superposition of all the possible sites in the lattice, and the
coin in an equal superposition of all directions,

|ψ(0)〉 = 1√
4N

N
∑

x=1

3
∑

c=0

|x, c〉. (9)

We use periodic boundary conditions at the edges of the
√
N×

√
N square lattice.

Figure 2 shows how the distribution of the walker evolves with time for
a 20 × 20 lattice, i.e. N = 400. We are interested in how quickly the quantum
walker finds the marked state: fig. 3 shows the probability of being at the marked
state for each timestep as the walk proceeds. It has periodic behaviour with the
first peak occuring at roughly t = (π/2)

√
N ≃ 32. The maximum probability

for N = 400 is around 0.23. This can be increased as close to 1 as desired by
standard amplification techniques (repeating the search a few times). Subsequent
peaks occur somewhat later than t = 2(π/2)

√
N etc., but we are interested in the

oscillatory behaviour not for the precise timings of the peaks, but rather for the
necessity of knowing when the first peak occurs in order to measure the walker’s
position at the optimum time. In fact, as can be seen in fig. 3, the peaks are
quite broad, so even if an error occurs in when to measure, it only means a lower
probability of finding the marked state, this is only a constant extra overhead on

8

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Timestep

P
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

Fig. 3. Probability of marked state over 200 timesteps on a 20× 20 grid with periodic
boundary conditions. The marked vertex is at position 190.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

2D Cartesian lattice
2.1556 / log

2
 N

Fig. 4. Maximum of the first peak in the probability of being at the marked state for
different sized data sets, using the optimal marked state coin in eq. (8) on a 2D lattice
of size

√
N ×

√
N , plotted against N (circles). Also shown is the closest fit to our data,

2.16/ log
2
N (dashes).

the amplification. For example, if the state of the walker was measured at half
the optimal number of timesteps (t = (π/4)

√
N ≃ 16), the probability of the

walker being measured in the marked state is roughly half that of the maximum
possible (p ≈ 0.1). The maximum probability also varies with the size of the data
set, the theoretical value of O(1/ log2N) from Ambainis et al. [15] is numerically
confirmed in our results in fig. 4 with a small pre-factor of just over 2.

To explore how the coin affects the search result, we can introduce a phase
into the marked state coin operator, eq. (8),

G
(4)
φ,m = eiφG(4)

m , (10)

where 0 ≤ φ ≤ π. The standard G(4) coin operator, eq. (7), corresponds to φ = 0,

and the marked coin operator used before, G
(4)
m , eq. (8), corresponds to φ = π.

9

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Timestep

P
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

φ=0
φ=π/3
φ=(2xπ)/3
φ = π

Fig. 5. Probability of marked state over 75 timesteps for N = 100 i.e., a 10 × 10 grid
with marked state at 45, using the marked state coin in eq. (10) with φ = 0, π/3, 2π/3
and π.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Timestep

P
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

δ = 0.5

δ = 0.6

δ = 0.7

δ = 0.8

δ = 0.9

δ = 1

Fig. 6. Probability of marked state over 75 timesteps for N = 100 i.e., a 10 × 10 grid
with marked state at 45, using the marked state coin in eq. (11) with δ = 0.5, 0.6, 0.7,
0.8, 0.9 and 1.

A bias can also be introduced by a matrix of the form,

G
(4)
δ =

δ a+ ib a+ ib a+ ib
a+ ib δ a+ ib a+ ib
a+ ib a+ ib δ a+ ib
a+ ib a+ ib a+ ib δ

, (11)

where 0.5 ≤ δ ≤ 1. We solve this to give expressions for a and b in terms of the
bias parameter δ in order to interpolate between the identity and marked state

G
(4)
m matrix, eq. (8). Taking δ = 1 makes the marked state coin into the identity

operator, while δ = 0.5 corresponds to the G
(4)
m operator. These variations have

been chosen to preserve the symmetry of the coin operator. Figures 5 and 6
show the effect of varying both the phase φ and the bias δ showing the largest
probability of finding the marked state is for φ = π and δ = 0.5, justifying our
choice of the optimal marked state coin operator.

10

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

Length of lattice (sqrt(N))
T

im
es

te
p

to
 fi

rs
t s

ig
ni

fic
an

t p
ea

k

2D Cartesian lattice
1.4864 sqrt(N)
1.9937 sqrt(N)

Fig. 7. Time step at which the first peak in the probability of being at the marked
state occurs for different sized data sets, using the optimal marked state coin in eq. (8),
plotted against

√
N . Also shown are closest fits for

√
N < 32 (dotted) and for

√
N > 32

(dashes).

Our numerical results are shown in fig. 7, where we see the closest fit for the
data up to N = 322 is 1.49

√
N , but there is a ‘kink’ near N = 32 that pushes

it up to 1.99
√
N . Our numerical evidence thus supports a scaling O(

√
N). As

the maximum probability of finding the marked state scales as O(1/ log2N), we
must use amplitude amplification techniques to bring this up to O(1). This re-
quires O(

√
logN) repetitions [27]. The total scaling we find with our numerical

simulations is thus O(
√
N logN), which is consistent with the expected opti-

mal scaling for two dimensions proved by Magniez et al. [17]. Tulsi [16] gives
an algorithm that also meets this optimal scaling, but uses ancillas, while our
simulations do not, they follow the method of Shenvi et al. [4] using a standard
coined quantum walk.

4 Quantum walk search on the line

We now examine how the quantum walk search algorithm behaves for data
arranged on a line. Szegedy [25] previously proved that a quantum walk search
approach can only find a marked state in time O(N) with probability 1/N . We
confirm this numerically considering both a line segment, and a loop (cycle)
where periodic boundary conditions are applied at the ends. The loop is less
physical (for most tape storage, the ends are far apart from each other), but
allows us to investigate the behaviour of the algorithm without the edge effects
the ends introduce. For the line segment, we use a reflecting boundary condition.
This means we have to use a different coin at the edges, which has the effect of
introducing two spurious marked states.

Since symmetry is important in the quantum walk search algorithm in higher
dimensions, we also investigate a more symmetric version of the Hadamard op-
erator,

H
(sym)
δ =

(√
δ i

√
1− δ

i
√
1− δ

√
δ

)

. (12)

11

−50 −40 −30 −20 −10 0 10 20 30 40 50

0
10

20
30

40
50

0

0.01

0.02

0.03

PositionTimestep

P
ro

ba
bi

lit
y

−50−40−30−20−100
10 20 30 40 50

01020304050
0

0.005

0.01

0.015

0.02

0.025

0.03

PositionTimestep

P
ro

ba
bi

lit
y

−50−40−30−20−100 10 20 30 40 50

0
10

20
30

40
50
0

0.01

0.02

0.03

PositionTimestep

P
ro

ba
bi

lit
y

−50−40−30−20−100
10 20 30 40 50

0
10

20
30

40
50
0

0.01

0.02

0.03

PositionTimestep

P
ro

ba
bi

lit
y

Fig. 8. Probability distribution of the quantum walk search of N = 101 items arranged
on a line, after 50 time steps with marked state at position 20, for a symmetric coin and
periodic boundary conditions (top left), Hadamard and periodic (top right), symmetric
and reflecting (bottom left), and Hadamard and reflecting (bottom right).

For δ = 0.5, this reduces to

H(sym) =
1√
2

(

1 i
i 1

)

. (13)

We vary δ from zero to one, to see how this affects the performance. The initial
state for the quantum walk algorithm on the line needs to match the symmetry
of the chosen coin operator. For the Hadamard, we use

|φ(0)〉 = 1√
N

N
∑

x=0

1√
2
(|x, 0〉+ i|x, 1〉), (14)

and for the symmetric coin operator we use

|φ(0)〉 = 1√
N

N
∑

x=0

1√
2
(|x, 0〉+ |x, 1〉). (15)

First we contrast the symmetric coin operator, eq. (13) with the standard
Hadamard operator, eq. (1). In fig. 8 we see the contrast between the two possi-
ble boundary conditions (periodic and reflecting). We show each condition with
both the coin operators described previously, eqs. (1) and (13), for all dynamics
(negating the phase for the marked state operator). We find that the symmetric
coin operator gives a more smoothly varying probability distribution about the
marked state and we can see oscillations in the probability of finding the marked
state. Superficially, these results look similar to the square lattice. However, the
square lattice has a peak probability at the marked state of around 0.3 for a

12

−50 −40 −30 −20 −10 0 10 20 30 40 50

0
10

20
30

40
50

0

0.01

0.02

0.03

0.04

PositionTimestep

P
ro

ba
bi

lit
y

−50 −40 −30 −20 −10 0 10 20 30 40 50

0
10

20
30

40
50

0.01

0.02

0.03

0.04

PositionTimestep

P
ro

ba
bi

lit
y

−50 −40 −30 −20 −10 0 10 20 30 40 50

0
10

20
30

40
50

0

0.01

0.02

0.03

0.04

PositionTimestep

P
ro

ba
bi

lit
y

−50 −40 −30 −20 −10 0 10 20 30 40 50

0
10

20
30

40
50

0

0.01

0.02

0.03

0.04

PositionTimestep

P
ro

ba
bi

lit
y

Fig. 9. Probability distribution of the quantum walk search of N = 101 items arranged
on a line, after 50 time steps with marked state at position 20, for a symmetric coin
and periodic boundary conditions with the marked coin operator given by eq. (12) with
δ = 0.15 (top left), δ = 0.45 (top right), δ = 0.65, (bottom left) and δ = 1 (bottom
right).

10 × 10 square lattice with N = 100. On a line with N = 101, the peak in the
probability is only around 0.028, This is not significantly larger than the uni-
form distribution, which has a probability of 0.01 for any site. The Hadamard
coin operator varies over a period of around seven time steps, regardless of the
other parameters, and shows slightly higher probability spreading out from the
marked state in two soliton-like waves. This supports the case for symmetry be-
ing important for quantum walk searching. Reflecting boundary conditions also
produce spreading soliton-like waves from the boundaries for both symmetric
and Hadamard coins.

Concentrating on the case of a symmetric coin operator and periodic bound-
ary conditions, we now consider what happens when δ is varied. For δ increasing
from zero to a half, the period of the oscillations increases towards infinity as
δ → 0.5, the value for which the marked coin operator becomes the same as
the unmarked coin operator and the distribution remains uniform. Increasing δ
above 0.5, we find that instead of finding the marked state, in effect it “un-finds”
it with the probability of being in the marked state decreasing below the uniform
distribution. This is due to the fact the coin is now biased in the wrong direction
and so is giving away more and more probability instead of retaining it. Figure 9
shows the variation in probability distribution with δ, compare with δ = 0 from
fig. 8 (top left). For the symmetric quantum walk with periodic boundary condi-
tions, evolving for longer times with δ ≃ 0.45 eventually results in a peak in the
probability of the marked state approaching 2π/N , but only after around 5N
or more time steps, see fig. 10. This is obviously not useful, either in the size of
the peak probability, which we would like to scale with at least logN as it does

13

0 100 200 300 400 500
time step

0

0.05

0.1

0.15

Pr
ob

ab
ili

ty
 o

f
m

ar
ke

d
st

at
e

Fig. 10. Probability of the marked state for each time step for a line of N = 50 sites
with periodic boundary conditions and δ = 0.45, run for 500 time steps.

for the search in two dimensions, nor with the number of time steps, which far
exceeds the classical worst case of N .

The quantum walk search algorithm used for data on a line is thus completely
ineffective for the parameters we have considered: it does not find the marked
state with significant probability even when run for as long as the worst case
classical time of N steps for N items. Of course, we can easily specify a quantum
version of the classical algorithm that does find the marked state in N steps.
For example, start in the state |0, 1〉 and use the identity as the coin operator
everywhere except the marked state. This causes the walk to hop determinis-
tically along the line. At the marked state, use σx for the coin operator. This
will flip the coin from |1〉 to |0〉 and thus reverse the direction of the walker. If
the position of the walker is measured after N steps, the current location allows
you to work out where it turned round, and thus locate the marked state. This
method uses only a single measurement. If you allow measurements at every
step, then of course you can immediately find out if the walker has arrived at
the marked state by testing the state of the coin.

A classical random walk searching algorithm on a line, with equal probability
of moving left and right, would take O(N2) to find a marked item. Using the
techniques by Magniez et al. [17] and Krovi et al. [19], a quantum analogue of this
classical walk can be defined which would give a quadratic speed up to O(N).
This would give a constant probability, O(1), for the maximum probability of the
marked state. However, as shown by Szegedy [25], the value of this maximum
probability at the marked state would be 1/N thus rendering the algorithm
ineffective.

5 Two-dimensional structures

In order to test how the arrangement of the data affects the search algorithm for a
fixed spatial dimension, we investigated its efficiency on other regular structures,

14

Fig. 11. A portion of the structures we discuss in sec. 5, on which we study the quantum
walk search algorithm. We impose periodic boundary conditions on both structures.
Left: Hexagonal lattice, each vertex is of degree d = 3. Right: 2D Cartesian lattice with
diagonal links, each vertex is of degree d = 8.

namely, the hexagonal lattice, the 2D Cartesian lattice with diagonal links and
the Bethe lattice of degree three. These structures have very different connectiv-
ity between data points (vertices). The Bethe lattice has only one shortest path
to the marked state due to its ‘branching’ structure, whereas the 2D Cartesian
lattice with diagonal links has, in general, many shortest paths.

5.1 Hexagonal lattice

We study a hexagonal lattice, where each vertex is of degree d = 3, with periodic
boundary conditions as shown in fig. 11 (left). We use the Grover coin, eq. (6),
in dimension three,

G(3) =
1

3

−1 2 2
2 −1 2
2 2 −1

 , (16)

and use the inverse of this for the marked state in the same way as for the 2D
Cartesian lattice described in section 3,

G(3)
m =

1

3

1 −2 −2
−2 1 −2
−2 −2 1

 . (17)

We can see how the search algorithm performs on the hexagonal lattice in
figs. 12 and 13. The maximum probability of the marked state is lower than that

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

Hexagonal lattice
1.7301 / log

2
 N

Fig. 12. Maximum of the first peak in the probability of being at the marked state for
different sized data sets for a hexagonal lattice, plotted against N (circles). Also shown
is the closest fit to our data, 1.73/ log

2
N (dashes).

of the more highly connected 2D Cartesian lattice. We still find the O(1/ log2N)
scaling with the size of the data set but with a smaller pre-factor, 1.73, compared
with just over 2 for the 2D Cartesian lattice. The first significant peak in the
probability of the marked state occurs later than for the 2D Cartesian lattice.
This shows that not only is the algorithm dimensionally dependent, but it also
depends on the actual connectivity of the structure. Interestingly, we also find
the unusual ‘kink’ we saw in the 2D Cartesian case but at a different point. The
time to find the marked state still best fits a scaling of O(

√
N), still giving a

algorithmic complexity of O(
√
N logN), but with larger pre-factors before and

after the ‘kink’, 1.75 and 2.29 respectively compared to the prefactors of 1.49
and 1.99 before and after the kink in the 2D Cartesian lattice. The basic scaling
(without prefactors) of O(

√
N logN) matches recent analytical results by Abal

et al. [28]. In the 2D Cartesian lattice, we found this jump in scaling when the
size of the grid reached roughly 322 vertices. For the hexagonal lattice we find
this point is higher at roughly 422 vertices in size.

5.2 Two-dimensional Cartesian lattice with diagonal links

By adding diagonal links to the 2D Cartesian lattice, we create a more highly
connected structure of degree d = 8 at each vertex. This is shown in fig. 11
(right) and again periodic boundary conditions are imposed. The Grover coin,
eq. (6), is used which reduces to,

16

0 50 100 150 200
0

100

200

300

400

500

600

Length of lattice (sqrt(N))

T
im

es
te

p
to

 fi
rs

t s
ig

ni
fic

an
t p

ea
k

Hexagonal lattice
2.2878 sqrt(N)
1.7475 sqrt(N)

Fig. 13. Time step at which the first significant peak in the probability of being at the
marked state occurs for different sized data sets plotted against

√
N , for a hexagonal

lattice. Also shown are closest fits for
√
N < 42 (dotted) and for

√
N > 42 (dashes).

G(8) =
1

4

−3 1 1 1 1 1 1 1
1 −3 1 1 1 1 1 1
1 1 −3 1 1 1 1 1
1 1 1 −3 1 1 1 1
1 1 1 1 −3 1 1 1
1 1 1 1 1 −3 1 1
1 1 1 1 1 1 −3 1
1 1 1 1 1 1 1 −3

, (18)

and the marked state operator as G
(8)
m = −G(8).

Figures 14 and 15 show how the search algorithm performs on the 2D Carte-
sian lattice with diagonal links. We find an increase in the maximum probability
of the marked state compared to the other two-dimensional structures. The basic
2D Cartesian lattice scales close to 2/ log2N , whereas, with the additional con-
nectivity, the degree eight structure scales close to 3/ log2N . The time to find
the marked state is also faster. We notice the ‘kink’ in scaling as in the other
symmetrical structures but at a lower point in the graph. We see the algorithm
still seems to scale close, 1.2688

√
N , to the optimal

√
N for smaller structures

up to roughly 172 vertices in size. After that it jumps to scale as 1.6553
√
N

which is still closer to optimal than the basic 2D Cartesian lattice. Due to the
scaling of the probability, the total algorithmic complexity is still the same as
the hexagonal and 2D lattices, O(

√
N logN).

The search algorithm performs more efficiently here than either the hexag-
onal or the basic 2D Cartesian lattice. This is consistent with what we already
noted for the hexagonal lattice, that the algorithmic efficiency scales with the
connectivity of the structure. The connectivity here is much higher with every
vertex being degree eight. This increases the number of paths the walker can
take to the marked state.

17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

2D Cartesian lattice with diagonal links
2.9306 / log

2
 N

Fig. 14. Maximum of the first peak in the probability of being at the marked state for
different sized data sets on a 2D Cartesian lattice with diagonal links, plotted against
N (circles). Also shown is the closest fit to our data, 2.93/ log

2
N (dashes).

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

Length of lattice (sqrt(N))

T
im

es
te

p
to

 ir
st

 s
ig

ni
fic

an
t p

ea
k

2D Cartesian lattice with diagonal links
1.6553 sqrt(N)
1.2688 sqrt(N)

Fig. 15. Time step at which the first significant peak in the probability of being at the
marked state occurs for different sized data sets plotted against

√
N , for a 2D Cartesian

lattice with diagonal links. Also shown are closest fits for
√
N < 17 (dotted) and for√

N > 17 (dashes).

5.3 Bethe lattice

The Bethe lattice (or Cayley tree) is a general structure which can have any
fixed degree at all of its vertices. Its connectivity is somewhat different to the
previous examples in that there are no loops in it, giving a tree-like structure
with ‘branches’ stemming from a vertex indefinitely. We work with a finite sized
segment based on around a central vertex. A piece with vertices of degree three
is shown in fig. 16. It can be seen from this example that the vertices on the
branches form ‘shells’ around the central vertex. The number of vertices in each
shell is,

Ns = d(d− 1)s−1 where s > 0, (19)

18

Fig. 16. A segment of a Bethe lattice with fixed degree d = 3. Three shells are shown
here emanating from the central vertex.

where Ns is the number of vertices in shell s and d is the degree of the vertices.
The coin used in the degree three case of the Bethe lattice is the Grover coin of
dimension three given by eq. (16). The marked state operator is just this same
coin inverted as with the other structures, eq. (17). We can’t impose periodic
boundary conditions on the Bethe lattice without creating loops in the structure.
Instead, at the ‘ends’ of the branches, we reflect the amplitude back upon itself.
This is accomplished using the Grover coin at its limit, d = 2, which is the σx
operation as shown in eq. (5).

We find that if the marked state was present either at the central vertex
or in the first shell then the algorithm is actually almost optimal in scaling,
close to O(

√
N). The probability at this point is also high enough to allow the

marked state to be distinguished from the remaining superposition. In fact, as
the probability scales as O(1), this is the total complexity and so would be
optimal. This is an unrealistic scenario though and so the Bethe lattice would
never, in general, be efficient for the search algorithm. Although we have only
shown the degree three Bethe lattice here, we have also studied the Bethe lattice
of degree four, and it performs in a similar fashion.

In contrast to the 2D Cartesian lattice, the position of the marked state in
the Bethe lattice (which shell it occurs in) strongly affects the efficiency of the
search algorithm. As the marked state moves away from the central vertex, the
probability of the marked state is significantly lower than if the marked state is
the central vertex. In fact, by the time the marked state is in the fourth shell,
the probability of the marked state does not get much higher than the value of
the initial coefficient. At this level, there is no way to distinguish the marked
state from any others. This is similar to the search on a line here where we only
see a small increase in probability at the marked state. This behaviour is caused
by the connectivity of the structure itself. As there are no cycles in the Bethe
lattice, the probability is split between the ‘branches’ of the structure and so only

19

a portion of the probability can converge on the marked state. This localization
of probability in portions of the structure away from the marked state means
the walker will never be able to coalesce at the marked state with any significant
probability. As this maximum probability scales in a constant fashion with the
number of vertices, O(1), it makes no difference how long the search algorithm
is run for.

The time to find the marked state also exhibits unusual characteristics. We
see in fig. 18 that as we move further from the central vertex, the timestep
to the first significant peak actually reduces. However, as already mentioned,
the probability at this point is so low that the marked state could never be
distinguished. As the marked state only accumulates a small portion of the
probability, the time to get to this amount would get faster, hence the decrease
in time to ‘find’ the marked state. We note that the ‘kinks’ in this graph are
most likely due to finite size effects.

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

Vertices (N)

M
ax

 p
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

MS in shell 1
MS in shell 2
MS in shell 3
MS in shell 4
MS in shell 5
Initial coefficient
2/log

2
 N

MS at central vertex

Fig. 17. Maximum of the first peak in the probability of being at the marked state for
different sized data sets on a Bethe lattice of degree three, plotted against N (solid),
for varying positions of the marked state (MS). Also shown is the initial coefficient
(dashes) and 2/ log

2
N (crosses) for comparison.

6 Discussion and further work

We have investigated numerically in some detail how the quantum walk search
algorithm of Shenvi et al. [4] behaves on several variations of the two dimen-
sional lattice, where it finds the marked state efficiently, and on the line and
Bethe lattice, where it does not. Our numerical results match the scaling of the
algorithm on the two dimensional lattice of O(

√
N logN) which, for a quan-

tum walk approach, has been proved to be optimal [17]. Although this run time
matches the proven optimal scaling and the modified approach of Tulsi [16], it
is possible that our numerical results do not encompass a large enough number
of vertices to see full scaling behaviour.

20

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

Vertices (N)
T

im
es

te
p

to
 fi

rs
t s

ig
ni

fic
an

t p
ea

k

MS in shell 1
MS in shell 2
MS in shell 3
MS in shell 4
MS at central vertex
sqrt(N)

Fig. 18. Time step at which the first significant peak in the probability of being at the
marked state occurs for different sized data sets plotted against N, for a Bethe lattice
of degree three, for varying positions of the marked state (MS). Also shown is

√
N

(crosses) for comparison.

We studied the quantum walk search algorithm on variants of the basic 2D
Cartesian lattice with varying connectivity. Specifically, these were the hexagonal
lattice and the 2D Cartesian lattice with diagonal links added. This allowed the
study of additional connectivity on the efficiency of the search algorithm without
altering the spatial dimension. Our numerical results show the same algorithmic
scaling as in the 2D Cartesian lattice case but with varying prefactors in both the
time to find the marked state and also the maximum probability of the marked
state. As we would expect intuitively, as we increase the connectivity of the
structure, the maximum probability of the marked state also increases. Similarly,
the time to find the marked state decreases with the additional connectivity. We
can conclude from these results that the search algorithm is not just dependent
on spatial dimension but also on the connectivity and symmetry of the data
structure. Increasing the connectivity for the same spatial dimension decreases
the time to find the marked state and increases the maximum probability the
marked state can reach.

Our numerical results also show a kink in the data at varying points depend-
ing on the structure being studied. We find this kink in the scaling of the time to
run the search algorithm in all the regular, symmetric structures we have studied
so far. It is most apparent in the two-dimensional Cartesian lattice case but also
appears in the degree eight and hexagonal lattices. Figure 19 shows these three
cases together for comparison. We note this kink seems to occur at roughly the
same number of edges, 4 × 322, for all tested structures. The kink seems to be
due to variations in the shape of the probability of the marked state, fig. 3. As
such, it is a numerical artifact of how we detected the maximum probability of
the marked state.

Further work will include varying both the connectivity and regularity of the
structures to identify in detail how these affect the efficiency of the algorithm.
Disordered lattices will be studied by removing a proportion, p, of the edges to
form a percolation lattice. We will also investigate the dependence on spatial

21

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Length of lattice (sqrt(N))

T
im

es
te

p
to

 fi
rs

t s
ig

ni
fic

an
t p

ea
k

Hexagonal lattice (d=3)
2D Cartesian lattice (d=4)
2D Cartesian lattice (d=8)

Fig. 19. Time step at which the first significant peak in the probability of being at the
marked state occurs for different sized data sets plotted against

√
N . The hexagonal

lattice (solid) is shown along with the 2D Cartesian lattice (dashes) and 2D Cartesian
lattice with diagonal links (dotted).

dimension in more depth by studying fractal structures, which have non-integer
values of spatial dimension, to interpolate between the one dimensional and the
three dimensional cases. Percolation lattices, at their critical point, have a self
similarity and so also provide an example with a fractal dimension.

Acknowledgments: NL is funded by the UK Engineering and Physical Sciences
Research Council and QNET - EPSRC network on the semantics of quantum
computing. MT was funded by a Nuffield Foundation Science Undergraduate
Research Bursary. ME was funded by the University of Leeds. VK is funded by
a Royal Society University Research Fellowship.

Bibliography

[1] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and J. Watrous. One-
dimensional quantum walks. In Proc. 33rd Annual ACM STOC, pages
60–69. ACM, NY, 2001.

[2] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on
graphs. In Proc. 33rd Annual ACM STOC, pages 50–59. ACM, NY, 2001.

[3] E. Farhi and S. Gutmann. Quantum computation and decison trees.
Phys. Rev. A, 58:915–928, 1998.

[4] N. Shenvi, J. Kempe, and K. B. Whaley. A quantum random walk search
algorithm. Phys. Rev. A, 67:052307, 2003.

[5] L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proc. 28th Annual ACM STOC, page 212. ACM, NY, 1996.

[6] A. Ambainis. Quantum walks and their algorithmic applications.
Intl. J. Quantum Information, 1(4):507–518, 2003.

[7] M. Santha. Quantum walk based search algorithms. In Proc. 5th Theory
and Applications of Models of Computation (TAMC08), Xian, April 2008,
volume 4978, pages 31–46. LNCS, 2008.

[8] C. Moore and A. Russell. Quantum walks on the hypercube. In Proc. 6th
Intl. Workshop on Randomization and Approximation Techniques in Com-
puter Science (RANDOM ’02), pages 164–178. Springer, 2002.

[9] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and
weaknesses of quantum computing. SIAM J. Comput., 26(5):151–152, 1997.

[10] V. Potoček, A. Gábris, T. Kiss, and I. Jex. Optimized quantum random-
walk search algorithms. Phys. Rev. A, 79:012325, 2009.

[11] P. Benioff. Space searches with a quantum robot. AMS Contempory Maths
Series volume, Quantum Computation & Information, 305, 2002.

[12] S. Aaronson and A. Ambainis. Quantum search of spatial regions. In
Proc. 44th FOCS, page 200. IEEE, Los Alamitos, CA, 2003.

[13] A. M. Childs and J. Goldstone. Spatial search by quantum walk.
Phys. Rev. A, 70:022314, 2004.

[14] A. M. Childs and J. Goldstone. Spatial search and the Dirac equation.
Phys. Rev. A, 70:042312, 2004.

[15] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster.
In Proc. 16th ACM-SIAM SODA, pages 1099–1108. ACM, NY, 2005.

[16] A. Tulsi. Faster quantum walk algorithm for the two dimensional spatial
search. Phys. Rev. A, 78:012310, 2008.

[17] F. Magniez, A. Nayak, P. Richter and M. Santha. On the hitting times of
quantum versus random walks. In Proc. 20th Annual ACM -SIAM SODA,
pages 86–95, ACM, NY, 2009.

[18] A. Patel, K. S. Raghunathan, Md. A. Rahaman. Search on a Hypercubic
Lattice through a Quantum Random Walk: II. d=2. Phys. Rev. A, 82:
032331, 2010.

23

[19] H. Krovi, F. Magniez, M. Ozols and J. Roland. Finding is as easy as detect-
ing for quantum walks. In Proc. ICALP’10, LNCS vol. 6198, pages 540–551,
2010.

[20] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spiel-
man. Exponential algorithmic speedup by a quantum walk. In Proc. 35th
Annual ACM STOC, pages 59–68. ACM, NY, 2003.

[21] B. Tregenna, W. Flanagan, R. Maile and V. Kendon. Controlling discrete
quantum walks: coins and initial states. New. J. Phys., 5:83, 2003.

[22] H. Krovi and T. A. Brun. Hitting time for quantum walks on the hypercube.
Phys. Rev. A, 73(3):032341, 2006.

[23] H. Krovi and T. A. Brun. Quantum walks with infinite hitting times.
Phys. Rev. A, 74(4):042334, 2006.

[24] H. Krovi and T. A. Brun. Quantum walks on quotient graphs. Phys. Rev. A,
75:062332, 2007.

[25] M. Szegedy. Quantum Speed-Up of Markov Chain Based Algorithms. In
Proc. 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pages 32–41, 2004.

[26] V. Kendon. Decoherence in quantum walks - a review.
Math. Struct. in Comp. Sci., 17(6):pp 1169-1220, 2006.

[27] G. Brassard, P. Hyer, M. Mosca and A. Tapp. Quantum amplitude amplifi-
cation and estimation. Quantum Computation and Information, (Washing-
ton, DC, 2000), volume 305 of Contemp. Math., pages 5374. Amer. Math.
Soc., Providence, RI, 2002.

[28] G. Abal, R. Donangelo, F. L. Marquezino and R. Portugal. Spatial search
in a honeycomb network. Math. Struct. in Comp. Sci. spc. Quantum Com-
puting, arXiv:1001.1139, 2010.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Timestep

P
ro

ba
bi

lit
y

of
 m

ar
ke

d
st

at
e

δ = 0
δ = 0.15
δ = 0.35
δ = 0.5

