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Discrete time quantum walks are known to be universal for quantum computation. This has been
proven by showing that they can simulate a universal quantum gate set. In this paper, we examine
computation by quantum walks in terms of language acceptance, and present two ways in which
discrete time quantum walks can accept some languages with certainty. These walks can take quan-
tum as well as classical inputs, and we show that when the input is quantum, the walks can also be
interpreted as performing the task of quantum state discrimination.

1 Introduction

Quantum walks are the quantum generalisation of random walks on discrete structures [[15} [1]. Both
continuous and discrete time quantum walks are known to be Turing universal [12, 7, |8]]. This has been
proven by showing that in both cases an elementary universal gate set can be simulated by a quantum
walk. This maps the quantum walk onto the quantum circuit model. Both types of walks propagate
quantum amplitude deterministically along “wires” punctuated by gates formed using an appropriate
combination of graph structures. The discrete time walk additionally uses a set of coin operations de-
signed to produce the required propagation. Despite much effort, quantum circuits have not yet been
realised experimentally beyond a few qubits. The best quantum computation devices currently in exis-
tence are based on liquid state nuclear magnetic resonance (NMR) [[14]. Other models of computation
fit NMR devices better, in particular, the Latvian quantum finite automaton (LQFA) [3l], which has been
specially designed for that purpose. The computational capabilities of LQFAs are characterised in terms
of language acceptance, prompting our investigation into language acceptance by other models of com-
putation, specifically, discrete time quantum walks. Due to the construction in [12f], we know that there
must exist a mapping from a discrete time quantum walk onto any other Turing universal model of com-
putation. Hence, non-universal tasks such as language acceptance must be possible, and the interest lies
in the details of how a quantum walk can be configured to do it.

This work: we describe work in progress applying discrete time quantum walks to language accep-
tance. We show that there are multiple ways to do this, by exploring a range of small examples. We
provide two simple constructions of graphs on which quantum walks can recognise the languages %,
and .%,;. Furthermore, we show that exploiting explicitly quantum aspects of the walks allows for gains
in efficiency. We introduce the concept of quantum inputs, and describe a preliminary investigation into
the effect these have on word acceptance. Our work made use of numerical simulations; the technical
details of how these were done have been published in [4]].

The paper is arranged as follows: in section [2] we provide definitions covering the elements we use
from formal languages and finite state automata; the Jaro distance; and discrete time quantum walks. In
section [3] we give examples of languages which can be accepted by quantum walks using two different
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graph formats and discuss their efficiency. In section 4] we note that the constructions permit quan-
tum inputs, and briefly indicate how these might be used to apply the quantum walks to quantum state
discrimination [6} 13]]. We concludes with a summary and outline of future work in section@

2 Definitions and notation

Here we provide definitions used in the paper, thus setting up our notation.

2.1 Languages

We consider a binary alphabet ¥ with two symbols {a,b}, from which words are formed as strings of
symbols.

Definition 1. The language % is the set of words {(ab)"|n € N}.
Remark. This is an example of a regular language. Each word in .Z, is a different length.
Definition 2. The language .Z,, is the set of words {a"b"'|m € N}.

Remark. This is an example of a context-free language. Recognising this language requires a basic form
of memory, to count how many times the first symbol occurs and check the second symbols then occurs
the same number of times. However, like .%;,, each word is a different length.

2.2 Jaro distance

The Jaro distance is a metric which indicates how similar two strings (words) are.

Definition 3. For strings w; and wy, the match distance my is given by

my = {maX(W1|»|W2|)J 1 (1)
2
Two charcters in strings w; and w» are said to match if (1) they are the same symbol and (2) if their
positions within their respective strings lie within the match distance of each other. Let s denote the
number of matching characters. Let w/ and w) be the substrings derived from w; and w respectively by
erasing all the non-matching characters. Then ¢, the number of transpositions, is the number of positions
at which w/ and w) differ. Now we define the Jaro distance as follows.

Definition 4. For strings wy and w», the Jaro distance d; between w; and w; is given by

. { 0 ifs=0 (2)
i= %(ﬁ—i'ﬁ—i_%) otherwise

where s is the number of matching characters, i.e., characters which occur in both strings, in the same
order, within the match distance m,. The value of ¢ is obtained by dividing the number of matching
characters which differ by sequence order by 2.

Remark. The three parts to the expression for the Jaro distance calculate the ratios of the number of
matching characters to the lengths of w; and w, and then the fraction of non-transpositions among the
matching characters. The Jaro distance was selected as it always has values between 0 and 1, with
1 indicating that two words are equal, hence it was easy to compare to the probability of acceptance.
Other metrics with similar properties for comparing strings could have been used; the Jaro distance was
available as a Python module, which made it a convenient choice for the numerical part of the work.
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Figure 1: Two steps of a discrete time quantum walk on the line, starting at the origin, evolved with a
Hadamard coin operator. The numbers in parentheses are the amplitudes for each basis state, one for
each edge at each vertex.

2.3 Discrete time quantum walks

Definition 5. An undirected graph G = {E,V } consists of a set of vertices v € V and edges e € E joining
pairs of vertices. The size of the graph N is the number of vertices N = |V|. The set of edges that meet
at vertex v is denoted E,. The degree d, of a vertex v is the number of edges meeting at that vertex,
d, = |E,|. The maximum degree dya.x is max,{d,|v € V}. At each vertex v we label the edges from
{0...d, — 1} in an arbitrary but fixed order.

Remark. Each edge thus has two labels, one at each end, which will usually be different. This is not the
only way to set up a discrete time quantum walk on an arbitrary graph, but it is the most convenient way
for numerical calculations [|10].

Definition 6. The Hilbert space of a discrete-time quantum walk on the graph G is J# x J7;,  , spanned
by basis states |v,c), v € V and ¢ € E,. A state of the quantum walk is written as superposition of basis
states, |y) =Y, . Byc|v,c) with amplitude B, € C and with normalisation ¥, . |B.c|* = 1.

Definition 7. A single-vertex coin operator C, is a d, by d, unitary operator. A coin operator for the
whole graph is the direct sum of single-vertex coin operators, C =Y, C,.

Remark. The dimensions of this square matrix C are given by Y, d,.

Definition 8. The shift operator S is a unitary operator that translates the amplitude f, . to the vertex v/
that is connected to v by edge c, i.e., S|v,c) = |V/,c), where ¢’ is the label of this edge at v'.

Definition 9. A discrete time quantum walk (DQW) on the graph G starting in initial state |yp) evolves
according to a combined coin and shift unitary operator U = SC. The state |y(7)) of the DQW after T
steps is |w(T)) = UT|yy). The probability P(v,T) of finding the walker at a chosen vertex v at time T is

P,T) =Y [Bes(T)? 3)

cey

i.e., the sum of the square moduli of the amplitude for each edge at vertex v.



42 Quantum walks and language acceptance

Remark. The discrete time quantum walk is the quantum analogue of the classical random walk, in the
sense that if you measure the quantum walk after each step, the quantum behaviour is converted to a
classical random walk. As an example, the quantum walk on the line is shown in figure|l| The vertices at
the integer points on the line have degree two, so we use a coin operator given by the Hadamard operator
(the only non-trivial type of degree two [2]),

I /1 1
7= ) v

3 Applying quantum walks to language recognition

To set up a discrete time quantum walk on a graph to differentiate between words, and hence determine
whether they are in a given formal language, we need to specify suitable encodings of input and output
that correspond with the graph structure and the quantum state of a quantum walk on that graph. The
problem is thus under-specified: there are many possible graphs we could use and many ways to en-
code a sequence of symbols into a quantum state of a quantum walk on a graph. First of all, we will
restrict ourselves to single quantum walkers. Although efficient universal quantum computation with
quantum walks requires multiple walkers [8]], our goal here is to find simple examples of non-universal
computation, for which we can expect a single walker will be sufficient [[12} [7], though not necessarily
efficient.

We therefore first chose a simple encoding of a binary alphabet that will work for a single quantum
walker. A dual rail encoding for the input word assigns each symbol to a pair of vertices. The initial
state will have amplitude on the first vertex of the pair for the first symbol in the alphabet, and vice versa
for the second symbol, see figure 2] A very similar dual rail encoding can instead assign each symbol
to one of a pair of edges at a vertex, see section Since quantum computations should start with an
initial state that is easy to prepare, or else we could be hiding significant extra computation in the state
preparation, we must check that such an input state is experimentally feasible. While it would require
a multiport interferometer to split the quantum state over the different vertices, modulated to enable
differentiation between a and b inputs, a dual rail encoding would be straightforward to configure for
any given sequence of symbols.

Next, a graph structure and coin operations which transform the input into an appropriate output must
be chosen. There are a variety of ways that this can be done. For example, if we use a single walker
starting in a superposition that represents the input distributed along different vertices, the entire word
can be operated on simultaneously. Alternatively, the superposition representing the input symbols can
be fed into the graph structure one symbol after another. We will examine each of these in turn in the
next two subsections.

The simplest way to deal with the output appears to be to designate an “accepting vertex”, which all
accepting amplitude should be arrive at simultaneously. Measuring the position of the quantum walker
after the appropriate number of time steps will then provide the output of the computation. If the position
is found to be the accepting vertex, the quantum walk has accepted the input word. The outcome of a
quantum measurement is in general not deterministic: we shall therefore use the following definition of
acceptance for our quantum walk language recognition.

Definition 10. The language .Z recognised with cut-point A € [0,1) by aDQW is .Z = {w|w € * P(w) >
A} where P(w) is the probability measuring the DQW at the accepting node for input word w. The ac-
ceptance by a DQW of & is with bounded error if there is some € > 0 such that for all w € ., the DQW
accepts w with probability greater than A + € and any words w ¢ . are accepted with probability less
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Figure 2: Schema for the graph structure required by a quantum walk which accepts languages using a
spatially distributed input. The initial state of the quantum walker is equally distributed over the vertices
labeled ¢, with vertices labeled O being unoccupied. The corresponding symbols a and b are shown
above the vertices, in this case the input is aa...ab...bb.

than A — € where € is the error margin. If there is no such € then the DQW accepts .Z with unbounded
error.

Remark. This is based on the standard definition of acceptance for finite state automata and languages.

This can easily be generalised to a set of accepting vertices; finding the walker on any one of them
indicating acceptance. The problem then is to find graph structures and sets of coin operations which
transport a large proportion of the amplitude to the accepting vertex or vertices when the input is a
word from the language the walk is designed to accept. If the remaining amplitude can be redirected to
another vertex, the rejecting vertex, then the accepting and rejecting conditions can be inverted to allow
the same walk to accept both the language and its complement — the set of words not in that language.
By transferring the input superposition to an output vertex, the language acceptance problem can thus be
seen as a variation of the the quantum state transfer problem, see, for example [[L1L 5} 9l

Some simple cases are immediately evident. The empty set and empty string are accepted trivially,
as we can distinguish between no walk occurring and all amplitude being rejected. Singleton symbols
can be accepted by paths of length three with the amplitude initially in the appropriate coin state of the
central vertex and swap operators directing all the amplitude to one end vertex or the other, depending
on which of the two singleton symbols is encoded. These are too trivial to make use of any quantum
properties of the quantum walk, we simply note them for completeness.

3.1 Spatially distributed input

We will first consider the case where the input is prepared in a dual rail encoding across a row of vertices
of the graph structure, the general form of which is shown schematically in figure [2| There are two
vertices for each input symbol with alternate vertices representing a or b. The length n of the input must
be known. For each input symbol s;, 0 < j < n, the vertex 2j — 1 is populated with amplitude 1//n
if s; = a else 2j contains amplitude if s; = b. The structure of the graph and coin for a walk testing
whether a word is in a given language depends on n. The walk is then run for a predetermined number of
steps. When the initial state encodes a word in the language accepted by the walk, the amplitude should
be directed to the designated accepting vertex. If a word not in the language accepted is encoded in the
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Figure 3: Graphs on which quantum walks accept a) .Z;, and b) .Z;, with each input symbol being
operated on simultaneously. Edges join only at vertices indicated by black circles. Grover coins of the
appropriate dimensions are used at each vertex, and only two of the G4 vertices are shown — there are m
in total for words of length 2m, with the jth G4 connected to the inputs representing the jth @ and jth b.
These graphs are used in the proof of Proposition [I]and Corollary I]

initial state then less of the amplitude should be directed towards the accepting vertex, so the acceptance
will be with bounded error (Definition [I0). The modulus squared of the final amplitude at the accepting
vertex, equation (3)) yields the probability of acceptance.

This design is most easily used to swiftly accept languages which contain at most one word of
each length, so the quantum walk graph structure tests for that specific word. We use the examples
Zeoqg={a"b"|m € N} and ., = {(ab)"|m € N} and the graphs accepting them can be seen in figure[3]

The constructions are based on a d dimensional Grover operator:

2d 2 2
d d d
2 2 2
d d d
Gy = 5
2 2 2-d
d d d

where d is the degree of the vertex. With d even, if d /2 of the edges contain amplitude equally distributed
between them, this coin operator transfers all the amplitude to the other d/2 edges. The shift operator
then moves the amplitude to the connected vertices. The deterministic evolution that the Grover operator
can produce was used to design the “wires” which transmitted the amplitude between gates in [12].

Proposition 1. The language Z,, is accepted with certainty by the graph and choice of operators shown
in figure[3|(a). Words not in the language are accepted with bounded error.

Proof. Words in Z,,: The result follows by induction on m. For the base step, simple calculation and
equation [5| shows that ab will be accepted with certainty. For the induction step, suppose that a word
a™b™ is accepted with certainty, and consider the word ¢”*'5”*!. Due to the construction of the graph,
every pair a;b;,, where i < m is treated independently, so by the induction hypothesis all amplitude from
the first m @’s and b’s is transmitted to the accepting vertex. The calculation to show that all amplitude
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from the subsequent pair of a’s and b’s is identical to the base step.

Words not in Z,,: As there is no path between the input vertices representing symbols which do not
occur in words from .Z,,, their amplitudes cannot contribute to the accepting probability. To prove the
acceptance is with bounded error, consider a word which differs from a word in .7, by one symbol,
for example a”'b™ 'a. This will be accepted with the maximum possible probability for a word not in
Zeq. The amplitude from the final a cannot be transmitted to the accepting vertex, so the word cannot
be accepted with probability > 1 — %ﬂ Additionally, after step one of the walk the m’th a goes to the
Grover operator, and now some of this amplitude will be transmitted back to the input vertex:

1

1 11 1 1 1 —

V2n 2oz 72 Vam 2y2m

0 5 T3 3 5 0 am
Gl o |=1 1 2k o | =] 2 ©)

0 1 1 2 0 2vm

2 2 2 2 ENeT
Hence the total probability of accepting a”b™ 'ais 1 — ﬁ — ﬁ. O

Corollary 1. The language £, is accepted with certainty by the graph and choice of operators shown
in figure[d(b).

In both of these walks, the input is processed in three full steps of the walk, regardless of the length
of the input word. However the O(1) time complexity is at the expense of O(n) spatial complexity. For
inputs of length n, the walks accepting .%,, and .Z;;, require 4n+ 3 and 4n + 1 vertices respectively.
The Grover operator can also be exploited to generate quantum walks accepting with certainty other lan-
guages such as %, = {ww|w € {a,b}*} and %, = {ww'|w € {a,b}*} where w" denotes the symbols
of w in reverse order. The graph from figure [3] a) can be extended to accept the archetypal context-
sensitive language .2 = {a"b"c™|m € N} and b) to accept .Z = {(abc)"|m € N} = {abc}*. In this case
we must extend the model to deal with more than two input symbols which will involve a corresponding
increase in the number of vertices required.

Numerical study: the properties of the walks over the graphs depicted in figure |3| were investigated
by simulating them using the Python programming language for all possible inputs of a given length, up
ton = 16. As well as the acceptance probability, the Jaro distance between the input and the closest word
to a word in the language under consideration for that length was also calculated. In the case of even
length inputs, the comparison is made with the word from the language of that length, for odd inputs
with length n the word was compared to the word in the language of length n — 1. For both languages
the results were very similar so we limit the discussion to .Z;, here. The results for the first 200 words
are illustrated in figure ] The points at which both curves peak at the value one are at the position of the
words ab, aabb, and aaabbb.

By numerically comparing the probability of accepting an arbitrary word to a measure of how similar
that word is to one of the required form, the algorithm’s correctness is shown, and more detail concerning
the behaviour of the walk on words not in the language can be ascertained. The disparity between the
Jaro distance and the probability of acceptance for words not in %, illustrates how effective the quantum
walk algorithm is. A low probability of acceptance for any word not in the language, regardless of how
close that word is to a word in .Z,, indicates the language acceptance is robust. Hence this probability
cannot be used as a good measure of how close the input word is to one in that language in cases where
it is not equal to one.

Using a spatially distributed input allows for long words to be accepted with the same number of
operations as short words. However, the number of vertices required in the graph structure grows, albeit
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Figure 4: The probability of acceptance for the walk detecting words from .Z,, for the first 200 words
(black). The Jaro distance between the input word and an appropriately sized word from .Z;, is indicated
in red. Both curves go to unity at the positions representing the words ab, aabb and aaabbb.

linearly, with the length of the word. The number of vertices required to accept a given language can be
held constant regardless of input length if each input symbol is fed into the structure in turn, so we now
turn to this case.

3.2 Sequentially distributed input

We can make use of the “wires” from [[12] with a slightly different encoding to design a sequential input.
An input of length n can be treated sequentially if we start with it distributed along a chain of length n
with two links between each vertex, as shown in the leftmost portions of the graphs in figure[5] The two
symbols are represented thus:

a= b=

(N

SO OR

0
o
0
0

where the entries in the vector contain the amplitude for each of the four edges at the vertex, before the
coin operator is applied. The coin on this part of the graph is o, ® I, where o, is the Pauli-X operator,

0 1
Gx:<1 O)' ®)

This four-dimensional operator ¢, ® [, simply swaps amplitude to the “leaving” edges of the current
vertices, the lower pair of entries. The swap operator then transfers all the amplitude to the “arriving”
edges of the next vertex. This choice of coin operator feeds the input amplitude into a graph which has
either “accepting paths” and “rejecting paths”, or “accepting vertices” and “rejecting vertices”. The sum
of the square moduli of the amplitudes on the accepting vertex/path after a number of steps determined
by n gives the probability of accepting the input word. The shape of the graph and the coins at each
vertex determine which words will be accepted.
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Results: in some cases, such as walks accepting specific words of known length, the only coins
required are trivial swap operators. More complex languages require less trivial coin operators, such as
in figure 5] (a), the graph accepting the language .%;,. This graph uses the Hadamard operator, defined
in equation (4), to determine whether each pair of symbols is of the form ab or not. The swap operator
then moves the amplitude from both symbols into the accepting path if they are of that form. Words in
the language are accepted with certainty and those not in the language are accepted with probability 1/2.
Figure[5]illustrates two different graphs which both accept the same specific word. Either a specific graph
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Figure 5: a) Graph structure and coins accepting language .Z,;, b) Graph specifically accepting the word
of length 4 from that language

or the graph accepting .Z,;, can be used to accept abab, as shown in figure [5] (b) and (a) respectively.
We tested numerically whether these different graphs accepting the same word give rise to different
probability distributions. In this case, the probability of acceptance of words not equal to abab did not
depend on the graph, however, this property is not generally expected to hold. We can also see that
exploiting quantum properties, using the Hadamard operator as in figure [5] (a) to control interference
between different parts of the amplitude, rather than permuting amplitude so that it all arrives at the
right place eventually as in figure [5 (b), gains us efficiency. The simple swapping version of the graph
accepting abab has 8 vertices (discounting the input vertices) and takes 6 steps to accept the word. The
more general graph not only accepts more words, but accepts abab in 5 steps. To accept longer words
from %, using a permutation scheme rather than the graph using the Hadamard operator, more steps
are required and the size of the graph increases accordingly. The correctness of these quantum walk
algorithms can be proven easily by induction on m, where m is the number of times the string ab is
repeated.

This scheme can be modified to accept .Z,,. This is because in the quantum walk shown in figure
a), if a pair ab was contained in the input, the amplitude from the a and b symbols arrives at the vertex
where the o, ® H at the same time, and interference can then occur. If the amplitude from the a symbol
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Figure 6: Probability of acceptance using the graph from figure [5| (a) accepting .Z,;, for the first 200
words (black). The Jaro distance between the input word and an appropriately sized word from the
language is indicated in red.

is instead directed to a path of m vertices prior to the vertex where o, ® H is applied, then interference
cannot occur until m steps of the walk have taken place. If the m + 1°th symbol of the input is then a b,
then constructive interference will occur. Therefore if there are m a’s followed by m b’s in the input, it
will be accepted with certainty by the modified graph. The graph now requires O(n) vertices besides the
input vertices, reflecting the need for a simple memory to recognise a context free language.

Numerical study: as for the spatially distributed input case, the probability of accepting each word
was calculated for all possible inputs up to length 16. This was plotted alongside the Jaro distance from
the input word to a word of an appropriate length in the language as shown in figure[6] As in figure {4}
points at which both values go to unity indicate the positions of the word ab, abab, ababab. Although
acceptance is still with bounded error, comparing with figure 4{ we see that the rejection of words not in
the language is not so robust, all words are accepted with probability at least a half.

A simple way of finding a graph which accepts the string abb concatenated onto a single symbol
given either aabb or babb is to add further self loops (with a coin state for each end) to the accepting
node. A b symbol requires two self loops for each portion of the existing amplitude to go around, and
an a symbol requires one self loop for each portion of the existing amplitude to go around. The rejecting
paths leaving the accepting node will have to be increased accordingly. Whilst this will accept the new
word with probability 1, if the process is repeated it will increase the probability of accepting other
strings dramatically, though it will never be equal to unity.

4 Quantum Inputs

The inputs used so far have all been classical, represented by a quantum superposition state. However,
the way these walks have been set up allows us to do more than this. Each symbol in the input word can
be in a superposition of a or b, for example, x|a) + y|b) such that |x|> + |y|*> = a®. Recall that o = 1//n
and n is the length of the input. Superpositions of words, such as abab and bbbb can then be created by
using the appropriate superposition for each symbol in the word. Where symbols match, the amplitude
is allocated to that symbol as for the classical encoding. Where symbols do not match, the amplitude is
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Figure 7: Fidelity of final state to accepting state for quantum inputs in a superposition of aabb and: the
string with no matching characters, bbaa (blue); the strings with one matching character, abaa, baaa,
bbab and bbba (green); the strings with two matching characters aaaa, abab, abba, baab, baba and bbbb
(black); the strings with three matching characters aaab, aaba, abbb and babb (red)

distributed between the a and b states accordingly.

Definition 11. A 7n-quantum input |s'?) is a superposition of the symbols in words w; and w, with
amplitude ratios 1 and /1 — [n|2. Where symbols of w' and w? match, so w} = w?, \sim) = |wh).

Where symbols differ |sl.1’2> = a(n|wl~1> +4/1— ]n\2|wi2>).

Remark. This is not the same as a superposition of the whole words, for example, with n = 1/1/2,
(laba) +[bbb))/ V2 # (|a) +[b))|b)(la) +[b)) /2 = (|aba) +|abb) + |bba) + |bbb)) /2. (9)

We chose to begin with symbol-by-symbol superpositions because they are simple to prepare. Prepar-
ing superpositions of whole words would require more resources, so while they are undoubtedly also
interesting, the preparation resources would need to be accounted for in the overall assessment of the
algorithm.

Numerical study: as a preliminary investigation into using quantum inputs, we numerically tested
the effects of using a quantum input consisting of a word accepted by the quantum walk superposed
with a word not accepted. We used the walks accepting L., and tested the spatially distributed input as
given in figure[3] (a). We used the fidelity between the state obtained and the accepting state to make our
comparison. The fidelity between states |y) and |¢) is defined as:

F=[{9|y)? (10)

We tested a range of superpositions from the word being entirely aabb to the word being entirely another
word, for every word of length four. The effect of the quantum input on the fidelity fell into four distinct
cases, as shown in figure[/| These cases correspond to the number of characters a word of length four can
differ by, with the probability of being able to accurately determine which input was used diminishing as
the number of symbols which match exactly between the two strings increases, as would be expected.
Using a quantum input frames the question of language acceptance in terms of quantum state dis-
crimination. If we know we have been given one of two states |y) and |¢), one of which encodes a word
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in the language accepted by the walk while the other does not, then we can gain information about which
state we are likely to have been given by whether or not it is accepted by the walk. Another approach
to using discrete time quantum walks to perform quantum state discrimination, by measuring at specific
positions, is presented in [[13].

S Summary

We have presented a preliminary investigation into using discrete time quantum walks to recognise for-
mal languages. We developed two different types of graph structures, one using spatially distributed
input, the other using sequential input. We observed the expected trade off between space and time
resources. Spatially distributed input requires O(n) vertices, but can recognise regular and context free
languages in O(1) steps of the quantum walk. Sequential input requires only O(1) vertices (besides those
encoding the input) but uses O(n) steps to recognise regular languages. However, to recognise context
free languages with sequential input requires O(n) vertices, the extra vertices providing the necessary
memory functionality.

To gain insight into the behaviour of the quantum walks for input words not in the language, numeri-
cal testing was done for all possible inputs up to length 16. The probability of acceptance was calculated
and found to take a few specific values between O and 1, rather than varying over the entire range. It
would thus be interesting to classify which types of strings give rise to which values for the probability
of acceptance. This could aid the process of finding walks that accept further languages.

It would be interesting to extend the work to find general ways of specifying graphs accepting arbi-
trary regular expressions, or even arbitrary formal languages. Or one could restrict attention to specific,
appropriately defined subclasses of regular expressions to relate the work to other aspects of logic. In
order to compare the walks with other standard models of computation in terms of language acceptance,
relations between the efficiency measures used here and other standard efficiency measures such as the
minimal number of computational states, or tape squares traversed, must be found.

The two approaches discussed in this paper are unlikely to be the only ways to specify quantum walks
such that they can be interpreted as accepting formal languages. It is not yet clear what the most fruitful
approach will be. A better understanding of the relative merits of using spatially versus sequentially
distributed inputs will be informative, and gaining insights into their limitations may suggest further
ways of specifying walks to recognise languages.

We have briefly described how the constructions presented here allow quantum inputs. This new form
of input opens many further avenues for investigation. As well as finding out more about the quantum
state discrimination performed by the walks presented here, it would be interesting to generalise the
inputs themselves to superpositions of whole words rather than single symbols, and consider how they
might be developed to form quantum languages.
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