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ABSTRACT 15 

Tall piers are essential components of the earthquake resisting system of bridges. The dynamic 16 

behaviour of tall piers differs significantly from that of short piers due to a number of factors, 17 

such as their high flexibility and inertia. This paper aims to quantify the influence of axial loads 18 

and higher order modes on the seismic response of bridges tall piers and to provide results 19 

useful for a more informed design and assessment. For this purpose, an analytical formulation 20 

of the dynamic problem, developed and validated in a previous study, is employed to analyse a 21 

wide range of piers and bridge configurations. In the first part of the paper, a thorough 22 

parametric investigation is carried out to evaluate the influence of axial loads and higher order 23 

modes on both the modal properties and the seismic response of tall piers with different 24 

geometries and vertical loads. Subsequently, three realistic case studies representing bridges 25 

with different geometrical, mechanical and dynamic conditions are analysed and seismic time-26 

history analyses are performed to further investigate the problem. The obtained results provide 27 

useful insights into the seismic behaviour of bridges with tall piers, identify the relevant 28 

governing parameters and shed light on the accuracy of simplified approaches suggested by the 29 

Eurocode 8 to account for the second order effects.  30 

 31 
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1 INTRODUCTION 34 

Many bridges in the world are characterized by the presence of tall piers as part of the 35 

earthquake resisting system. The dynamic behaviour of tall piers may be very different from 36 

that of short piers due to a number of factors, such as their higher flexibility, the higher ratio 37 

between the pier mass and the deck mass they have to withstand, and the influence of the axial 38 

loads on the vibrational properties. 39 

The large flexibility of tall piers leads to large values of the fundamental period in the horizontal 40 

direction, which in turn results in low seismic response spectral accelerations for the bridge. In 41 

this situation, it is not cost-effective nor necessary to resort to seismic isolation or to design the 42 

piers for increased ductility [1]-[3]. Therefore, tall piers are usually designed to maintain an 43 

elastic (or limitedly ductile) behaviour under seismic actions. 44 

In many design codes, a single-degree-of-freedom (SDOF) approximation of the bridge 45 

behaviour is allowed under certain conditions. This is reported, for instance, in Eurocode 8 46 

("Fundamental mode method" reported in §4.2.2 of EC8-Part 2 [4]), in the AASHTO LRFD 47 

bridge design specifications (e.g. in the “Single-Mode Spectral Method” and in the “Uniform 48 

Load Method” in §4.7.4.3.2 of [5]), as well as in many national codes such as the recent Italian 49 

Building Code NTC-2018 [6]. However, the SDOF model is allowed only if the pier mass is 50 

relatively small compared to the deck tributary mass, so that higher order modes have negligible 51 

influence on the bridge dynamic behaviour. As an example, according to the EC8 the pier mass 52 

does not have to exceed 20% of the tributary mass of the deck. On the contrary, in bridges with 53 

tall piers, the high ratio between the pier mass and the deck tributary mass often results in a 54 

significant influence of the higher order modes on the seismic response, so that an accurate 55 

description of the pier geometry and inertia distribution is strictly required [7]-[11]. Recent 56 

results from shake table tests [12] as well as from model-updating hybrid tests [13], [14] on 57 

tall-pier models confirmed that the contribution of higher modes may significantly affect the 58 

seismic response of tall piers. One important effect is the increase of bending moment demand 59 

at pier mid-height, which may trigger additional plastic regions for very high seismic intensities, 60 

such as peak ground acceleration (PGA) values higher than 0.8g [12].  61 

Moreover, bridges with tall piers are sensitive to axial loads, which may significantly influence 62 

the dynamic properties of the system both in the elastic range [15] and at the collapse conditions 63 

[16]-[19]. Thus, the effects of axial loads acting on the deformed bridge configuration need to 64 

be included in the analysis by using a geometrical formulation coherent with the range of 65 

displacement and rotation of interest (e.g., fully non-linear, moderate rotations, p-delta effects) 66 
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[7], [20]. In bridge design practice, the axial-load effects are usually taken into account in a 67 

simplified manner by introducing an amplification factor for the pier seismic moments (also 68 

called moment magnification) evaluated via first-order analysis, as reported, for instance, in 69 

§5.4 of EC8-Part 2 [4], in §4.5.3.2.2b of AASHTO LRFD bridge design specifications [5], and 70 

in §7.9.4 of NTC-2018 [6]. The formulations available for the amplification factors are, 71 

however, based on simple hysteretic SDOF models [21]-[26], and thus they do not adequately 72 

represent the behaviour of tall piers.  73 

Also, the features of the seismic events might affect the response of tall piers, as recently 74 

analysed in [27], [28], where the authors observed that near-fault motions generally lead to 75 

higher seismic vulnerability for piers with height from 40 to 80 m; such study was performed 76 

by analysing the response of a single demand parameter, the curvature ductility demand, and 77 

by developing fragility curves for comparing the performances under near fault and far field 78 

records. 79 

Recently, an analytical model and a related dimensionless formulation was proposed in [15] to 80 

shed light on the main characteristics of the dynamic and seismic behaviour of tall piers 81 

vibrating in their linear elastic range, by accounting for both the influence of axial loads and 82 

higher order modes. The model also allowed the derivation of an analytical solution for the 83 

eigenvalue and the seismic problem by extending previous results for similar problems [29]-84 

[31], in particular by application of the Frobenius method [31]. The reliability of the results 85 

achieved through the adoption of such analytical formulation was also assessed and the 86 

proposed model and the related kinematic assumptions were validated in [15] by comparison 87 

with a large displacement formulation approach. 88 

The present study builds on this work and aims at exploiting the formulation developed in [15] 89 

in an extensive parametric analysis aiming to achieve the following main objectives:   90 

1. evaluating the influence of higher order modes and axial load effects on the seismic 91 

response of tall piers for different values of the characteristic parameters identified in [15] 92 

varying in a range of practical interest; 93 

2. evaluating whether and to which extent the use of the amplification factor suggested by 94 

EC8-Part 2 overestimates the seismic demand; 95 

3. providing results useful for a more informed design and assessment of the seismic response 96 

of tall piers by accounting for the influence of higher modes and second order effects.   97 

In the second part of the paper, three realistic piers with different geometrical and mechanical 98 

properties and corresponding to different values of the characteristic non-dimensional 99 
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parameters are selected and analysed, to reinforce the findings of the parametric analyses and 100 

better explain the implications on the assessment and design of bridges with tall piers. 101 

2 ANALYTICAL PROBLEM FORMULATION AND SOLUTION 102 

In this section, the analytical formulation developed in [15] and used for the purposes of the 103 

present study is briefly recalled. This formulation is based on a continuous modelling approach 104 

for the tall pier (Fig. 1), which consists of a linear-elastic Euler-Bernoulli cantilever beam with 105 

bending stiffness b(x), mass per unit length m(x), and tip mass MT at the top, with x[0, H]. The 106 

formulation describes the perturbed motion starting from a reference configuration (Fig. 1-a) 107 

where the beam axis lies over the x-axis; the beam is subjected to a concentrated compression 108 

force, P, at the free end, and to a distributed compressive load, m(x)g, along its height. The term 109 

P describes the vertical force related to the weight sustained by the pier supports, whereas the 110 

term MT represents the mass associated to the horizontal inertial forces and depends on the static 111 

scheme of the deck in the horizontal plane. It is worth noting that the tip mass at the pier top 112 

MT and the deck vertical reaction P are two independent parameters, differently from mass and 113 

weight of the pier which are, instead, related through the acceleration of gravity and can thus 114 

be described by a single parameter. The proposed model is consistent with the "Individual pier” 115 

modelling approach according to §4.2.2.6 of EC8-Part 2 [4], and it can be employed to describe 116 

the seismic longitudinal and transversal behaviour of piers under some regularity conditions 117 

that allow to consider a single pier with the tributary deck mass to represent the whole bridge; 118 

for example, under the transverse seismic input the model is suitable for the case in which there 119 

is no significant interaction between the adjacent piers (e.g., long and/or transversally flexible 120 

decks). 121 

  
(a) (b) 

Fig. 1. a) Pier model and undeformed configuration; b) deformed pier configuration. 122 

PP PP
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The formulation developed in [15] describes the infinitesimal perturbed motion of the 123 

continuous system in the neighbourhood of the axially loaded reference configuration, under 124 

the hypothesis of small strains and displacements, and linear elastic behaviour of the pier. It is 125 

noteworthy that these assumptions are valid for most of tall piers, which are characterized by a 126 

long vibration period such that the inelastic behaviour of the system is activated only for very 127 

high seismic intensities (for example, in the shaking-table experiments of [12], the first plastic 128 

hinge at the pier base formed for PGA>0.6g and the one at mid height was observed for PGA 129 

levels higher than 0.8g). Under these assumptions, it is possible to define vibration modes of 130 

the system, even though these are influenced by axial load effects, and thus the response to the 131 

seismic input can be expressed by superimposing the contribution of the various modes. 132 

In [15], the following analytical expression of the circular frequency for the s-th vibration was 133 

derived: 134 
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where sk  and sm  are the generalized stiffness and mass of the s-th mode, whose shape is 136 

described by s, a spatial function representing the s-th mode shape and belonging to the space 137 

U of transverse displacement functions satisfying the essential boundary conditions; 138 

, ,  K N M  are bilinear symmetric forms mapping pairs of functions belonging to U into the 139 

space R of real numbers. The expression of sk  considers the reduction of stiffness due to the 140 

so-called P-delta effects. 141 

The dynamic properties of the system are also described by the modal participation factor, s , 142 

and by the modal mass participation factor, sMPF , defined as follows, respectively: 143 
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According to the mode superposition method, the motion is expressed by the following 146 

summation series: 147 
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where ( )  0 1: ,sq t t t →R  is the generalized coordinate corresponding to s.  149 

The s-th decoupled equation for qs(t), obtained by employing the orthogonality conditions and 150 

by adding a source of inherent damping, reads as follows: 151 

 ( ) ( ) ( ) ( )22s s s s s s s gq t q t q t u t   + + = −  (5) 152 

where 
2

s  is the circular frequency whose expression is given in Equation (1), s  is the s-th 153 

mode damping factor, and s  is the s-th mode participation factor. The values of s  for the 154 

various vibration modes can be calibrated based on experimental observations [32].  155 

Once the displacement response history is evaluated, the histories of the bending moment and 156 

of the shear along the beam can be obtained as follows: 157 
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3 PARAMETRIC STUDY 160 

In this section, the characteristic parameters controlling the problem are first introduced. Then, 161 

the influence of higher order modes on the pier dynamic behaviour is analysed by considering 162 

the relation between the characteristic parameters and the modal properties. Successively, a 163 

parametric study is carried out to evaluate the influence of higher order modes and axial load 164 

effects on the seismic response.  165 

3.1 Characteristic parameters 166 

Under the assumption of homogeneous pier mass and stiffness (i.e., m(x)=m and b(x)= EI), the 167 

internal compressive action simplifies to N(x) = P + m(H-x) and the characteristic non-168 

dimensional parameters controlling the dynamic behaviour of the system in Fig. 1, evaluated 169 

by applying the Buckingham’s Pi-theorem, are only three [15], namely: 170 
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Parameter 
2  represents the ratio between the load at the pier top (deck reaction), P, and the 172 

Euler buckling load, crP , of a cantilever beam loaded by a concentrated force at its top. 173 

Parameter   denotes the ratio between the total pier weight mgH and crP . Thus, the sum 
2 +174 
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  provides a non-dimensional measure of the total vertical loads acting on the pier in relation 175 

to the buckling load and expresses the propensity to second order effects, so that the adjective 176 

“slender” can be attributed to piers for which 
2 +  is significantly larger than 0 (conversely, 177 

stocky piers are characterized by  low 
2 +  values). Finally,   describes the ratio between 178 

the distributed pier mass and the top concentrated mass MT. It is noteworthy that in the particular 179 

case of TP M g=  one has 2 = , hence the problem is governed by two parameters only, 180 

whereas in the case of zero distributed mass   =   = 0 and the problem is governed by a single 181 

parameter. 182 

While the modal properties of the system depend only on these non-dimensional parameters, 183 

the response to a seismic input also depends on the system fundamental vibration period. This 184 

can be described by 0

0

2
T




= , where 0  is the circular frequency of the pier obtained by 185 

neglecting the distributed mass and the axial load effects, i.e.: 186 

 
0 3

3

T
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 =  (9) 187 

In this study, the values assumed for the pier characteristic parameters are chosen to cover a 188 

wide range of behaviours typical of real bridge configurations. 189 

The parameter 2  is varied between 0.01 and 0.4. Higher values are not considered because 190 

they would result in piers close to buckle under the non-seismic load combinations.  191 

The values assumed for   are in the range between 0.01 and 3. The lower limit corresponds to 192 

a pier with a negligible mass compared to the mass at its top, whereas the higher limit 193 

corresponds to a very high pier mass and a low mass at the pier top. This situation is typical of 194 

piers that are disconnected by the deck through a sliding bearing at their top.  195 

In order to limit the parameters to be varied in the parametric study, it is assumed that 2 = .  196 

The period T0 is assumed to vary in the range between 3s and 8s. Lower vibration periods are 197 

not considered because they would correspond to short piers, which are expected to exhibit an 198 

elastoplastic behaviour, not considered by the model. On the other hand, vibration periods 199 

higher than 8.0 s are not considered, because they would correspond to very slender piers, 200 

whose response may be more affected by loads different from the seismic loads (e.g., wind). 201 

 202 
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3.2 Modal properties  203 

The ratio between the i-th circular frequency of the pier, i , and 0 , can be expressed in terms 204 

of a non-dimensional frequency ratio as: 205 

 ( )2

0

, ,i f


  


=  (10) 206 

It can be shown that also the modal shapes and other modal properties (e.g., the modal 207 

participation factors) depend only on the three identified non-dimensional parameters.  208 

In [15], the relation between the non-dimensional parameters and the modal properties of the 209 

system was investigated and the study outcomes can be synthesized as follows: the circular 210 

frequencies of the system decrease with increasing 2 and the axial load significantly affects 211 

only the fundamental circular frequency, whereas the circular frequency of the higher modes 212 

are weakly sensitive to variations of 2 . The study is herein extended to assess the influence 213 

of the axial loads on the modal participating mass, which is a useful parameter providing direct 214 

information on the contribution of the vibration modes to the total base shear of the system; in 215 

fact, in the case of unit base acceleration, the base shear is exactly equal to the sum of all modal 216 

participating masses in a given direction [33]. To this aim, 217 

 218 

Fig. 2 plots the variation with 2  and  of the first modal participating mass, 1MPF , and of 219 

the sum of the first two participating masses 1MPF + 2MPF , normalized with respect to the total 220 

mass of the system, Mtot. 221 

In general, these modal properties are equal to 1 in the case of zero pier mass, i.e., for 0 =  222 

(corresponding to one vibration mode only) and decrease for increasing   values (i.e., 223 
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increasing pier mass) due to the increase of the higher modes’ contribution to the pier motion. 224 

Furthermore, the first mode contribution is very high and reaches values higher than 65% for 225 

any   value, whereas the contribution of the first two modes is higher than 70% for any 226 

combination of   and 2  value considered. Finally, it is noted that these two modal properties 227 

are affected by axial load effects. In particular, the first modal participating mass 1MPF  is 228 

almost unaffected by the axial load effects, whereas the second modal participating mass (and 229 

hence the sum 1MPF + 2MPF ) is reduced from 85% to 70% by increasing the load at the pier 230 

top through the 2  value.  231 

Considering these results, it can be stated that high values of β are a necessary condition for 232 

having a contribution of higher order modes to the response, and that for β = 0, the system 233 

behaves as a single degree of freedom system. In most cases, high values of β are also a 234 

sufficient condition for higher order modes contribution, but in some particular situations (e.g., 235 

extremely rigid piers) the system moves with the ground and thus higher order modes become 236 

less important. These special cases can be accounted for by also analysing the parameters  237 

and  , which attain values close to zeros when the pier’s stiffness is very high. 238 

 239 
Fig. 2. Plot of the normalized (by the total mass Mtot.) values of 1MPF  (a) and of the sum 240 

1MPF + 2MPF  (b) vs.  , for different 2  values.  241 

3.3 Seismic response  242 

In this subsection, a parametric study is carried out to evaluate the influence of axial load effects 243 

on the seismic response of tall piers with various geometrical and mechanical properties. The 244 

seismic input considered for all the combinations of the above parameters is described by the 245 
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EC8 type I soil type B spectrum (soil factor S = 1.20), for an importance factor I = 1 and a peak 246 

ground acceleration PGA = 0.30g (Fig. 3). The shape and amplitude of the spectrum at long 247 

periods is controlled by the corner period TD = 2s, identifying the beginning of the maximum 248 

spectral displacement (MSD) plateau, by the period TE = 5s, corresponding to the end of the 249 

plateau and the beginning of the linear decreasing branch of the spectrum, and by the period 250 

TF=10s, beyond which the spectral displacement tends to a constant value (ground displacement 251 

dg). Appendix A of EC8-Part 1 provides the expressions for the displacement spectrum 252 

ordinates for periods T>TE.  253 

 254 
Fig. 3. Displacement response spectrum as per EC8 Part 1 [4] (MSD: maximum spectral 255 

displacement). 256 

In the parametric study, three different values of T0 are considered (consistent with the 257 

fundamental periods of the piers analysed in Section 4), corresponding to the ratios T0 /TE = 0.6, 258 

1, and 1.4. The period elongation due to axial load effects and the higher order modes are 259 

expected to have a different effect on the systems corresponding to these periods. Seven natural 260 

ground motion records compatible with this displacement response spectrum have been selected 261 

through the software tool Rexel-Disp [34], which is the result of many recent studies focused 262 

on the characterization of ground motions for the seismic design and assessment of long-period 263 

structures. The structural response quantities considered are the average values (among the 264 

seven excitation scenarios) of the peak transverse displacement at the pier top, of the peak base 265 

shear and of the peak bending moment.  266 

In order to shed light on the influence of axial load effects, the ratio between the values assumed 267 

by these quantities by accounting for and by disregarding axial load effects are evaluated. These 268 

ratios are denoted as rd, rV, rM, and refer to the pier top displacement, to the base shear, and to 269 

the base bending moment, respectively. The base bending moment is also evaluated in 270 

compliance with the EC8-Part 2 provisions [4], i.e. by increasing the bending moment obtained 271 

by a first-order analysis (neglecting axial force contribution) through the moment magnification 272 
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factor  𝛥𝑀 =
1+𝑞 

2
𝑑𝐸𝑑𝑁𝐸𝑑, where EdN  is the axial force, Edd  is the relative transverse 273 

displacement of the ends of the member, and q is the behaviour factor considered for the design. 274 

A similar moment magnification factor is prescribed also in the Italian building code NTC2018 275 

[6], expressed as 𝛥𝑀 = 𝑑𝐸𝑑𝑁𝐸𝑑, which thus coincides with the previous one if q=1 (no ductile 276 

behaviour).  277 

Therefore, a fourth response ratio rMC is considered in this parametric study as the ratio between 278 

the code-based bending moment at the pier base calculated as per the EC8-Part 2 provisions 279 

(assuming q=1) and the base bending moment obtained by the proposed formulation, in order 280 

to evaluate the accuracy of the EC8 approach. 281 

Fig. 4 reports the values assumed by the ratios rd and rV for different values of 2  and of   282 

varying in the previously identified range and for T0 /TE = 0.6, 1, and 1.4. Based on these results, 283 

it is noted that for all the examined periods the pier top displacement response decreases when 284 

the axial load effects are taken into account, since values rd < 1 are obtained for all the 285 

combinations of 
2  and   different from zero. More specifically, the top displacement 286 

response is reduced up to 30% for combination of shorter periods T0 /TE = 0.6 and large 287 

distributed pier mass compared to the top concentrated mass ( 3 = ). However, while the 288 

influence of the pier top load (
2  parameter) is qualitatively similar for the examined periods 289 

(both short and long), the displacement response is sensitive to the pier mass distribution only 290 

in the relatively short period range (T0 /TE = 0.6 and 1.0) and is negligible for periods lying in 291 

the linear decreasing branch of the spectrum (as in the case T0 / TE = 1.4). Also, the base shear 292 

response, like the pier top displacement response, is reduced if the axial load effects are taken 293 

into account. However, in contrast to the displacement response, the greatest reductions effects 294 

of base shear are observed for lower values (rather than for higher values) of  . This is related 295 

to the fact that the shear demand is significantly influenced by higher order modes, whose 296 

relative contribution gets higher for larger distributed pier mass, which is in line with the results 297 

presented in the previous paper [15]. In particular, it is observed that values of relatively large 298 

distributed pier mass (say 0.5  ) compensate for the reduction of the shear demand caused 299 

by the axial load effects so that the shear response ratio rV keeps in the neighbourhood of the 300 

unity for all the range of 
2  values examined. Overall, the variation of the base shear demand 301 

is dramatically influenced by the distributed pier mass when higher axial loads are considered 302 

(say in the range 
2 0.2  ). In the extreme case of 

2 0.4 =  the base shear is reduced up to 303 

more than 40% (compared to the case disregarding the axial load effects) for all the three 304 
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considered periods when the mass is entirely concentrated at the pier top and not distributed 305 

along the pier ( 0  ). Instead, in the same extreme situation the increase of   would 306 

considerably mitigate base shear reductions. These cases are useful to illustrate the importance 307 

of axial load effects (related to 
2 ) and higher order modes (related to  ) on the base shear 308 

demand of tall piers. 309 

Fig. 5 reports the values assumed by the ratios rM and rMC for different values of 2  and of   310 

varying in the previously identified range and for T0 /TE = 0.6, 1, and 1.4. The qualitative trends 311 

of base bending moment ratio rM follow those of the base shear ratio rV. This is reasonable since 312 

base shear and bending moment response are similarly affected by axial load effects and by 313 

higher mode effects. In particular, the increase of the pier top load generates a decrease of the 314 

bending moment response ratio (up to 20% in the extreme case 
2 0.4 =  and 0  ), whereas 315 

the increase of the pier distributed mass compensates for this reduction and may also produce 316 

an increment of the base bending moment response (e.g., case of T0 /TE = 1.4 in Fig. 5c).  317 

It is also interesting to observe that using the EC8-Part 2 formula to account for second order 318 

effects (assuming q=1) yields to a significant overestimation of the bending moment demand, 319 

compared to the values obtained with the proposed formulation. The highest overestimations 320 

(i.e., rMC values) are observed for structural systems with high top loads (large 
2 ) and 321 

negligible distributed mass (low  ), which are characterized by rMC values up to 70%. This 322 

means that the base bending moment obtained by the simplified EC8 approach is overestimated 323 

by more than 70% in comparison to that obtained with the proposed model. This is especially 324 

true for larger periods (e.g., T0 /TE = 1, and 1.4).  325 
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 326 

Fig. 4. Variation with 2 and   of rd for T0 /TE = 0.6 (a), 1 (b), and 1.4 (c) and of rV for T0 /TE 327 

= 0.6 (d), 1 (e), and 1.4 (f). 328 
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 329 

Fig. 5. Variation with 2 and   of rM for T0 /TE = 0.6 (a), 1 (b), and 1.4 (c) and of rMC for T0 330 

/TE = 0.6 (d), 1 (e), and 1.4 (f). 331 

 332 
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On the other hand, the discrepancy between the EC8 approach and the proposed formulation 333 

decreases when the pier distributed mass increases (higher  ). As an example, for   334 

approaching 3 and for the extreme case of 
2 0.4 = , the overestimation reduces to around 30%, 335 

20% and 5%, respectively for the three considered periods T0 /TE = 0.6, 1, and 1.4. Thus, the 336 

higher the stiffness of the system, the higher the overestimation. In all the cases investigated, 337 

the amplification factors of EC8 leads to conservative estimates of the bending moments. 338 

4 CASE STUDIES 339 

In this section, the proposed analysis technique is employed to evaluate the influence of axial 340 

load effects and higher order modes on the seismic response of three case studies of tall piers 341 

belonging to realistic bridge models taken from the literature. 342 

The main geometrical and mechanical characteristics of the three considered case studies are 343 

summarized in the sketch of Fig. 6. In particular, a tall pier taken from Kolias [1], a stockier 344 

pier taken from Wei et al. [26] and a very tall pier taken from Li et al. [35] are analysed. The 345 

three piers are characterized by different combinations of parameters 2 , ,   , as reported in 346 

Fig. 6, which are representative of different design scenarios discussed in the parametric study 347 

above and are thus selected to cover a wide range of bridge configurations and seismic 348 

behaviours. In this manner, it is possible to scrutinize the influence of the axial load effects and 349 

of the higher order mode effects depending on the different mass and stiffness characteristics 350 

of the piers of these three examples. 351 

The seismic input is the same as that employed for the parametric study, i.e., based on the EC8 352 

type I soil type B spectrum soil and a PGA = 0.3 g. Fig. 7 shows the acceleration-displacement 353 

response spectrum (ADRS spectrum) of the spectrum-compatible records and of the mean 354 

spectrum. The plot in Fig. 7-b provides important information regarding the effect of the modal 355 

vibration periods and of the changes due to axial load effect on the seismic demand and it is 356 

useful to explain the results of the following seismic analyses. In particular, the axial loads 357 

effect in terms of period elongations can be also appreciated. 358 

 359 
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 360 

Fig. 6 Sketch of the three case studies analysed in this paper, with different geometrical and 361 

mechanical properties. 362 
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Fig. 7 (a) Acceleration response spectra of natural records and (b) mean ADRS response 363 

spectrum with identification of the first two vibration periods of the three case studies 364 

analysed below. 365 
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4.1 Case study 1 (T0=5s, T0 /TE ≈ 1) 366 

This case study consists of a tall pier belonging to a bridge, whose properties are taken from 367 

[1]. The bridge has a three-span steel-concrete composite deck (with span length of 60 m+80 368 

m+60 m) and two identical RC piers. These two piers, of height H = 40 m, have a circular 369 

hollow transverse section with external diameter of 4.0 m and internal diameter of 3.2 m. The 370 

pier head has a rectangular transverse section with dimensions 4.0 m x 8.0 m, and is 1.5 m high. 371 

Class C35/45 concrete is adopted for concrete, and S500 steel grade is used for the longitudinal 372 

rebars, with a reinforcement ratio equal to 1.5% of the cross-section area [1]. 373 

The formulation described in Section 2 is used to analyse the longitudinal bridge response. 374 

Assuming a rigid deck behaviour in line with § 4.2.2.3 of EC8-Part 2 provisions [4], only the 375 

response of a single pier is investigated, benefitting from the problem symmetry. The pier 376 

effective stiffness accounting for concrete cracking is EI =  7.3086∙107 kNm2, whereas the pier 377 

distributed mass is m = 11.53 ton/m. The mass concentrated at the pier top and describing the 378 

deck and pier head inertia is MT = 2145 ton. Since the cross section is uniform along the pier 379 

length, the axial force is a linear function ( ) ( )N x P mg H x= + −  with P = 15470 kN, the pier 380 

height H = 40m and the pier mass 461.2 tonmH = . It is worth noting that in this case study 381 

MT is different from P/g= 1576 ton, because the longitudinal inertial force is resisted by the two 382 

piers only, whereas the vertical weight is distributed among the piers and the abutments. 383 

The buckling load of a cantilever beam with the same flexural stiffness of the pier is Pcr = 384 

2EI/4H2 = 1.17∙108 kN. This corresponds to a ratio 2 = P/Pcr = 0.132. The other two 385 

characteristic parameters, related to the distributed mass, have the following values:  = 0.215 386 

and   = 0.039. 387 

The Frobenius method is applied to solve the eigenvalue problem. The first three longitudinal 388 

vibration periods of the pier in the longitudinal direction disregarding axial load effects are 389 

5.003s, 0.251s, and 0.078s. A comparison between the modal vibration periods Ti and mass 390 

participating factors MPFi obtained by accounting for and by disregarding axial load effects 391 

(corresponding to assuming N(x) = 0 in Equation (2)) are reported in Table 1. 392 

By inspection of the results listed in Table 1, it can be noticed that only the first vibration mode 393 

is significantly affected by the axial load effects. This is expected from the results of the 394 

parametric study of the eigenvalue problem discussed in Section 3.2 and also reported in [15]. 395 

As an opposite trend, the discrepancies in terms of MPFs between the model with and without 396 

axial load effects increase for increasing mode order. 397 

The pier seismic behaviour is evaluated by computing, for each of the 7 response-spectrum-398 
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compatible records representing the seismic input, the response envelopes (i.e., the peak 399 

absolute values) of the displacements, bending moments and shear observed along the pier.  400 

Fig. 8 reports the average response obtained from all the considered records, i.e., the average 401 

peak values of the displacement umax(x), bending moment, Mmax(x), and shear, Vmax(x) for each 402 

location x along the pier length. 403 

Table 1. Second-order effects on periods and mass participating factors.  404 

Mode 

Ti [s] MPFi [%] 

w/o axial load  w/ axial load  w/o axial load  w/ axial load  

1 5.003 5.402 91.491 91.462 

2 0.251 0.253 4.966 4.548 

3 0.078 0.078 1.249 1.412 

4 0.038 0.038 0.767 0.677 

5 0.022 0.022 0.345 0.398 

6 0.014 0.014 0.297 0.259 

 405 
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Fig. 8 Average seismic response of case study 1: a) modal contributions to the displacements, 406 

bending moments and shear, b) axial load effects on displacements, bending moments and 407 

shear profiles. 408 

In particular, Fig. 8-a analyses the contribution of different modes to the seismic response: a 409 

comparison of the response envelopes obtained by truncated models that consider the 410 

contributions of mode 1, of modes 1 and 2, and of the first 8 modes in terms of displacements, 411 

bending moments and shear is illustrated. It is worth noting that the higher modes, related to 412 

the mass distributed along the pier, do not considerably influence the displacements, whereas 413 

they play a key role in the profiles of both the bending moment and shear force along the pier. 414 

It can be seen that the higher mode contribution to the shear demand at the base and at the top 415 
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of the pier is significant. More specifically, the second-mode contribution significantly affects 416 

such shear demand at the two pier ends, as can be seen by comparing the response obtained by 417 

including the first two modes with that obtained by including eight modes. Moreover, the shear 418 

demand calculated by the first mode only would be largely underestimated. 419 

Fig. 8-b compares the profiles of peak displacement, bending moment and shear force evaluated 420 

by the proposed formulation against the corresponding results obtained by neglecting the axial 421 

load effects. Notable differences can be observed for all the considered response quantities. 422 

Unlike what occurs in static problems, the axial load effects give rise to lower seismic response 423 

values along the whole pier height. This result can be explained in view of the fundamental 424 

vibration period elongation caused by the additional axial loads, which shifts the structural 425 

response on regions of the response spectrum with a lower spectral acceleration (cf. the ADRS 426 

response spectrum in Fig. 7-b). As an example, the average peak bending moment value at the 427 

base of the pier is 26904 kNm by disregarding axial loads and reduces to the value of 23923 428 

kNm if axial loads are taken into account. Following the EC8-Part 2 approach [4], an 429 

amplification of 2475 kNm would be required, corresponding to a ratio rMC=1.22 between the 430 

amplified first order base moment and the base moment resulting from the analysis accounting 431 

for second order effects. It is observed how this rMC value is very close to the value of rMC=1.19 432 

resulting from the parametric study of section 3.3 (see Fig. 5-e for 2 = 0.132 and  = 0.215). 433 

The slight difference between these two ratios can be attributed to the different values of the 434 

characteristic parameter , i.e.,   = 0.039 in the present analysis and   =  = 0.028 in the 435 

parametric study. This demonstrates the validity and usefulness of the above parametric study 436 

for a more informative assessment of the bridge response including axial loads and higher mode 437 

effects. Moreover, it is worth noting that in this case the bending moment reduction due to the 438 

axial load effect is in net contrast to the amplification obtained by applying the EC8-Part 2 439 

approach [4]. 440 

For what concerns the shear demand, the corresponding reduction is a bit less marked than those 441 

observed in other response parameters. This is due to the significant influence of higher order 442 

modes on the shear force of this pier, and the almost negligible influence of axial load effects 443 

on modes of order higher than one. 444 

4.2 Case study 2 (T0=3s, T0 /TE ≈ 0.6) 445 

This section reports the results of the application of the proposed analysis technique to a bridge 446 

pier model taken from Wei et al. [26]. The reinforced concrete pier has geometrical properties 447 
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significantly different from those of the first case study. Its height is H = 16 m, and the cross 448 

section is circular with diameter D = 1.5 m. The concrete has cylindrical mean strength of 35 449 

MPa and the steel employed for the longitudinal rebars has strength of 470 MPa. The vertical 450 

force at the pier top transmitted by the deck is equal to 5000 kN. The pier stiffness and 451 

distributed mass are respectively b(x) = EI = 3.185∙106 kNm2 and ( )m x m= = 4.50 ton/m, 452 

whereas the mass concentrated at the pier top is MT = 509.68 ton. The value of the buckling 453 

load of a cantilever beam with the same flexural stiffness of the pier is Pcr = 2EI/4H2 =30692.9 454 

kN, corresponding to a ratio 2 = P/Pcr = 0.1629, very similar to the value obtained for case 455 

study 1 despite the different geometry. The values of the other characteristic parameters are 456 

  = 0.141, and   = 0.023. The first three vibration periods of the pier disregarding axial load 457 

effects are 2.986s, 0.123s, 0.0382s, whereas the corresponding values obtained by accounting 458 

for axial load effects are 3.273s, 0.124s, 0.0383s. As observed for the previous case study, axial 459 

load effects influence significantly only the first vibration period. The mass participation factors 460 

of the first three modes obtained by accounting for and by disregarding axial loads effects 461 

almost coincide and their values are 94.02%, 3.18%, and 0.1%. 462 

Fig. 9-a shows the average of the peak absolute responses obtained by accounting for axial load 463 

effects for the set of ground motion records compatible with the spectrum of Fig. 7 a). Fig. 9-b 464 

compares the average response envelopes obtained by accounting for and by disregarding axial 465 

load effects.  466 
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Fig. 9. Average seismic response of case study 2: a) modal contributions to the displacements, 467 

bending moments and shear, b) comparison between the response evaluated by accounting for 468 

and disregarding axial load effects. 469 
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The displacement demand for the pier is inferior to the yield limit of 0.3 m given in Wei et al. 470 

[26]; consequently, the elastic behaviour assumption is accurate for this system, despite the 471 

quite severe seismic input considered (PGA = 0.3g). In this application example, the 472 

contribution of higher vibration modes to the response is practically negligible for the 473 

displacement and the bending moment demand, and modest also for the shear demand (Fig. 9 474 

a). This is related to the lower value of   for the case study 2 in comparison to that of the 475 

previous case study 1, which directly affects the importance of higher order modes due to the 476 

distributed pier mass.  477 

The axial load effects influence only the shear demand (Fig. 9 b), and the value of the base 478 

shear reduces of about 17% when axial load effects are taken into account. This is explained 479 

again by the period elongation effect due to axial loads, which results in a reduction of the 480 

acceleration spectrum ordinates. The bending moments obtained by accounting for and by 481 

disregarding axial load effects are very similar. This can be justified in view of two 482 

counteracting effects related to axial loads: the bending moment reduction due to the decrease 483 

of spectral ordinates, and the increment of bending moment demand due to the vertical force at 484 

the pier top acting on the deformed configuration. 485 

The base section bending moment demand, evaluated via first order analysis and amplified by 486 

the EC8-part 2 moment magnification factor [4] (i.e., 1401.5 kNm) is equal to 11898.3 kNm. 487 

The corresponding value evaluated with the proposed model is 10639.4 kNm. Thus, also in this 488 

case the EC8-Part 2 approach provides overconservative estimates of the effects of axial loads 489 

on the moment demand. The value of rMC=1.11 is consistent with the value shown in Fig. 5-d 490 

of the parametric study of section 3.3 for 2 = 0.163 and  = 0.141. 491 

4.3 Case study 3 (T0=7s, T0 /TE ≈ 1.4) 492 

This case study consists of a very tall bridge pier belonging to a regular multi-span bridge, 493 

whose properties are taken from Li et al. [35]. The pier is 90 m high and has a hollow square 494 

cross-section of dimensions 4.4 m x 4.4 m and thickness 0.5m. The longitudinal reinforcement 495 

ratio is 1.48%. The concrete has cylindrical mean strength of 48 MPa. The vertical force at the 496 

pier top transmitted by the deck is equal to 6867 kN. The pier cracked stiffness and distributed 497 

mass are respectively b(x) = EI = 2.225∙106 kNm2 and ( )m x m= = 19.87 ton/m, whereas the 498 

mass concentrated at the pier top is MT = 700 ton. The values of the pier characteristic 499 

parameters are 2 = P/Pcr = 0.101,   = 2.556, and   = 0.259. The value of the sum 
2 +   is 500 

equal to 0.36, denoting an higher slenderness of this pier with respect to the case studies 501 
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previously analysed, characterized by lower
2 +  values, of the order of 0.17. Moreover, the 502 

high value of  anticipates that, in this specific case, higher order modes are likely to contribute 503 

significantly to the response. The first three vibration periods of the pier disregarding axial load 504 

effects are 6.968 s, 0.884 s, and 0.292 s, whereas the corresponding values obtained by 505 

accounting for axial load effects are 7.692 s, 0.895 s, 0.293 s. In this case, also the higher modes 506 

vibration period are slightly influenced by axial load effects. The mass participation factors of 507 

the first three modes obtained by accounting for and by disregarding axial loads effects almost 508 

coincide and their values are 67.43%, 16.76%, and 5.46%. This also confirms that the second 509 

and third mode of vibration are expected to contribute significantly to the response.  510 

Fig. 10a shows the average of the peak absolute responses obtained by accounting for axial load 511 

effects and by considering the different modal contributions. As expected, the higher modes of 512 

vibration dominate the pier seismic response. In particular, the second mode gives a significant 513 

contribution to the bending moment and shear demand. The value of the moment demand at x 514 

= 55m including the axial load effects is only slightly lower than the value at the pier base. 515 

Thus, plastic hinges are expected to form also at this location, as already observed in [35]. 516 

However, it should be pointed out that the pier responds elastically to the assumed seismic input 517 

and plastic hinges will form only for very severe excitations. In particular, plastic hinges were 518 

reported to form only for PGA values higher than 0.4g [35].  519 

Fig. 10b compares the average response envelopes obtained by accounting for and by 520 

disregarding axial load effects. These effects have a negligible influence on the response. This 521 

is a consequence of the relevant contribution of higher modes, which are not significantly 522 

affected by axial load effects. Finally, it is worth noting that also in this case the EC8-Part 2 523 

approach [4] gives conservative estimates of the effects of axial loads on the moment demand, 524 

with the increment equal to 1133.7 kNm. The rMC ratio in this case is equal to 1.08, and it is 525 

consistent to the value rMC = 1.05 obtained from the parametric study results shown in Fig. 5-f, 526 

for 2 = 0.101 and  = 2.556. 527 
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Fig. 10. Average seismic response of case study 3: a) modal contributions to the 528 

displacements, bending moments and shear, b) comparison between the responses evaluated 529 

by accounting for and by disregarding axial load effects. 530 

5 CONCLUSIONS 531 

The study performed in this paper aims to quantify the influence of both axial loads and higher 532 

order modes on the seismic response of tall piers, which are the most important components of 533 

the earthquake resisting system of bridges. 534 

The analytical formulation validated in a previous study is herein adopted to analyse a wide 535 

range of piers and bridge configurations to provide a global overview of the problem. First, a 536 

thorough parametric investigation is carried out to evaluate how the system modal and seismic 537 

response is influenced by the main characteristic parameters. Afterwards, three realistic case 538 

studies, representative of different geometrical and dynamic conditions, are selected and 539 

seismic time-history analyses are performed to further investigate the influence of the aforesaid 540 

parameters.  541 

Based on the results from both parametric investigation and case studies, the following general 542 

conclusions can be drawn. 543 

Regarding the modal properties: 544 

• the first period of vibration is the only one significantly affected by both axial loads and 545 

pier distributed mass; 546 

• conversely, the first mode mass participation factor is not sensitive to the axial load, whereas 547 

the higher modes participation factors show significant variations. 548 

Regarding the seismic response: 549 

• the internal forces of the pier (i.e., shear and bending demand) are differently affected by 550 
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the axial loads and higher order modes depending on the specific values assumed by the 551 

two main governing parameters, i.e., the pier top load intensity (governing the axial load 552 

effects) and the distributed mass (governing the contribution of higher order modes). 553 

• The base shear reduces if the axial load effects are taken into account, and this effect can be 554 

very important in piers with low distributed mass values; however, this reduction may be 555 

compensated by the counteraction exerted by the higher order modes in case of piers with 556 

relatively large values of distributed mass. 557 

• The bending moment response is similarly affected by axial loads and higher modes; in 558 

particular, the pier top load increment generates a decrease of the bending moment response, 559 

whereas the rise of the pier distributed mass compensates for this reduction and may also 560 

lead, in case of very long period systems, to an increment at the base of the pier. 561 

• It is also worth mentioning that the bending moment reduction due to the decrease of 562 

spectral ordinates is often high enough to balance the increment of bending moment demand 563 

produced by the pier top vertical force acting on the deformed configuration. 564 

• The shear and bending demand assessed neglecting higher modes contribution may be 565 

notably underestimated, in particular for piers with high fundamental period; more 566 

specifically, the second mode provides the highest contribution, while modes from 3 to 8 567 

do not significantly affect the response. 568 

• Moreover, in case of high distributed mass values and long period systems, a first mode-569 

based estimation might be not adequate to correctly describe the internal actions distribution 570 

along the pier height, thus potential plastic region at locations different from the base of the 571 

pier might be not identified. 572 

• From the case study analyses it can be concluded that at least the first two modes have to 573 

be considered to correctly estimate the shear and bending demand of tall piers. 574 

Finally, with regard to the effectiveness of the simplified design approaches suggested by the 575 

Eurocode 8 to account for the second order effects, the following points deserve to be 576 

highlighted:  577 

• the application of the EC8 design procedure to piers with low distributed mass brings to 578 

results extremely conservative and this trend increases with the pier top load intensity and 579 

system fundamental periods; 580 

• conversely, the overestimation produced by the EC8 design procedure is lower in piers with 581 

high distributed mass and the conservativism of results reduces for smaller axial loads and 582 

with the system fundamental period; 583 
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• in all cases investigated, the amplification factors of EC8 are always from the safety side. 584 

Due to the relevance of problem, it might be useful to extend the present study within a 585 

probabilistic framework aimed at characterizing the seismic response of tall piers beyond the 586 

design condition, by consequently removing the hypothesis of elastic response. 587 

Moreover, given the observed sensitivity to the axial loads, future studies might be 588 

recommended to consider near-fault pulse-like ground motions, in particular aimed at exploring 589 

the influence of their relatively high vertical component of the excitation. 590 
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