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1 INTRODUCTION

Existential rules have attracted much interest in both the database and the knowledge represen-
tation and reasoning communities (see Reference [34] for an overview). These are essentially
universally quantified Horn clauses (or Datalog rules) extended by the possibility of existential
quantification in rule heads. An example for an existential rule is

∀x∀y (EmpProj(x,y), BaseLevel(x)→ ∃z IsManagedBy(x,z)), (1)

which states that every base-level employee working on a project must be managed by some-
body. Existential rules of the most basic form are also well-known as tuple-generating dependen-
cies (TGDs); see Reference [15]. In the Datalog± family of ontology languages [32, 33], TGDs
are complemented by a number of other types of rules, notably, by negative constraints

(NCs), such as ∀x (Ceo(x ),BaseLevel(x ) → ⊥), which means that nobody can simultaneously
be a CEO and a base-level employee), where ⊥ stands for false, and a restricted class of
equality-generating dependencies (EGDs), called non-conflicting EGDs [33], which may ex-
press key constraints (keys) and functional dependencies in relational data, for example, the rule
∀x∀y∀z (IsManagedBy(x ,y), IsManagedBy(x , z) → y = z), which expresses in database terms that
the first column (or attribute) of the IsManagedBy relation is a key. At the same time, the resulting
language is syntactically restricted to achieve decidability and even tractability. In this article, we
often omit the universal quantifiers when writing a rule.
Existential rules under various names are an extension of Datalog and have many applications

both in database management and knowledge representation and reasoning. A first important
application in the database area is data exchange [7, 54, 55, 58, 71], which consists of the problem of
computing an instance of a target schema, given an instance of a source schema and a specification,
in form of TGDs and possibly also EGDs of the relationship between the source and target data,
plus a set of TGDs (or EGDs) to hold on the target relation. Data exchange, and the related issue
of schema mapping, are mostly used in case of data integration, for example, after a merger of two
companies. An important experimental system built by IBM Watson was CLIO [53], which has
not only influenced IBM products but also many more recent systems such as, for example, the
integrated VADA data wrangling system [79].

An area that extends classical database systems by rule-based knowledge, where TGDs play
a central role is ontology-based data access (OBDA) [23, 103, 116], which enriches a database
D by a so-called ontology Σ, which contains (possibly recursive) axioms or rules whereby (pos-
sibly infinitely many) new facts can be inferred or integrity constraints enforced. OBDA allows
one to query a database enriched by an ontology without the necessity of materializing all facts
that are entailed by D and Σ. Originally, these ontologies were based exclusively on description

logics (DLs). In this setting, they gave rise to the Mastro system [37], which has been success-
fully applied to data integration, database quality improvement, and knowledge sharing in various
contexts, for example, in a major bank [106]. The DL-Lite axioms used in these ontologies can be
reformulated as TGDs and EGDs [33]. More recently, OBDA frameworks that directly use the
more powerful setting of TGDs and other constraints were introduced, for example, the Datalog±

framework [33, 34].
There are literally hundreds of papers on data exchange and OBDA. However, there are many

other applications where existential rules play an important role. We briefly mention a few. Knowl-
edge graph management: In References [17–19], the Vadalog system for knowledge graph man-
agement is described. This system uses the formalism of TGDs as a main language construct.
Some of its commercial applications are described in References [16, 41]. Data distribution: In
Reference [61], a declarative framework based on TGDs and EGDs for reasoning about data distri-
bution issues is presented. Bag semantics: It was shown in Reference [22] that the relational bag
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semantics (where relationsmay contain duplicates) for Datalog can be defined and directly used via
TGDs. Querying the Semantic Web and SPARQL: In Reference [8], a powerful semantic web query
and reasoning language based on TGDs (with stratified negation) is presented. This language cov-
ers SPARQL with entailment regimes for RDFS and OWL vocabularies, but is more expressive.
Data quality assessment and data cleaning: TGDs and versions of Datalog± have been used for de-
tecting data inconsistencies, assessing data quality, repairing databases, and data cleaning [30, 94].
Reasoning and classifying in chemistry: A TGD-based system performing automatic classification
of chemical compounds is presented in Reference [89]. Verification and model checking: Finally,
let us remark, that the language Datalog LITE [65], which is essentially guarded Datalog without
existential rules, can be expressed by the class of guarded TGDs that we study in the present arti-
cle. It was shown in Reference [65] that Datalog LITE naturally encompasses popular modal and
temporal logics, such as CTL or the alternation-free μ-calculus, and is equivalent to the alternation-
free portion of guarded fixpoint logic. These logics are thus all covered by guarded normal TGDs
with stratified negation. Note that normal TGDs (NTGDs) are existential rules that may contain
negated atoms of the form ¬R (x) in their bodies. However, guarded NTGDs with stratified nega-
tion, let alone with stable negation (as studied here), are a much more expressive formalism than
Datalog LITE. This inspires possible future research on wider applications to model checking and
system verification using guarded TGDs with the stable model semantics. Next to the technical
challenge, all these applications motivated our research on whether a significant class of TGDs,
for which query answering is decidable, can be married to the stable model semantics without
spoiling decidability and complexity.
We now provide an overview of key technical details and underlying ideas of our work. Query

answering based on sets of existential rules is the following decision problem. For a database
D, a set of existential rules Σ, and a Boolean query Q , decide whether Q evaluates to true on
D ∪ Σ. As will be discussed in more detail in Section 2, Boolean query answering is computation-
ally equivalent to the query of tuple (QOT) problem of checking whether for a possible answer
tuple (a1, . . . ,an ),Q (a1, . . . ,an ) is indeed an answer forD and Σ. For this reason, while we concen-
trate on Boolean queries, our results are equally valid for the QOT problem, which is the relevant
decision problem for answering non-Boolean queries.
The queries mostly considered in the related literature are conjunctive queries (CQs), but we

here also deal with various extensions, such as the well-known class of unions (i.e., disjuncts) of
conjunctive queries (UCQs), and with it extensions: unions of normal CQs (UNCQs), which
are allowed to contain negative literals, and covered UNCQs, which are like UNCQs but where
in each query-disjunct, for each negated atom α , there must exist a positive atom β containing
all variables of α . These classes will be defined more precisely in Sections 2 and 3. Their Boolean
variants are abbreviated using the letter “B” in an appropriate position; so, for example, BCQmeans
Boolean conjunctive query, and UNBCQ stands for union of normal Boolean conjunctive queries.
Query answering with TGDs is undecidable [14, 39], even in the case of fixed sets of plain

TGDs, as arbitrary TGDs allow to simulate a universal Turing machine [32] and singleton sets of
TGDs [11]. Therefore, to obtain decidability, restrictions need to be imposed on TGDs.

One of the largest, most fundamental, and most significant decidable classes of first-order logic
formulas is the guarded fragment [6], which we consider here in the context of TGDs. A TGD is
guarded if its body contains an atom, called guard, that covers all body variables. Guarded TGDs
were studied in References [32, 33], where the query-answering problem for guarded TGDs and for
various extensions was shown to be decidable, andwhere the complexity of this problemwas deter-
mined. To enhance their expressiveness, guarded TGDs were extended by stratified negation [33],
with the same decidability and complexity results.
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To further improve the suitability of TGDs for knowledge representation, there have been ef-
forts by other authors to adapt the more powerful stable model semantics (SMS) [62] to guarded
rules, but this has succeeded only for restricted fragments of guarded TGDs, sometimes enriched
by other (orthogonal) features. However, it was not clear whether an extension of the full language
of guarded TGDs to the SMS would be decidable at all, and if so, what the complexity of query
answering would then be. For example, in Reference [51], the formalism FNC was defined, featur-
ing very restricted types of guarded rules, for which query answering under the SMS is decidable.
However, the authors of Reference [51] say that it is “problematic” to extend the formalism with
other types of guarded rules under the SMS, and thus, to cover the full class of guarded TGDs. It
is precisely the main goal of the present article to clarify this, not only for the full basic formalism
of TGDs, but also for various extensions ((negative) constraints, equality-generating dependen-
cies (EGDs), and keys). In particular, we prove the decidability of query answering based on TGDs
under the SMS and derive complexity results.
Some readers may experience a déjà vu at this point. After the original SMS was proposed in

1988, there have, in fact, been two very appealing more recent approaches that define the sta-
ble models semantics for full first-order logic. These two approaches actually semantically coin-
cide. One is the model-theoretically defined equilibrium logic approach introduced by Pearce in
1996 [98], based on the so-called here-and-there logic, further studied in References [98–100, 102],
and the second-order semantics for SMS, here abbreviated by SOS semantics, by Ferraris, Lee, and
Lifschitz [56, 57], which is based on model minimization techniques similar to circumscription
expressed in second-order logic. Given that TGDs are first-order formulas, why do we not just
apply, say, the SOS here. Are we reinventing the wheel? We do not. We here base our work
on the classical SMS, which is the same logic programming (LP) paradigm also used in ma-
jor software systems such as DLV [84] or Clasp and Potassco [59, 60]. We thus use the classical
SMS setting for LP with Herbrand interpretations and with the adoption of the unique name

assumption (UNA). Existential quantifiers are here interpreted by Skolem functions and the
UNA states that different elements of the Herbrand universe are to be considered different ob-
jects and thus cannot be unified. The SOS instead (just as Equilibrium Logic) is closer to classical
logic and does not forbid such unifications. Interestingly, it was recently shown that for guarded
TGDs, answering UBCQs under the SOS is undecidable [4]. In Section 3.4, we compare the SOS
to the SMS and give examples where these semantics significantly differ. However, we also show
that the UNA alone is responsible for the difference, and that when adding the UNA in form of
axioms (expressible as unguarded TGDs) to the SOS, then the SOS (and thus also Pearce’s ap-
proach) coincides with the SMS. Our decidability result and our complexity results thus carry
over to the SOS under the UNA. In this sense, we actually derive positive results for the SOS as
well.

Theway in whichwe define the SMS for NTGDs is, as already explained, inherited from thewell-
known stable model semantics of normal logic programs with function symbols [62]. In fact, we
interpret existential quantification in rule heads by Skolem terms, which means that the SMS for
guarded NTGDs is already defined via the SMS for normal logic programs with function symbols.
Thus, we simply use the SMS semantics on the skolemized version of the NTGDs.

The following simple examples and their discussion shall illustrate various aspects of the so-
defined SMS and highlight the intrinsic difficulties that one is confronted with when searching for
algorithmic solutions. Many further examples will be given in the following sections.

Example 1.1. Let Da = {Person(mary)} be a database, and let Σa be the following rule set ex-
pressing that each person has at least one parent (who is a person), and that each person belongs
to either an odd generation or to an even generation, and that odd and even alternate between one
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generation and the next:

Person(x) → ∃y Parent(x,y),

Parent(x,y) → Person(y),

Person(x),¬Even(x ) → Odd(x),

Person(x),¬Odd (x ) → Even(x),

Parent(x,y), Odd(x) → Even(y),

Parent(x,y), Even(x) → Odd(y).

After Skolemization, the first rule becomes:

Person(x)→ Parent(x,f(x)),

where f is a Skolem function. This program has exactly two stable models, each consisting of an
infinite chain rooted in the constant mary, one containing (among others) the facts Odd(mary),
Even(f(mary)), Odd(f(f(mary))), and so on, and the other containing (among others) the facts
Even(mary), Odd(f(mary)), Even(f(f(mary))), and so on. Let Qa be the conjunctive query (CQ)
∃x ,y, z (Parent(x,y), Parent(y,z), Odd(x), Odd(z)), asking whether there exist members x and z of
odd generations, such that z is a grandparent of x . Also, letQ ′a be the CQ ∃x ,y (Parent(x,y), Odd(x),
Odd(y)), asking nearly the same, except for using the parent relation instead of grandparent, and
let Q ′′a be the conjunctive query ∃x (Odd(x), Even(x)), asking if there exists a member of both odd
and even generation. Such queries are evaluated by certain answers (see Definition 3.6), which,
in AI, corresponds to skeptical entailment. Then, by the SMS, Qa evaluates to true on Da ∪ Σa ,
while both Q ′a and Q ′′a evaluate to false on Da ∪ Σa (see Section 3).

Note that it is easy to exhibit rule sets Σ that generate infinitely many infinite stable models, as
illustrated by the following example:

Example 1.2. Let Db =Da = {Person(mary)}, and let Σb be obtained by taking just the first four
rules of the rule set Σa of Example 1.1. Then, there is an infinite number of stable models of Db ∪
Σb , one for each possibility of having for each Skolem term f i (mary) either Even(f i (mary)) or
Odd(f i (mary)), where 1 � i � ∞. Hence, the conjunctive query Qa of Example 1.1 evaluates to
false on Db ∪ Σb under the SMS.

It seems that the interplay of nonmonotonic negation with these two types of infinity made it
hard to understand how the SMS for guarded NTGDs could be brought under control. In particular,
as the above examples show, the following three simultaneous features are tightly interwoven:
(i) recursive predicate definitions, (ii) existential quantifiers appearing in recursive cycles, possibly
enforcing infinite models, and (iii) negation appearing within such recursive cycles. Accordingly,
previous solutions for decidable query answering with guarded TGDs under the SMS either drop
one of these features right away or significantly limit a feature or soften the interaction of at least
two features. For example, the SMS for stratified NTGDs [33] forbids the use of negation within
recursive cycles. A similar type of stratification has also been studied in Reference [88] under
the name R-stratification. Stratified sets of NTGDs have at most one preferred model, which is
also a stable model. In case the NTGDs are either guarded or fulfill acyclicity constraints, query
answering is decidable. A nontrivial generalization of stratification (based on odd cycles) was given
in References [25, 26].
Approaches where the existential quantifier is prevented to interact with recursive loops are

based on the concept of weakly acyclic TGDs [47, 54] or their generalizations, e.g., broader cri-
teria such as super-weak acyclicity [93], R-acyclicity [88], or joint acyclicity [80, 82], see also
References [75, 81]. A very sophisticated method of interaction prevention was developed in
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Reference [10]. In such approaches, the stable models are finite. An extreme case is the Datalog
LITE [65] language, where guarded Datalog is considered without existential quantifiers. Even this
language has a host of applications, some of which were mentioned earlier in this section. Finally,
the already mentioned language FNC from Reference [51] and its generalization to the more ex-
pressive non-disjunctive fragment of the BD language in Reference [113] are most congenial to
our endeavor, as these formalisms allow both existential quantification and negation to jointly ap-
pear within recursive cycles. This is achieved by a very strict rule syntax and a strong limitations
on the predicate argument positions that are allowed to contain Skolem functions. Guarded rules
significantly relax these restrictions.
In this article, after giving basic definitions in Section 2, we define, in Section 3 the SMS and

compare it to the SOS. The SOS is an elegant formalism, which to a first-order theoryT associates
a second-order (SO) formula SOS (T ) whose models are defined to be the (SOS) stable models
of T . In our setting, the original theory T = (D, Σ) consists of a database D of ground facts and
a set of TGDs Σ, and we write SOS (D, Σ) for the resulting SOS second-order formula, whenever
convenient. We prove that for databases D and arbitrary sets Σ of NTGDs, the SMS can be defined
in terms of the SOS by adding UNA axioms, yielding an augmented set ΣDUNA of TGDs, such that
the models of the SO formula SOS (D, ΣDUNA) are (up to isomorphism) precisely the SMS models of
D with Σ.

Towards our decidability results, an insightful initial observation (which will be formally shown
in Section 3) is that all stable models of a database D together with a set Σ of guarded NTGDs are
tree-shaped, which means that they have bounded treewidth. We will show that this is due to
the interplay between guardedness and the UNA. This means, in particular, that also the models
of the second-order formula SOS (D, ΣDUNA) ∧ ¬Q are all tree-shaped when Q is a Boolean first-
order query. Moreover, we note that this formula actually belongs to guarded second-order logic

(GSO), which is essentially the fragment of SO where quantified predicate variables are restricted
to range over subsets of extensions of the free predicate variables. By a well-known meta-theorem
stating that the satisfiability problem for GSO formulas having models of bounded treewidth is
decidable [42, 72], we conclude that the satisfiability of SOS (D, ΣDUNA) ∧ ¬Q is decidable, which
means that also SOS (D, ΣDUNA) |= Q is, and, in turn, query answering based on the SMS.

Theorem 1.3. There is an algorithm that, given a database D, a finite set Σ of guarded NTGDs,
and a Boolean first-order query Q , decides whether Q is true in all stable models for D and Σ.

Unfortunately, the GSO formula constructed for proving the above result does not give us a
tight upper bound for the complexity of query evaluation with guarded NTGDs. To arrive at such
a bound, we pursued the following different ideas: Recall that finding a stable model essentially
involves first guessing a model M and then checking that this model is indeed the least fixpoint
of the Gelfond-Lifschitz transform ΣM of the original rule set Σ relative to the guessed model M .
When infinitemodels are involved, guessing amodel at once clearly becomes problematic. The idea,
is therefore to translate the query answering problem to an equivalent auxiliary formalism with a
more algorithmic flavor, where the guessing is divided into small nondeterministic steps each only
guessing a single atom via a rule application, thereby successively constructing a potential stable
model. A further idea is that this guessing might be stopped as soon as a sufficiently large initial
part of a model has been developed, which (i) guarantees that it can be expanded to a full model
and (ii) can be used for correct query answering.
We identified the formalism of stratified (sets of) guarded disjunctive normal TGDs (guarded

DNTGDs) as a suitable auxiliary formalism. Stratified guarded DNTGDs generalize plain guarded
DTGDs, which were studied in References [3, 28, 29, 68], by adding stratified (nonmonotonic) nega-
tion. The formalism of stratified DNTGDs will be defined in Section 4, where we will also present
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a specific stratified and disjunctive variant of the well known chase procedure [15] for generating
(possibly infinite) models from a database and a set of stratified DNTGDs. Essentially, this chase
fires the DNTGDs stratum by stratum, and whenever the body of a DNTGD is matched, a nonde-
terministically chosen head atom is derived. A DNTGD may fire several times with different head
atoms, thus, the heads represent inclusive disjunctions. This differs from the classical disjunctive
ASP setting, where minimal models only are considered. While the so-obtained models are not
necessarily minimal, it will become clear in Section 4, that by the use of stratified negation and
constraints, minimal models can be simulated when we need them. Let us note that encoding the
SMS via disjunctions has been done in the specific context of answer set programming (ASP)

solvers. For example, modern ASP solvers for (extensions of) Datalog with negation under the
SMS, such as Clasp [60] or DLV [2, 90], transform ground instances of a program to large sets of
disjunctive clauses, which are then solved using fast SAT solving methods. Here, instead, we use
a genuine encoding that works at the non-ground NTGD/DNTGD level and that works uniformly
for each input database.
Our transformation from a set Σ of NTGDs to a set Σ′ of stratified DNTGDs, which preserves

guardedness, will be defined in full detail in Section 4. Σ′ will use auxiliary predicates, among
which, for each predicate symbol R of the original set Σ, predicates R̂, R+, R−, and R∗, where the R̂
predicates are computed by the TGDs Σ̂ arising from Σ by eliminating all negative atoms from the
rule bodies. The unique minimal model of Σ̂ is tree-shaped and overapproximates all stable models
ofD and Σ. The extension of this overapproximation R̂ is then partitioned via a disjunctive rule and
a constraint into relations R+ and R− where the extension of R+ is a candidate for a stable model.
Then, the predicatesR∗ are computed by rules that simulate theGelfond-Lifschitz (GL) transform
of Σ relative to the predicates R+, and thus, the computed extension of R∗ is the minimal model
of D and this GL transform. The set of atoms given by the extensions of the relations R+ is then a
stable model of Σ iff it corresponds with the atoms in the extensions of R∗ (i.e., R+ = R∗, for each
R). The formulation of the GL-transform and the check R+ = R∗ use stratified negation. Moreover,
constraints (i.e., rules implying Fail) are used for the latter. All details and a comprehensive example
(Example 4.3) are given in Section 4. This way, we obtain, via a polynomial transformation, a set Σ′

from Σwhose stable models (when restricted to the predicates of Σ) essentially correspond to those
of Σ. Therefore, answering conjunctive queries for NTGDs Σ under the SMS can be transformed
into query-answering for stratified DNTGDs Σ′ under the defined disjunctive chase semantics.
Still, these models can be infinite, and it will be the task of Section 5 to show that only an initial
part of these models is needed.
The overall goal of Section 5 is to determine the complexity for answering UBCQs and UNBCQs

for NTGDs under the SMS. The lower bounds, that is, the hardness results, are proven in Section 5.1,
and the upper bounds in Section 5.2. To better explain the role of guardedness and thus of the tree-
shaped models (the technical term here is [D]-acyclic models) for obtaining upper bounds, we
start in Section 5.2 with an analysis of the stratified chase, when a set Σ of guarded DNTGDs
is chased over a database D. We show that due to guardedness, this chase essentially develops a
forest “growing out” from the database, producing possibly infinitely many new atoms containing
null values (or, equivalently, Skolem terms). We show that there is an integer d∗, which depends
only on the number and maximum arity of the relation symbols in D and Σ, and on the number of
atoms in a queryQ , such that the trees do not need to be developed below depth d∗ for answering
Q . The reason is that due to some combinatorial isomorphism properties, below depth d∗ of the
chase forest, no relevant new atoms for answering Q can be derived, because whenever Q cannot
been satisfied within the initial fragment of depth d∗, then either the chase has already stopped, or
there is a way to continue the chase via subtrees isomorphic to already existing subtrees, arriving

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



35:8 G. Gottlob et al.

at an infinite model that does not satisfy Q either. It follows that a UNBCQ Q is satisfied by all
chase models of (D, Σ) iff it is satisfied by all initial fragments of depth at most d∗ of such chase
models. There are clearly only finitely many such initial fragments, and we can thus compute all
of them via the chase (using backtracking instead of nondeterminism). This is how we get to our
first algorithm and complexity upper bounds. In particular, we derive the following upper bounds:
Answering UNBCQs for a databaseD and a set Σ of stratified DNTGDS under the disjunctive chase
semantics (or, equivalently, for D and a set Σ of NTGDs under the SMS) is (1) in co-3-NEXPTIME
in combined complexity, i.e., when D, Σ, and Q are given in input, (2) in co-2-NEXPTIME when
the arities are fixed, and (3) in co-NP in data complexity, i.e., when only D is given in input, and
both Σ and Q are fixed. The latter bound is a matching one, and thus we get:

Theorem. UNBCQs answering for NTGDs under the SMS is co-NP complete.

One nice aspect of the above theorem is that this data complexity is not harder than the data
complexity of (normal) Datalog under the SMS, which is also the same as the complexity of propo-
sitional reasoning, when the program and the goal are given in input (see Reference [44] for an
overview of previous complexity results).
The bounds under points (1) and (2) above are rather high. However, we succeeded to obtain

significantly better tight bounds for the class of covered UNBCQs, which is a very large class of
queries and a nice generalization of UBCQs, which are the queries mostly treated in the knowledge
representation and database literature. To obtain these bounds, we develop alternating algorithms
for UBCQs in Section 5.2, which, rather than computing and storing the chase tree up to depth
d∗, compute the (almost) independent subtrees of this fragment of the chase tree independently,
using “only” exponential space in case of combined complexity, and polynomial space in case of
bounded arities. We show that these algorithms carry over to answering also covered UNBCQs.
These alternating algorithms are very technical. They are informally explained and sketched in
Section 5.2, while a detailed treatment is given in Appendix B.
Let us summarize our main complexity results for answering covered UNBCQs for databases D,

and sets Σ of guarded NTGDs as follows, where |=stable denotes entailment under the SMS.

Theorem (Main Complexity Theorem for covered UNBCQs). Let R be a relational schema,D
be a database for R (to be interpreted as a set of logical ground facts), Σ a set of guarded DNTGDs on
R, and Q be a covered UNBCQ over R. Then, deciding D ∪ Σ |=stable Q has the following complexity:

(1) 2-EXPTIME-complete in combined complexity, where 2-EXPTIME-hardness holds even for fixed
Σ with conjunctive queries.

(2) EXPTIME-complete, if the maximum arityw of the relation symbols in R is fixed, andQ is acyclic,
where EXPTIME-hardness holds even for atomic queries.

(3) co-NP-complete in data complexity (i.e., for fixed Q and fixed Σ), or if |R |,w , and the number of
atoms in Q are fixed.

Let us briefly highlight how these results compare with complexity results on Datalog query

answering (QA) with negation under the SMS by various authors summarized in Reference [44]
and on QA with plain TGDs by various authors summarized in Reference [44] without negation
(or TGDs with stratified negations, where QA has the same complexity as for plain TGDs), more
recently obtained in References [32, 33]. Datalog QA under the SMS is co-NEXPTIME, while it
is in co-NP for bounded arities as well as for data complexity. Instead for QA with plain TGDs,
all complexity results of points (1)–(3) coincide with one exception in point (1): For fixed Σ, the
complexity of Datalog-based UBCQ answering (and one can see as well, of UNBCQ answering) is
“only” EXPTIME-complete.
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The same results hold for covered UBCQ answering with guarded stratified DNTGDs under the
disjunctive chase semantics.
In Section 6, we show that all the above decidability and complexity results also hold in case

negative constraints (NCs) of the form body(x) → ⊥, where body(x) does not need to be guarded,
are added to rule sets of NTGDs under the SMS, because NCs can be simulated by adding the body
of each NC as a disjunct to the UBCQ. Of course, the standard trick to simulate such an NC by a
rule body(x) ∧ ¬p → p does not work, because this would, in general, not be a guarded rule. In
Section 6, we also show that EGDs and keys can be added to the existential rule sets, as long as
they are strongly non-conflicting with the existential rules (see Section 6).
Finally, in Section 7, we apply our results to description logics (DLs), studying DLs with non-

monotonic negation under the SMS. Again, we obtain decidability and complexity results. In par-
ticular, we adopt and study the SMS for the well-known DLs DL-LiteF , DL-LiteR , and DL-LiteA
[38, 103], and ELHI [9]. All the DLs of the DL-Lite family and the DL ELHI [9] can be em-
bedded into guarded existential rules (with NCs and non-conflicting EGDs) [33]. In particular, this
holds for DL-LiteR , the theoretical basis of the QL profile of theWeb ontology language OWL 2. To
appreciate how easily DL axioms can be transformed into guarded TGDs, note that the DL axiom
∃EmpProj � BaseLevel � ∃IsManagedBy can be written as the rule (1).
We carried out this work with the intention to lay the theoretical and algorithmic foundations

for reasoning with guarded rules over (possibly) infinite models using the SMS, and we hope that
our results will pave the way for the design and implementation of new software and will help to
extend existing systems for answer set programming such as as DLV [84], which has already been
extended by an interesting class of TGDs, the so-called shy TGDs [83] (incomparable to guarded
TGDs), or Clasp [59, 60]. Very recently, a first successful experimental implementation of query
answering with guarded NTGDs under the SMS was described in Reference [115], and promising
experiments were reported. This implementation is heavily based on the results of (the conference
version of) the present article, with additional nice optimizations that lead to practical improve-
ments. However, their algorithms and implementation do not profit from (a deterministic execu-
tion of) the alternation paradigm. In fact, this implementation still computes and materializes the
full disjunctive chase tree, up to double-exponential depth, which means that it uses data struc-
tures of triple-exponential size, of which quadruple-exponentially many need to be enumerated,
which clearly does not match our double-exponential upper bound for the combined complexity.
However, the optimization techniques proposed in Reference [115] may be equally useful when
designing a new algorithm based on (a deterministic execution) of the alternating algorithms de-
scribed in Section 5 of our present article. We are looking forward to such implementations.

2 PRELIMINARIES

In this section, we briefly recall some basics on the Datalog± family of ontology languages [32,
33], namely, on relational databases, unions of conjunctive queries (UCQs), tuple-generating
dependencies (TGDs), equality-generating dependencies (EGDs), and negative constraints.
We also describe the decision problems and the complexity measures considered in this article.

2.1 Databases, Interpretations, and Homomorphisms

We assume (i) an infinite universe of (data) constants Δ (which constitute the “normal” domain of a
database), (ii) an infinite set of (labeled) nulls ΔN , which are placeholders for unknown values, and
(iii) an infinite set of variables V (used in queries, tuple/equality-generating dependencies, and
negative constraints). We denote by x sequences of variables x1, . . . ,xk with k � 0. We assume a
relational schema (or simply schema) R, which is a finite set of relation names (or predicate symbols,
or simply predicates). We denote by ar(R ) the maximum arity of a predicate in R. A term t is
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a constant, a null, or a variable. A list of terms is also referred to as a tuple. An atomic formula
over R (or R-atom, or simply atom) has the form P (t1, . . . , tn ), where P is an n-ary predicate
from R, and t1, . . . , tn are terms. For such an atom α = P (t1, . . . , tn ), we denote by dom(α ) the
set {t1, . . . , tn }. For a setA of atoms, we denote by dom(A) the union

⋃
α ∈A dom(α ). A conjunction

of atoms is often identified with the set of all its atoms. A homomorphism is a mapping h : Δ ∪
ΔN ∪ V → Δ ∪ ΔN ∪ V such that (i) c ∈ Δ implies h(c ) = c , (ii) c ∈ ΔN implies h(c ) ∈ Δ ∪ ΔN ,
and (iii) h is naturally extended to atoms by mapping an atom P (t1, . . . , tn ) to P (h(t1), . . . ,h(tn )),
to sets of atoms by mapping each such set I to {h(α ) | α ∈ I }, and, similarly, to conjunctions of
atoms by applying h to each of the conjuncts.
LetA and B be two sets of atoms, and leth+ be a homomorphism such that∀x ∈ dom(A),h+ (x ) ∈

dom(B). The restriction h = h+ |dom(A) of h
+ to the domain dom(A) of A is called a homomorphism

from A to B, and we write h : A→ B. A homomorphism f : dom(A) → dom(B) is an isomorphism
betweenA and B if f is a bijection and f (A) = B. Note that in case of such an isomorphism, we also
have f −1 (B) = A, and, moreoverA and B are equal up to the bijective renaming f of non-constant
values. A database D for a schema R is a finite set of R-atoms with arguments from Δ. A relational
structure (or simply structure) for a schema R is a (possibly infinite) set of R-atoms with arguments
from Δ ∪ ΔN ∪ V . An interpretation for a schema R is a structure whose atoms have arguments
from Δ ∪ ΔN only. So, every interpretation is a structure but not vice versa.

2.2 Acylic Structures and Treewidth

A join forest JF (I ) for a (possibly infinite) structure I is a forest whose vertices are the atoms of I ,
such that the following connectedness condition applies: Whenever an element e ∈ dom(I ) occurs
in two atoms α and β of I , then α and β are in the same tree of the forest JF (I ), and e occurs in
each atom of the unique path linking α and β in that tree. That is, the connectedness condition for
e means that the set of nodes in which e occurs induces a connected subtree of JF (I ). We say that
I is acyclic if there exists a join forest JF (I ) for I .

This definition of acyclicity is based on References [20, 21]. It is the most general type of acyclic-
ity that has been proposed in the literature and coincides with α-acyclicity as defined by Fagin
[52], which, in turn, is based on the acyclicity concept now known as GYO acyclicity originally
proposed by Reference [73] and independently by Reference [117].
If A ∈ dom(I ) is a set of elements from the domain of I , then an [A]-join forest is defined as join

forest, except that instead of requiring the connectedness condition for each e ∈ dom(I ), we only
require it for each e ∈ dom(I ) \A. We say that I is [A]-acyclic if it has an [A]-join forest.
TheGaifman graphG (I ) = (V (I ),E (I )) of a (possibly infinite) structure I is the (possibly infinite)

undirected graph whose set of nodesV (I ) is equal to dom(I ), and whose edges are all pairs {u,v} ⊆
dom(I ) such that u � v and u and v jointly occur in some atom of I . Given a graph G = (V ,E), a
tree decomposition of G is a pair (T , λ), where T = (N ,A) is a tree having a set of nodes N and a
set of arcs A, and λ is a labeling function λ : N → 2V such that:

(i) for every v ∈ V , there is some n ∈ N such that v ∈ λ(n); that is, λ(N ) =
⋃

n∈N λ(n) = V ;
(ii) for every edge e = {v1,v2} ∈ E, there is some n ∈ N such that {v1,v2} ⊆ λ(n); and
(iii) for every v ∈ V , the set {n ∈ N | v ∈ λ(n)} induces a connected subtree in T .

The width of a tree decompositionD = (T , λ) is defined by tw (D) = max{|λ(n) | − 1 | n ∈ N}. The
treewidth of a graph G = (V ,E), denoted tw (G ), is the minimum width of all tree decompositions
of G. Given an interpretation (or equivalently, a structure) I , its treewidth tw (I ) is defined as the
treewidth of its Gaifman graph: tw (I ) = tw (G (I )). The treewidth of an infinite interpretation I
may be infinite, in which case we write tw (I ) = ∞.
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It is well-known and not difficult to see that the treewidth of an acyclic structure I is at most
a − 1, where a is the maximum arity of any atom in I , or equivalently, ar(R ) − 1, where R is the
schema of I . Moreover, the treewidth of an [A]-acyclic structure I is at most tw (A) + a − 1, where
a is defined as above.

2.3 Unions of ConjunctiveQueries (UCQs)

A conjunctive query (CQ) over a schema R is a formula Q (x) = ∃yΦ(x, y), where Φ(x, y) is a
conjunction of R-atoms, which have as arguments variables in x ∪ y and constants (but no nulls),
and each variable in x occurs in some atom in Φ(x, y). The variables in x are the answer variables
of Q . A Boolean CQ (BCQ) over R is a CQ over R without answer variables (i.e., all variables are
existentially quantified). We often write a BCQ as the set of all its atoms, omitting the quantifiers.
A union of CQs (UCQ) over R has the formQ (x) =

∨n
i=1Qi (x), where n � 1, and everyQi (x) with

1 � i � n is a CQ over R. The CQs Qi (x) are called the disjuncts of Q . Note that each disjunct of
Q has the same answer variables, which we also define to be the answer variables of Q . A union

of BCQs (UBCQ) over R is a UCQ over R without answer variables. The width wd(Q ) of a UCQ
Q is the maximal number of atoms in a disjunct of Q .

Answers to UCQs relative to an interpretation I are defined via homomorphisms as follows: The
set of all answers to a CQ Q (x) =∃yΦ(x, y) over an interpretation I , denoted Q (I ), is the set of all
tuples t overΔ for which there exists a homomorphismh such thath(Φ(x, y)) ⊆ I andh(x) = t. Such
answer tuples, which cannot contain null values from ΔN , are usually called the certain answers to
Q in the literature. Returning only such certain answers to the user is the most common approach
taken when it comes to query answering in presence of uncertain values such as null values [54,
111]. One important advantage of this convention is that in situations, as in the present article,
where a finite original databaseD may be extended by existential rules to an infinite interpretation
I containing infinitely many atoms with null values, then the answer Q (I ) to any query Q on I is
still finite and consists of facts built from known entities only. As will be discussed in later sections,
in case of multiple models, the certain answers to a query are the certain answers that are true
in all models. The answer to a BCQ Q () =∃yΦ(y) over an interpretation I is Yes, denoted I |=Q ,
if Q (I ) �∅, i.e., if a homomorphism h : Φ(y)→Δ ∪ ΔN exists such that h(Φ(y)) ⊆ I . The set of all
answers to a UCQ Q (x) =

∨n
i=1Qi (x) over an interpretation I , denoted Q (I ), is the union of all

Qi (I ) with 1 � i � n. The answer to a UBCQ Q () =
∨n

i=1Qi () over an interpretation I is Yes,
denoted I |=Q , if Q (I ) �∅. Note that the definitions of query answers also define query answers
over databases D, as every database is an interpretation.
A BCQ of the form ∃y(R1 (y1) ∧ R2 (y2) ∧ · · · ∧Rk (yk)) is acyclic if the structure {R1 (y1),R2 (y2),
. . . ,Rk (yk)} is acyclic. A UBCQ is acyclic if each of its disjuncts is. While general BCQs are NP-
hard to evaluate, acyclic BCQs and UBCQs are polynomial-time decidable, and their evaluation is
highly parallelizable [67]. Moreover, whether or not a query is acyclic can be recognized in linear
time [109].

2.4 Tuple-generating Dependencies (TGDs) and the Chase

Tuple-generating dependencies (TGDs) describe constraints on interpretations in the form of
generalized Datalog rules that may contain existentially quantified conjunctions of atoms in rule
heads. Their syntax and semantics are as follows. Given a schema R, a tuple-generating dependency
(TGD) σ over R has the form ∀x∀y (Φ(x, y)→∃zΨ(x, z)), where Φ(x, y) and Ψ(x, z) are conjunc-
tions of R-atoms with arguments from V (i.e., we assume that TGDs do not contain constants).
We call Φ(x, y) and Ψ(x, z) the body and the head of σ , denoted body (σ ) and head (σ ), respec-
tively. As usual (see, e.g., References [32, 70]), we assume without loss of generality that the head
of a TGD is a single atom of the form P (x, z). An interpretation I satisfies σ , denoted I |= σ , if
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whenever a homomorphism h : body (σ ) → I exists, then h can be extended to a homomorphism
h′(⊇ h) : atoms(σ ) → I . In this case, note that, in particular, h′ fulfills h′(head (σ )) ∈ I .

Definition 2.1 (Application of a TGD). Let σ = Φ(x, y) → ∃z P (x, z) be a TGD of the form

∀x∀y
(
Φ(x, y)→∃z P (x, z)

)
, and let I be an interpretation.

• We say that σ is applicable to I if there exists a homomorphism h : body (σ ) → I , that maps
all atoms in body (σ ) to atoms in I . We then also say that σ is applicable to I with h.
• Let σ be applicable to I with homomorphism h. Applying σ to I with h yields a new inter-
pretation I ′ that is obtained from I by adding h′(P (x, z)), where h′ is an extension of h that
assigns to each variable from z a distinct fresh null. We call I ′ the result of applying σ to I
with h. �

Definition 2.2 (Chase Sequence). Let I be an interpretation and Σ a set of TGDs. A chase sequence
of I with Σ is a potentially infinite sequence I0, I1, I2, . . . of interpretations such that I0 = I , each
Ii+1 is a result of applying a TGD from Σ to Ii , and for each TGD σ ∈ Σ that is applicable to some Ii
with a homomorphismh, there exists exactly one index j � 0 such that Ij+1 is the result of applying
σ to Ij with h. We call I0 ∪ I1 ∪ I2 ∪ · · · the result of the chase sequence. For an interpretation I ,
a TGD set Σ, and a chase sequence ξ based on Σ and starting with I , the result of ξ is denoted by
chase(I , Σ, ξ ). �

Remark 2.3. In the above definition, the requirement that for every i or each TGD σ ∈ Σ ap-
plicable to Ii with a homomorphism h, there exists one index j � 0 such that Ij+1 is the result of
applying σ to Ij with h is usually called a fairness condition. This condition guarantees that at the
step i of the chase, when Ii is considered, whenever a TGD σ is applicable with a homomorphism
h, then this TGD must have been applied either already at some earlier step j < i , or is applied
precisely at step i , in which case j = i , or is guaranteed to be applied at some future step j > i . In
addition, there needs to be exactly one such j only. This means that for each applicable TGD σ and
homomorphism h, as before, σ is applied only once with h; that is, it is not allowed that there are
any j ′ � j such that the same σ is applied with the same homomorphism h to Ij′ .

If I is an interpretation and Σ a set of TGDs, then we denote by (I , Σ) the logical theory Γ = I ∪Σ,
where we treat null values from ΔN as constants.1

Even though a set of TGDs Σ and an intial interpretation I may give rise to different chase
sequences, the following proposition, which follows easily from Definition 2.2, is well-known [34,
74, 76, 97].

Proposition 2.4. Let I be an interpretation, Σ be a set of TGDs, and ξ1 and ξ2 be chase sequences
of I with Σ. Then, the results chase(I , Σ, ξ1) and chase(I , Σ, ξ2) are isomorphic models of (I , Σ) and
differ only via a bijective renaming of null values.

By the above proposition, for a given interpretation I and a given set Σ of TGDs, the result of
each chase sequence of I with Σ is essentially the same. Therefore, we usually abstract from a
specific chase sequence and simply denote this result by chase(I , Σ), and sometimes refer to it as
“the chase of I with Σ.” Moreover, by “the chase,” we refer to the procedure of constructing a chase
sequence.

1Alternatively, we could define the logical theory via a formula in infinitary logic

∃z(
∧
α ∈I

α ) ∧
∧
σ ∈Σ

σ ,

where z is the (possibly infinite) list of all null values occurring in I . (In case I is a database, z is obviously empty.)
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The chase has been used for practical database query answering and as a theoretical tool for
deriving decidability and complexity results. Its crucial property related to query answering is
that each chase sequence result for an interpretation I with a set Σ of TGDs constitutes a universal
model for the logical theory (I , Σ). That is, there is a homomorphism from chase(I , Σ) to eachmodel
of (I , Σ). This was shown for a different version of the chase (the restricted chase) in Reference
[54], and for the version used here (the oblivious chase) in Reference [32]. As a consequence, the
following is well-known:

Proposition 2.5. Let D be a database, Σ a set of TGDs, and Q a UBCQ. Then, (I , Σ) |= Q iff
chase(I , Σ) |= Q .

We say that a TGD σ is guarded if its body contains an atom, called guard atom (or guard) of σ ,
that contains all variables that occur in the body of σ . If σ is guarded, then we denote by guard (σ )
any fixed guard of σ (e.g., the leftmost one). It is easy to see that when guarded rules are chased
over an instance I , then the overall treewidth of the chase result chase(I , Σ) cannot be significantly
larger than the treewidth of I , and thus, chasing guarded TGDs preserves bounded treewidth. This
is stated formally in the following proposition, which is based on Lemma 3.11 of Reference [32]
and a slight refinement of Lemma 3.13 of Reference [32].

Proposition 2.6 (Bounded Treewidth Preservation Property; based on Reference [32]).
Let I be a finite interpretation and Σ a set of guarded TGDs, then chase(I , Σ) is [dom(I )]-acyclic and
has a finite treewidth. In particular, tw (chase(I , Σ)) � tw (dom(I )) +w − 1 < |dom(I ) | +w , wherew
is the maximum predicate arity 2 in Σ.

2.5 Equality-generating Dependencies (EGDs) and Negative Constraints (NCs)

An equality-generating dependency (EGD) σ is a first-order formula of the form∀x
(
Φ(x)→xi =x j

)
,

where Φ(x) is a conjunction of atoms (without nulls), called the body of σ , denoted body (σ ), and xi
and x j are variables from x. We call xi =x j the head of σ , denoted head (σ ). Such σ is satisfied in
an interpretation I for R, denoted I |= σ , if, whenever there exists a homomorphism h such that
h(Φ(x)) ⊆ I , it holds that h(xi ) =h(x j ).

Another crucial ingredient of Datalog± for ontological modeling consists of negative constraints

(NCs, or simply constraints) ν , which are first-order formulas ∀x
(
Φ(x)→⊥

)
, where Φ(x) is a con-

junction of atoms (without nulls), called body of ν , denoted body (ν ). An interpretation I satisfies
ν , denoted I |=ν , if no homomorphism h satisfies h(Φ(x)) ⊆ I .

For a set Σ of TGDs, EGDs, and NCs, we write I |= Σ if I |= σ for all σ ∈ Σ. We usually omit the
universal quantifiers in TGDs, EGDs, and NCs, and all sets of TGDs, EGDs, and NCs are implicitly
assumed to be finite here. Query answering under TGDs, EGDs, and NCs, i.e., the evaluation of
UCQs and UBCQs on databases D for R under a set Σ of TGDs, EGDs, and NCs on R is defined as
follows: The set of models of D and Σ, denoted mods(D, Σ), is the set of all interpretations I such
that (i) D ⊆ I and (ii) I |= Σ. The set of answers for a UCQQ over D and Σ, denoted ans(Q,D, Σ), is
the set of all tuples t such that t ∈ Q (I ) for all I ∈mods(D, Σ). The answer for a UBCQ Q to D and
Σ is Yes, denoted D ∪ Σ |=Q , if ans(Q,D, Σ) �∅.

2.6 Decision Problems Considered and Complexity Measures

Computing the answer to a non-Boolean query is a computation (or search) problem, rather than a
decision problem. Moreover, the answer to even very simple queries can be of exponential size. For

2These bounds apply for single-head TGDs as assumed in this article; for multi-head TGDs, the proposition is still correct
when w denotes the maximum over all rules σ ∈ Σ of the sum of all arities of the head atoms of σ .
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example, if R = {a,b} is a unary database relation, then the CQQ (x1, . . . ,xn } = R (x1)∧ · · ·∧R (xn )
has an answer comprising 2n tuples. For these reasons, in the context of data and knowledge bases,
one usually considers the following query-of-tuple (QOT) decision problem: For a database D,
possibly with a set Σ of rules, and a fixed inference relation |=∗ that gives a concrete meaning to
“(D, Σ) |=∗ Q (a1, . . . ,ar ),” where a1, . . . ,ar ∈ Δ, decide whether actually (D, Σ) |=∗ Q (a1, . . . ,ar ).
Here, Q (a1, . . . ,ar ) denotes that the tuple 〈a1, . . . ,ar 〉 is an answer to Q . The QOT problem is
logspace-equivalent to the problem of Boolean query answering. In fact, for all entailment relations
“|=∗” used in the present article, the QOT problem “(D, Σ) |=∗ Q (a1, . . . ,ar )” is equivalent to the
problem “(D ′, Σ) |=∗ ∃x1 . . . ∃xr (Adom(x1) ∧ · · · ∧ Adom(xr ) ∧ Q (x1, . . . ,xr )),” where D ′ is the
database resulting from D by adding a unary relation Adom, which contains all data constants (i.e.,
elements from Δ) present inD, and which thus comprises the so-called active domain ofD. For this
reason, we only derive complexity results for Boolean query evaluation, keeping in mind that the
same results also hold for the QOT problem.
In analogy to concepts introduced in Reference [112], when analyzing the complexity of decid-

ing (D, Σ) |=∗ Q , we distinguish between the combined complexity where D, Σ, and Q are all three
the input parameters, and the data complexity, where the database D is the only input parameter,
and R, Σ, and Q are fixed. When relevant, we will also study the setting when D and Q are both
the input parameters, and Σ is fixed.

3 STABLE MODEL SEMANTICS FOR TGDS WITH NEGATION

This section describes the stable model semantics for TGDs with negation. We first present an
extension of TGDs, called normal TGDs, that allows for negated atoms to occur in their bodies.
Negation in front of atoms will then be interpreted in a non-monotonic fashion by restricting
attention to the stable models of a set of normal TGDs. The notion of a stable model originated in
the logic programming community [62], where it was used to give semantics to logic programs
with negated atoms in rule bodies, which are evaluated using negation as failure. Here, we lift
it to sets of normal TGDs by first Skolemizing existential quantifiers in the heads of such TGDs
and then taking the stable models of the resulting logic program as the semantics of the set of
normal TGDs. Alongside, we also fix some terminology and notation that will be used in the rest
of this article.

3.1 Normal TGDs

Normal TGDs extend TGDs to allow for negated atoms (also called negative literals) to occur in
their bodies. Given a schema R, a literal over R (or R-literal) is either an R-atom α , called positive
literal, or the negation ¬α of an R-atom α , called negative literal. If R is irrelevant or clear from
the context, then we drop R and speak of a literal only. A normal TGD (NTGD, for short) over R
has the form

σ = ∀x∀y
(
Φ(x, y)→∃zΨ(x, z)

)
, (1)

where Φ(x, y) is a conjunction of R-literals with variables as their arguments, and Ψ(x, z) is a
conjunction of R-atoms with variables as their arguments. Such an NTGD is also abbreviated
as Φ(x, y) → ∃zΨ(x, z). As with TGDs, we call Φ(x, y) and Ψ(x, z) the body and the head of σ ,
respectively, and, as for TGDs (see References [32, 70]), we assume without loss of generality that
the head is a single atom. We denote by body+ (σ ) the set of all atoms that occur positively in the
body of σ , by body− (σ ) the set of all atoms that occur negated in the body of σ , and by head (σ )
the atom in the head of σ .
In this article, we are mostly interested in guarded NTGDs: An NTGD σ is guarded if its body

has a positive literal, called a guard of σ , that contains all universally quantified variables of σ (i.e.,
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all body variables of σ ). If σ is guarded, then guard (σ ) denotes a fixed guard of σ (e.g., the leftmost
one).
As for the semantics, an NTGD σ of the form (1) is satisfied in an interpretation I for R if,

whenever there exists a homomorphism h with h(body+ (σ )) ⊆ I and h(body− (σ )) ∩ I = ∅, then
there exists a homomorphism h′ ⊇ h |Φ(x,y) with h

′(head (σ )) ∈ I . The semantics of sets of NTGDs
will be defined in terms of stable models. To this end, we lift the notion of a stable model from
logic programming to sets of NTGDs. Before we do this, we review stable models in the context
of logic programming.

3.2 Stable Model Semantics for Logic Programming

Here, we briefly recall the notion of a stable model from logic programming. For an in-
depth exposition of the stable model semantics for logic programming, we refer the reader to
Reference [62].
Stable models give semantics to normal (logic) programs, which are logic programs with negated

atoms in rule bodies. We start by giving a more precise definition of normal programs. Let F be a
set of function symbols. An F -term t (or simply a term, when F is clear from the context) is either
a variable, or a constant from Δ, or of the form f (t1, . . . , tm ), where f is anm-ary function symbol
in F , and each ti with 1 � i � m is an F -term. In normal programs, the terms in atoms are allowed
to be F -terms. Formally, in the context of normal programs, an R-atom has the form R (t1, . . . , tm ),
where R is anm-ary predicate in R, and the ti ’s are F -terms. A normal rule (or simply rule) is of
the form

β1, . . . , βn , not βn+1, . . . , not βn+m → α , (2)

where α , β1, . . . , βn+m are atoms and k,m,n � 0. We call α the head of r , denoted head (r ), while
we refer to the conjunction β1, . . . , βn , not βn+1, . . . , not βn+m as its body. We define body (r ) =
body+ (r ) ∪ body− (r ), where body+ (r ) = {β1, . . . , βn } and body− (r ) = {βn+1, . . . , βn+m }. We say r
is positive ifm = 0. We say r is a fact ifm =n = 0. A normal (respectively, positive) program P is a
finite set of normal (respectively, positive) rules. We denote by P+ the positive program obtained
from P by dropping all negated atoms (i.e., those prefixed with “not”) from rule bodies.
A normal program is interpreted with respect to a subset of its Herbrand base. Let P be a normal

program, and let FP be the set of function symbols occurring in P . The Herbrand universe HUP for
P is the set of all ground FP -terms, where an FP -term is ground if it does not contain any variables.
The ground terms of HUP are subject to the unique name assumption (UNA), which requires
that different ground terms are (or refer to) different entities and cannot be unified. Thus, if a
and b are data constants from Δ, then a � b is valid, and if f and д are function symbols, then
f (a) � f (b), f (a) � д(a), and so on. The Herbrand base HBP for P is the set of all atoms with
arguments in HUP . A Herbrand interpretation I for P is a subset of HBP .

To define what it means for such a Herbrand interpretation to be a model of P , we consider
the ground instances of all the rules in P . A ground instance of a rule r ∈ P is obtained from r by
replacing each variable in r by an element from HUP . We use ground (r ) (respectively, ground (P ))
to denote the set of all ground instances of r (respectively, rules in P ). A Herbrand interpretation
I is a Herbrand model of a ground rule r if body+ (r ) ⊆ I and body− (r ) ∩ I = ∅ implies α ∈ I . It is a
Herbrand model of P if it is a Herbrand model of every r ∈ ground (P ).
We are now ready to define stable models of normal programs as follows: The Gelfond-

Lifschitz reduct (GL reduct) of a normal program P relative to a Herbrand interpretation I for
P , denoted P I , is the (possibly infinite) ground positive program that is obtained from ground(P )
by
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(1) deleting every rule r such that B− (r ) ∩ I �∅, and
(2) deleting all negated atoms from each remaining rule.

Since P I is positive, it has a unique minimal Herbrandmodel. A stable model of a normal program P
is a Herbrand interpretation I for P such that I is the minimal Herbrandmodel of P I . Note that every
stable model of P is also a minimal Herbrand model of P .

Example 3.1. Consider the normal program consisting of the following rules:

→ P (0),

→ P (s (0)),

P (x ), notQ (x ) → Q (s (x )),

Q (x ), notP (x ) → P (s (x )).

It is not difficult to verify that this program has two stable models, namely, the finite model I1 =
{P (0), P (s (0)), Q (s (0))} and the infinite model I2 = {P (0),Q (0), P (s (0)),Q (s (s (0))), P (s (s (s (0)))),
. . . }.

3.3 Stable Model Semantics for Sets of Normal TGDs

We now lift the definition of stable models for normal programs to sets of NTGDs. To this end, we
first use Skolemization to translate each NTGD into a normal rule and then view the stable models
of the resulting normal program as the semantics of the set of NTGDs.
Consider an NTGD σ = Φ(x, y) → ∃zΨ(x, z),whereΦ(x, y) = β1∧· · ·∧βn∧¬βn+1∧· · ·∧¬βn+m

and z = (z1, . . . , zk ). The functional transformation of σ is the normal rule σ f defined as

β1, . . . , βn , not βn+1, . . . , not βn+m → Ψ(x, fσ (x, y)),

where fσ (x, y) = ( fσ ,z1 (x, y), . . . , fσ ,zk (x, y)), and each fσ ,zi , 1 � i � k , is a function symbol for
σ and zi . We also need to cover the special case where both x and y are empty, and where thus
σ is of the form “body → ∃z1, . . . ,zk R (z1, . . . , zk ),” such that body is either empty or contains
propositional symbols (i.e., zero-ary predicates) only. In this case, σ f is defined to be the logic
programming rule “body → R ( fσ ,z1 (0), . . . , fσ ,zk (0)),” where 0 is assumed to belong to the domain
of constants Δ.
Given a set Σ of NTGDs, the functional transformation of Σ, denoted Σf , is obtained from Σ by

replacing each σ ∈ Σ by σ f .

Example 3.2. Consider the following set Σ of (guarded) NTGDs:

Node(x ) ∧ ¬Parent(x ) → End(x ), (1)

Node(x ) ∧ ¬End(x ) → Parent(x ), (2)

Children(x ,y, z) → Node(u), for each u ∈ {y, z}, (3)

σ4 : Node(x ) ∧ Parent(x ) → ∃y∃z Children(x ,y, z). (4)

The functional transformation Σf of Σ is the following normal program:

Node(x ), not Parent(x ) → End(x ), (5)

Node(x ), not End(x ) → Parent(x ), (6)

Children(x ,y, z) → Node(u), for each u ∈ {y, z}, (7)

σ
f
4 : Node(x ), Parent(x ) → Children(x , fσ4,y (x ), fσ4,z (x )). (8)
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Note that rules (5)–(8) are essentially the NTGDs (1)–(4), with the only difference being the differ-
ent representations of conjunction and negation, and with the existentials replaced by appropriate
Skolem terms.

The stable model semantics of a set of NTGDs is now defined in terms of the stable models of
its functional transformation as follows:

Definition 3.3. Let Σ be a finite set of NTGDs over a schema R, and let D be a database for
Σ. A stable model for D and Σ is a stable model of the normal program P = Df ∪ Σf , having
Df = {→ α | α ∈ D} as a collection of ground facts. The set of all stable models for D and Σ is
denoted by SMod (D, Σ). Instead of “stable model for D and Σ,” we may also say “stable model for
(D, Σ).” �

In the sequel, we do not explicitly distinguish between the database D and the corresponding
collection Df of ground facts (i.e., we simply write D instead of Df ).

Example 3.4. Consider the set Σ of NTGDs from Example 3.2 and the database D = {Node(a)}.
Each stable model I for D and Σ (equivalently, the stable models of P = D ∪ Σf ) can be thought of
as a binary branching tree rooted at a, where branches can either be infinite or finite. For example,
the following represents a stable model I for D and Σ, where each node represents an element b
with Node(b) ∈ I , and each pair of edges from a node b to two distinct children c and d represents
the atom Children(b, c,d ) ∈ I :

Note that rules (5) and (6) simulate an exclusive or. The two rules jointlymake a decision onwhether
a node b should be a leaf (End(b) ∈ I ) or whether b should be an inner node (Parent(b) ∈ I ).
Moreover, the UNA ensures that nodes marked as inner nodes have exactly two children, because
the Skolem terms fσ4,y ( fσ4,z (a)) and fσ4,z ( fσ4,z (a)) are different elements of the Herbrand universe.

Moreover, only Parent nodes are expanded by rule σ
f
4 , as there is no rule that would assign children

to an End node. Hence, the latter are the leaves of the tree, and we obtain a finite model. Rule (7)
marks all children of a node as nodes, so the process continues recursively, and every time a node
is constructed, this node can in one model be an End node and will not be further expanded, and
in another one a parent node with two children. Σf on D = {Node(a)} has therefore an infinite set
of finite stable models and also an infinite set of infinite stable models.

Let Σ be a set (i.e., conjunction) of TGDs and Σf the corresponding negation-free logic program.
Then, by results of classical logic programming (see, e.g., Reference [86]), for each database D,
D ∪ Σf has only a single model, which is the unique least Herbrand model of (D, Σf ). It is well-
known that this model can be computed by a least fixpoint iteration of a monotonic transformation
TΣ that essentially fires rules as long as they are applicable with some new homomorphism.

Proposition 3.5. If D is a database, Σ a set of TGDs, then up to isomorphism, chase(D, Σ) coin-
cides with the unique stable model of D with Σf , i.e., with the unique model in SMod (D, Σf ). For the
specific chase sequence whose generated null values are taken to be the Skolem terms generated by

the respective application of the rules of Σf on D, this isomorphism becomes the equality relation.
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Our main interest in this article is the problem of answering queries with respect to NTGDs
under the stable model semantics. Since the stable model semantics allows us to reason about
negative information in a meaningful way, it makes sense to extend the standard query language
of UBCQs so we can also ask for the absence of atoms. Here, we first present such an extension
and then show that answering such queries relative to sets of guarded NTGDs under the stable
model semantics is decidable.
We start by extending conjunctive queries to allow for negative literals in their bodies. Anormal

conjunctive query (NCQ) over a schema R is a formula of the form

Q (x) = ∃yΦ(x, y),
where Φ(x, y) is a conjunction of R-literals, whose arguments are variables and constants, and
each variable from x occurs in some positive literal in x. In technical arguments, we often tacitly
assume without loss of generality that Q does not contain any constants. The variables in x are
called the answer variables ofQ . We callQ a normal Boolean conjunctive query (NBCQ) ifQ has
no answer variables (i.e., if all variables are existentially quantified).We denote byQ+ (respectively,
Q−) the set of all atoms α such that α occurs positively in Q (respectively, ¬α occurs in Q). Of
particular importance are covered NCQsQ , which have the property that for every negative literal
¬α in Q there exists a positive literal (i.e., an atom) β in Q such that every variable and every
constant in α occurs in β . For example, the NCQ Q (x ) = ∃y (R (x ,y) ∧ ¬S (y)) is covered, while
Q ′(x , z) = ∃y (R (x ,y)∧R (y, z)∧¬S (x , z)) is not covered. Observe that the coveredness ofQ implies
also the safeness of Q , but not vice versa. Covered NBCQs are, in a precise sense, a perfect match
to guarded NTGDs, as their negative atoms can actually be simulated via guarded NTGDs, and
therefore, covered (U)NBCQs can be transformed into plain (U)BCQs via a minor modification of
a given guarded NTGD set Σ. Details will be given in Section 5.2.4 (in a broader context).
We are mostly interested in answering unions of NCQs (UNCQs) and unions of NBCQs (UN-

BCQs). A UNCQ is a disjunction Q (x) = Q1 (x) ∨ · · · ∨ Qn (x) of NCQs Qi (x), 1 � i � n, all with
the same answer variables, where n � 1. We call x the answer variables of Q , and the NCQs Qi (x)
are the disjuncts of Q . A UNBCQ is a Boolean UNCQ or, equivalently, a UNCQ without answer
variables. A UNCQ is covered if each of its disjuncts is covered. The width of a UNCQ Q , denoted
wd(Q ), is the maximal number of atoms in a disjunct ofQ . In Section 5, we also refer to acyclic UN-
BCQ, which are UNBCQs that can be transformed into acyclic UBCQs by replacing each negative
literal ¬α by the positive literal α .
The set of all answers to an NCQQ (x) = ∃yΦ(x, y) over an interpretation I , denotedQ (I ), is the

set of all tuples t over Δ for which there exists a homomorphism h with h(Q+) ⊆ I , h(Q−) ∩ I = ∅,
and h(x) = t. This definition extends to NBCQs, UNCQs, and UNBCQs in exactly the same way
as in the positive case. The answers of UNCQs relative to sets of NTGDs under the stable model
semantics is defined in terms of certain answers over stable models:

Definition 3.6. Let Σ be a set of NTGDs over R, and let D be a database for R. The set of all
answers for a UNCQQ overD and Σ under the stable model semantics is the set ansstable (Q,D, Σ) of
all tuples t such that t ∈ Q (I ) for all I ∈ SMod (D, Σ). IfQ is a UNBCQ, then we write (D, Σ) |=stable
Q to denote the fact that ansstable (Q,D, Σ) �∅, that is, Q is satisfied in all stable models for D
and Σ. �

Under the stable model semantics for a database D and a set Σ of NTGDs, we obtain different
answers to queries than under the classical first-order semantics of D and Σ. For instance, let
R = {p,q} be a schemawherep andq are two different propositional letters (i.e., zero-ary predicate
symbols), and let D be empty and Σ contain only the single NTGD ¬p → p. It is well-known and
easy to see that (D, Σ) has no stable model, thus p and q are vacuously true in all stable models,
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and (D, Σ) |=stable q. However, while (D, Σ) |= p, it clearly holds that (D, Σ) � |= q. Thus, the stable
model semantics differs from the classical one even in case of positive queries, when negations are
allowed to occur in rule bodies.
However, when negation occurs neither in rule bodies nor in rule heads, the stable model se-

mantics coincides with the first-order semantics. The following proposition is an immediate con-
sequence of Proposition 3.5:

Proposition 3.7. Let Σ be a set of TGDs, denote by Σf the corresponding logic program, and let

D be a database. Then, for any UBCQ Q , we have that (D, Σf ) |=stable Q iff chase(D, Σ) |= Q iff
(D, Σ) |= Q .
As the following example shows, a similar result does not hold for UNBCQs, and actually not

even for NBCQs.

Example 3.8. Consider an empty database D = ∅ and the set (conjunction) Σ consisting of the
following two TGDs:

true → ∃y∃z R (y, z),
∀x (R (x ,x ) → hello).

Its stable models are, by definition, those of the logic program Σf :

σ1 : → R ( fσ1,y (0), fσ1,z (0)),

σ2 : R (x ,x ) → hello.

Observe that (D, Σ) has, among others, the two models M1 = {R (a,b)} and M2 = {R (a,a), hello},
where a and b are some domain elements in Δ. M2 arises in case a is used as witness for both
y and z. However, D ∪ Σf is a classical logic program and has as such only one stable model:
M0 = {R ( fσ1,y (0), fσ1,z (0))}. Via the UNA, the two arguments of the R-atom must be different.
Thus, by the UNA, the interpretation {R ( fσ1,y (0), fσ1,y (0)), hello} is not a model. Now let Q be
the query ¬hello. The latter is a covered UNBCQ, because hello is a propositional atom that has
no variables that need to occur in any other literal. Q is satisfied in M0 and M1, but not in M2.
Therefore, (D, Σ) � |= Q , but for the logic program D ∪ Σf , we have D ∪ Σf |=stable Q and thus
(D, Σ) |=stable Q .

3.4 Comparison to Other Approaches to the Semantics of Stable Models for TGDs

The stable models semantics (SMS) adopted in the present article relies on the classical SMS for
logic programming (LP) with function symbols over Herbrand interpretations with the UNA.
This semantics was proposed in the well-known 1988 paper by Gelfond and Lifschitz [62]. Through
grounding, this classical semantics is also applicable to LP with function symbols, giving rise to
decision problems over infinite Herbrand universes that were studied, for example, in References
[25, 26, 91, 92, 107]. We have explained, in the introduction, why we have chosen to base our SMS
for NTGDs on the classical LP SMS. Here, we discuss the relationship of our approach to twomajor
more recent approaches, which are actually shown to be semantically equivalent for NTGDs: (i)
The equilibrium logic approach introduced and studied by Pearce in 1996 [98, 99], based on the
so-called here-and-there logic, and further studied and extended in References [31, 100–102], and
(ii) the second-order logic stable semantics, here abbreviated by SOS semantics, by Ferraris, Lee,
and Lifschitz [56, 57], which is based on model minimization techniques similar to circumscription.
Even though these semantics have been defined for full first-order logic, we here stick to the NTGD
fragment only, because the 1988 LP semantics has not been defined for full first-order logic, and
NTGDs are the formalism relevant to the present article. The first-order equilibrium logic here-and-
there stable semantics approach [102] yields precisely the same stable model as the SOS approach;
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see Proposition 4 of Reference [56]. For this reason, we here only compare the LP-based approach
to the SOS approach, but retain that this comparison is also valid for quantified equilibrium here-
and-there logic for NTGDs. Given the restriction to NTGDs, the definition of the SOS approach
given here is somewhat simpler than for general first-order theories [57].
In this section, we make the somewhat subtle difference between a relational schema R, which

is a set, and an associated ordered list R of relation symbols (or equivalently, predicate variables
or also predicate symbols). In formulas of second-order logic, such a list R is to be interpreted
by extensions of R, which is the content (value) of concrete relations associated with the list of
relation symbols in R. Such an extension is a list of relations, i.e., sets of tuples), where the relations
are given in the same order as the symbols in R, but where each single relation incorporates no
reference to a relation symbol.
For a (sub-)formula Φ of a second-order formula, and a list of predicate variables X, we write

Φ(X) to denote thatX are the free local variables of Φ, i.e., those free variables that occur in Φ only.
Consider a databaseD and a set of NTGDs Σ over a joint schemaR with list of predicate variables

R = (R1, . . . ,Rr ). LetT (R) denote the first-order formula corresponding to the joint logical theory
ofD and Σ, i.e.,T = (D, Σ). LetU = (U1, . . . ,Ur ) be a list of distinct fresh predicate variables, where
U is arity-compatible with R, i.e., ∀1 � i � r ar (Ri ) = ar (Ui ).
From the theory T = (D, Σ), we shall define a theory T R (U) as follows: Let D (U) denote the

database resulting fromD by replacing every symbol Ri with the relation symbolUi . For an NTGD
σ of the form

∀x
(
R j1 (xj1 ) ∧ · · · ∧ R j� (xj� ) ∧ ¬R j�+1 (xj�+1 ) ∧ · · · ∧ ¬R jm (xjm ) → ∃yR0 (x0, y)

)
,

where each xji is a list of variables also occurring in x and where all predicate symbols are from R,
let σR (U) denote the NTGD

∀x
(
Uj1 (xj1 ) ∧ · · · ∧Uj� (xj� ) ∧ ¬Uj�+1 (xj�+1 ) ∧ ¬R j�+1 (xj�+1 ) ∧ · · ·

∧¬Ujm (xjm ) ∧ ¬R jm (xjm ) → ∃yU0 (x0, y)
)
.

Then, define ΣR (U) = {σR (U) | σ ∈ Σ}, and finally T R (U) = (D (U), ΣR (U)). Intuitively, for each
extension of R, T R (U) simulates the GL-reduct of T (U) with R, where T (U) is obtained from T (R)
by replacing each symbol R of Ri by the corresponding symbol Ui from U.

For predicate symbolsX andY of the same arity,X � Y is an abbreviation for∀x (X (x) → Y (x)),
and X < Y for X � Y ∧ ∃x (Y (x) ∧ ¬X (x)). For lists X = (X1, . . . ,Xk ) and Y = (Y1, . . . ,Yk ) of
compatible arities, letX < Y abbreviate the formula (X1 � Y1∧· · ·∧Xk � Yk )∧(X1 < Y1∨· · ·∨Xk <
Yk ).

Definition 3.9 (SOS Semantics [57] for NTGDs). Let D be a database and Σ(R) a set of NTGDs
over joint relation symbols R with list of relation symbols R = (R1, . . . ,Rr ). Furthermore, let
T (R) = (D, Σ) be the logical theory formed by D and Σ. The SOS semantics for D with Σ is defined
by a second-order formula SOS (D, Σ) as follows:

SOS (D, Σ) ≡ T (R) ∧ ¬∃U
(
U < R ∧ T R (U)

)
.

The set SModsos (D, Σ) of stable models according to the SOS semantics consists of the models of
SOS (D, Σ). These models are over arbitrary universes and are not restricted to be Herbrandmodels.
If Q is a UNBCQ, then instead of writing SOS (D, Σ) |= Q , we may write (D, Σ) |=sos Q . �

Before discussing the above definition and comparing it to the LP-approach, we adapt some
concepts from the latter to the settings of NTGDs. IfA is an arbitrary set, and Σ a set of NTGDs, then
дround (Σ,A) is the conjunction of all possible ground NTGD instances arising from each NTGDs
σ of Σ by eliminating the universal quantifiers from σ and uniformly replacing the variables of

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



Stable Model Semantics for Guarded Existential Rules and Description Logics 35:21

σ in all possible ways with domain elements from A. For an interpretation I with domain dom(I ),
the GL-reduct ΣI results from дround (Σ,dom(I )) by eliminating each ground instance containing
a negative literal ¬α such that I |= α and by eliminating each remaining negative literal from each
ground NTGD (which is tantamount to replacing it with true). Finally, for a database D and NTGD
set Σ, the GL-reductT I of the logical theoryT = (D, Σ) relative to an interpretation I is the ground
logical theory T I = (D, ΣI ).
Let us now come back to Definition 3.9. First note that an interpretation I of T = (Σ,D) deter-

mines an extension [R]I of the free predicate variablesR of (Σ,D). As customary in logic, this exten-
sion consists of the tuples of values in the relations of R, but has no reference to predicate symbols.
By construction, T R (U) simulates the GL-reduct in the following sense: For each fixed interpreta-
tion I , which thus also fixes an extension [R]I , the set of extensions {[U]J | J |= T R (U)} is equal to
the extensions of the GL-reduct T I . In other words, for fixed I , the possible extensions of T R (U)

are exactly the extensions of models ofT I . However, the subformula ¬∃U
(
U < R ∧ T R (U)

)
cuts

off all interpretations I of T (R), whose extensions are not the extensions of U in a minimal model
of T R (U), and thus of a minimal model of T I . Only those interpretations I of T remain, which are
also minimal models of T I . We keep track of this in the following proposition, which in essence
goes back to Reference [57] (Theorem 1 and Corollary 1).

Proposition 3.10. For a database D and a set of NTGDs Σ, an interpretation I is a model of
SOS (D, Σ) iff I is a model of T and a minimal model of T I , where T = (D, Σ).

The above proposition also makes evident that, in the context of NTGDs, the only difference
between the SOS approach and the LP approach adopted here is that the former allows for arbi-
trary interpretations and models, while the latter uses Herbrand interpretations and models only.
Regarding entailment, this would not really be a problem if Herbrand interpretations were not
subject to the UNA. The following example shows that the adoption of the UNA may make a
significant difference:

Example 3.11. Consider a database D = {Person(joe )} and a set Σ consisting of the following
NTGDs:

σ1 : → ∃x (Person(x ) ∧ Guilty(x )),

σ2 : Person(x ) ∧ notGuilty(x ) → Innocent(x).

According to the LP semantics adopted in the present article, there is only one stable model in
SMod (D, Σ), which isM1 = {Person(joe ), Person( fσ1,x (0)),Guilty ( fσ1,x (0)), Innocent (joe )}. Due to
the UNA, fσ1,x (0) is assumed to be different from joe . Thus, (D, Σ) |=stable Innocent(joe). However,
SOS (D, Σ) has an infinity of models, but up to isomorphism only two, namely, the above model
M1 and the model M2 = {Person(joe ),Guilty (joe )}. M2 arises from the unification of the witness
x for σ1 with the constant joe . We thus have: (D, Σ) � |=sos Innocent(joe). The two semantics thus
significantly differ.

Other examples, where the SOS produces additional models, not isomorphic to those produced
by the LP-semantics were given in Reference [57] and elsewhere. Onemay be tempted to think that,
due to the additional possibility of unifying witness values, the SOS semantics always generates
at least all the stable models that are produced according to the LP-semantics. However, this is not
so. There are cases in which an LP stable model M is actually not an SOS model, because there
exists a smaller SOS stable non-Herbrand modelM ′ < M , andM is thus not minimal according to
the SOS semantics. The following example illustrates such a case:

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



35:22 G. Gottlob et al.

Example 3.12. Let D be the empty database, and let Σ contain the following NTGDs.

true → ∃x ,∃yH (x ,y), (1)

true → ∃xH (x ,x ), (2)

∀x∀y (H (x ,y) → E (x ,x )), (3)

∀x∀y (H (x ,y) → E (y,y)), (4)

∀x∀y (H (x ,y) ∧ ¬E (x ,y) → hello). (5)

According to the LP approach, (D, Σ) has exactly one stable model, namely,

M = {H ( f1,x (0), f1,y (0)),H ( f2,x (0), f2,x (0)),E ( f1,x (0), f1,x (0)),E ( f1,y (0), f1,y (0)),

E ( f2,x (0), f2,x (0)), hello}.

This, however, is not a stable model according to the SOS semantics, because the non-Herbrand
model M0 that unifies the witnesses of the TGDs (3) and (4) is smaller. This model is: M0 =

{H ( f2,x (0), f2,x (0)),E ( f2,x (0), f2,x (0))}, which is a proper subset of M . It is not hard to see that
(up to isomorphism) this is the only SOS model of (D, Σ). We thus have (D, Σ) |=stable hello, but
(D, Σ) � |=sos hello.

In the following, we show that the SOS semantics can express the LP semantics. Towards this
aim, we first show how the UNA can be enforced for an NTGD theoryT = (D, Σ) by transforming
T into another NTGD theory TUNA.

Let D be a database and Σ be a set of NTGDs defined over a joint schema R, and let R =
(R1, . . . ,Rr ) be an ordered list of all the relation (= predicate) symbols in R. First, towards a simpler
presentation, and without loss of generality, we assume that every existential NTGD in Σ has only
one existentially quantified variable. It is well-known and not hard to see that every set of NTGDs
can be rewritten into an equivalent set (relative to query-answering over R) in this form by use of
auxiliary predicate symbols; see Reference [32].
Let us now split every existential NTGD σ ∈ Σ of the form ∀x∀y (body (x, y) → ∃z R (x, z)) , into

the following two NTGDs σa and σb :

σa : ∀x∀y (body (x, y) → ∃zWitnessσ (x, y, z)) , and

σb : ∀x∀y∀z (Witnessσ (x, y, z) → R (x, z)) ,

where Witnessσ is a fresh auxiliary predicate symbol whose purpose is to keep track of the ex-
istential witness assignments together with the values (instances of x and y) on which such an
assignment depends. Obviously, these splits yield a set of NTGDs equivalent to Σ with respect to
answering queries over the schema R.
The UNA states that all database constants and witness values are mutually different. This is

easily expressed in first-order logic by use of the � predicate, however, this is outside the realm
of NTGDs. We will therefore simulate the = and � predicates with NTGDs. We introduce a new
auxiliary predicate symbol E for equality and add for each relation symbol R ∈ R having arity k a
rule, for 1 � i � k a TGD R (x1, . . . ,xi , . . . xk ) → E (xi ,xi ). This way, for whatever argument value
v that appears in a stable modelM of (D, Σ), E (v,v ) will be true inM . Moreover, given that there is
no further rule with head E (. . .), due to the minimality ofM , E will precisely represent equality in
M . Now let bad and bad ′ be auxiliary propositional atoms and add the NTGD bad ∧¬bad ′ → bad ′.
If bad is inferred, then this rule becomes equivalent to ¬bad ′ → bad ′, which cannot be satisfied
by any stable model. The UNA axioms can then be asserted with five groups of NTGDs (of which
some are unguarded, but this will not create a problem).
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(1) Different database constants do not unify. For each pair a and b of distinct values in dom(D),
add the TGD E (a,b) → bad .

(2) Existential witnesses are different from database constants. For each existential NTGD σ ∈ Σ
and each database constant a, add the NTGDs ∀x∀y∀z (Witnessσ (x, y, z) ∧ E (z,a) → bad ).

(3) Witnesses for distinct NTGDs are are mutually distinct. For each different pair σ ,σ ′ ∈ Σ of
existential NTGDs, add the TGD
∀x∀y∀z∀z ′ (Witnessσ (x, z) ∧Witnessσ ′ (y, z

′) ∧ E (z, z ′) → bad ).
(4) Witnesses for different instantiations of (i.e., homomorphisms from) the same NTGD rule

body are different. For each existential NTGD σ and each variable xi of the body
body (x1, . . . xi , . . . ,xk ) of σ , add the NTGD

∀x1 . . . xk∀y1 . . .yk∀z (Witnessσ (x1, . . . ,xi , . . . ,xk , z) ∧Witnessσ (y1, . . . ,yi , . . . ,yk , z)

∧¬E (xi ,yi ) → bad ).

(5) TheWitness relation is functional. Informally, this assures that the witness assignment indeed
works akin to Skolem functions that create a single witness rather than multiple witnesses
for each NTGD application. For each existential NTGD σ , add the following NTGD:

∀x∀y∀z∀z ′ (Witnessσ (x, y, z) ∧Witnessσ (x, y, z
′) ∧ ¬E (z, z ′) → bad ).

Definition 3.13. For a databaseD and NTGD set Σ, we denote byΣDUNA the set of NTGDs resulting
from D and Σ by the above rule splittings and NTGD additions, including the assertion of the
above UNA axioms. Moreover, if T = (D, Σ), then TUNA = (D,ΣDUNA) denotes the logical theory of D
andΣDUNA, i.e., the set (conjunction) of the logical ground atoms in D and the NTGDs inΣDUNA. �

Let Γ be a set of interpretations over a schema S, and let R be a sub-schema of S, then Γ[R]
denotes set of projections of interpretations in Γ over the relations of sub-schema R, i.e., the set of
extension of the R-predicates of the interpretations in Γ.
For two sets Γ and Γ′ of interpretations over a same schema R, we say that Γ and Γ′ coincide

up to isomorphisms and write Γ � Γ′ if every interpretation of Γ is isomorphic to at least one
interpretation of Γ′ and vice versa.
The following theorem finally shows that NTGD sets under the classical LP-semantics can be

equivalently reformulated as equivalent NTGD sets under the SOS semantics by adding the UNA
axioms (in form of NTGDs). This means that the SOS formalism can simulate Herbrand models
and is at least as expressive as the LP-semantics. While we will only need the following result
for UNBCQs, we formulate it for arbitrary first-order Boolean queries. That is, we consider the
problem (D, Σ) |=stable Q for first-order sentences Q , where, by definition, (D, Σ) |=stable Q if for
eachM ∈ SMod (D, Σ),M |= Q .

Theorem 3.14. Let D be a database, Σ a set of NTGDs, and Q a first-order Boolean query over a
joint schema R, then
(1) SMod (D, Σ) � SModsos (D,Σ

D
UNA)[R] and

(2) (D, Σ) |=stable Q iff (D,ΣDUNA) |=sos Q iff SOS (D,ΣDUNA) |= Q .

The above theorem formally states that the UNA, and only the UNA, makes the difference be-
tween the LP-based and the SOS semantics in case of NTGDs, and that the UNA can be added
in form of NTGDs to any set Σ of original NTGDs to make both semantics coincide. Informally,
we have thus established the following equation: LP Semantics = SOS Semantics + UNA, and we
may say that the LP-semantics is equivalent to the SOS semantics under the UNA. In this sense,
the positive decidability and complexity results that we will derive in the sequel are also positive
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results for the SOS semantics under the UNA. Recall that the UNA axioms are not all guarded, but
this will not be a problem, as we are in the subsequent Section 3.5 mainly interested in the follow-
ing semantic property of the UNA axioms: Whenever added to a set of guarded TGDs, they enforce
the so-called tree model property.

3.5 Decidability

It is well known that answering queries relative to sets Σ of TGDs is undecidable, even if both
Σ and the query are fixed, the query is atomic, and if only one of the TGDs is existential (see
Section 3 of Reference [32] and the discussion and references therein). This raises the question
for natural restrictions of NTGDs for which query answering under the stable model semantics
is decidable. In this article, we study an important such restriction, namely, the restriction to the
above-introduced guarded NTGDs.
Theorem 3.17 below will give a first decidability proof for query answering with guarded NT-

GDs. This proof rests on a strong logical metatheorem that generalizes Rabin’s Theorem on the
decidability of monadic second-order logic over trees [104]. We believe that this proof will provide
valuable insight into the decidability issue. However, the proof of Theorem 3.17 is not well-suited
for directly deriving precise complexity results, let alone practical algorithms. Therefore, in the
next two sections, a much more algorithmic proof will be developed, which may guide future
implementations and which will allow us to derive precise complexity bounds.
Rabin’s Theorem [104] states that S2S, the monadic theory of two successor functions, is decid-

able. That is, monadic second-order logic (MSO) is decidable over the infinite binary tree, and,
via interpretability, also over countable trees. Results by Shelah [108] and LeTourneau [85] show
that MSO over the class of all trees is decidable. This, in turn, was generalized by Courcelle [42, 43],
who proved the decidability of MSO over structures of bounded treewidth (as defined in Section 2).
A further generalization [72] (see also References [64, 105]) considers the stronger guarded second-
order logic (GSO), for which the decidability over structures of bounded treewidth equally holds.
GSO, whose expressive power lies properly between the one of MSO and the expressive power of
full second-order logic (SO), is the logic which will be used to prove Theorem 3.17. Therefore,
we will introduce it here more carefully.3

A GSO formula over a schema R is a formula of classical second-order logic, in which the re-
lational symbols of R occur as free relational variables, and where each quantified second-order
variable is constrained to range over subsets of the extension of some variable R from R. This
can be enforced syntactically by restricting second-order existential quantification to the form
∃X(X � R ∧ φ (X )), and universal second-order quantification to the form ∀X ((X � R) → φ),
which can be abbreviated by ∀X � R φ. Observe that first-order quantification does not need
to be guarded in GSO. Let us also remark that GSO over graph signatures, i.e., signatures with
at most binary relations, is equivalent to the well-known logic MSO2 by Courcelle [42, 43]. GSO,
as presented here, can thus be considered as a straightforward extension of MSO2 to arbitrary
arities.

Definition 3.15. A class C of second-order logic formulas has the generalized tree model property
if there exists a computable function t , assigning to every formula Φ(R) ∈ C a natural number
t (Φ) such that, whenever Φ is satisfiable, then φ has a model (i.e., an extension of the free predicate
variables R of Φ) of treewidth at most t (φ).

3Actually, for a simpler presentation, we here introduce a syntactic sub-fragment of full GSO that is sufficient for our
purposes. Trivially, all decidability results for full GSO also hold for this sub-fragment.
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The following is well-known [42, 72]:

Proposition 3.16 (Decidability Criterion via GSO). Each decision problem that can be
Turing-reduced to the satisfiability problem for GSO formulas of some class C that has the gener-
alized tree model property is decidable.

The above result was stated in a slightly more general form in Reference [72]. A full proof
can be found in a most useful survey paper by Thoralf Räsch [105]. Propositions such as 3.16 are
often referred to asmetatheorems, meaning that they provide tools for generating other theorems,
in this case, decidability results. We now use Proposition 3.16 and the second-order formulation
of “(D, Σ) |=stable Q” derived in Section 3.4 to prove our decidability result. As in Theorem 3.14, we
consider arbitrary first-order Boolean queries and not merely UNBCQs.

Theorem 3.17. For databasesD, finite sets Σ of guarded NTGDs, and first-order Boolean queriesQ ,
the problem “ (D, Σ) |=stable Q” is decidable.

Proof. For proving the decidability of (D, Σ) |=stable Q , we will actually prove the decidability
of (D, Σ) � |=stable Q , which is, of course, equivalent. We denote the list of free predicate variables of
T by R, and let R+ denote the list of free predicate variables ofTUNA = (D,ΣDUNA). Thus, R

+ extends R
by the predicate symbols Witnessσ and E.

By Theorem 3.14, (D, Σ) � |=stable Q is equivalent to SOS (D,ΣDUNA) � |= Q , and thus to the satisfiability
of the second-order formula SOS (D,ΣDUNA) ∧ ¬Q , which is equivalent to

TUNA (R
+) ∧ ¬∃U

(
U < R+ ∧ T R+

UNA (U)
)
∧ ¬Q .

The above is a GSO formula, because by the condition U < R+, the extensions of the existentially
quantified U predicate variables are constrained to be subsets of the corresponding extensions of
the free R+ predicate variables.

Let G be the class of all GSO formulas TUNA (R+) ∧ ¬∃U
(
U < R+ ∧ T R+

UNA (U)
)
∧ ¬Q for arbitrary

T = (D, Σ), where D is a database, and Σ is a guarded set of NTGDs, and arbitrary Boolean first-
order queryQ , and where, as above, R and R+ denote the lists of free predicate symbols occurring
in T and TUNA, respectively.

Given that the decision problem (D, Σ) |=stable Q for guarded NTGDs is reducible to the satisfia-
bility problem for formulas in class G, by Proposition 3.16, for proving the theorem, it now suffices
to establish that G enjoys the generalized tree model property.
For database D and arbitrary guarded NTGD set Σ, let Σ∗ be the set of NTGDs resulting from

Σ by the rule splitting with the introduction of the Witnessσ atoms and the addition of the rules
R (x1, . . . ,xi , . . . ,xk ) → E (xi ,xi ) as specified in Section 3.4. In other words, Σ is equal toΣDUNA minus
the NTGDs from the five groups of UNA axioms. Clearly, given that Σ is guarded, so is Σ∗, which
results from Σ by the addition of guarded TGDs only. Now observe that via Theorem 3.14, the mod-
els of Φ = TUNA (R

+) ∧ ¬∃U (U < R+ ∧ T R+

UNA (U)), which are those in SModsos (D,Σ
D
UNA), are precisely

the stable models of T∗ = (D, Σ∗). In fact, these theories are over the same schema R+, and hence
no schema projection is necessary. Each such stable model M is a minimal model of TM

∗ and can
thus be computed as chase(D, ΣM∗ ). Given that Σ∗ is guarded, so is Σ

M
∗ , and thus, by Proposition 2.6,

tw (M ) = tw (chase(D, Σ∗)) � |dom(D) | + w , where w is the largest arity in Σ∗, and thus, clearly,
tw (M ) � |dom(D) |+size (Σ) � size(Φ). It follows that allmodels in SModsos (D,Σ

D
UNA), which are, by

definition, the models ofTUNA (R+) ∧¬∃U (U < R+ ∧ T R+

UNA (U)) have bounded treewidth. Conjoining
the closed formula ¬Q to the latter formula can only cut models off, and the remaining models (if
any) are still models of SModsos (D,Σ

D
UNA), and thus all have bounded treewidth. In summary, each

satisfiable formula Φ in G, has models whose treewidth are bounded by size(Φ). (Actually, not just
some but allmodels of Φ obey this treewidth bound, which is even more than is required for ensur-
ing the generalized treemodel property.) Therefore,G has the generalized treemodel property. �
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The decidability result is mainly due to the generalized tree model property of formulas Φ =
TUNA (R

+) ∧ ¬∃U (U < R+ ∧ T R+

UNA (U)), which is entailed by the fact that the models in SMod (D, Σ∗)
have bounded treewidth. This, in turn, is due to two simultaneous features, which jointly enforce
tree-shaped models: (i) the use of the UNA in the SMS semantics and (ii) the guardedness of Σ
(and thus also of Σ∗). Each feature alone would not suffice. We briefly discuss the role of these two
features.

(i) Role of the UNA. The UNA (implicit in the classical definition of logic programming with
Herbrand constants and terms) ensures that the witnesses corresponding to existentially quanti-
fied variables are Herbrand terms that are fresh new values different from any database domain
value and from any other witness generated. The addition of the UNA thus enforces that the SOS
semantics behaves like the classical SMS semantics (Theorem 3.14), which, by Proposition 3.5,
corresponds (up to isomorphism of models) to the chase semantics. The chase semantics, in turn,
guarantees [dom(D)]-acyclicity and the bounded treewidthmodel property, provided the rules of Σ
are guarded. Here, we have thus an interaction between the UNA and guardedness. The following
example illustrates this and highlights, in particular, the role of the UNA:

Example 3.18. Consider the database D = {R (a,b)}, which is obviously acyclic, and let Σ
contain the unique guarded rule R (x ,y) → ∃z R (y, z). The UNA of the SMS then enforces a
unique SMS-model of (D, Σ), which is the infinite chain {R (a,b),R (b, z1),R (z1, z2),R (z2, z3), . . .},
where the zi are the created null values that serve as witnesses. Additional cyclic models such
as {R (a,b),R (b,a)} or {R (a,b),R (b, z1),R (z1,a)}, and so on, that are all SOS models of (D, Σ), are
ruled out by the SMS.

However, when assuming single-headed NTGDs (as done here) and the UNA, witness creation
by itself cannot introduce new uncovered cycles, and thus cannot spoil model acyclicity, let alone
bounded treewidth. Similarly, multi-headed guardedNTGDswould not spoil finite treewidth. How-
ever, it is well possible that unguarded rules operate on the null values created under the UNA
and take them as prime material for weaving interconnections that result in highly cyclic infinite
structure of infinite treewith such as infinite grids or even cliques, as will be illustrated under
Point (ii) below by Example 3.19. However, even when Σ is restricted to guarded TGDs, dropping
the UNA may spoil bounded treewidth. This was shown in Reference [4] and has grim conse-
quences for decidability. In fact, in Reference [4], it is shown that under the SOS semantics, which
does not adopt the UNA, sets of NTGDs with appropriate queries are able to enforce models with
infinite grids that can be used to express the halting problem for Turing machines. By such a re-
duction, the query-answering problem for NTGDs under the SOS was shown to be undecidable in
Reference [4].

(ii) Role of guardedness. As already explained in (i), the UNA plus guardedness jointly ensure
[D]-acyclicity and thus also the bounded treewidth property. The following example shows that
not only the UNA, but also guardedness is essential here. In fact, the bounded treewidth property
is not guaranteed by the UNA alone, as it can be spoiled by even a single unguarded rule. In fact,
as the following example shows, unguarded sets of TGDs, even under the UNA, can be used to
generate a structure of infinite treewidth that consists of an infinite clique.

Example 3.19. Consider a database D = {Vertex(0)} and a set Σ with the three following rules:

Vertex(x ) → ∃y Succ(x ,y),
Succ(x ,y) → Vertex(y),

Vertex(x ) ∧ Vertex(y) → Edge(x ,y).

Clearly, this defines an infinite clique (with self-loops). Such a clique has infinite treewidth.
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By a mildly more complicated unguarded set Σ of TGDs, one can define an infinite grid that
also has infinite treewidth, and one can then use the ith horizontal lines of the grid to represent
the configuration of a Turing machine at time i , starting with the input configuration at line 1.
The configuration transitions over time, and thus the computation of the Turing machine, can
be simulated by further TGDs. This way, it is possible to encode the halting problem for Turing
machines by using TGDs. A detailed account of this (using several guarded and a single unguarded
TGD only) is given in Reference [32].

3.6 Complexity Considerations

Unfortunately, Theorem 3.17 does not provide good complexity bounds, let alone acceptable al-
gorithms for deciding (D, Σ) |=stable Q . Consider, for example, the case of data complexity, when
both a guarded set of NTGDs Σ and a conjunctive query Q are fixed and the input consists of
a database D only. Even then, the best upper bound that we have on the treewidth of the mod-
els in SModsos (D,Σ

D
UNA) is dom(D) + ar(R ) − 1, which grows linearly in the size of the input D.

With such a (non-constant) treewidth, techniques for directly reading off complexity bounds from
the quantifier-alternation of SO formulas having the generalized tree model properties yields
EXPTIME bounds at best. This motivates the study of refined decision procedures and of their
associated complexities, which we carry out in the next sections, where we will show, among
other results, that deciding (D, Σ) |=stable Q is co-NP-complete in data complexity.

4 STABLE MODEL SEMANTICS FOR GUARDED NTGDS VIA GUARDED

DISJUNCTIVE NTGDS WITH STRATIFIED NEGATION

The proof of Theorem 3.17 does neither provide tight bounds for deciding (D, Σ) |=stable Q for
guarded NTGDs Σ, nor provides appropriate algorithms for this problem. To obtain such bounds
and algorithms, we pursue the following approach: In the present section, we polynomially trans-
form the query answering problem for NTGDs under the SMS to a different problem in another
formalism that is easier to analyze and lends itself better to an algorithmic approach due to its
more procedural nature. Then, in Section 5, we provide complexity bounds and algorithms. More
specifically, in the present section, we show how to polynomially transform the decision problem
(D, Σ) |=stable Q , where Σ is guarded, into an equivalent decision problem (D, Σ′) |=strat Q ′, where
Σ′ is a set of disjunctive NTGDs (DNTGDs), which, moreover, are guarded and stratified, i.e„ allow
for stratified negation in rule bodies, and where Q ′ is obtained from Q by a simple modification.
The semantics of the entailment relation “|=strat” is based on the disjunctive chase procedure, which
is a generalization of the chase as defined for plain TGDs in Section 2. The disjunctive chase (just
as the chase) can still generate infinite interpretations. However, it will be shown in Section 5 that,
thanks to the guardedness of the stratified DNTGDs in Σ′, only finite parts of these interpretations
are relevant for query answering.
We would like to stress that, in the present article, stratified DNTGDs are merely used as an ap-

propriate tool and auxiliary formalism for the derivation of our decision algorithms and complexity
results. Given that we focus on guarded NTGDs, we are mainly interested in translating guarded
NTGD sets into sets of guarded stratified DNTGDs, which is done in the proof of Theorem 4.17.
However, the translation given in Theorem 4.17 also works for arbitrary (possibly unguarded) sets
Σ of DNTGDs, which would then be translated into sets Σ′ of unguarded stratified DNTGDs. This
could be useful in other contexts that may be of interest elsewhere, for example, for finding fur-
ther decidable fragments of DNTGDs under the SMS. Moreover, stratified DNTGDs, which are a
generalization of DTGDs as studied in References [28, 45, 46], may be considered as a knowledge
representation formalism of interest in its own right.
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In the following Section 4.1, we define DNTGDs and the disjunctive chase. In Section 4.2, we
show our transformation that simulates the stablemodel semantics for guardedNTGDs by guarded
DNTGDs and stratified negation.

4.1 Disjunctive NTGDs with Stratified Negation

We begin by introducing the notion of disjunctive NTGDs, which extend NTGDs by the possibility
to use disjunction in their heads. More precisely, a disjunctive NTGD (DNTGD) σ over a schema R
has the form

∀x∀y
(
Φ(x, y) →

n∨
i=1

∃zi Ψi (x, zi )
)
, (6)

where Φ(x, y) is defined as for NTGDs (i.e., it is a conjunction of literals over R whose arguments
are variables), each Ψi (x, zi ) is a conjunction of atoms over R with variables as their arguments,
and n � 1. We call Φ(x, y) the body of σ and

∨n
i=1 ∃zi Ψi (x, zi ) the head of σ . As usual, we drop the

universal quantifiers and abbreviate such a DNTGD as Φ(x, y) → ∨n
i=1 ∃zi Ψi (x, zi ). Throughout

this article, we assume without loss of generality that each Ψi (x, zi ) is a single atom, and that for
each pair i and j of distinct indices from {1, . . . ,n}, we have that zi and zj are disjoint and do
not contain any variables from the body of σ . Notations like body+ (σ ) and body− (σ ) are defined
analogously as for NTGDs. By head (σ ) := {Ψi (x, zi ) | 1 � i � n}, we denote the set of all atoms
that occur in the head of σ (recall that we assume that each Ψi (x, zi ) is a single atom).
Guarded DNTGDs play an important role in the sequel. Here, we say that a DNTGD σ is guarded

if there is an atom in body+ (σ ), called a guard of σ , that contains all variables that occur in the
body of σ . If σ is guarded, then guard (σ ) denotes an arbitrary guard of σ . Sometimes, we also
consider disjunctive TGDs (DTGDs), which are DNTGDs without negative literals.
A DNTGD σ over R is satisfied in an interpretation I for R if, whenever there is a homomor-

phismh such thath(body+ (σ )) ⊆ I andh(body− (σ ))∩I = ∅, then there is an extensionh′ ⊇ h |Φ(x,y)
and an atom α ∈ head (σ ) with h′(α ) ∈ I .

Example 4.1. Let σ be R (x ,y, z) ∧ S (x ,y) ∧ ¬T (y, z) → S (y, z) ∨ ∃u∃v U (y, z,u,v ). Then, σ is
a guarded DNTGD, with R (x ,y, z) as a guard. In fact, R (x ,y, z) is the only guard of σ , and thus
guard (σ ) = R (x ,y, z). If I is an interpretation containing the atoms R (a,b, c ) and S (a,b), then at
least one of the following atoms must be present in I to satisfy σ : S (b, c ),T (b, c ), orU (b, c,d, e ) for
some d, e ∈ Δ ∪ ΔN .

In this article, we focus on sets of DNTGDs with stratified negation. Stratified negation is a well-
known form of non-monotonic negation and has recently been studied for sets of NTGDs [33, 88].
It is weaker than negation under the stable model semantics in that it does not permit “negative
cycles.” To this end, predicates are partitioned into strata in such a way that each atom R (a) only
depends on atoms S (b) for which S belongs to a lower stratum than R, or to the same stratum if
the dependence on S (b) is positive. Such a partition into strata is called a stratification, and a set
of DNTGDs that admits a stratification is called stratified:

Definition 4.2 (Stratification). Let Σ be a set of DNTGDs over a schema R. A stratification of Σ
(of length l � 1) is a mapping s : R → {1, . . . , l } such that for all σ ∈ Σ and all R (x) ∈ head (σ ), we
have that

• s (S ) � s (R) for all S (y) ∈ body+ (σ ), and
• s (S ) < s (R) for all S (y) ∈ body− (σ ).

We say that Σ is stratified if there is a stratification of Σ.
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Given a set Σ of DNTGDs over a schema R, a stratification s of Σ, and an interpretation I for R,
we define the ith stratum of I as the set of all atoms R (a) in I with s (R) = i . �

Example 4.3. Let Σ be the set consisting of the following guarded DNTGDs:

R (x ,y) ∧ ¬A(x ) → B (y), (7)

R (x ,y) ∧ B (y) → ∃z S (x ,y, z), (8)

S (x ,y, z) → C (z) ∨ R (y, z), (9)

S (x ,y, z) ∧ ¬C (z) → D (x ), (10)

S (x ,y, z) ∧ ¬R (y, z) → E (x ). (11)

This set is stratified. A possible stratification of Σ of length 3 is given by the mapping s with
s (A) = 1, s (B) = s (C ) = s (R) = s (S ) = 2, and s (D) = s (E) = 3. It is easy to see that every
stratification of Σ has a length of at least 3, since the DNTGDs in Σ enforce that for any such
stratification s ′, we have that s ′(A) < s ′(B) � s ′(S ) � s ′(C ) < s ′(D).

The semantics of stratified sets of DNTGDs is based on the notion of a canonical model. A canon-
ical model is constructed one stratum at a time, starting with the lowest stratum and turning to
a higher stratum only after all strictly lower strata have been constructed. This process guaran-
tees that at the time when a DNTGD σ is applied, we have full information about the presence
or absence of all negative atoms that are relevant for the application of σ . To give a more precise
definition of canonical models, we first generalize the well-known chase procedure [15] (see our
Definition 2.2 and Remark 2.3) to sets of DNTGDs and then define canonical models in terms of
the generalized chase procedure.

Definition 4.4 (Application of a DNTGD). Let σ be a DNTGD and I be an interpretation.

• We say that σ is applicable to I if there exists a homomorphism h : body+ (σ ) → I mapping
all atoms in body+ (σ ) to atoms in I , such that h maps no atom in body− (σ ) to any atom in I .
In this case, we also say that σ is applicable to I with h.
• Let σ be applicable to I with homomorphism h. Applying σ to I with h yields a new interpre-
tation I ′ that is obtained from I by adding h′(α ), where α ∈ head (σ ), and h′ is an extension
of h that assigns to each variable in α that does not occur in the domain of h a fresh null. We
call I ′ the result of applying σ to I (with h and α ). �

We will apply the chase procedure only to semi-positive sets of DNTGDs. Here, we call a set Σ
of DNTGDs semi-positive if each predicate R that occurs in a negative literal in the body of some
DNTGD in Σ is extensional (i.e., R does not occur in the head of some DNTGD in Σ).

Definition 4.5 (Chase). Let I be an interpretation and Σ be a semi-positive set of DNTGDs.

• A chase sequence of I with Σ is a potentially infinite sequence I0, I1, I2, . . . of interpretations
such that I0 = I , each Ii+1 is a result of applying a DNTGD in Σ to Ii , and for each DNTGD
σ ∈ Σ that is applicable to some Ii with a homomorphism h,
—there exists an index j � 0 such that Ij+1 is the result of applying σ to Ij with h; and
—for each atom α ∈ head (σ ), there exists at most one index j � 0 such that Ij+1 is the result
of applying σ to Ij with h and α .

We call I0 ∪ I1 ∪ I2 ∪ · · · the result of the chase sequence.
• We denote by chase(I , Σ) the set of all interpretations that are the result of some chase se-
quence of I with Σ. �

Remark 4.6. Note that the above definition is a true generalization of the TGD chase of
Definition 2.2. In particular, if I is an instance and Σ a set of TGDs, then chase(I , Σ) has
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precisely the same meaning according to both definitions. Furthermore, recall the requirement
from Definition 2.2 (see also Remark 2.3) that each TGD applicable with some homomorphism
must be applied exactly one time with this homomorphism. According to the above Definition 4.5,
the conditions from Definition 2.2 are now generalized to the following conditions for stratified
DNTGDs: For each stratified DNTGD σ that is applicable with a homomorphism h, σ must be
applied at least once in the chase sequence (with at least one head atom of σ ); moreover, σ with
h can be applied at most once per head atom of σ . However, σ with h does not need to be applied
with each head atom. A disjunctive rule head is thus interpreted as an inclusive disjunction.

Remark 4.7. As for the TGD chase (in analogy to Proposition 2.4), chase(I , Σ) may contain many
isomorphic models due to different possible choices of names of nulls. If we adopt a fixed determin-
istic policy of naming nulls, such as, for example, the use of unambiguously identified Herbrand
terms, as in Section 3.3, then, for each I ∈ chase(I , Σ), models isomorphic to I due to different name
choices for fresh nulls would be cut off. It is not difficult to see that cutting off isomorphic models
has no effect whatsoever on query answering. Therefore, whenever convenient, we may assume
without loss of generality a fixed deterministic naming policy for nulls.

Example 4.8. The set Σ′ consisting of the first three DNTGDs from Example 4.3 (DNTGDs (7)–
(9)) is semi-positive. Let I = {R (a,b),R (a′,b ′),A(a′)}. Then, a possible chase sequence of I with Σ′

is I0, I1, . . . , I7, where

I0 := I , I4 := I3 ∪ {R (b,u1)},
I1 := I0 ∪ {B (b)}, I5 := I4 ∪ {B (u1)},
I2 := I1 ∪ {S (a,b,u1)}, I6 := I5 ∪ {S (b,u1,u2)},
I3 := I2 ∪ {C (u1)}, I7 := I6 ∪ {C (u2)}.

Here, u1 and u2 are distinct nulls.
Note that by Definition 4.5 (see also Remark 4.6), we are not allowed to apply any DNTGD

twice with the same homomorphism and rule head. Consider, for example, the DNTGD (8), which
is here applied with the homomorphism x ,y �→ a,b to interpretation I1 to yield I2 with the new
atom S (a,b,u1). Of course, according to Definition 4.4, the DNTGD (8) also remains applicable in
all further steps of the chase, i.e., for interpretations I2, I3, . . . , I7. However, by Definition 4.5, given
that it was already applied to I2, we cannot apply it with the same homomorphism again, say, to I7,
where such an application would generate an additional atom like S (a,b,u3), where u3 is a fresh
null distinct from u1. However, the repeated application of the DNTGD (9) with the homomor-
phism h : x ,y, z �→ a,b,u1 does not violate the conditions of the chase, since each application of
the DNTGD (9) with h uses a different atom from the head of the DNTGD. A chase sequence can
be finite or infinite. The chase sequence in the present example is finite, because all combinations
(σ ,h) of a DNTGD and a homomorphism that need to be applied have already been applied (and in
this particular case, this chase sequence even yields a maximal interpretation as result, because no
further option for a rule application yielding a new atom is possible). However, if we were allowed
to fire DNTGDs with the same homomorphism multiple times, then, even for this example, we
could end up with additional infinite chase sequences, where the DNTGD (9) with the homomor-
phism h : x ,y, z �→ a,b,u1 is applied over and over, generating an infinite number of atoms of the
form S (a,b,ui ) for infinitely many distinct null values ui .

For a given interpretation I and set of DNTGDs Σ, chase(I , Σ) may be finite or infinite and
may even consist of uncountably many finite and infinite interpretations. Some may contain oth-
ers, thus the elements in chase(I , Σ) are neither necessarily maximal nor necessarily minimal
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interpretations. This is illustrated by Example 4.9, which can be equivalently formulated by NT-
GDS under the SMS.

Example 4.9. Let D = {R (a,b)} and Σ = {σ : R (x ,y) → ∃z (R (y, z) ∨ A(y)}. One chase
sequence just applies σ a single time with the second head atom, which yields the interpreta-
tion I1 = {R (a,b),A(b)} ∈ chase(D, Σ). This is a minimal, but not a maximal one. Another
chase sequence applies σ infinitely often, always with the first rule head, which yields I2 =
{R (a,b),R (b,u1),R (u1,u2), . . .} ∈ chase(D, Σ), where the ui are the generated null values, which is
equally a minimal one (we cannot eliminate any atom from it), but which is, again, not maximal.
Then, there exist infinitelymany chase sequences that generate a certain number ofR (ui ,uj ) atoms,
and maybe someA(u� ) atoms and then stop at some point at a finalA(uk ). These are neither mini-
mal nor maximal. In this example, there is also a unique maximal interpretation Imax ∈ chase(D, Σ),
which looks as follows: Imax = {R (a,b),A(b),R (b,u1),A(u1),R (u1,u2),A(u2), . . .}. Here, σ fires in-
finitely often, and always with each rule head. Moreover, there is a set S of interpretations in
chase(D, Σ) that differ from Imax only by the fact that some (finite or infinite ) subset V ⊆ W =

{A(a),A(u1),A(u2), . . .} is missing. Given thatW is already of cardinality ℵ0, there are 2ℵ0 sub-
sets V , and thus S is an uncountable set and so is its superset chase(D, Σ).

The variant of the chase introduced in Definition 4.5 is similar to the variant of the chase that
was introduced in Reference [46] to deal with an extension of disjunctive TGDs. The main differ-
ences are that here we have to deal with negative literals in the bodies of DNTGDs, and that our
variant of the chase is oblivious in the sense that a DNTGD may be applied (with either a differ-
ent homomorphism or with another head atom) even if its head is already satisfied. Moreover, we
adopt the inclusive or as the semantics of disjunction in the heads of DNTGDs. This is because we
are allowed to apply a DNTGD several times with the same homomorphism (but with different
atoms from the head of that DNTGD). However, it is important to remember that we are not al-
lowed to apply a DNTGD twice with the same homomorphism and head atom. This property is
crucial for our constructions in Section 4.2 to work.
We are now ready to define the notion of a canonical model. Given a set Σ of DNTGDs and a

stratification s of Σ, we let Σ(i )
s be the set of all DNTGDs σ in Σ such that i is the minimum of

s (R), where R ranges over all the predicates in the head of σ . For example, if Σ and s are as in

Example 4.3, then Σ(2)
s is the set Σ′ from Example 4.8. It is not difficult to see that if σ ∈ Σ(i )

s and

R (x) ∈ body− (σ ), then any DNTGD that contains R in its head must belong to Σ(j )
s for some j < i .

Thus, each Σ(i )
s is semi-positive.

Definition 4.10 (Canonical Model). Let I be an interpretation, let Σ be a set of DNTGDs, and let
s be a stratification of Σ of length l . We define

• CMod
(0)
s (I , Σ) := {I };

• CMod
(i )
s (I , Σ) :=

⋃
J ∈CMod

(i−1)
s (I,Σ)

chase(J , Σ(i )
s ) for i ∈ {1, . . . , l };

• CMods (I , Σ) := CMod
(l )
s (I , Σ).

A canonical model for I and Σ relative to s is any interpretation in CMods (I , Σ). �

Example 4.11. Consider the set Σ of guarded DNTGDs and the stratification s of Σ from
Example 4.3, as well as the two interpretations I and J := I7 from Example 4.8. Then,K := J ∪{E (b)}
is a canonical model for I and Σ relative to s , since I ∈ CMod

(0)
s (I , Σ), I ∈ chase(I , Σ(1)

s ) ⊆
CMod

(1)
s (I , Σ) (as Σ(1)

s = ∅), J ∈ chase(I , Σ(2)
s ) ⊆ CMod

(2)
s (I , Σ) (as shown in Example 4.8), and

K ∈ chase(J , Σ(3)
s ) ⊆ CMod

(3)
s (I , Σ) = CMods (I , Σ).
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It is worth mentioning that the chase at a given stratum S1 may be infinite, and at the next
stratum, the chase would already run on an infinite interpretation, and this could continue for
further strata. As we will explain in Section 5, guardedness will ensure that, for answering queries
of a given size, it will be sufficient to use only a finite initial fragment of each stratum of the chase.
It is not difficult to verify that a canonical model for I and Σ relative to s is a model of I and Σ,

that is, it contains I and satisfies all DNTGDs in Σ. Moreover, the following lemma implies that a
canonical model can be obtained independently from a concrete stratification:

Lemma 4.12. Let I be an interpretation for R, let Σ be a set of DNTGDs over R, and let s and t be
stratifications of Σ. Then, CMods (I , Σ) = CModt (I , Σ).

Proof. For all stratifications u1,u2 of Σ, we write u1 � u2 if there exists an R∗ ∈ R with
u2 (R

∗) = u1 (R
∗) − 1, and u2 (R) = u1 (R) for all R ∈ R \ {R∗}. Let�∗ be the reflexive and transitive

closure of�. It is not difficult to verify that there exists a stratificationu of Σ such that for the two
stratifications s, t mentioned in the lemma, we have s �∗ u and t �∗ u. It is therefore sufficient
to prove the lemma for the case that s � t .
In what follows, we assume s � t and prove CMods (I , Σ) = CModt (I , Σ). To simplify the pre-

sentation, we assume that s and t have the same length l ; the case that t has one stratum less than
s can be dealt with in a similar way. We also focus on the inclusion CMods (I , Σ) ⊆ CModt (I , Σ);
the converse inclusion is similar.
To prove CMods (I , Σ) ⊆ CModt (I , Σ), consider any interpretation J ∈ CMods (I , Σ). Let R∗ be the

predicate in R with t (R∗) = s (R∗) − 1, and set n := t (R∗). By definition, there exist interpretations

J0, J1, . . . , Jl such that J0 = I , Ji ∈ chase(Ji−1, Σ(i )
s ) for all i ∈ {1, . . . , l }, and Jl = J . Note that for all

i ∈ {1, . . . ,n − 1,n + 2, . . . , l }, we have Σ(i )
s = Σ(i )

t , and consequently Ji ∈ chase(Ji−1, Σ
(i )
t ). Hence,

if we can show that there is an interpretation J ′n ∈ chase(Jn−1, Σ
(n)
t ) with Jn+1 ∈ chase(J ′n , Σ

(n+1)
t ),

then we obtain J = Jl ∈ CMod
(l )
t (I , Σ) = CModt (I , Σ).

We now show that such an interpretation J ′n exists. Since Jn ∈ chase(Jn−1, Σ
(n)
s ), we know

that Jn is the result of a chase sequence K0,K1,K2, . . . of Jn−1 with Σ(n)
s . Similarly, since Jn+1 ∈

chase(Jn , Σ
(n+1)
s ), we know that Jn+1 is the result of a chase sequence L0,L1,L2, . . . of Jn with Σ

(n+1)
s .

Let A be the set of all tuples (i,σ ,h,α ) consisting of an index i � 0, a DNTGD σ ∈ Σ(n+1)
s ∩ Σ(n)

t ,
a homomorphism h, and an atom α ∈ head (σ ) such that the interpretation Li+1 is obtained by
applying σ to Li with h and α . If (i,σ ,h,α ) ∈ A, then for all predicates R that occur in the body

of σ we have t (R) � n, with t (R) < n if R occurs in body− (σ ). Moreover, no DNTGD in Σ(n)
s de-

pends on the atom generated by the application of σ with h and α . Thus, it is possible to extend
the chase sequence K0,K1,K2, . . . in such a way that in addition to the applications of DNTGDs
from the original chase sequence, we have chase steps, one for each (i,σ ,h,α ) ∈ A, where σ is
applied with h and α , using exactly the same nulls for existentially quantified variables as in the
chase step from Li to Li+1. Let J ′n be the result of the so-extended chase sequence. Then, we have

that J ′n ∈ chase(Jn , Σ
(n)
t ). By dropping from the chase sequence L0,L1,L2, . . . all chase steps that

involve a DNTGD in Σ(n+1)
s ∩ Σ(n)

t , we obtain a new chase sequence of J ′n with Σ(n+1)
t that results

in Jn+1. Consequently, Jn+1 ∈ chase(J ′n , Σ
(n+1)
t ), which completes the proof of the lemma. �

In the rest of this article, we often do not explicitly mention the stratification s under consider-
ation, and we speak of a canonical model for I and Σ without referring to s . Similarly, we write
CMod(I , Σ) instead of CMods (I , Σ). In particular, CMod(I , Σ) is the set of all canonical models for I
and Σ.
The answers to any earlier introduced Boolean query relative to an interpretation I and a strat-

ified set Σ of DNTGDs are now defined in terms of the canonical models for I and Σ.
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Definition 4.13 (Certain Answers to Boolean Queries). Given an interpretation I and a stratified
set Σ of DNTGDs, and a Boolean query Q , we write (I , Σ) |=strat Q to denote the fact that for all
J ∈ CMod(I , Σ), we have that J |= Q . �

4.2 Simulating the Stable Model Semantics for Guarded NTGDs by Guarded DNTGDs

and Stratified Negation

We now turn to the main result of this section, which states that the problem of answering a
UNBCQ Q with respect to guarded NTGDs under the stable model semantics can be translated
in polynomial time into the problem of answering a UNBCQ Q ′ with respect to stratified sets
of guarded DNTGDs. Our translation will work for arbitrary UNBCQs, but we also show that
it preserves coveredness, i.e., if Q is covered, then so is the translated query Q ′. This will be of
relevance to Section 5, where we will mainly study covered queries. The core of this translation
is Theorem 4.14 below, which states that for every finite set of guarded NTGDs, one can compute
in polynomial time a stratified set of guarded DNTGDs such that the stable models of the former
correspond—in a way to be made precise below—to the canonical models of the latter relative to
the same database.

Theorem 4.14. There is a polynomial time algorithm that, given a finite set Σ of guarded NTGDs
over a schema R, outputs a stratified set Σ′ of guarded DNTGDs over a schema R′ that extends R for
each R ∈ R by auxiliary predicates comprising, among others a predicate R+ for each R ∈ R and a
predicate Fail, with |R′| � 5|R | + |Σ| + 1 and ar(R′) � 2 · ar(R ) such that the following holds for
each database D for R:
(1) For each I ∈ SMod (D, Σ), there exists a J ∈ CMod(D, Σ′) such that I = {R (a) | R ∈ R, R+ (a) ∈

J } and Fail � J .
(2) For each J ∈ CMod(D, Σ′) with Fail � J , the interpretation I := {R (a) | R ∈ R, R+ (a) ∈ J } is in

SMod (D, Σ).

Proof. LetD be a database and Σ a finite set of guarded NTGDs over a schema R. The construc-
tion of the desired stratified set Σ′ of guarded DNTGDs is based on the following ideas:

Let Σ̂ be obtained from Σ by eliminating all negative atoms in rule bodies of Σ. Clearly, Σ̂ is a
set of plain TGDs (that is, TGDs that contain neither negative atoms nor disjunctions).
We assume without loss of generality that Herbrand terms as in Section 3.3 are used for nulls,

and thus that the names of fresh nulls are unambiguously determined (see Remark 4.7). Then,
chase(D, Σ̂) contains a unique interpretation, which is also the unique minimal Herbrand model
of (D, Σ̂). We call this interpretation Î .
Clearly, every stable model of D with Σ is contained in Î . Thus, Î is an overapproximation for all

such stable models.
We include in Σ′ guarded TGDs that generate a representation of Î (see the rule sets (1) and (2)

below).
Once we have access to Î , we use disjunctive TGDs to “guess” a subset I+ ⊆ Î and its complement

I− := Î \ I+. This step is performed by the rule sets (3) and (4) below. This is actually the only time
disjunction is used in Σ′.
The final step is to make sure that I+ is a stable model of D with Σ, which requires us to verify

that I+ corresponds to the unique minimal model of the Gelfond-Lifschitz reduct of Σ relative to
I+. To this end, Σ′ first derives a new set I ∗ from D by applying the guarded NTGDs in Σ in such
a way that negative literals in the bodies of those NTGDs are evaluated in I+ (see the rule sets (5)
and (6) below, where the rules (6) use stratified negation).
Next, Σ′ verifies that I ∗ indeed coincides with I+. This also requires stratified negation.
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Let us now give a more detailed description of the construction. We will use five different sets of
predicates to represent the original database D, Î , I+, I−, and I ∗. More precisely, for each predicate
R ∈ R, we introduce four new predicates R̂, R+, R−, and R∗ of the same arity as R, intended to
represent the predicate R in Î , I+, I−, and I ∗, respectively. The predicate R itself is reserved for the
corresponding predicate inD. We will also use special predicates, Fail andWitnessσ (σ ∈ Σ), where
Failwill indicate some inconsistency, andWitnessσ will be used to remember the nulls assigned to
existentially quantified variables in the head of σ during the construction of Î . Whenever we write
an atom R (x) without specifying x further, we assume that x is a tuple of ar(R) distinct variables.
Now, to generate the interpretation Î , the set Σ′ contains the following guarded TGDs:

(1) R (x) → R̂ (x) for each predicate R ∈ R;
(2) for each σ ∈ Σ of the form Φ(x, y) → ∃zS (v),

∧
R (u) ∈ body+ (σ )

R̂ (u) → ∃zWitnessσ (x, y, z) and Witnessσ (x, y, z) → Ŝ (v).

Moreover, to “guess” I+ ⊆ Î and its complement I− := Î \ I+, it contains the following guarded
disjunctive TGDs for each predicate R ∈ R:

(3) R̂ (x) → R+ (x) ∨ R− (x);
(4) R+ (x) ∧ R− (x) → Fail.

To compute the set I ∗, we include the following guarded NTGDs in Σ′:

(5) R (x) → R∗ (x) for each predicate R ∈ R;
(6) for each σ ∈ Σ of the form Φ(x, y) → ∃zS (v),

∧
R (u)∈body+ (σ )

R∗ (u) ∧
∧

R (u)∈body− (σ )
¬R+ (u) ∧ Witnessσ (x, y, z) → S∗ (v).

The final ingredient is a set of guarded NTGDs that verifies I+ = I ∗. To this end, Σ′ contains the
following guarded NTGDs for each predicate R ∈ R:
(7) R∗ (x) ∧ ¬R+ (x) → Fail;
(8) R+ (x) ∧ ¬R∗ (x) → Fail.

This finishes the description of the construction of Σ′.
It is straightforward to verify that Σ′ is a stratified set of guarded DNTGDs. Indeed, one possible

stratification of Σ′ is the mapping that assigns the integer 1 to all predicates of the form R, R̂, R+,
R−, and Witnessσ , the integer 2 to all predicates of the form R∗, and the integer 3 to Fail. It is
also straightforward to verify that the schema R′ of Σ′ consists of 5|R | + |Σ| + 1 predicates of
maximum arity ar(R′) � 2 · ar(R ) (note that the positions inWitnessσ correspond to the positions
for variables that occur in the guard of σ and the positions for variables that occur in the head of
σ ). Clearly, Σ′ can be constructed in time polynomial in the size of Σ.

It remains to prove that Σ′ satisfies properties 1 and 2 of the theorem. For property 1, let I ∈
SMod (D, Σ), and let Î be the unique minimal model of D with Σ̂. Then, I ⊆ Î . LetW be the set
of all tuples (σ , a, b, c) with the following properties: (i) σ is a guarded NTGD in Σ of the form
Φ(x, y) → ∃zΨ(x, z); and (ii) there exists a homomorphismh from body+ (σ ) to Î such that a = h(x),
b = h(y), and c = fσ (a, b). Then,

J := D ∪ {Witnessσ (a, b, c) | (σ , a, b, c) ∈W } ∪ {R̂(a) | R (a) ∈ Î }
∪ {R+ (a) | R (a) ∈ I } ∪ {R− (a) | R (a) ∈ Î \ I } ∪ {R∗ (a) | R (a) ∈ I }
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is a canonical model of D and Σ′ (assuming that all terms involving function symbols are inter-
preted as distinguished nulls), and it furthermore satisfies I = {R (a) | R ∈ R, R+ (a) ∈ J } and
Fail � J .
To prove property 2, consider any model J ∈ CMod(D, Σ′) with Fail � J . Define Î := {R (a) |

R ∈ R, R̂ (a) ∈ J }, I := {R (a) | R ∈ R, R+ (a) ∈ J }, I− := {R (a) | R ∈ R, R− (a) ∈ J }, and
I ∗ := {R (a) | R ∈ R, R∗ (a) ∈ J }. Given that Î is the unique minimal model of D with Σ̂, by the
construction of Σ′, both I and I ∗ are subsets of Î . Moreover, since Fail � J , and J satisfies the
DNTGDs in points 7 and 8, we have I = I ∗. Thus, the NTGDs in points 5 and 6 ensure that I is
the unique minimal model of the Gelfond-Lifschitz reduct of (D, Σ) relative to I . It follows that I
is a stable model of D and Σ. �

Example 4.15. We illustrate the construction described in the proof of Theorem 4.14 by applying
it to the database D = {R (a0,a1), P (a0)} and the following set Σ of guarded NTGDs:

σ1 : R (x ,y) → ∃z R (y, z),
σ2 : R (x ,y) ∧ ¬P (x ) → P (y),

σ3 : R (x ,y) ∧ ¬Q (x ) → Q (y).

The following set I is the unique stable model of D and Σ, where ai+2 := f (ai ,ai−1):

I = {R (ai ,ai+1), P (a2i ), Q (a2i+1) | i � 0}.

The stratified set Σ′ of guarded DNTGDs as constructed in the proof of Theorem 4.14 contains the
following DNTGDS. To derive atoms over the schema {R̂, P̂ , Q̂ }, it contains the TGDs R (x ,y) →
R̂ (x ,y), P (x ) → P̂ (x ), Q (x ) → Q̂ (x ), and the following additional TGDs:

R̂ (x ,y) → ∃zWitnessσ1 (x ,y, z), Witnessσ1 (x ,y, z) → R̂ (y, z),

R̂ (x ,y) → Witnessσ2 (x ,y), Witnessσ2 (x ,y) → P̂ (y),

R̂ (x ,y) → Witnessσ3 (x ,y), Witnessσ3 (x ,y) → Q̂ (y).

To derive the atoms over the schema {R+,R−, P+, P−,Q+,Q−}, it contains the guarded DTGDs:

R̂ (x ,y) → R+ (x ,y) ∨ R− (x ,y), R+ (x ,y) ∧ R− (x ,y) → Fail,

P̂ (x ) → P+ (x ) ∨ P− (x ), P+ (x ) ∧ P− (x ) → Fail,

Q̂ (x ) → Q+ (x ) ∨Q− (x ), Q+ (x ) ∧Q− (x ) → Fail.

And to derive the atoms over the schema {R∗, P∗,Q∗}, it contains the guarded TGDs R (x ,y) →
R∗ (x ,y), P (x ) → P∗ (x ), and Q (x ) → Q∗ (x ), together with:

R∗ (x ,y) ∧Witnessσ1 (x ,y, z) → R∗ (y, z),

R∗ (x ,y) ∧ ¬P+ (x ) ∧Witnessσ2 (x ,y) → P∗ (y),

R∗ (x ,y) ∧ ¬Q+ (x ) ∧Witnessσ3 (x ,y) → Q∗ (y).

Finally, it contains the following guarded DNTGDs:

R∗ (x ,y) ∧ ¬R+ (x ,y) → Fail, R+ (x ,y) ∧ ¬R∗ (x ,y) → Fail,

P∗ (x ) ∧ ¬P+ (x ) → Fail, P+ (x ) ∧ ¬P∗ (x ) → Fail,

Q∗ (x ) ∧ ¬Q+ (x ) → Fail, Q+ (x ) ∧ ¬Q∗ (x ) → Fail.
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It is possible to verify that up to renaming of nulls, the following is the unique canonical model of
D and Σ′, where we interpret a2,a3, . . . as nulls:

J = D ∪ {Witnessσ1 (ai ,ai+1,ai+2),Witnessσ2 (ai ,ai+1),Witnessσ3 (ai ,ai+1) | i � 0}
∪ {R̂(ai ,ai+1), P̂ (ai ), Q̂ (ai+1) | i � 0}
∪ {R+ (ai ,ai+1), P+ (a2i ), Q+ (a2i+1) | i � 0} ∪ {P− (a2i+1),Q− (a2i ) | i � 0}
∪ {R∗ (ai ,ai+1), P∗ (a2i ), Q∗ (a2i+1) | i � 0}.

Clearly, the extensions of P+, Q+, and R+ in this model coincides with the extensions of P , Q , and
R in I , respectively.

Example 4.16. Recall that the definition of the chase (Definition 4.4) does not allow to fire a
DNTGD twice with the same homomorphism and head atom. This requirement is essential. The
following example shows that the proof of Theorem 4.14 would fail, if DNTGDs could be applied
twice or more for a given homomorphism and head atom. Let Σ contain the following guarded
NTGDs:

A(x ) → ∃y R (x ,y), R (x ,y) ∧ ¬B (y) → C (y),

R (x ,y) ∧ ¬C (y) → B (y),

R (x ,y) ∧C (y) → C (x ),

R (x ,y) ∧ B (y) → B (x ).

There are exactly two stable models of D = {A(a)} and Σ:

I1 = {R (a, f (a)), A(a), B (a), B ( f (a))},
I2 = {R (a, f (a)), A(a), C (a), C ( f (a))}.

Let Σ′ be the stratified set of DNTGDs obtained from Σ using the translation in the proof of
Theorem 4.14. If DNTGDs could be applied more than once for each homomorphism and head
atom, thenwe could construct a canonical model J ofD and Σ′ that represents both I1 and I2. Specif-
ically, J would contain {R+ (a,X ), A+ (a), B+ (a), B+ (X )} and {R+ (a,Y ), A+ (a), C+ (a), C+ (Y )}. This
not only shows that we would not have a one-to-one correspondence between the stable models
of D and Σ and the canonical models of D and Σ′, but it also implies negative consequences for
query answering. Indeed, the UNBCQ ∃x (A(x )∧¬B (x ))∨∃x (A(x )∧¬C (x )) is true in every stable
model ofD and Σ, but if we replace the predicatesA, B, andC inQ by the corresponding predicates
A+, B+, C+ in the schema of Σ′, then the resulting query is false in J .

We are now ready to show that the problem of answering UNBCQs with respect to guarded
NTGDs under the stable model semantics can be translated in polynomial time into the problem
of answering (covered) UNBCQs with respect to stratified sets of guarded DNTGDs.

Theorem 4.17. There is a polynomial time algorithm that, given a finite set Σ of guarded NTGDs
and a UNBCQ Q , outputs a finite stratified set Σ′ of guarded DNTGDs and a UNBCQ Q ′ such that
(D, Σ) |=stable Q iff (D, Σ′) |=strat Q ′.
If R and R′ are the schemas of Σ and Σ′, respectively, then |R′| � 5|R | + |Σ| + 1 and ar(R′) �

2 · ar(R ). Moreover, we have that wd(Q ) = wd(Q ′), that Q ′ is covered if Q is covered, and that Q ′ is
a UBCQ if Q is a UBCQ.

Proof. Let Σ and Q be given, and let R be the schema of Σ and Q . By Theorem 4.14, we can
compute in polynomial time a stratified set Σ′ of guarded DNTGDs over a schema R′ with |R′| �
5|R | + |Σ| + 1 and ar(R′) � 2 · ar(R ) such that the following holds for each database D for R:
(P1) For each I ∈ SMod (D, Σ), there exists a J ∈ CMod(D, Σ′) such that I = {R (a) | R ∈ R, R+ (a) ∈

J } and Fail � J .
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(P2) For each J ∈ CMod(D, Σ′) with Fail � J , the interpretation I := {R (a) | R ∈ R, R+ (a) ∈ J } is
in SMod (D, Σ).

SetQ ′ := Fail∨Q+, whereQ+ is obtained fromQ by replacing each predicate R ∈ R with R+. Then,
Q ′ is a UNBCQ with wd(Q ′) = wd(Q ′). Moreover,Q ′ is covered ifQ is covered, andQ ′ is a UBCQ
if Q is a UBCQ. It remains to show that (D, Σ) |=stable Q iff (D, Σ′) |=strat Q ′.
For the “only if” direction, assume (D, Σ′) � |=strat Q ′. Then, there exists a J ∈ CMod(D, Σ′) with

J � |= Q ′, where J � |= Q ′ implies that Fail � J and J � |= Q+. Now, by property (P2), I := {R (a) | R ∈
R, R+ (a) ∈ J } is a stable model of D and Σ. Since J � |= Q+, we have I � |= Q , so I is also a witness of
(D, Σ) � |=stable Q .
For the converse, let (D, Σ) � |=stable Q . Then, there exists a stable model I of D and Σ with I � |= Q .

Property (P1) implies that there exists a J ∈ CMod(D, Σ′) such that I = {R (a) | R ∈ R, R+ (a) ∈ J }
and Fail � J . Thus, J � |= Q ′, which proves (D, Σ′) � |=strat Q ′. �

5 COMPLEXITY OF QUERY ANSWERING

In this section, we derive complexity bounds and algorithms for answering UNBCQs for NTGDs
under the SMS, that is, deciding (D, Σ) |=stable Q ; and query-answering for stratified sets of DNT-
GDs, that is, deciding (D, Σ) |=strat Q .

Our main result for answering covered UNBCQs with respect to guarded NTGDs under the
stable model semantics is stated as follows:

Theorem 5.1. Given as input a database D for a schema R, a finite set Σ of guarded NTGDs over
R, and a covered UNBCQ Q over R, deciding (D, Σ) |=stable Q has the following complexity:

(1) 2-EXPTIME-complete in combined complexity, where 2-EXPTIME-hardness holds even in case
Σ is fixed, ar(R ) is bounded by a constant, and Q is a BCQ.

(2) EXPTIME-complete, if ar(R ) is bounded by a constant, and Q is acyclic, where EXPTIME-
hardness holds even in case Q is atomic.

(3) co-NP-complete in data complexity (i.e., for fixed R, Σ, andQ), or if |R |, ar(R ), andwd(Q ) are
bounded by a constant.

The lower bounds for this theorem are proven in Section 5.1, where we actually derive slightly
stronger results by exhibiting further restrictions on R, Σ, and Q , for which hardness still holds
(Theorem 5.5). Similar lower bounds hold for deciding (D, Σ) |=strat Q when Σ is a set of stratified
DNTGDs. These lower bounds will be stated in Theorem 5.4.
Section 5.2 deals with the upper bounds. These are obtained by first deriving upper bounds

for the decision problem (D, Σ) |=strat Q with DNTGDs, which are summarized in Theorem 5.6,
where actually completeness results are stated. From this, by using our polynomial-time transfor-
mation of stable-model query-answering into query-answering based on stratified NTGDs proven
in Theorem 4.17, we easily derive the upper bounds for stable-model reasoning stated in the above
Theorem 5.1.

Regarding the upper bounds for the problem (D, Σ) |=strat Q , in Section 5.2, we will first sketch
an algorithm that is based on the chase for stratified DNTGDs (Definition 4.5) and computes the
disjunctive chase models partially, up to a sufficiently deep level. This algorithm yields a match-
ing upper bound of co-NP for data complexity, but is not optimal for combined complexity and
for the case of bounded arities. To obtain matching upper bounds, and thus completeness results,
we show how this algorithm can be transformed into a suitable alternating algorithm for decid-
ing (D, Σ) |=strat Q . This is first done with a proof sketch for UBCQs; a full proof is deferred to
Appendix B. The result for UBCQs is then generalized to covered UNBCQs.
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5.1 Lower Bounds

Towards establishing lower bounds (hardness results) for the decision problem (D, Σ) |=stable Q for
NTGD sets Σ , let us first state a definition and recall a useful result from Reference [28].

Definition 5.2 (Based on [28]). A set Σ of DTGDs is a set of disjunctive inclusion dependencies in
normal form (NF-DIDs) if each σ ∈ Σ is of one of the following three types:

(1) R (x) → S (x′), where x′ ⊆ x,
(2) R (x) → ∃y S (x′,y), where x′ ⊆ x,
(3) R (x) → R1 (x

′) ∨ R2 (x
′′), where x′ ⊆ x and x′′ ⊆ x,

where, moreover, for all three types of rules, in each body or head atom α , each variable from
var (α ) occurs only once in α .

The following was shown in Reference [28]:

Proposition 5.3 ([28]). Query answering under the classical logical entailment relation “|=” and
with fixed sets of NF-DIDs is 2-EXPTIME-hard, in particular:

(1) There is a fixed set Σ1 of NF-DIDs over a schema R with ar(R ) = 2 such that, when given a
database D and a UBCQ Q as input, deciding (D, Σ1) |= Q is 2-EXPTIME-hard. (See Reference
[28], proof of Theorem 4.5 and its subsequent discussion, and proof of Theorem 4.6.)

(2) There is a fixed set Σ2 of NF-DIDs over a schema R with ar(R ) = 3 such that, when given a
databaseD and a CQQ as input, deciding (D, Σ2) |= Q is 2-EXPTIME-hard. (See Reference [28],
Theorem 4.8.)

For rules with purely positive rule bodies, such as NF-DIDs, there is only one stratum, and thus
(D, Σ) |=strat Q is equivalent to chase(D, Σ) |= Q , where chase(D, Σ) is defined as in Definition 4.5.
For DTGDs and UBCQs, as in our case, the chase is universal, which means that chase(D, Σ) |= Q is
equivalent to (D, Σ) |= Q [28, 45].4 Hence, the “|=strat” and the “|=” relation are interchangeable in
the context of Proposition 5.3. Therefore, by putting together known hardness results for deciding
chase(D, Σ) |= Q stated in Theorem 6.1 of Reference [32] (where Σ contains no negation and is
thus trivially stratified) with the above special cases of fixed NF-DID sets, we get the following
lower bounds (i.e., hardness results) for the problem of deciding (D, Σ) |=strat Q :

Theorem 5.4. Given as input a database D for a schema R, a finite stratified set Σ of guarded
DNTGDs over R, and a covered UNBCQ Q over R, deciding (D, Σ) |=strat Q is:

(1) 2-EXPTIME-hard, where hardness holds already (a) for fixed ground atomic queries, or when Σ
is a fixed set of DTGDs whose bodies all consist of single positive atoms and either (b) ar(R ) = 2,
and Q is a UBCQ, or (c) ar(R ) = 3, and Q is a BCQ.

(2) EXPTIME-hard, if ar(R ) is bounded by a constant, andQ is acyclic. Hardness in this case holds
even for ground atomic queries.

(3) co-NP-hard in data complexity, or, if |R |, ar(R ), and wd(Q ) are bounded by a constant. Hard-
ness in this case holds even for ground atomic queries.

We now provide similar lower bounds for the problem of deciding (D, Σ) |=stable Q , thus estab-
lishing the lower bounds for Theorem 5.1. Actually, regarding the arity ar(R ), we here provide
slightly more detailed bounds than those stated in Point 1 of Theorem 5.1.

4In References [45] and [28], the chase is defined in a slightly different way than in Definition 4.5, but with respect to UBCQ
answering, ours and their definitions are equivalent.
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Theorem 5.5. Given as input a databaseD for a schemaR, a finite set Σ of guarded NTGDs overR,
and a covered UNBCQ Q over R, deciding (D, Σ) |=stable Q is:

(1) 2-EXPTIME-hard, even if (a) Q is a single atom, and ar(R ) is unbounded, or (b) Σ is fixed,
ar(R ) = 2, and Q is an UBCQ, or (c ) Σ is fixed, ar(R ) = 3, and Q is a BCQ.

(2) EXPTIME-hard, even if ar(R ) is bounded by a constant, and Q is atomic.
(3) co-NP-hard in data complexity, or if |R |, ar(R ), and wd(Q ) are bounded by a constant.

Proof. Point 1 (a) follows from Theorem 6.1 (2) of Reference [32], which proves 2-EXPTIME-
hardness of checking chase(D, Σ) |= Q for sets Σ of TGDs (without negation) having unbounded
arities and for atomic queries Q . By Proposition 3.7 in the present article, we know that this
problem is equivalent to (D, Σ) |=stable Q . Let us now show that Points 1(b) and 1(c) follow from
Points 1 and 2 of Proposition 5.3, respectively. For this, it is sufficient to exhibit an arity-preserving
polynomial-time transformation τ , which transforms each NF-DID σ into a set τ (σ ) of guarded
NTGDs, such that (D, Σ) |=strat Q iff (D,τ (Σ)) |=stable Q , where τ (Σ) is defined to be

⋃
σ ∈Σ τ (σ ).

Our transformation τ is defined as follows: For each NF-DID σ that conforms to type (1) or type (2)
in Definition 5.2, let τ (σ ) = {σ }. Moreover, for each σ conforming to type (3), i.e., when σ is of
the form R (x) → R1 (x

′) ∨ R2 (x
′′), where x′ ⊆ x and x′′ ⊆ x, let τ (σ ) be the set consisting of the

following five NTGDs, where R̄1 and R̄2 are fresh predicate symbols of the same arity as R1 and R2,
respectively:

σ1 : R (x) ∧ ¬R1 (x
′) → R̄1 (x

′), σ2 : R (x) ∧ ¬R̄1 (x
′) → R1 (x

′),

σ3 : R (x) ∧ ¬R2 (x
′′) → R̄2 (x

′′), σ4 : R (x) ∧ ¬R̄2 (x
′′) → R2 (x

′′),

σ5 : R (x) ∧ R̄1 (x
′) ∧ R̄2 (x

′′) → Fail.

Here, as customary, Fail is a special atom that, by definition, cannot be true in any stablemodel.5 For
each Herbrand instantiation h(σ ) of σ , these five rules enforce a choice of a (due to σ5) nonempty
subset of {h(R1 (x

′)),h(R2 (x
′′))} to bemade for each stable model, whereh(R (x)) is true, mimicking

exactly an application of h(σ ), when the body h(R (x)) is true, and thus σ fires. From this, it can be
seen that—up to isomorphic renaming of Skolem terms—the stable Herbrand models of (D,τ (Σ))
projected to the schema of Σ coincide with the disjunctive chase models of (D, Σ) (we omit a more
formal proof). Thus, τ is an arity-preserving transformation that transforms Σ into a set of guarded
NTGDs such that (D, Σ) |=strat Q iff (D,τ (Σ)) |=stable Q . This concludes the proof of Points 1(b)
and 1(c).
Point 2 follows from the fact that answering atomic queries relative to guarded TGDs is

EXPTIME-hard in the bounded arity case [32].
Point 3 follows from John Schlipf’s result that 3SAT can be transformed to the problem of

whether a guarded normal Datalog program6 P applied to a database D admits a stable model
(see Example 4.1 in Reference [107]). Add to the schema of P a new propositional (i.e., zero-ary)
predicate q. Then, (D, P) |=stable q iff (D, P) has no stable model, hence checking (D, P) |=stable q is
co-NP-hard. �

5We can assume without loss of generality the existence of such a special atom with this semantics. In fact, to enforce
Fail to have its intended semantics, one may simply consider Fail to be a regular propositional atom and add the rule
Fail ∧ ¬q → q, where q is a new propositional letter.
6The program P = P1 ∪ P2 of Schlipf’s example is actually not safe, because the rules of P1 are not safe. However, P can be
made safe without essentially changing its semantics as follows: Assert into D a fact Propletter (p ) for each propositional
letter p , and add Propletter (X ) to the bodies of the two rules of P1.
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5.2 Upper Bounds

First, in Section 5.2.1, we state in Theorem 5.6 our main complexity results for query answering
with stratified DNTGDs and explain that they are sufficient for achieving the upper bounds in
Theorem 5.1, which is our main complexity result. In Section 5.2.2, we then discuss the role of
guardedness towards an algorithmic approach and describe a rudimentary decision algorithm and
initial upper bounds for combined complexity and a matching upper complexity bound for data
complexity (the latter even holding for arbitrary, not necessarily covered UNBCQs). More precise
upper bounds for the case of combined complexity for UBCQs will be stated in Section 5.2.3, where
we sketch how our rudimentary algorithm can be translated into a more sophisticated alternating
algorithm. This is then extended to covered UNBCQs in Section 5.2.4.

5.2.1 Main Technical Complexity Theorem. Our rationale is to prove upper bounds for query
answering with stratified DNTGDs, that is, prove upper bounds to Theorem 5.4 and use these
upper bounds to easily derive the upper bounds for our main complexity result, Theorem 5.1. The
main technical result in the rest of Section 5 are the upper bounds of the following theorem:

Theorem 5.6 (Theorem 5.4 Completed with Upper Bounds). Given as input a database D for
a schema R, a finite stratified set Σ of guarded DNTGDs over R, and a covered UNBCQ Q over R,
deciding (D, Σ) |=strat Q has the following complexity:

(1) 2-EXPTIME-complete, where hardness holds already (a) for fixed ground atomic queries, or
when Σ is a fixed set of DTGDs whose bodies all consist of single positive atoms and either
(b) ar(R ) = 2, and Q is a UBCQ, or (c) ar(R ) = 3, and Q is a BCQ.

(2) EXPTIME-complete, if ar(R ) is bounded by a constant, and Q is acyclic. Hardness in this case
holds even for ground atomic queries.

(3) co-NP-complete in data complexity, or, if |R |, ar(R ), and wd(Q ) are bounded by a constant.
Hardness in this case holds even for ground atomic queries.

The lower bounds (hardness results) of the above theorem were already given in Theorem 5.4
of Section 5.1. The above Theorem 5.6 thus simply turns these lower bounds into completeness
results. What remains to do is proving the upper bounds (membership results), which will be done
in the sequel of the present Section 5. Before proceeding with this, let us state more formally that,
in fact, this immediately also provides upper bounds for query answering with NTGDs under the
SMS.

Lemma 5.7. The upper bounds in Theorem 5.6 imply the upper bounds in Theorem 5.1.

Proof. Assume the upper bounds in Theorem 5.6 are proven. For the upper bounds of
Theorem 5.1, we first use Theorem 4.17 to translate the given set Σ of guarded NTGDs and the
covered UNBCQ Q in polynomial time into a stratified set Σ′ of guarded DNTGDs and a covered
UNBCQ Q ′ such that (D, Σ) |=stable Q iff (D, Σ′) |=strat Q ′. This reduction preserves the width of
the query and usesO ( |R |+ |Σ|) predicates of arityO (ar(R )). Note that |Σ| is bounded by a constant
if both |R | and ar(R ) are bounded by a constant. The upper bounds of Theorem 5.1 thus follow
via this reduction. �

For completeness, we note that, trivially, the upper bounds of Theorem 5.1 carry over to
Theorem 5.5, which gives more detailed lower bounds, and therefore all hardness results in
Theorem 5.5 turn into completeness results.

5.2.2 Role of Guardedness, Rudimentary Algorithm, and Upper Bounds. In Section 3.5, we al-
ready discussed the role of guardedness for decidability: Together with the UNA, the guardedness
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of a set of NTGDs enforces the bounded treewidth model property, which, in turn, enabled us
to apply a powerful meta-theorem on guarded second-order logic to show the decidability of the
problem (D, Σ) |=stable Q . In the present Section 5.2.2, as well as in the subsequent Section 5.2.3,
we shall heavily exploit guardedness for deriving concrete algorithms and complexity results for
deciding (D, Σ) |=strat Q for DNTGD sets Σ and covered NBCQs. We next illustrate in a somewhat
informal fashion how guardedness concretely matters. We will discuss two important properties
of guardedness and then use them for actually obtaining a first concrete decision algorithm for
deciding (D, Σ) |=strat Q , and thus, by Lemma 5.7, also for (D, Σ) |=stable Q . We start by introducing
a relevant concept:

R-type. If I is an interpretation over a schema R, and if α ∈ I is an atom in I , then the R-type for
α in I is the set of all atoms α ′ ∈ I such that dom(α ′) ⊆ dom(α ).

There are mainly two relevant properties of guardedness that we will exploit algorithmically:

Property 1: Chase models are [dom(D)]-acyclic (Proposition 2.6). More precisely, each model I in
CMod(D, Σ) has a [D]-join forest. Essentially, this means that the canonical models of CMod(D, Σ)
can be generated in form of (possibly infinite) forests. Based on this idea, we use so-called depen-
dency forests, where each atom is expanded via the chase by all possible rules with all possible
homomorphisms, giving rise to child atoms. Such trees can be finite or infinite. An example of
a finite dependency forest is given in Appendix B.7 Each time a multiple head rule is applicable,
a specific choice of a head atom has to be made, and different choices usually lead to different
models. If all canonical models are finite, then we could iterate over all such choices and compute
successively all canonical models. That we can also deal with infinite models is due to Property 2,
which we explain next.

Property 2: Atoms of chase forests that are isomorphic and have isomorphicR types have isomorphic
sets of possible subtrees in the forest. For this reason, a finite initial fragment (of computable depth) of
each canonical model will suffice for query answering. Let us limit our attention for the moment to
atomic queries Q . Clearly, the problem (D, Σ) |=strat Q is decidable iff its complementary problem
(D, Σ) � |=strat Q is decidable. We concentrate on the latter, because it is conceptually somewhat
simpler: Rather than having to construct all chase models in CMod(D, Σ), it is sufficient to nonde-
terministically generate one model I ∈ CMod(D, Σ), such that I � |= Q . Each such I is [D]-acyclic
and can be organized in form of a [D]-join tree that corresponds to a dependency forest (without
duplicates). Let α be any atom occurring in I , and letTI (α ) denote the subtree of I rooted at α . Since
guardedness guarantees the connectedness condition (see Section 2.2), any element of dom(I ) that
occurs both inside and outside of TI (α ) must also occur in α . Thus, the only outside atoms that
could possibly be involved in the generation of TI (α ) are those with arguments in dom(α ), which
are thus those from the R-type for α in I . Therefore, any subtree TI (α ) depends only on α and on
the R-type of α , and, of course, on the nondeterministic choices made to satisfy disjunctive rule
heads inside the computation of TI (α ). (This also means that the sets of all possible subtrees that
may be rooted at two isomorphic atoms having isomorphic R types are isomorphic.)

If we refer to the R-type of α in I by typeI (α ), then TI (α ) depends, as said, only on the pair
(α , typeI (α )) and on the nondeterministic choices made while computingTI (α ). Now let us assume
that in I , on a branch that already contains the atom α , we encounter somewhere below α another
atom α ′ isomorphic to α , where also typeI (α

′) is isomorphic to typeI (α ), which we denote by
(α , typeI (α )) ≈ (α ′, typeI (α

′)). We would then not need to further expand α ′. In fact, due to the
isomorphism, we could then always expand α ′ by creating a subtree rooted at α ′, making exactly

7Technically, such dependency forests are not [dom(D )]-acyclic because of repeated atoms with nulls. However, by either
ignoring or suppressing such duplicate atoms, one obtains a proper [D]-join forest.
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the same nondeterministic choices as were already made for the subtree rooted at α . By doing
so, the subtree rooted at α ′ would be isomorphic to the subtree below α , and thus no new atoms
would be generated that could make our atomic queryQ true. It follows that we need to expand a
branch only as long as no isomorphic pairs (α , typeI (α )) ≈ (α ′, typeI (α

′)) occur on it.
By a combinatorial argument, it can be shown that there is a natural number d∗, depending only

on R, such that whenever a branch length exceeds d∗, then the branch must contain at least one
such isomorphic pair. Therefore, no branch needs to be continued beyond depth d∗, and it is thus
always sufficient to generate a finite initial part of depth not exceeding d∗ of the forest generated
by the chase.
The combinatorial argument (which is essentially the same as for non-disjunctive TGDs given

in the proof of Lemma 2 in Reference [33]) works as follows: Let a = ar(R ). Each branch B of I is
rooted in some atom α0. Due to guardedness, the only database constants in the entire branch are
the at most a constants from dom(α0). An atom α on B can contain at most a such constants as
arguments and no more than a nulls. There are no more than (2a)a ways of distributing a selection
from a constants and a nulls over the argument positions of α . There are, moreover, at most |R |
predicates. So, the largest set of mutually non-isomorphic atoms can have no more than |R | · (2a)a
elements. For each such atom α , type(α ) is a subset of the set Ω(α ) of all atoms with arguments
from dom(α ). Ω(α ) is of cardinality at most |R | × aa , and thus there are at most 2 |R | ·a

a
different

types for α . The largest set of mutually non-isomorphic pairs (α , type(α )) is therefore of cardinality
at most d∗:=|R | · (2a)a × 2 |R | ·a

a
. This means that every time a branch exceeds depth d∗, it must

already contain isomorphic pairs, and we can thus cut it off at depth d∗.
For answering a non-atomic BCQ, NBCQ, or UNBCQ Q , the same line of reasoning applies,

except that we must add the factor wd(Q ), which is the number of atoms inQ , and then define for
the non-atomic case d∗ to be d∗:=wd(Q ) · |R | · (2a)a × 2 |R | ·aa . As an illustration of why the factor
wd(Q ) is needed, consider, for example, the chain query Q = ∃x1 · · · ∃xr+1 R (x1,x2) ∧ R (x2,x3) ∧
. . . ∧ R (xr ,xr+1). For Q , it may be the case that the first atom R (x1,x2) only matches some atom
at depth d = |R | · (2a)a × 2 |R | ·aad∗ in I ; from there, we may thus have to continue the branch for
another d elements before matching R (x2,x3) and so on for all remaining atoms of Q . In case of
multiple strata, we have to develop each stratum up to the above depth d∗. (An analogous result
for NTGDs is Theorem 32 of Reference [33].) It is not hard to see that this also works for queries
Q with negated atoms.

In summary, it is sufficient to compute a finite [D]-acyclic structure Ifin of which each branch
of each stratum has at most depth d∗, such that (D, Σ) � |=strat Q iff Ifin � |= Q . Also observe that
d∗ only depends on a = ar(R ), |R |, and wd(Q ). Note that Ifin is, in general, not a model from
CMod(D, Σ), but is equivalent to such a model for query answering for queries up to wd(Q ) atoms.
This concludes our description of Property 2 and its use.

Obviously, for general unguarded DNTGDs, and even for unguarded TGDs, the above does
not hold. Neither do their chase models have an acyclic tree-like structure (see Example 3.19),
nor do they necessarily produce repeating isomorphic substructures. In fact, as mentioned in
Example 3.19, with unguarded TGDs, we can construct infinite grids on which arbitrary Turing
machine computations can be simulated [32], which do not need to contain any periodic repeti-
tions of isomorphic substructures whatsoever. From Properties 1 and 2, in contrast, we derive the
following basic algorithm:

Rudimentary nondeterministic algorithm. To decide (D, Σ) � |=strat Q for a database D, a set
Σ of stratified guarded DNTGDs, and a UNBCQ Q , proceed as follows:

(1) Nondeterministically compute, as above, an initial part Ifin of a model in CMod(D, Σ) by
exhausting rule application, stratum by stratum (according to Definition 4.10), making

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



Stable Model Semantics for Guarded Existential Rules and Description Logics 35:43

nondeterministic choices for multi-atom rule heads and stopping at derivation depth8 d∗

of each branch at each stratum.
(2) If Ifin |= Q , then return no, else return yes.

This algorithm, whose correctness follows from the above considerations, gives us first bounds
for query answering:

Theorem 5.8. The following upper bounds apply to both the problem (D, Σ) |=strat Q , where Σ is
a set of stratified DNTGDs , and the problem (D, Σ) |=stable Q , where Σ is a set of NTGDs, and where
in both cases Q is a UNBCQ:

(a) co-3-NEXPTIME in combined complexity.
(b) co-2-NEXPTIME when the arities of the relation symbols in R are bounded.
(c) co-NP in data complexity (i.e., when Σ andQ are fixed), or if |R |, ar(R ), andwd(Q ) are bounded

by a constant.

Proof. Observe thatd∗ = wd(Q ) · |R | · (2a)a×2 |R | ·aa is (a) double-exponential in the arity ar(R ),
exponential in size(R ), and linear in wd(Q ) in general; (b) single-exponential in size(R ) and linear
in wd(Q ) in case ar(R ) is bounded; and (c) constant if |R |, ar(R ), and wd(Q ) are bounded by a
constant (and thus also when data complexity is considered). For the size of the structure Ifin, this
then means the following: The size of Ifin is in case (a) triple-exponential in the input (D, Σ,Q ) (as
Ifin nowmay contain trees of double-exponential depth), in case (b) double-exponential in (D, Σ,Q ),
and in case (c) polynomial in the input database D.
From the above, and from the observation that checking a polynomially sized query against

structures of exponential size such as Ifin in cases (a) and (b) above does not create an additional
level of exponentiality, by the above algorithm, we immediately get the bounds 3-NEXPTIME,
2-NEXPTIME, and NP for combined complexity, bounded arity, and data complexity, respectively.
For the complementary problem (D, Σ) |=strat Q , we thus obtain the bounds stated under (a),
(b), and (c). By the polynomial problem reduction of Theorem 4.17, the same bounds hold for
(D, Σ) |=stable Q for sets of NTGDs Σ. �

Wehave shown in Section 5.1 that the bound (c) for data complexity in Theorem 5.8 is amatching
upper bound, but we currently do not know whether the bounds for the combined complexity (a)
and the case of bounded arities (b) are optimal for general UNBCQs.We are, however, able to derive
precise bounds for all cases for the slightly less expressive class of queries of covered UNBCQs.
These bounds, which are the main complexity results of the present article, are significantly lower
than the above bounds in cases (a) and (b) and will be dealt with in the following Section 5.2.3 for
UBCQs, in Section 5.2.4 for covered UNBCQs, and in more detail in Appendix B.

5.2.3 Matching Upper Bounds for UBCQs. We sketch a proof sketch of how, in case of UBCQs,
the rudimentary algorithm can be transformed into an alternating algorithm with matching upper
bounds. A detailed full proof is given in Appendix A. We will thus show:

Theorem 5.9 (Upper Bounds of Theorem 5.6 Restricted to UBCQs). Given as input a data-
base D for a schema R, a finite stratified set Σ of guarded DNTGDs over R, and a covered UNBCQ Q
over R, deciding (D, Σ) |=strat Q is:

(1) in 2-EXPTIME in general;
(2) in EXPTIME, if ar(R ) is bounded by a constant, and Q is acyclic;
(3) in co-NP in data complexity, or, if |R |, ar(R ), and wd(Q ) are bounded by a constant.

8The derivation depth of an atom in a stratum is the number of rules that are used to generate it from a database that
consists of D plus all atoms in lower strata.
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Proof. (Informal sketch) [D]-join forests such as those generated by guarded DNTGDs (which
correspond to dependency forests after duplicate elimination), have various computational advan-
tages. One is, for example, the following: If α is an atom of a canonical model I ∈ CMod(D, Σ), and
β1, . . . , βr are the children of α in I , which are each generated by a single rule application, then,
by the connectedness condition (see Section 2.2), the only values that a subtree rooted at βi for
1 � i � r may share with the rest of I (and thus also with the other subtrees) are those from dom(α ).
Moreover, by the definition of the R-type, the only atoms that such subtrees may share with the
rest of I are those from the R-type for α in I . In particular, this means that the side atoms (i.e., the
non-guard atoms) that may be used in rule applications in any subtree rooted at α , and that are not
generated in the subtree itself, must be elements of the R-type for α in I . This R-type is not only
finite, but also of rather limited size. In fact, the values that may appear as arguments in the R-type
for α in I are only those few that also appear in the single atom α . This means informally that, af-
ter passing a limited finite amount of initial information to the subtrees rooted at β1, . . . , βr , these
subtrees can be developed completely independently from each other and from the rest of I . This,
in turn, will enable us to use space-bounded alternating Turing machines towards the derivation
of optimal complexity bounds.
The above description, however, leaves a puzzling question open: How can we know the R-type

for α in I before having computed the subtrees rooted at the children β1, . . . , βr of α? Indeed, some
atoms of this R-type may be computed within these subtrees, and others even somewhere else in
the dependency forest. The answer is that our alternating algorithm will simply guess the R-type
T for alpha, which, of course, needs to be consistent with the R-type of the parent node of α in
case α � D. Our algorithm will also guess, for each newly guessed atom ofT , a subtree where this
atom ought to be derived and will then impose to each subtree the additional task to check that
those atoms from T assigned to it are effectively derived.
Actually, the information to be passed to each subtree rooted at α will contain not only the

R-type of α , but also other data structures that will be used for tackling additional difficulties
such as, for example, (i) proving negative literals, i.e., checking that the corresponding (positive)
atom cannot be derived; (ii) establishing a (guessed) order of proof of the atoms in each guessed
R-type τ to be checked, such that the computation of each subtree has knowledge about which
atoms from τ it can use, because they can be deemed to have been already proved; (iii) avoiding
that a rule is fired twice with the same homomorphism and head atom (recall Definition 4.5, the
discussion in Section 4, and Example 4.16); (iv) managing a set of partial matches of a non-atomic
query Q (as described below). All this information is packed in a data structure that we call a Σ-
environment, where we deal with ground atomic queries only, and (Σ,Q )-environment, where we
deal with UBCQs. These data structures are described in detail in Appendix A.
By the above-described properties of [D]-join forests, and by using the above data structures,

we are able to design an alternating algorithm that performs recursive self-reductions for query
answering.
Essentially, for each atom α generated, after having guessed (existential step) the R-type of α ,

the algorithm launches (as a universal step) the independent computations of all the subtrees,
where some subtrees must fulfill additional “assignments,” such as checking that Q does not be-
come true and proving that certain atoms of the guessed R-type of α are effectively derivable. This
alternation between such existential and universal steps is the core of our alternating algorithm
for query answering.
In this alternating algorithm, the tree structure Ifin from before will be nondeterministically

generated and explored by guessing and checking R-types and other auxiliary data structures,
and by independently and dynamically developing subtrees without ever materializing Ifin in its
entirety.
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Checking that Ifin � |= Q in the course of such a computation is easy when Q is a ground atomic
query: Each subtree computation (including those starting at each database atom) receives the
assignment to fail in case atom Q is encountered.
The case of UBCQs Q is somewhat more involved. In essence, the algorithm simultaneously

proves for each disjunct Q ′ of Q that Ifin � |= Q ′. Roughly, this works by successively matching
single query atoms ofQ ′ with atoms of the chase forest, generating (in all possible ways) so-called
partial matches. The latter are partial mappings from the query variables to database or null values.
As the computation processes downwards the forest, refinements of these partial matches are
systematically added whenever further atoms can be matched. After each new refinement via an
atom matching, a partial match decomposes into (a conjunction of) one or more variable-disjoint
blocks of partial matchings for subqueries, where different blocks may be processed and further
expanded by different subtrees. To show that Ifin � |= Q ′, the algorithm, for each such decomposition,
nondeterministically chooses one block that shall be doomed to fail and continues to further refine
only this block. A block fails if whenever a leaf of Ifin is reached, there has been no way to extend
the partial matchings in the block to a full matching. All this can be done in form of additional
tasks superimposed to the above-described alternating algorithm.
We close our proof sketch with complexity considerations. In the general case (combined com-

plexity), the above refined alternating algorithm uses “only” exponential workspace and thus runs
in alternating exponential space AEXPSPACE, which is equal to 2-EXPTIME. This is clearly sig-
nificantly better than the above co-3-NEXPTIME bound of the rudimentary algorithm. In case of
bounded arity and atomic (or even acyclic) queries, the alternating algorithm runs in APSPACE,
which is equal to EXPTIME. Finally, in the data complexity case, the alternating algorithm runs in
co-NP, which is the same as for the rudimentary algorithm. �

The above alternating algorithm works well for UBCQs, but unfortunately not for general UN-
BCQs. For example, when processing a query R (x ,y) ∧ R (z, t ) ∧ ¬R (x , t ) (we omit the existential
quantifiers), by our algorithm, it could become necessary to decompose the positive part of the
query into the blocks R (x ,y) and R (z, t ) and process each block in a different subtree. However,
there would then be no way of enforcing ¬R (x , t ), because these subtrees are dealt with indepen-
dently. However, as shown in the subsequent Section 5.2.4, it is possible to extend our methods to
covered UNBCQs, because these can be transformed into standard UBCQs with the help of addi-
tional guarded NTGDs.

5.2.4 Covered UNBCQs. We finally prove the complexity bounds in Theorem 5.6 for the prob-
lem of answering covered UNBCQs with respect to stratified sets of guarded DNTGDs. Note that
covered UNBCQs are still much more general than the standard BCQs or UBCQs dealt with in the
overwhelming part of the literature on query complexity. The lower bounds were already shown
in Theorem 5.4. The upper bounds are obtained from Theorem 5.9 by a polynomial-time reduction
to answering UBCQs with respect to stratified sets of guarded DNTGDs:

Lemma 5.10. There is a polynomial-time algorithm that, given as input a stratified set Σ of guarded
DNTGDs over R, a database D for R, and a covered UNBCQ Q over R, outputs a stratified set Σ′ of
guarded DNTGDs over R′ ⊇ R and a UBCQ Q ′ over R′ such that

(1) (D, Σ) |=strat Q iff (D, Σ′) |=strat Q ′,
(2) |R′| � 2|R |,
(3) ar(R′) = ar(R ), and
(4) wd(Q ′) = wd(Q ).

Furthermore, Q ′ is acyclic if Q is acyclic.
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Proof. Given Σ, D, andQ , we apply the following transformation to reduce Σ andQ to a strati-
fied set Σ′ of guarded DNTGDs and a UBCQQ ′. For each negative literal � = ¬R (x) inQ , we create
a new guarded NTGD

σ� : α ∧ � → R̄ (x),

whereα is a positive literal inQ that covers �, and R̄ is a fresh predicate of arity ar(R). (We introduce
at most one new predicate R̄ for each R ∈ R.) Then,

Σ′ := Σ ∪ {σ� | � is a negative literal in Q },
andQ ′ is the UBCQ obtained fromQ by replacing each negative literal ¬R (x) by the positive literal
R̄ (x). It is clear that (D, Σ) |=strat Q iff (D, Σ′) |=strat Q ′, and that Σ′ and Q ′ can be computed in
polynomial time. Furthermore, letting R′ be the schema of Σ′ and Q ′, we have |R′ | � 2|R | and
ar(R′) = ar(R ). The width of the query is preserved.
Since Q is covered, for each negative literal ¬β in Q , there exists a positive literal α in Q with

dom(β ) ⊆ dom(α ). This implies that Q ′ is acyclic if Q is acyclic. �

This completes the Proof of Theorem 5.6 and, by Lemma 5.7, also the Proof of Theorem 5.1.

6 ADDING NORMAL (NEGATIVE) CONSTRAINTS, EQUALITY-GENERATING

DEPENDENCIES (EGDS), AND KEYS

In this section, we concentrate on query answering from databases relative to NTGDs and addi-
tionally normal (negative) constraints, equality-generating dependencies (EGDs), and keys.

6.1 Normal (Negative) Constraints

Negative constraints (see Section 2.5) are an important ingredient of ontology languages. Here, we
consider their generalization to normal negative constraints (or simply normal constraints), which
also allow for negated atoms in their bodies and which are formally first-order formulas σ of
the form ∀xΦ(x) → ⊥, where Φ(x) is a (not necessarily guarded) conjunction of literals (without
nulls) called its body. We denote by body+ (σ ) (respectively, body− (σ )) the set of all atoms that
occur positively (respectively, negated) in the body of σ . We say that σ is covered if, for every
negative literal ¬α in Φ(x), there exists a positive literal β in Φ(x) such that every variable and
every constant in α occurs in β . We usually omit the universal quantifiers and implicitly assume
that all sets of normal constraints are finite here.

Example 6.1. If the two unary predicates c and c ′ represent two classes (also called concepts in
DLs), then we may use the constraint c (x ), c ′(x )→⊥ to assert that the two classes have no com-
mon instances. Similarly, if additionally the binary predicate r represents a relationship (also called
a role in DLs), then we may use the constraint c (x ), r (x ,y)→⊥ to enforce that no member of c par-
ticipates to r , while the two covered normal constraints ¬c (x ), r (x ,y)→⊥ and ¬c ′(y), r (x ,y)→⊥
enforce that r relates only members from c and c ′. Moreover, if the two binary predicates r and r ′

represent two relationships, then the constraint r (x ,y), r ′(x ,y)→⊥ expresses that the two rela-
tionships are disjoint.

As for the semantics, a normal constraint σ is satisfied in an interpretation I for R if every
homomorphismh satisfies eitherh(body+ (σ )) � I orh(body− (σ ))∩I � ∅. The following definition
extends the notions of stable models and of answers to UNCQ and UNBCQs under the stable model
semantics to additional normal constraints.

Definition 6.2. Given sets ΣT and ΣC of NTGDs and normal constraints, respectively, a stable
model for D and Σ = ΣT ∪ ΣC is a stable model for D and ΣT that satisfies all σ ∈ ΣC . The set of all
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stable models for D and Σ is denoted by SMod (D, Σ). The set of all answers for a UNCQ Q over D
and Σ under the stable model semantics is the set ansstable (Q,D, Σ) of all tuples t such that t ∈ Q (I )
for all I ∈ SMod (D, Σ). If Q is a UNBCQ, then we write (D, Σ) |=stable Q to denote the fact that
ansstable (Q,D, Σ) �∅, that is, Q is satisfied in all stable models for D and Σ. �

If a constraint is guarded (and thus all the variables from the rule body must occur in the guard,
in particular, also those in negative literals), then it is clearly also covered. Guarded constraints
are extremely simple to enforce by a well-known old trick: Just replace each guarded constraint
σ : body (x) → ⊥ by the rule σ ′ : body (x)∧¬p → p, where p is a fresh propositional atom. Clearly,
σ ′ is guarded and destroys any stable model that would satisfy body (x). It has thus the same effect
as σ . The trick, however, does not work for the more general class of covered constraints. In fact,
then σ ′ could be an unguarded rule. However, we show below that σ can be transformed to an
additional query disjunct.
It is, in fact, not difficult to see that answering UNBCQs Q on a database D relative to a set ΣT

of NTGDs and a set ΣC of normal constraints under the stable model semantics can be reduced
to answering Q on D relative to only ΣT under the stable model semantics, namely, by evaluating
Q only on all stable models that satisfy every normal constraint σ ∈ ΣC . This is equivalent to
evaluating either Q or Qσ =Φ(x) for some σ =Φ(x)→⊥ ∈ ΣC to true on D and ΣT under the
stable model semantics. We thus obtain immediately the following result:

Theorem 6.3. Let R be a relational schema, D be a database for R, ΣT and ΣC be sets of NTGDs
and normal constraints on R, respectively, andQ be a UNBCQ on R. Then, (D, ΣT ∪ ΣC ) |=stable Q iff
(D, ΣT ) |=stable Q ∨

∨
σ ∈ΣC Qσ .

As an immediate consequence of Theorem 6.3, we obtain that adding a set of normal constraints
does not increase the complexity of answering covered UNBCQs on databases relative to guarded
NTGDs under the stable model semantics.

Corollary 6.4. Answering covered UNBCQs on databases relative to guarded NTGDs and covered
normal constraints under the stable model semantics has the same (combined and data) complexity
as answering covered UNBCQs on databases relative to guarded NTGDs alone under the stable model
semantics.

In particular, by Theorems 6.3 and 5.1, we immediately obtain the following complexity results:

Corollary 6.5. Given as input a database D for a schema R, finite sets ΣT and ΣC of guarded
NTGDs and covered normal constraints on R, respectively, and a covered UNBCQ Q over R, deciding
(D, ΣT ∪ ΣC ) |=stable Q has the following complexity:

(1) 2-EXPTIME-complete in combined complexity.
(2) EXPTIME-complete, if ar(R ) is bounded by a constant, and Q ∨∨σ ∈ΣC Qσ is acyclic.
(3) co-NP-complete in data complexity, or if |R |, ar(R ), and wd(Q ∨∨σ ∈ΣC Qσ ) are bounded by

a constant.

By combining Theorems 6.3 and 5.8, we also get co-NP-completeness for (not necessarily cov-
ered) normal constraints, and the upper bounds co-3-NEXPTIME for combined complexity, and
co-2-NEXPTIME for bounded arity and atomic or acyclic queries.

6.2 Equality-generating Dependencies (EGDs) and Keys

We now add EGDs, which are also important when representing ontologies. Note that EGDs gen-
eralize functional dependencies (FDs) (which informally encode that certain attributes of a relation
functionally depend on others) and, in particular, key dependencies (or keys) (which are informally
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tuple-identifying sets of attributes of a relation) [1]. In many DLs, such asDL-Lite [38, 103], general
EGDs cannot be formulated, but only keys. Therefore, we mainly focus on keys here. We transfer a
result about non-key-conflicting (NKC) inclusion dependencies [36] and about non-conflicting keys
in guarded Datalog± [34] to the more general setting of normal (and stratified disjunctive normal)
guarded Datalog±.

However, while adding covered normal constraints is effortless from a computational perspec-
tive, adding EGDs is more problematic: The interaction of TGDs and EGDs leads to undecidabil-
ity of query answering even in simple cases, such that of functional and inclusion dependencies
[40, 95], or keys and inclusion dependencies (see, e.g., Reference [36]), where this undecidability
result is proven in a similar way as a result attributed to Vardi, which was reported and proven
in Corollary 2.3 of Reference [78]). Even a fixed set of EGDs and guarded TGDs can simulate
a universal Turing machine, and thus query answering and even propositional ground atom in-
ference is undecidable for such dependencies. For this reason, we consider a restricted class of
EGDs, namely, strongly non-conflicting keys (SNC keys), which show (in the guarded case) a con-
trolled interaction with NTGDs and stratified DNTGDs (and covered normal constraints), such
that they do not increase the complexity of answering covered UNBCQs. Intuitively, the main
underlying idea is to restrict the interplay between TGDs and EDGs by requiring a semantic
property of separability, which is implied by a syntactic property of strongly non-conflicting
TGDs and EGDs, so it is sufficient to check the EGDs on the database only (returning a pos-
itive query answer if satisfied and a negative one if not satisfied) and otherwise ignore the
EGDs.
We first define the notion of a stable (respectively, canonical) model of a database relative to a

set of NTGDs (respectively, a stratified set of DNTGDs) and a set of EGDs as follows:

Definition 6.6. Let R be a relational schema, D be a database for R, and ΣT and ΣE be a set of
NTGDs (respectively, a stratified set of DNTGDs) and a set of EGDS on R, respectively. A stable
(respectively, canonical) model for D and Σ = ΣT ∪ ΣE is a stable (respectively, canonical) model
S for D and ΣT such that S |= σ for all σ ∈ ΣE . We denote by SMod (D, Σ) (respectively, CModDΣ)
the set of all stable (respectively, canonical) models for D and Σ. �

The following theorem is an extension of Theorem 4.14 to the setting of EGDs, which formally
states the result that the translation of guarded NTGDs into stratified sets of guarded DNTGDs in
Theorem 4.14 also carries over to the more general case where we additionally have EGDs:

Theorem 6.7. There is a polynomial time algorithm that, given a finite set ΣT of guarded NTGDs
and a set ΣE of EGDs over a schema R, outputs a stratified set Σ′T of guarded DNTGDs over a schema
R′ with |R′| � 5|R |+ |ΣT |+1 and ar(R′) � 2 · ar(R ) such that the following holds for each database
D for R:
(1) For each I ∈ SMod (D, Σ), there exists a J ∈ CMod(D, Σ′) such that I = {R (a) | R ∈ R, R+ (a) ∈

J } and Fail � J .
(2) For each J ∈ CMod(D, Σ′) with Fail � J , the interpretation I := {R (a) | R ∈ R, R+ (a) ∈ J } is in

SMod (D, Σ).

Here, R+ (for each R ∈ R) and Fail are distinguished predicates in R′ \R, Σ = ΣT ∪ΣE , Σ′ = Σ′T ∪Σ
′
E ,

and Σ′E is obtained from ΣE by replacing every R ∈ R by R+.

Proof. Immediate by the proof of Theorem 4.14, since I |= σ for σ ∈ ΣE in (1) and (2) is
equivalent to I |= σ ′, where σ ′ ∈ Σ′E is obtained from σ by replacing every R ∈ R by R+. �
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The following definition generalizes the notion of separability for TGDs from Reference [33]
to DNTGDs. Here, there is a hard violation of an EGD σ on R of the form Φ(x)→xi =x j in an
interpretation I (respectively, a database D) for R iff there exists a homomorphism η : Φ(x)→ I
(respectively, η : Φ(x)→D) such that η(xi ) and η(x j ) cannot be unified via homomorphisms (re-
spectively, are different constants in Δ).

Definition 6.8. Let R be a relational schema, and let ΣT and ΣE be a stratified set of DNTGDs
and a set of EGDs on R, respectively. Then, ΣE is separable from ΣT relative to a class of queries
C if for every database D for R, the following conditions (i) and (ii) are both satisfied:

(i) If there is a hard violation of an EGD of ΣE in some S ∈ CMod(D, ΣT ∪ ΣE ), then there is
also a hard violation of some EGD of ΣE in D.

(ii) If there is no hard violation of an EGD of ΣE in D, then for every queryQ of class C, it holds
that Q is true in all S ∈ CMod(D, ΣT ∪ ΣE ) iff Q is true in all S ∈ CMod(D, ΣT ). �

The next definition extends the notion of non-conflicting (NC) keys for TGDs from Reference
[33] to DNTGDs.

Definition 6.9. Let R be a relational schema, and let ΣT and ΣK be a set of DNTGDs and a set of
keys on R, respectively.
• Let κ ∈ ΣK be defined on a predicate r , and let σ ∈ ΣT be of the form Φ(x, y) → ∃zΨ(x, z).
The key κ is non-conflicting (NC) with σ if for every disjunct ψ in Ψ(x, z), either (i) r is
different from the relational predicate in ψ ; or (ii) the positions of κ in r are not a proper
subset of the x-positions in r in ψ , and every variable in z appears only once in the head
of σ .
• A key κ ∈ ΣK is non-conflicting (NC) with ΣT if κ is NC with every DNTGD in ΣT .
• We say ΣK is non-conflicting (NC) with ΣT if every key in ΣK is NC with ΣT . �

It was shown in Reference [33] that if ΣK is a set of keys that is NC with a set ΣT of guarded
TGDs, then ΣK is separable from ΣT . The following example shows that this is not the case for
stratified sets ΣT of guarded DNTGDs. Note, however, that the implication still holds for sets ΣT of
guarded disjunctive TGDs. That is, the implication does not hold for stratified guarded DNTGDs
due to negated literals in rule bodies (as the example also shows) but not due to disjunctions in
rule heads.

Example 6.10. Consider the following stratified set ΣT of guarded NTGDs:

{P (x ) → ∃y R (x ,y),
R (x ,y) ∧ ¬P (y) → S (x )},

the database D = {P (a),R (a,a)}, and the key κ = {1} on R. Without the key, there is a model that
containsQ (a), thusQ = ∃x (P (x ) ∧¬S (x )) evaluates to false. With the key, there is no model that
contains Q (a), thus Q evaluates to true.

We now define a stronger NC condition for DNTGDs, which will imply the desired separability.
A position of a relational schema R is a pair (R, i ), where R ∈ R and i ∈ {1, . . . , ar(R)}. Given a set
(or Boolean combination) A of atoms, a constant or variable t occurs at position (R, i ) in A if A has
an atom R ′(t1, . . . , tn ) such that R′ = R and ti = t .
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Definition 6.11. Let R be a relational schema, let ΣT be a stratified set of guarded DNTGDs on
R, and let ΣK be a set of keys on R. We define

K0:={(R, i ) | there is a key κ ∈ ΣK defined on R, and i ∈ {1, . . . , ar(R)} \ κ},
Ki+1:= {(S, j ) | there is an (R, i ) ∈ Ki and a σ ∈ ΣT such that (R, i ) is a position in body+ (σ ) and

(S, j ) is a position in head (σ ) that contains the same variable as position (R, i ) in

body+ (σ )},

K∞:=
⋃
i�0

Ki .

We say ΣK is strongly NC (SNC) with ΣT if ΣK is NC with ΣT , and there is no DNTGD σ ∈ ΣT
that contains a negative literal with a variable that occurs in body+ (σ ) at a position inK∞. A single
key κ is SNC with ΣT if {κ} is SNC with ΣT . �

We illustrate the concept of SNC sets of keys and sets of TGDs by the following example:

Example 6.12. Consider again the stratified set ΣT of guarded NTGDs, the database D = {P (a),
R (a,a)}, and the keyκ = {1} onR of Example 6.10. Then,κ and thus also ΣK = {κ} are not SNCwith
ΣT , as K∞ = {R (2)}, and the second TGD in ΣT contains the negative literal ¬P (y), the positive
literal R (x ,y), the variable y occurs in the former, and y also occurs in the latter at a position
R (2) ∈ K∞. Let Σ′K = {κ,κ ′} with κ ′ = {2} on R. Then, K∞ = ∅ for Σ′K and ΣT , and thus Σ′K is
SNC with ΣT .

The following theorem shows that the stronger NC condition for DNTGDs implies the desired
separability, i.e., if ΣK is a set of keys that is SNC with a stratified set ΣT of guarded DNTGDs, then
ΣK is separable from ΣT .

Theorem 6.13. Let R be a relational schema, let ΣT be a stratified set of guarded DNTGDs on R,
and let ΣK be a set of keys on R. Then: If ΣK is SNC with ΣT , then ΣK is separable from ΣT relative
to UBCQs.

The following result generalizes Theorem 6.13 to strongly covered UNBCQs. Here, a UNBCQQ
is strongly covered if for every negative literal ¬α in Q , there exists a cover β of ¬α in Q such that
all variables x from α that occur in β occur in β only at positions not in K∞.

Theorem 6.14. Let R be a relational schema, let ΣT be a stratified set of guarded DNTGDs on R,
and let ΣK be a set of keys on R. Then: If ΣK is SNC with ΣT , then ΣK is separable from ΣT relative
to strongly covered UNBCQs.

As an immediate consequence from Theorems 6.3 and 6.14, since an SNC set of keys relative
to a set of guarded NTGDs remains an SNC set of keys relative to its encoding as stratified set
of guarded DNTGDs (see the proof of Theorem 4.14), we obtain that adding SNC keys and a set
of strongly covered normal constraints does not increase the complexity of answering strongly
covered UNBCQs on databases relative to guarded NTGDs under the stable model semantics. Here,
a normal constraint σ is strongly covered if for every negative literal ¬α in σ there exists a cover
β of ¬α in σ such that all variables x from α that occur in β occur in β only at positions not in K∞.
In particular, the complexity results of Theorem 5.1 immediately carry over to the more general
case of answering strongly covered UNBCQs under additionally SNC keys and a set of strongly
covered normal constraints.

Corollary 6.15. Answering strongly covered UNBCQs on databases relative to guarded NTGDs,
SNC keys, and strongly covered normal constraints under the stable model semantics has the same
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(combined and data) complexity as answering covered UNBCQs on databases relative to guarded NT-
GDs alone under the stable model semantics. In particular, given as input a databaseD for a schemaR,
finite sets ΣT and ΣC of guarded NTGDs and strongly covered normal constraints on R, respectively,
a finite set ΣK of keys on R that is SNC with ΣT , and a strongly covered UNBCQ Q over R, deciding
(D, ΣT ∪ ΣC ∪ ΣK ) |=stable Q has the following complexity:

(1) 2-EXPTIME-complete.
(2) EXPTIME-complete, if ar(R ) is bounded by a constant, and Q ∨∨σ ∈ΣC Qσ is acyclic.
(3) co-NP-complete in data complexity (i.e., for fixedQ and fixed Σ), or if |R |, ar(R ), and wd(Q ∨∨

σ ∈ΣC Qσ ) are bounded by a constant.

7 STABLE MODEL SEMANTICS FOR DLS

We now discuss how our decidability results for the stable model semantics can directly be applied
to obtain extensions of DLs with nonmonotonic negation. The proposed logics are essentially the
same as in Reference [66], but the crucial difference is that nonmonotonic negation is now inter-
preted via the stable model semantics. This can lead to better query answers, as Example 7.8 below
demonstrates. We demonstrate how to extend DL-LiteR (which is underlying the OWL 2 QL pro-
file), DL-LiteF and DL-LiteA [38, 103], and ELHI [9] with nonmonotonic negation under the
stable model semantics. That is, we confine our discussion to the most paradigmatic examples of
lightweight DLs. It is to be expected, however, that our techniques can be adapted to an even larger
variety of DLs (involving features such as n-ary predicates or number restrictions). In the sequel,
a normal Datalog± program Σ = ΣT ∪ ΣC ∪ ΣK consists of a finite set ΣT of guarded NTGDs, a
finite set ΣC of strongly covered normal constraints, and a finite set ΣK of keys that are SNC with
ΣT . If ΣK = ∅, then ΣC may also be a finite set of only covered normal constraints.

7.1 The DL-Litenot-family

We first discuss the extension of members of the DL-Lite-family with nonmonotonic negation.
Here, we only recall the definition for DL-LiteA in detail—DL-LiteR and DL-LiteF are easily ob-
tained as the usual fragments extending DL-Litecore with role inclusions and functionality con-
straints, respectively.

Definition 7.1. LetA,RA,RD , and I be sets of atomic concepts, atomic roles, atomic attributes, and
individuals, respectively, and letD be a set of basic data types, where each d ∈ D is associated with
a set of valuesVd . Then, we define basic concepts B, general conceptsC , basic roles R, general roles
E, value-domain expressions T and F , and attribute expressions VC using the following grammar:

• Concept expressions:

B −→ A | ∃R | δ (UC ) ,
C −→ B | ¬B | �C | ∃R.C .

• Role expressions:

R −→ Q | Q− ,
E −→ R | ¬R .

• Value-domain expressions:

T −→ ρ (UC ) ,
F −→ �D | d .

• Attribute expressions:

VC −→ UC | ¬UC .
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Here,A ∈ A,Q ∈ RA,Q− denotes the inverse of an atomic roleQ ∈ RA,UC ∈ RD , δ (UC ) and ρ (UC )
denote the domain and the range of the atomic attributeUC , respectively, and d ∈ D. As usual, for
an arbitrary basic role R, we write R− to denote its inverse, i.e., (Q )− = Q− and (Q−)− = Q , for
each atomic role Q .
A DL-LiteA-TBox is a finite set of concept inclusion axioms of the form B � C (with B a basic

concept and C an arbitrary concept), role inclusion axioms of the form R � E, role functionality
axioms funct(R) that express that a basic role R is functional, value-domain inclusion axioms of
the form T � F , attribute inclusion axioms UC � VC , and attribute functionality axioms of the
form funct(UC ). If a TBox T contains functionality axiom for a role/attribute, then we call the
role/attribute an identifying property. The following condition is required to hold for DL-LiteA-
TBoxes T :

For any identifying property S in T , S does not occur positively on
the right-hand side of a role/attribute inclusion axiom in T or in an
expression of the form ∃S .C .

(*)

An Abox A is a finite set of membership axioms of the form A(a), Q (a,b), andUC (a,v ), where
A is an atomic concept,Q an atomic role, a,b are constants in I,UC is an atomic attribute, and v is
a value.
The weaker logic DL-Litecore disallows basic concepts B =δ (UC ), general concepts C =�C and

C =∃R.C , and all value-domain and attribute expressions; it then only allows for concept inclusion
axioms B �C in the TBox and membership axiomsA(a) andQ (a,b) in the ABox. The more expres-
sive DL-LiteR and DL-LiteF additionally allow for role inclusion axioms R � E and role function-
ality axioms funct(R) in the TBox, respectively. Thus, the condition (∗) is vacuous for DL-Litecore,
DL-LiteR , and DL-LiteF , as DL-Litecore and DL-LiteR do not allow for role/attribute functionality
axioms, and DL-LiteF has no role/attribute inclusion axioms and no general concepts ∃R.C .

In the following, let X ∈ {R,F ,A, core}. A DL-LiteX knowledge base is a DL-LiteX -TBox to-
gether with an ABox. The semantics is defined as usual via interpretations (ΔI , ·I ) that interpret
the atomic concepts and roles as subsets and binary relations over Δ, respectively, the atomic
attributes as relations between elements of Δ and data values, and individuals as elements of Δ.
Furthermore, interpretations are inductively extended to general concepts, roles, and attributes.
For each DL DL-LiteX , the variant DL-LiteX ,� is defined by allowing for (finite) conjunctions of
basic concepts or basic roles on the left-hand side of concept and role inclusions, respectively (i.e.,
by allowing for concept inclusions of the form B1 � · · · � Bn � C and role inclusions of the form
R1 � · · · � Rm � E). �

It has been shown in Reference [33] how to translate the DLs from the DL-Lite-family into
Datalog±. Before we recall this translation, we first introduce our own new extensions of these
DLs with nonmonotonic negation, which essentially extends DL-LiteX by the possibility of adding
an arbitrary number of negative side conditions to the left-hand side of an inclusion.

Definition 7.2. Let X ∈ {R,F ,A, core}. A DL-LiteX ,not-TBox can contain concept or role inclu-
sions of the form U � notU ′1 � · · · � notU ′n � V , where U � V and U ′1 � · · · �U ′n � V , with n � 0,
are concept or role inclusions in DL-LiteX and DL-LiteX ,�, respectively. In addition, a DL-LiteF ,not
or DL-LiteA,not TBox T may contain role functionality axioms funct(Q ) and funct(Q−) as well as
attribute functionality axioms funct(UC ) under the condition that (*) holds. �

Remark 7.3. The above family of logics DL-LiteX ,¬ could be easily extended to variants DL-
LiteX ,�,¬ that allow an arbitrary number of positive concepts or roles on the left-hand side of a
concept or role inclusion, respectively. Any complexity result in this section that is proven for
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DL-LiteX ,¬ carries easily over to the corresponding extension DL-LiteX ,�,¬. To simplify the presen-
tation, we opted for confining our discussion to the logics DL-LiteX ,¬.

To provide a semantics for the logics DL-LiteX ,not, we use a translation into databases under
normal Datalog± programs. First, data valuesv are mapped to constants cv ∈ Δ such that any two
data domains are mapped to disjoint sets of constants, and individuals i are mapped to constants
ci ∈ Δ different from the constants that the data values are mapped to. Then, we fix for every
atomic concept A a unary predicate PA, for each atomic role Q a binary predicate PQ and two
unary predicates P∃Q and P∃Q− , for each attribute U a binary predicate PU and a unary predicate
Pδ (U ) , and for each data domain d ∈ D a unary predicate Pd , along with the normal constraints
Pd (x ) ∧ Pd ′ (x ) →⊥ for any two data domains d,d ′ ∈ D. Furthermore, we note that any inclusion
axiom of the formU1 � · · · �Um � ∃R.C can be replaced by the axiomsU1 � · · · �Um � ∃R.A and
A � C for a fresh atomic concept A, and thus we can assume without loss of generality for any
concept of the form ∃R.C on the right-hand side of a conclusion that C is atomic. The translation
of a DL-LiteX ,not knowledge base (A,T ) into a database DA under a normal Datalog± program
ΣT is then obtained as follows:

• All membership axioms A(a), Q (a,b), and U (a,v ) in A are translated into atoms PA (ca ),
PQ (ca , cb ), and PU (ca , cv ) in the database DA , respectively.
• For each atomic roleQ and each attributeU , the normal Datalog± program ΣT contains the
rules

PQ (y,x ) → P∃Q− (x ), PU (x ,y) → Pδ (U ) (x ),
PQ (x ,y) → P∃Q (x ).

• For each concept inclusion axiom B � notB′1 � · · · � notB′m � C , we add the rule σ (B) ∧
¬ σ (B′1) ∧ · · · ∧ ¬ σ (B′m ) → τ (C ), where

σ (B) =
⎧⎪⎪⎨
⎪⎪
⎩

PA (x ), if B = A for an atomic concept A,
P∃R (x ), if B = ∃R for a basic role R,

Pδ (U ) (x ), if B = δ (U ) for an attributeU

and

τ (C ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

PA (x ), if C = A for an atomic concept A,
∃y.PQ (x ,y), if C = ∃Q for an atomic role Q,
∃y.PQ (y,x ) if C = ∃Q− for an atomic role Q,

Pδ (U ) (x ), if C = δ (U ) for an attributeU ,
∃y.PQ (x ,y) ∧ PA (y), if C = ∃Q .A for atomic A and atomic Q ,
∃y.PQ (y,x ) ∧ PA (y) if C = ∃Q−.A for atomic A and atomic Q .

• For each concept inclusion axiom B0 � notB′1 � · · · � notB′m � ¬B, we add the normal
constraint σ (B0) ∧ ¬ σ (B′1) ∧ · · · ∧ ¬ σ (B′m ) ∧ σ (B) →⊥, where σ is defined as in the
previous case.
• For each role inclusion axiom R0�notR′1�· · ·�notR′m � R, we add the rule σ (R0)∧¬σ (R′1)∧
· · · ∧ ¬σ (R′m ) → σ (R), where σ (R) = PQ (x ,y), if R = Q , and σ (R) = PQ (y,x ), if R = Q−.
• For each role inclusion axiom R0�notR′1� · · · �notR′m � ¬R, we add the normal constraint
σ (R0) ∧ ¬σ (R′1) ∧ · · · ∧ ¬σ (R′m ) ∧ σ (R) →⊥, where σ is defined as in the previous case.
• For all role functionality axioms funct(Q ) and funct(Q−), we add the EGDs

Q (x ,y) ∧Q (x ,y ′) → y = y ′,

Q (x ,y) ∧Q (x ′,y) → x = x ′.
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• For each attribute functionality axiom funct(U ), we add the EGD

U (x ,y) ∧U (x ,y ′) → y = y ′.

• For all attribute inclusion axiomsU � U ′ andU � ¬U ′, we add the rule PU (x ,y) → PU ′ (x ,y)
and the normal constraint PU (x ,y) ∧ PU ′ (x ,y) →⊥, respectively.
• For each value-domain inclusion axiom ρ (U ) � d , we add the rule PU (x ,y) → Pd (y).

It is not difficult to see that all produced rules are guarded and that all produced normal con-
straints are covered. In addition, in the presence of functionality axioms, we assume that DL-
LiteX ,not knowledge bases are admissible: A DL-LiteX ,not knowledge base (A,T ) is admissible,
if ΣK is SNC with ΣT , and all normal constraints in ΣC are strongly covered relative to ΣT , where
ΣK , ΣT , and ΣC are the sets of all keys, NTGDs, and normal constraints in ΣT . Furthermore, in
the presence of functionality axioms, any UNBCQ to such knowledge bases has to be strongly
covered. We define the stable model semantics for DL-LiteX ,not knowledge bases as follows:

Definition 7.4. Let (A,T ) be aDL-LiteX ,not knowledge base. Then, a stable model for (A,T ) is a
stable model for (DA , ΣT ). The answer to a UNBCQQ on (A,T ) under the stable model semantics
is Yes, denoted (A,T ) |=stable Q , if the answer to Q on (DA , ΣT ) is Yes. �

7.2 The Logic ELHInot

Similarly to what we have done with DL-Lite, we now extend the DL ELHI with nonmonotonic
negation and show how to translate knowledge bases for the resulting logic ELHInot into normal
guarded Datalog± programs to obtain a stable model semantics for ELHInot.

Definition 7.5. We assume a set A of atomic concepts, a set RA of atomic roles, and a set I of
individuals, and we recall the notions of concepts and roles in ELHI:

C −→ A | C �C | ∃R.C | � ,
R −→ Q | Q− ,

where A ∈ A and Q ∈ RA are arbitrary atomic concepts and roles, respectively. An ELHI TBox
is a finite set of concept inclusion axioms C � D for arbitrary concepts C,D and of role inclusion
axioms R � S for arbitrary roles R, S .
We define an ELHInot TBox to be a finite set of

• ELHI axioms,
• concept inclusion axioms of the form C1 � · · · � Cm � notC ′1 � · · · � notC ′n � D, where
C1 � · · · � Cm � D and C ′1 � · · · � C ′n � D, withm,n > 0, are ELHI axioms, and at least
one 1 � j � m exists with Cj � �, and
• role inclusion axioms of the form R � notR′ � S , where R, R′, and S are arbitrary roles.

It is not difficult to see that concept inclusion axioms can be assumed to be of a certain normal
form

C1 � · · · �Cn � notC ′1 � · · · � notC ′m � D,

where n > 0,m � 0, at most one of the Ci ’s has the form ∃R.A, all other concepts (including all
negated ones) on the left-hand side are atomic or �, and D is either an atomic concept A or of the
form ∃R.A for an atomic concept A. �

For the translation of a ELHInot-TBox T into a normal Datalog± program ΣT , we assume for
every concept in A a unary predicate PA, for every role Q ∈ RA a binary predicate PQ , and we
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define a mapping τ on (certain) concepts and roles as follows:

τ (�) = U (x ), τ (A) = PA (x ),
τ (Q ) = PQ (x ,y), τ (Q−) = PQ (y,x ),
τ (∃R.A) = τ (R) ∧ PA (y).

The definition of τ gives rise to the following translation of ELHInot axioms into normal guarded
Datalog±:

• every concept inclusion axiom C1 � · · · �Cn � notC ′1 � · · · � notC ′m � D in normal form is
mapped to the rule

τ (C1) ∧ · · · ∧ τ (Cn ) ∧ ¬ τ (C ′1) ∧ · · · ∧ ¬ τ (C ′m ) → ∃y.τ (D),

• every role inclusion R1 � notR2 � S is mapped to τ (R1) ∧ ¬ τ (R2) → τ (S ), and
• for every predicate Q(x,y) or P(x) in the translation, we add the rules

Q (x ,y) → U (x ), Q (x ,y) → U (y), P (x ) → U (x ).

Hence, U holds for all constants and nulls that occur in a stable model. In this way, U (x )
encodes the universal concept �, which holds everywhere in a given model.

Observe that the above translation produces no keys, all produced rules are guarded, and all
produced normal constraints are covered. We define the stable model semantics for ELHInot

knowledge bases as follows:

Definition 7.6. Let (A,T ) be an ELHInot knowledge base. Then, a stable model for (A,T ) is a
stable model for (DA , ΣT ). The answer to a UNBCQQ on (A,T ) under the stable model semantics
is Yes, denoted (A,T ) |=stable Q , if the answer to Q on (DA , ΣT ) is Yes. �

The following example demonstrates how Example 1.1 from the introduction can be formalized
in ELHInot:

Example 7.7. Consider the ABoxA = {Person(mary)} and the TBox T consisting of the follow-
ing axioms:

Person � not Even � Odd,
Person � notOdd � Even,

Person � Even � ∃hasParent.(Odd � Person),
Person � Odd � ∃hasParent.(Even � Person),

hasParent � hasChild−.

Then, we obtain two (infinite) stable models for this knowledge base (A,T ), which look very
similar to the stable models obtained in Example 1.1. The two stable models correspond to the
case in which Odd(mary) and to the case in which Even(mary) holds. If we add the role inclusion

Person � not∃hasChild � Odd,

then the resulting knowledge base has only one stable model, namely, the one that contains
Odd(mary).

In the following example of a knowledge base in DL-LiteR,not, the stable model semantics leads
to better query answers than the well-founded semantics:
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Example 7.8. Consider the ABox {FiveStar(ritz)} and the TBox consisting of the following ax-
ioms:

FiveStar � Hotel,
FiveStar � not∃Pool � ∃Beach,

FiveStar � not∃Beach � ∃Pool,
Beach � SwimOpp,
Pool � SwimOpp,

∃SwimOpp � Excellent.

Then, the well-founded semantics of this knowledge base only contains the atoms FiveStar(ritz)
and Hotel(ritz), while all its stable models also contain the atoms ∃SwimOpp(ritz) and
Excellent(ritz). This correctly reflects the fact that, while we are unable to know whether a given
five-star hotel has a swimming pool or a beach, we can be sure that one of these facts is true. This
example thus demonstrates an advantage of the stable model over the well-founded semantics.

We finally consider an example that makes use of a key.

Example 7.9. Consider the ABox {Emp(a),Emp(b), Probation(a), hasSuper(b, c )} and the TBox
consisting of the following axioms where the first one says that everybody has at most one super-
visor, the next two that every employer has a supervisor, unless he is a manager, and the last one
that every employer in probation has a supervisor:

funct(hasSuper),
Emp � not Manager � ∃hasSuper,

Emp � not ∃hasSuper � Manager,
Probation � hasSuper.

It is not difficult to see that the ABox satisfies the key; thus, the key can be ignored for the purpose
of query answering. The BCQ ∃x .Emp(x )∧Manager(x ) evaluates to false, as (i) a is not a manager,
as he is in probation, and thus, by the TBox axioms, he has a supervisor, and (ii) b is not a manager,
as he has a supervisor according to the ABox.

The decidability results for query answering relative to the stable model semantics can be di-
rectly applied to DLs. Here, by a covered UNBCQ Q over some knowledge base K = (T ,A), we
mean a covered UNBCQ over literals of the form PR (x ,y), notPR (x ,y), PA (x ), and notPA (x ), where
R is an atomic role in K , A is an atomic concept in K , PR and PA are their translations into predi-
cates, and x and y are variables. We often use the translations PR (x ,y):=R (x ,y) and PA (x ):=A(x )
such that a UNBCQ over K is essentially the same as a UNBCQ over the “schema” of K .

Theorem 7.10. Let L be DL-LiteX,not, were X ∈ {R,F ,A}, or ELHInot. Let K = (T ,A) be a
knowledge base in L andQ a covered UNBCQ. Furthermore we assume that, in case T contains func-
tionality axioms, K and Q are admissible and strongly covered, respectively. Then deciding whether
Q is true under the stable model semantics has the following complexity:

(1) 2-EXPTIME-complete in combined complexity for ELHInot, and DL-LiteX,not, where X ∈
{R,A}. 2-EXPTIME-hardness holds even if the TBoxT is fixed and has no functionality axioms,
and Q is a UBCQ.

(2) co-NP-complete in data complexity. Hardness holds even if Q is a UBCQ, and T has no func-
tionality axioms, in particular, if T is a DL-Litecore,not TBox.

Proof. The upper complexity bounds follow immediately from Corollary 6.15. We now prove
the lower bounds.
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Lower bound in Point 1: It suffices to show the lower bound for DL-Lite R,not, which is more
restrictive than (and a subformalism of) the other two description logics.
We use Proposition 5.3 (1) and show that each set Σ of binary NF-DIDs can be polynomially

transformed via a translation τ ∗ into a TBox τ ∗ (Σ) formulated in DL-Lite R,not, such that (D, Σ) and
(AD ,τ

∗ (Σ)) are equivalent with regard to UBCQ-answering, where AD is the ABox correspond-
ing to D. Before doing so, we observe that Proposition 5.3 (1) can be slightly strengthened, which
will make our translation easier. In fact, by inspecting the proof of Theorem 4.5 in Reference [28], it
becomes clear that the 2-EXPTIME-hardness result of Proposition 5.3 (1) already holds for
restricted-normal-form DIDs (RNF-DIDs), which are NF-DIDs where, in addition, all rules of type 3
according to Definition 5.2 are of the form R (x ) → R1 (x ) ∨R2 (x ), where x is a single variable, and
R, R1, and R2 are thus unary predicate symbols. In fact, there are only two kinds of disjunctive rules
in the proof of Theorem 4.5 of Reference [28]: Rules of the form R (x ) → R1 (x )∨R2 (x )∨· · ·∨Rr (x ),
which are easily converted by use of auxiliary predicates into rules of the desired form (as already
described in Appendix A of Reference [28]) and the single rule

conf ∃ (x ) → ∃y (child1 (x ,y) ∧ conf ∀(y)) ∨ ∃y (child2 (x ,y) ∧ conf ∀(y)).

The latter can be rewritten, for example, by the following set of seven rules, where A1,A2,B1, and
B2 are auxiliary predicates:

conf ∃ (x ) → A1 (x ) ∨A2 (x ),

A1 (x ) → ∃yB1 (x ,y), A2 (x ) → ∃yB2 (x ,y),

B1 (x ,y) → child1 (x ,y), B2 (x ,y) → child2 (x ,y),

B1 (x ,y) → conf ∀(y)), B2 (x ,y) → conf ∀(y)).

This transformation yields the desired RNF-DIDs while not altering the answer of UBCQs Q over
the original schema (i.e., where no auxiliary predicate occurs in Q).
Let Σ be an arbitrary set of RNF-DIDs and consider its translation τ into a set τ (Σ) of NTGDs,

where τ is the polynomial transformation defined in the proof of Theorem 5.5. The obtained set
τ (Σ) is, as shown in the proof of Theorem 5.5, equivalent to Σ with respect to UBCQ answering.
It contains rules of four types: Types (1) and (2) according to Definition 5.2, where, moreover, all
predicates are at most binary, rules of the form R (x ) ∧ ¬R1 (x ) → R2 (x ) (namely, a pair for each
RNF-DID of type (3)), and finally clauses of the form R (x ) ∧ R1 (x ) ∧ R2 (x ) → Fail. By inspecting
the argument in the proof of Theorem 5.5, we also see that the latter can be replaced by rules of
the form R (x ) ∧ ¬R̄1 (x ) ∧ ¬R̄2 (x ) → Fail.
Now let τ ∗ (Σ) be obtained from τ (Σ) as follows: Each NTGD σ ∈ τ (Σ) of type (1) according to

Definition 5.2 is either of the form R (x ,y) → S (x ,y), or R (x ,y) → S (y,x ), or P (x ) → Q (x ). Then,
τ ∗ (σ ) is R � S, R � S−, or P � Q, respectively. Each clause σ of type (2) is either of the form
R (x ) → ∃yS (x ,y), or R (x ) → ∃yS (y,x ), and then τ ∗ (σ ) is R � ∃S or R � ∃S−, respectively. For
each rule σ of the form R (x ) ∧ ¬R1 (x ) → R2 (x ), let τ ∗ (σ ) be R � notR1 � R2. Finally, if σ is of
the form R (x ) ∧ ¬R1 (x ) ∧ ¬R2 (x ) → Fail, then τ ∗ (σ ) is R � not R1 � not R2 � ⊥. Here, we can
assume without loss of generality to have the empty concept “⊥” available, even though it has not
be explicitly included into DL-Lite R . The reason is that the negation “not” can be used to define
⊥, for example, by a single rule ⊥ � notC � C (just like “Fail” can be defined with NTGDs under
the stable model semantics).
Let D be a database on a binary schema, and let AD be the corresponding ABox. Let us now

observe that for the TBox T = τ ∗ (Σ), its translation to DT as defined earlier in this section is
equivalent with respect to UBCQ answering to τ (Σ), modulo predicate renaming. Thus, for each
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database D, and UBCQ Q , (AD ,σ
∗ (Σ)) |=stable Q iff (D,σ (Σ)) |=stable Q iff (D, Σ) |=strat Q . Given

that our reduction σ ∗ is computable in polynomial time, the lower bound in Point 1 is established.

Lower bound in Point 2: It suffices to prove the lower bound for DL-Litecore,not. We give a
polynomial-time reduction from the problem of deciding if an undirected graph is not 3-colorable
to query answering relative to a DL-Litecore,not knowledge base under the stable model semantics.
Suppose we are given a graph (V ,E). We define an ABox

D = {V (n) | n ∈ V } ∪ {E (n,m) | (n,m) ∈ E}.
Furthermore, we consider the following TBox-axioms:

V � notC1 � notC2 → C3,

V � notC1 � notC3 → C2,

V � notC3 � notC2 → C1.

These axioms ensure that the stable models of the knowledge base correspond to colorings of the
graph where each vertex is colored by exactly one of the colors C1, C2, or C3. Consider now the
union of the following queries:

∃x∃y (C1 (x ) ∧ E (x ,y) ∧C1 (y)), (12)

∃x∃y (C2 (x ) ∧ E (x ,y) ∧C2 (y)), (13)

∃x∃y (C3 (x ) ∧ E (x ,y) ∧C3 (y)). (14)

Our claim is that the query evaluates to true over the given knowledge base iff the graph (V ,E) is
not 3-colorable.
Suppose first that the graph is 3-colorable, fix such a 3-coloring, and consider the set of atoms

{C1 (n) | n ∈ V has color 1} ∪ {C2 (n) | n ∈ V has color 2} ∪ {C3 (n) | n ∈ V has color 3}.
Then, it is not difficult to see that this set together with D forms a stable model of the above
knowledge base, and the query evaluates to false due to the definition of a 3-coloring.
Suppose now the graph is not 3-colorable and consider an arbitrary stable model I of the above

knowledge base. We color the vertices of the graph by the following rule:

color vertex n with color i iff Ci (n) ∈ I .
Because the graph is not colorable, there must be two adjacent vertices n1 and n2 such that

Cj (n1) ∧ E (n1,n2) ∧Cj (n2)

holds for some color j. Therefore, the query evaluates to true over the given stable model. As the
stable model was arbitrary, we conclude that the query evaluates to true over the knowledge base,
as required. �

8 RELATEDWORK

Let us discuss a number of previous approaches to extend guarded TGDs with negation. However,
none of the approaches below allows one to use the stable model semantics (derived via Skolem-
ization from the standard stable model semantics in normal logic programming) for the general
class of guarded normal TGDs.

Stratified negation. Stratified negation for guarded Datalog± (with negative constraints and non-
conflicting keys), and thus automatically for a number of important DLs, was introduced in Ref-
erence [33] and further extended in Reference [8] to the more expressive formalism of weakly
guarded Datalog± (which was introduced without negation in Reference [32]). These papers show
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that stratified negation is very well-behaved in the sense that its addition does not endanger de-
cidability and actually does not augment the complexity of reasoning and query answering. But
this semantics does not apply to the (unstratified) rules in Examples 1.1 and 1.2.

Well-founded negation. Negation under the well-founded semantics (WFS) for guarded
Datalog± and covered DLs was studied in References [66, 77] for two variants of the WFS. The
version of Reference [77] studies the so-called standard WFS, which extends the well-known WFS
for logic programming with function symbols, where it is assumed (as here) that different Skolem
terms are not unifiable, which means that the unique name assumption (UNA) is applied to
Skolem terms. The work in Reference [5] extends this approach to sticky existential rules with
nonmonotonic negation and gives an analysis of the data and combined complexity of conjunctive
query answering in the resulting formalism. The second variant of theWFS, called equality-friendly
WFS [66] does not use the UNA. Note that both variants would be unsatisfactory for Examples 1.1
and 1.2, as they would simply leave the predicates Odd and Even undefined.

Stable model negation. In Reference [88], new acyclicity conditions (similar to weak acyclic-
ity [47, 54] and stratification conditions are presented for existential rules with negation in rule
bodies, which identify restricted classes of (possibly unguarded) rule sets that have finite and/or
unique stable models, and constraints are added on the input facts to further extend these classes.
The semantics for these restricted classes corresponds to ours, when we impose the same restric-
tions. What is studied in Reference [88] are syntactic restrictions of logic programs under the same
SMS considered here, which are incomparable to ours in the sense that they do not require guard-
edness but make other restrictions that are not required in the present article. Our work here,
in contrast, is not restricted to finite and/or unique stable models. The only syntactic restriction
necessary here is guardedness.
The FDNC programs or the more general BD-programs in References [51, 113] combine non-

monotonic negation and rules, allowing also the use of function symbols. They stick to the classical
SMS, as we do. Decidability is obtained by restricting the structure of rules to one of seven pre-
defined forms, which have guarded rule bodies or can be transformed to guarded rules. A new
decidability proof for FDNC programs under the stable model semantics has been provided in Ref-
erence [27]. A further important difference to our work is that results on FDNC and BD-programs
are limited to atomic queries, whereas our results apply to answering UNBCQs. Even for atomic
queries, our general results for normal guarded TGDs are not subsumed by the work in Refer-
ences [51, 113], as we allow predicates of arbitrary arity, and as we do not need to restrict to
DL-like rules. This also applies to our results on DLs, as the functional dependencies that are re-
quired by the logic DL-LiteA are not treated in References [51, 113]. In addition to that, the results
in References [51, 113] do not directly apply to role inclusions of the form Q � R− (or, in other
notation, Q (x ,y) → R (y,x )), i.e., role inclusions that switch the order of variables, which shows
why DL-LiteA,not and ELHInot knowledge bases can only be represented via a non-trivial encod-
ing. Some aspects of References [51, 113] are not subsumed by our work either: Most notably, the
stable semantics in References [51, 113] applies to disjunctive rules, which is beyond our current
setting.
The work in Reference [5] considers the classical SMS (i.e., the same we consider for guarded

NTGDs) for sticky existential NTGDs, which is, just as guarded NTGDs, a sub-fragment of the
general set of NTGDs. The class of sticky NTGDs is incomparable to the class of guarded NTGDs in
the sense that neither contains the other. Interestingly, in Reference [5], it is shown that answering
even just atomic queries under sticky NTGDs is undecidable.
In Reference [114], the author defines binary frontier-guarded programs that allow for dis-

junction, function symbols, and negation under the stable model semantics. Here, the syntactic
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restriction to at most binary predicates and by requiring rules to be frontier-guarded ensures de-
cidability. The recent work cited in Reference [10] presents existential nonmonotonic rules, which
combine ontologies and rules via existential rules and answer set programming, using skolemiza-
tion to integrate the two frameworks. The decidability of query answering in this formalism is
ensured via a generalized acyclicity condition. Another more recent work [4], which we already
mentioned, proposes a stable model semantics for normal existential rules via a characterization in
terms of second-order logic and provides a complexity analysis of query answering for the weak-
acyclic, guarded, and sticky case. This stable model semantics coincides with the SOS semantics
extensively discussed in Section 3.4, originally defined (via Kripke models) by Pearce in 1996 [98],
and (via second-order logic) by Ferraris, Lee, and Lifschitz [56, 57]. One key result in Reference [4]
is the undecidability of UBCQ answering with guarded TGDs under the SOS semantics. A similar
result undecidability result is also shown for sticky TGDs. The paper also contains a host of other
interesting results, such as for example decidable restrictions such as the restriction to weakly
acyclic rules [47, 54].

Hybrid approaches. Less closely related approaches are loosely and tightly coupled dl-programs
[50, 87], as well as the hybrid MKNF knowledge bases [96]. More precisely, the former loosely
and tightly, respectively, combine a description logic knowledge base L and a logic program P .
Rule bodies in P may contain queries to L, which may also contain facts as additional input to
L, in the loosely coupled case, while concepts and roles from L are used as predicates in P in the
tightly coupled case. Decidability is based on the finiteness of stable models. The hybrid MKNF
knowledge bases allow for querying a description logic knowledge base L via the operators K
and not. Decidability is obtained via the so-called DL-safety condition, which makes the rules
applicable only to explicitly known individuals. In our approach here, in contrast, stable models
may be infinite, and no restrictive DL-safety of rules is assumed. Less closely related are also other
nonmonotonic DLs, such as those based on circumscription [24] and on rational extensions [63].

Semantic conditions. Semantic conditions that guarantee decidability were described in Refer-
ence [11–13, 35, 69, 110]. Related syntactic conditions led to the Datalog± family [33, 34]. The
semantic condition relevant to the present work is the bounded treewidth property, which is equiv-
alent to the tree model property described and used in the present article.

9 CONCLUSION

We have adopted and studied the classical stablemodels semantics (SMS) for tuple-generating
dependencies (TGDs). We have proved that query answering for such rules is decidable, and we
have determined precise complexity results for this problem for answering covered UNBCQs under
various settings (combined complexity, case of bounded arities, and data complexity), determined
the data complexity for answering general UNBCQs, and given upper bounds for the combined
complexity and for the bounded-arity case for general UNBCQs.
On the way to these results, we have also studied guarded disjunctive existential rules with

stratified negation and investigated the complexity of query answering based on this formalism,
which may be of interest in its own right.

The aspect of guardedness that we exploited most is the acyclicity of chase models, as a con-
sequence the bounded treewidth model property. This property allowed us actually to derive a
decidability result not only for UNBCQ answering, but for arbitrary first-order queries. Moreover,
all our complexity results hinge on the acyclic nature of chase-based models generated by guarded
rules.
We have then generalized the above results by additionally allowing for negative constraints

and for keys, and shown that the above decidability and complexity results all carry over to this
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more general setting.We have finally shown how the above results can be used to provide a natural
and decidable stable model semantics to description logics (DLs), such as ELHI and the DL-
Lite family of DLs. We have also provided precise combined and data complexity results for query
answering under the stable model semantics for the resulting DLs.
Our approach of adopting the stable model semantics of existential rules with negation follows

the standard semantics for logic programming with function symbols, where different Skolem
terms are considered to be different elements that cannot be unified. In a precise sense, this means
that our semantics applies the unique name assumption (UNA) not only to database constants,
but also to invented null values, i.e., Skolem terms. As long as negation is not used, this does
not matter. With negation, however, this significantly differs from the first-order semantics. Re-
consider Example 1.1, and let Σc = Σa∪ {Person(x ), not Parent(x ,x ) → ok}. Under our current
semantics, {Person(mary)} ∪ Σc |= ok . However, if one does not apply the UNA, then ok would not
be derivable, as there would exist models in which, e.g.,mary= f(mary). The Second-Order Seman-
tics (SOS) by Reference [56] for guarded TGDs was studied in Reference [4], where it turned out
that conjunctive query answering for guarded TGDs under the SOS is undecidable.
Ongoing work includes in particular the stable model semantics for (non-stratified) guarded

disjunctive TGDs with negation. The semantics for this is, again, directly inherited from the cor-
responding stable model semantics for disjunctive logic programming with function symbols. As
this can be encoded into guarded second-order logic (GSO) in a similar way as the normal stable
semantics treated here, hence query answering is decidable. By a similar encoding into GSO, we
also obtain decidability for the stable model semantics for disjunctive weakly guarded and weakly
frontier-guarded TGDs with negation.We are currently still exploring the precise complexity of all
these problems. It would also be interesting to study “modular” variants of these problems, where
logic programs can make use of generalized quantifiers [49] in rule bodies.
Finally, we plan to design and implement a query answering system for guarded NTGDs (and

possible extensions), which (unlike Reference [115]) exploits the full power of alternation by using
deterministic versions of our alternating algorithms that cashes possibly recurring configurations
(essentially, isomorphism-classes of atoms of the chase forest with their respective types), which
could be achieved in analogy to Reference [48].

APPENDICES

A PROOFS OF SOME RESULTS OF SECTION 3

In this section, we prove Theorem 3.14. We first prove the following lemma:

Lemma A.1. Let D be a database, Σ a set of NTGDs, and T = (D, Σ). Then, each model M of TUNA
contains a subset MH of its atoms that is a model of TM , such that MH is isomorphic to a stable
Herbrand model from SMod (D, ΣM ).

Proof. LetM be amodel ofTUNA. CearlyM |= ΣM . Consider a chase sequence ξ : I0 = D, I1, I2, . . .
of interpretations arising during a chase computation chase(D, ΣM , ξ ). We show by induction on i
that Ii is isomorphic via a bijection fi to a subset fi (Ii ) of M . For i = 0, this is trivial by letting f0
be the identity on D. Assume that the statement holds for index j. To prove that it also for j + 1,
we distinguish two cases.

Case (a). A non-existential TGD σ of the form ∀x∀y (body (x, y) → R (x)) is applied to I j with
some homomorphism h : body (x, y) → I j to obtain a new atom α : R (h(x)) to yield Ij+1 = Ij ∪
{α }. By the induction hypothesis, the isomorphic rule body fj (body (h(x),h(y))) = body ( f j (h(x)),
fj (h(y))) is in fj (Ij ) ⊆ M . BecauseM |= ΣM , rule σ applies to fj (body (h(x),h(y))) = body ( fj (h(x),
fj (h(y)))) and generates an atom fj (α ) = R ( fj (h((x ))) ∈ M isomorphic to α via fj . Therefore, fj
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is actually also an isomorphism from Ij+1 → fj (Ij+1) ⊆ M , and by letting fj+1 := fj , the induction
step is proved.
Case (b). An existential TGD σ of the form ∀x∀y (body (x, y) → ∃z R (x, z)) is applied to I j with

some homomorphism h : body (x, y) → Ij to obtain a new atom α : R (h′(x),h′(z)), yielding
Ij+1 = Ij ∪ {α }, where h′ = h ∪ {(z,u)} is an extension h′ : {body (x, y),R (x, z)} → Ij+1 such
that h′(z) = u, where u ∈ ΔN is a fresh null, not occurring in Ij . Retain for later that the rule
application (σ ,h) is new and was not used for the chase derivation of Ij , because in the chase
every rule applies only once with a given body homomorphism. By the induction hypothesis,
the isomorphic rule body fj (body (h(x),h(y))) = body ( fj (h(x)), fj (h(y))) is in fj (Ij ) ⊆ M . Be-
cause M |= ΣM , rule σ applies to fj (body (h(x),h(y))) = body ( fj (h(x), fj (h(y))), and there must
thus be an atom Witnessσ ( fj (h(x)), fj (h(y)),v ) and an atom R ( fj (h((x )),v ) ∈ M , where v ∈ ΔN

is a null. This null v cannot occur in fj (Ij ) because of the following: Given that, as we noted,
(σ ,h) is a new application of Σ in the chase, and fj is an isomorphism, the application (σ , fj ◦ h)
to the body body ( fj (h(x), fj (h(y))) must be different from all TGD applications (σ ∗, fj ◦ h∗) that
generate atoms in fj (Ij ). Thus, by the UNA axioms, the witness v generated by this new appli-
cation (σ , fj ◦ h) cannot coincide with any of the witnesses generated by these applications, nor
with any database constant. Therefore, v is a new null value that does not appear in fj (Ij ), and
R (h′(x),h′(z)) = R (h′(x),u) is isomorphic to R ( fj (h

′(x)),v ). Define by fj+1 = fj ∪ {(u,v )}. Then
fj+1 is an isomorphism Ij+1 → f (Ij+1) ⊆ M , which proves the induction step.
The union f =

⋃
i�0 fi is clearly an isomorphism from chase(D, ΣM , ξ ) to f (chase(D, ΣM , ξ )) ⊆

M . By Proposition 3.5, chase(D, ΣM ) is also isomorphic to the unique stable Herbrand model of
SMod (D, ΣM ), which proves the lemma. �

We are now ready to prove Theorem 3.14.

Theorem 3.14. Let D be a database, Σ a set of NTGDs, and Q a first-order Boolean query over a
joint schema R, then
(1) SMod (D, Σ) � SModsos (D,Σ

D
UNA)[R] and

(2) (D, Σ) |=stable Q iff (D,ΣDUNA) |=sos Q iff SOS (D,ΣDUNA) |= Q .

Proof. (1) For both directions, let T = (D, Σ), and let R denote the list of predicate symbols of
the schema R of T .

For one direction, letM ∈ SMod (D, Σ). We show that then there is amodelM ′ ∈ SModsos (D,Σ
D
UNA)

such that M and M ′[R] are isomorphic. Let R+ denote the schema of TUNA. Let M+ over schema
R+ result from augmenting M with the appropriate auxiliary relations for auxiliary predicates
Witness and EQ . These are clearly well-defined, as M is the result of chase(D, (Σf )M ), where this
chase operates (i.e., assigns witnesses) according to the UNA. The Herbrand modelM+ is then also
a model of TUNA and therefore clearly also of (TUNA)M

+

. Assume there is a smaller (general) model
M− ⊂ M+ of (TUNA)M

+

. Given that M− fulfills the UNA axioms and is a subset of Herbrand model
M+, it must be itself a Herbrand model of (TUNA)M

+

smaller than M+. Then, the restriction M−[R]
of M− to the predicate symbols R is a model of ΣM that is smaller than M , which contradicts our
assumption that M ∈ SMod (D, Σ). Therefore, the model M+ of TUNA is actually a minimal model
of (TUNA)M

+

. By Proposition 3.10, M+ is a model of SOS (TUNA) and thus M+ ∈ SModsos (D,Σ
D
UNA) and

because M = M+[R], M ∈ SModsos (D,Σ
D
UNA)[R]. Thus, M ′ = M settles this direction with the

desired isomorphism being the identity.
To see the other direction, letM ∈ SModsos (D,Σ

D
UNA). We then need to show thatM[R] is isomor-

phic to some modelM ′ ∈ SMod (D, Σ). FromM ∈ SModsos (D,Σ
D
UNA), by definition of this set, and by

Proposition 3.10, we immediately conclude that M |= TUNA, and M is a minimal model of (TUNA)M .
By Lemma A.1, M must contain as subset a model isomorphic to a model M0 isomorphic to some
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Herbrand model of SMod (D, Σ). Add the appropriateWitness and EQ facts fromM toM0, yielding
M+0 . M

+
0 then satisfies the TGDs of Σ and the UNA Axioms and is a model of (TUNA)M . Given that

M is a minimal model of (TUNA)M , it must hold that M = M+0 . Therefore, M[R] = M0 is isomorphic
to some Herbrand model of SMod (D, Σ), which is precisely what we had to prove.
(2) First-order Boolean queries are well-known to be generic (see, for example, Reference [1]),

which means that they are invariant under isomorphism. Statement (2) of the theorem follows
immediately from this and Statement (1). �

B UPPER BOUNDS OF THEOREM 5.9

In this appendix, we give a detailed proof of the upper bounds of Theorem 5.6 for UBCQs. This is
precisely Theorem 5.9, which, for convenience, we here re-state:

Theorem 5.9 (Upper Bounds of Theorem 5.6 Restricted to UBCQs). Given as input a data-
base D for a schema R, a finite stratified set Σ of guarded DNTGDs over R, and a covered UNBCQ Q
over R, deciding (D, Σ) |=strat Q is:

(1) in 2-EXPTIME in general;
(2) in EXPTIME, if ar(R ) is bounded by a constant, and Q is acyclic;
(3) in co-NP in data complexity, or, if |R |, ar(R ), and wd(Q ) are bounded by a constant.

In Section B.1, we focus on the case of answering ground atomic queries (i.e., quantifier-free
CQs with a single atom) and introduce the main concepts and constructions. Section B.2 refines
some of the results of Section B.1 to obtain complexity results for the case of answering UBCQs.
These complexity results almost directly lead to a proof of Theorem 5.9, as shown in Section 5.2.4.

B.1 Ground Atomic Queries

This section introduces the main concepts and constructions for the proof of Theorem 5.9. To
focus on the essential issues, we restrict our attention to the special case of answering ground
atomic queries with respect to stratified sets of guarded DNTGDs. More precisely, we investigate
the complexity of the following decision problem: Given a database D, a finite stratified set Σ of
guarded DNTGDs, and a ground atom α , decide whether (D, Σ) |=strat α . Here, an atom α = R (a)
is called ground (w.r.t. D) if a is a tuple of constants from dom(D); we will often just speak of a
ground atom without mentioning D, since D will typically be clear from the context. We prove the
following result:

Theorem B.1. Given as input a database D for a schema R, a finite stratified set Σ of guarded
DNTGDs over R, and a ground atom α , deciding (D, Σ) |=strat α has the following complexity:

(1) 2-EXPTIME-complete in general;
(2) EXPTIME-complete, if ar(R ) is bounded by a constant;
(3) co-NP-complete, if |R | and ar(R ) are bounded by a constant.

The lower bounds of Theorem B.1 follow from known lower bounds on answering atomic
queries with respect to guarded TGDs and negation-free guarded DNTGDs. In fact, answering
ground atomic queries with respect to sets of guarded TGDs is 2-EXPTIME-hard in general, and
EXPTIME-hard if ar(R ) is bounded by a constant [32], which implies the lower bounds in the
first two points. Moreover, answering atomic queries with respect to sets of negation-free guarded
DNTGDs is co-NP-complete in data complexity [3] and, in particular, if |R | and ar(R ) are bounded
by a constant; this implies the lower bound in the third point.
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Fig. 1. Dependencies between atoms in the canonical model {A(a),B (a),R (a,b),S (a,X ),T (a,b,Z ),U (a,a),
U (a,b),V (a,Y )} for D = {A(a),R (a,b)} and the set Σ consisting of the DNTGDs (15)–(22). An edge, from an
atom α to an atom β indicates that β depends on α , and the edge, label indicates the DNTGD σ that was
applied to obtain β based on a homomorphism that maps guard (σ ) to α .

In the following, we focus on the upper bounds of Theorem B.1. We start by giving an overview
of how we obtain the upper bounds and provide a detailed proof afterwards.

B.1.1 Upper Bounds: Overview. To obtain the upper bounds of Theorem B.1, we devise an algo-
rithm for deciding (D, Σ) � |=strat α . The basic idea underlying this algorithm is simple—we try to
construct a canonical model J for D and Σ with α � J . To this end, we start with D and exhaus-
tively apply all applicable DNTGDs in Σ, while blocking those applications of DNTGDs that would
derive α . Of course, since a canonical model for D and Σ can be of infinite size, it is impossible to
always construct such a model directly. However, as we show in this section, the algorithm will
be able to verify that such a canonical model can be constructed, implicitly constructing one if it
exists.
The algorithm is based on a decomposition of canonical models, which we explain using an

example. Consider the database D = {A(a),R (a,b)} and the following stratified set Σ of guarded
DNTGDs:

A(x ) → ∃y S (x ,y), (15)

S (x ,y) ∧U (x ,x ) → B (x ), (16)

R (x ,y) → ∃zT (x ,y, z), (17)

T (x ,y, z) → U (x ,y) ∨U (y,x ), (18)

T (x ,y, z) ∧A(x ) ∧U (x ,y) → U (x ,x ), (19)

R (x ,y) ∧U (x ,y) ∧ ¬U (y,x ) → B (x ), (20)

B (x ) → ∃yV (x ,y), (21)

V (x ,y) ∧ ¬U (x ,x ) → C (x ). (22)

We have (D, Σ) � |=strat C (a), as witnessed by the following canonical model for D and Σ:

J := {A(a),B (a),R (a,b), S (a,X ),T (a,b,Z ),U (a,a),U (a,b),V (a,Y )}. (23)

Let us say that an atom β ∈ J depends on an atom α ∈ J if β is obtained by a DNTGD σ
in Σ with a homomorphism that maps the guard of σ to α . Thus, the atom S (a,X ) depends on
A(a), atom B (a) depends on both S (a,X ) and R (a,b), atomT (a,b,Z ) depends on R (a,b), and so on.
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Figure 1 shows the dependencies among all atoms in J ; we call the forest in Figure 1 the dependency
forest of J . Consider all atoms in J that depend on an atom in D, that is, that are obtained by an
application of a DNTGD σ in Σ with a homomorphism that maps the guard of σ to D. There are
only three such atoms: atom α1 := S (a,X ) derived using Equation (15), atom α2 :=T (a,b,Z ) derived
using Equation (17), and atom α3 := B (a) derived using Equation (20). Based on these atoms, we
decompose J into smaller interpretations J0–J3, where J0 is the initial database D, and each Ji with
i ∈ {1, 2, 3} consists of all descendents of αi in the dependency forest of J (see Figure 1):

J1 := {B (a), S (a,X ),V (a,Y )},
J2 := {T (a,b,Z ),U (a,a),U (a,b)},
J3 := {B (a),V (a,Y )}.

We call Ji the sub-model of J induced by αi . Now, an atom α is not contained in J iff, for every i ∈
{0, 1, 2, 3}, the atom α is not contained in Ji . One of the key insights of our analysis in Sections B.1.2
and B.1.3 is that we can recover a suitable Ji from αi and a small amount of auxiliary information,
without access to J or any of the other interpretations Jj with j � i . This leads to a self-reduction,
essentially translating a question of the form “Can we obtain a canonical model J from D and Σ
such that α � J?” to simpler questions of the form “Can we obtain a canonical model Ji from αi
and Σ such that α � Ji?”
Implementing this self-reduction requires much care. Due to disjunctions that may occur in the

heads of DNTGDs, there is no straightforward deterministic approach of generating a canonical
model J for D and Σ with α � J , as in the case of guarded TGDs. Thus, a priori it is not clear how
to compute the children α1, . . . ,αn of atoms in D in the dependency forest of such a model. All we
can do is to guess relevant portions of a canonical model and to verify that these indeed belong to a
canonical model forD and Σwith the desired properties. Our algorithm starts by guessing a setT of
all ground literals (i.e., literals � with dom(�) ⊆ dom(D)) that it suspects to be true in a canonical
model J for D and Σ with α � J . Since α is ground, we must have ¬α ∈ T . The algorithm also
guesses a total order � on the positive literals inT that it suspects to be the order of deriving these
atoms during the construction of J . Assume for the moment that the algorithm guesses correctly,
that is, T is indeed the set of ground literals that are true in a canonical model J for D and Σ, and
the atoms in T are derived in the specified order. Then, T provides us with valuable information.
For instance, usingT we can determine the list of all pairs of DNTGDs σ ∈ Σ and homomorphisms
h such that, during the construction of J , the DNTGD σ is applied withh in such a way thathmaps
guard (σ ) to D. Once we have access to this list, we can guess a list of all atoms α1, . . . ,αn in J that
are generated by applications of those DNTGDs along with the list S1, . . . , Sn of sets Si of atoms
required to generate the sub-model Ji of J induced by αi . Recursively, we can then verify that each
atom inT is in D or is derived in some Ji , and that none of the atoms that occur negatively inT is
in D or is derived in any Ji . This ensures thatT is indeed the set of all ground literals that are true
in some canonical model J for D and Σ. As ¬α ∈ T , we also have α � J .
To illustrate, let us revisit the example database D = {A(a),R (a,b)} and set Σ consisting of

DNTGDs (15)–(22). The algorithm’s guess for T and � could be

T = {A(a),B (a),R (a,b),U (a,a),U (a,b)} ∪ {¬β | β � J , dom(β ) ⊆ {a,b}} (24)

and

A(a) ≺ R (a,b) ≺ U (a,b) ≺ U (a,a) ≺ B (a), (25)

where J is the canonical model from Equation (23). The list of DNTGDs and homomorphisms
would consist of DNTGD (15) with homomorphism x �→ a, DNTGD (17) with homomorphism
x ,y �→ a,b, and DNTGD (20) with homomorphism x ,y �→ a,b. Finally, the algorithm’s guess
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for the atoms αi and sets Si could be S (a,X ), T (a,b,Z ), and B (a) together with S1 = {U (a,a)},
S2 = {A(a)}, and S3 = ∅. Clearly, each atom in T is in D or is derived in some Ji , and none of the
atoms that occur negatively in T is in D or any of the Ji .
A number of technical issues remain to be solved. For instance, for each i ∈ {1, . . . ,n}, we can

only verify that there is a sub-model Ji of some canonical model induced by αi that contains the
required ground atoms and avoids “forbidden” ones (i.e., those that occur negatively inT ). A priori
there is no guarantee that the sub-models can be combined to a canonical model for D and Σ. To
ensure that the sub-models can later be combined into such a model, we have to guarantee that
each DNTGD is applied at most once with each homomorphism and head atom across different
sub-models. Thus, if a DNTGD σ is applied with homomorphism h and head atom β during the
construction of a sub-model Ji , then σ cannot be applied with h and β during the construction of
a different sub-model Jj with j � i . This is important to guarantee that the chase sequences for
the different sub-models can be merged into chase sequences for the union of these sub-models.
Unfortunately, this also means that we have to give up the property that each Ji is a model of Σ.
For instance, going back to our example, we have to ensure that there is exactly one application of
the DNTGD (21) with homomorphism x �→ a and head atom V (x ,y)—either in J1 or in J3, but not
in both. But then, one of J1 and J3 will not contain the atomV (a,Y ), implying that J1 or J3 will not
be a model of Σ. To deal with this problem, we define the notion of a relativized canonical model,
which relaxes the notion of a canonical model and in particular allows us to enforce or prevent
certain applications of DNGDs. These relativized canonical models are technically not models of
Σ, but it will turn out that their combination will result in a canonical model.
The following subsections provide a detailed account of the self-reduction described here. We

start by introducing the notion of a relativized canonical model in Section B.1.2, followed by a
detailed description of the self-reduction in Section B.1.3. Finally, Section B.1.4 applies the self-
reduction to obtain an algorithm for answering atomic queries w.r.t. stratified sets of guarded
DNTGDs within the desired time bounds.

B.1.2 Relativized Canonical Models. The self-reduction outlined in Section B.1.1 crucially de-
pends on a relaxation of the notion of a canonical model that allows us to combine “sub-models”
of a canonical model J to a larger “sub-model” of J . The notion of a relativized canonical model
that we are going to introduce in this section is such a relaxation. The idea is that a relativized
canonical model is a sub-interpretation J ′ that is embedded into a canonical model J and is derived
by an exhaustive application of DNTGDs from an initial set I of atoms in J . Atoms in J that are
not listed in I may only be used as side atoms (i.e., non-guard atoms), unless they are derived by
some DNTGD during the construction of J ′. For the database D = {A(a),R (a,b)} and the set Σ
consisting of DNTGDs (15)–(22), the interpretation J given in Equation (23) and the interpreta-
tions J1, J2, and J3 shown in Figure 1 are relativized canonical models (generated from D, {S (a,X )},
{T (a,b,Z )}, and {B (a)}, respectively, and embedded into J ).
So, we can think of a relativized canonical model J ′ as being embedded into a canonical model

J . Apart from the set I of start atoms, a complete specification of J ′ requires full information about
its environment within J such as the setT of all ground literals w.r.t. I that are true in J , the set S of
atoms inT that may not be derived in J ′ but can be used as side atoms in applications of DNTGDs,
and possible requirements on applications of DNTGDs to the atoms in T (applications that must
be enforced or blocked). The notion of a Σ-environment introduced next provides this informa-
tion. The first component of a Σ-environment is a type, which corresponds to the aforementioned
set T .

Definition B.2 (Type). A type over a schema R (R-type, for short) is a set T of R-literals with
arguments from Δ ∪ ΔN such that for each R-atom α at most one of α and ¬α is in T . We let T +
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be the set of all positive literals inT , and setT − := {α | ¬α ∈ T }. An interpretation I for R realizes
T if T+ ⊆ I and T − ∩ I = ∅.

An R-type T is complete if for all R-atoms α with dom(α ) ⊆ dom(T ) we have α ∈ T or ¬α ∈ T .
Recall that T is over an interpretation I if I ⊆ T and dom(T ) = dom(I ). �

In addition to types T , a Σ-environment also contains restrictions on applications of DNTGDs
to the atoms contained in T . To capture such restrictions, we introduce the notion of a Σ-rule.

Definition B.3 (Σ-trigger, Σ-rule). Let I be an interpretation for a schema R, let Σ a set of guarded
DNTGDs over R, and let T be an R-type.
• A Σ-trigger is a pair (σ ,h) consisting of a DNTGD σ ∈ Σ and a homomorphism h on the
variables in the body of σ . A Σ-trigger onT is a Σ-trigger (σ ,h) such that h(body+ (σ )) ⊆ T +
and h(body− (σ )) ∩T + = ∅.
• A Σ-rule is a triple r = (σ ,h, β ) such that (σ ,h) is a Σ-trigger and β ∈ head (σ ). Let hr be the
extension of h that assigns to each variable in β that does not occur in body (σ ) a fresh null9.
We also let σr := σ and βr := hr (β ). A Σ-rule on T is a Σ-rule r = (σ ,h, β ) such that (σ ,h) is
a Σ-trigger on T and βr � T −.
• If R is a set of Σ-rules, then tr(R) := {(σ ,h) | (σ ,h, β ) ∈ R}, and R (σ ,h) := {β | (σ ,h, β ) ∈ R}
for each (σ ,h) ∈ tr(R). �

Note that ifT is complete and (σ ,h) is a Σ-trigger onT , thenh(body+ (σ )) ⊆T + and h(body− (σ ))
⊆ T −. We are now ready to define the notion of a Σ-environment.

Definition B.4 (Σ-environment). Consider an interpretation I for a schema R, and a set Σ of
guarded DNTGDs over R together with a stratification s of Σ. A Σ-environment for I is a tuple
E = (T , S,R+,R−, �) consisting of an R-type T , a set S ⊆ T+, disjoint sets R+ and R− of Σ-rules on
T , and a total order � on T + that respects s . Here, � respects s if for all R-atoms R (a), S (b) ∈ T +
with s (R) < s (S ) we have R (a) < S (b). We let E↓ := (S,R+,R−). �

Intuitively, a Σ-environment provides information on how a canonical model J embeds a “sub-
model” J ′ that is generated from a set I of start atoms. The set T is the set of all ground literals
w.r.t. I that are true in J , the set S provides “side atoms” from J that may not be derived in J ′ but
can be used in its derivation, the sets R+ and R− contain Σ-rules that must be applied (R+) or that
are blocked (R−), and � is the order in which the atoms in T + are derived during the construction
of J . The sets R+,R− and the total order � are particularly important later in Section B.1.3 when
we combine chase sequences for different “sub-models” of J to chase sequences for a larger “sub-
model” of J . The sets R+ and R− ensure that each applicable DNTGD will be applied, but at most
once for each homomorphism and head atom. The total order � ensures that the chase sequences
can be combined in such a way that the order of deriving the atoms in T + is preserved.

We now turn to the definition of relativized canonical models. Like canonical models, relativized
canonical models are derived by suitable chase sequences. In the case of relativized canonical mod-
els, these chase sequences work relative to Σ-environments. Wewill use the following terminology
and notation to give a precise description of this variant of the chase:

Definition B.5. Let I , S be interpretations for a schema R, and let Σ be a set of guarded DNTGDs
overR. A Σ-trigger (σ ,h) is active on I relative to S if (σ ,h) is a Σ-trigger on I∪S andh(guard (σ )) ∈
I . A Σ-rule r = (σ ,h, β ) is applicable to I relative to S if (σ ,h) is active on I relative to S . If r is
applicable to I relative to S , then the result of applying r to I relative to S is the interpretation

9We assume that the null assigned to each existentially quantified variable z in the head of σ is uniquely determined by
σ , h, and z .
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I ′ := I ∪ {βr }. We write I �Sr I ′ if r is applicable to I relative to S , and I ′ is the result of applying r
to I relative to S . �

Instead of “(σ ,h) is active on I relative to S ,” we will often say that “σ is applicable to I with h
relative to S ,” or that “σ is applicable to I relative to S” ifh is irrelevant in the given context. Similarly,
instead of saying that “I ′ is the result of applying r to I relative to S ,” we will often say that “I ′ is
the result of applying σ to I relative to S ,” specifying h, β , or both h and β as required.

Definition B.6 (Relativized Chase Sequence). Consider interpretations I , S for a schema R, a strat-
ified set Σ of guarded DNTGDs over R, a semi-positive set Σ0 ⊆ Σ, sets R+ and R− of Σ-rules, and
a total order � on the set of all R-atoms.

• A chase sequence of I with Σ0 relative to (S,R+,R−) is a potentially infinite sequence
I0, I1, I2, . . . of interpretations such that I0 = I , each Ii+1 is a result of applying a DNTGD in
Σ0 to Ii relative to S , and the following conditions are satisfied for each Σ0-trigger (σ ,h):
—if (σ ,h) � tr(R+) ∪ tr(R−) and (σ ,h) is active on some Ii relative to S , then there exists an
atom β ∈ head (σ ) and an index j � 0 such that Ij �Sσ ,h,β Ij+1;

—if (σ ,h) ∈ tr(R+), then for all β ∈ R+ (σ ,h) there exists a j � 0 such that Ij �Sσ ,h,β Ij+1;

—if (σ ,h) ∈ tr(R−), then there are no β ∈ R− (σ ,h) and j � 0 such that Ij �Sσ ,h,β Ij+1;

—for each atom β ∈ head (σ ), there exists at most one index j � 0 with Ij �Sσ ,h,β Ij+1.

We call I0 ∪ I1 ∪ I2 ∪ · · · the result of the chase sequence. The chase sequence is �-aware if
for all chase steps Ii �Sr Ii+1, either βr ∈ Ii ∪ S or for all α ∈ hr (body+ (σr )) we have α < βr .
• Let chase(I , Σ0 | S,R+,R−, �) be the set of all interpretations that are the result of some
�-aware chase sequence of I with Σ0 relative to (S,R+,R−). �

Example B.7. Let Σ be the stratified set of guarded DNTGDs given by (15)–(22). Let S = {A(a),
U (a,a)} and R = {r }, where r = (σ ,x �→ a,V (x ,y)) and σ is the DNTGD (21). We assume that
hr (y) = Y , so βr = V (a,Y ). Then,

{S (a,X )}, {S (a,X ),B (a)}, {S (a,X ),B (a),V (a,Y )} (26)

is a chase sequence of I := {S (a,X )} with Σ relative to (S,R,∅). The interpretation {S (a,X ),B (a)}
is the result of applying DNTGD (16) to {S (a,X )} relative to S (note that the application of
Equation (16) uses the atom U (a,a) as a side atom, but not as a guard). Similarly, the interpre-
tation {S (a,X ),B (a),V (a,Y )} is the result of applying Equation (21) to {S (a,X ),B (a)} relative to S .
Note that for all Σ-triggers (σ ,h) that are active on {S (a,X ),B (a),V (a,Y )} relative to S , we have ap-
plied a corresponding Σ-rule. Moreover, we have satisfied the requirement that r must be applied.
Notice that the chase sequence is �-aware for

S (a,X ) < U (a,a) < B (a) < V (a,Y ) (27)

(it would not be �-aware if we swap the positions of U (a,a) and B (a)). This shows that

J1 := {S (a,X ),B (a),V (a,Y )} (28)

belongs to chase(I , Σ | S,R,∅, �).
Now observe that Equation (26) is not a chase sequence of I with Σ relative to (S,∅,R). Indeed,

the last chase step that generates {S (a,X ),B (a),V (a,Y )} violates the requirement that r must not
be applied. If we omit the final interpretation from Equation (26), then we obtain a chase sequence
of I with Σ relative to (S,∅,R). This shows that

J2 := {S (a,X ),B (a)} (29)

belongs to chase(I , Σ | S,∅,R, �). Notice that J2 is not a model of Σ.
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Let Σ be a set of DNTGDs over a schema R, and let s be a stratification of Σ. Recall the definition
of the sets Σ(i )

s from Section 4.1. A chase order w.r.t. s is a total order � on the set of all R-atoms
that respects s (i.e., for all R-atoms R (a), S (b) with s (R) < s (S ) we have R (a) < S (b)). Using this
terminology, we are now ready to define the notion of a relativized canonical model.

Definition B.8 (Relativized Canonical Model). Consider an interpretation I for a schema R, a
set Σ of guarded DNTGDs over R, a stratification s of Σ of length l , and a Σ-environment E =
(T , S,R+,R−, �) for I .
• A canonical model for I and Σ relative to E is an interpretation J with the property that
J ∪ S realizes T , and there exists a chase order � w.r.t. s such that � extends � and J can be
obtained by �-aware chase sequences of I with Σ relative to E↓. That is, J = Jl , where J0 = I ,

and Ji ∈ chase(Ji−1, Σ(i )
s | E↓, �) for each i ∈ {1, . . . , l }.

• Let CMod(I , Σ | E) be the set of all canonical models for I and Σ relative to E. �

Example B.9. Let us revisit Example B.7. Let R be the schema of Σ. Consider the R-type
T := {A(a),B (a), S (a,X ),U (a,a)} ∪ {¬β | β � J , dom(β ) ⊆ {a,X }},

where J is the interpretation from Equation (23), and the total order � on T + given by

A(a) ≺ S (a,X ) ≺ U (a,a) ≺ B (a).

Then, E1 := (T , S,R,∅, �) and E2 := (T , S,∅,R, �) are Σ-environments for I . The interpretation
J1 given by Equation (28) is a canonical model for I with Σ relative to E1. To see this, note that
J1 ∪ S = T + ∪ {V (a,Y )}, which implies that J1 ∪ S realizes T . Furthermore, the total order � given
by Equation (27) extends � (assuming A(a) < S (a,X )) and respects the stratification of Σ, and
we have J1 ∈ chase(I , Σ | (E1)↓, �). Similarly, the interpretation J2 given by Equation (29) is a
canonical model for I with Σ relative to E2. It is not difficult to see that J1 and J2 are in fact the
unique canonical models for I with Σ relative to E1 and E2, respectively.

Example B.10. Consider once more the stratified set Σ of guarded DNTGDs given by
Equations (15)–(22). Let E = (T ,∅,∅,∅, �) be the Σ-environment for D = {A(a),R (a,b)}, whereT
and � are defined as in Equations (24) and (25), respectively. Then, the interpretation J given by
Equation (23) belongs to CMod(D, Σ | E).

We conclude this section by providing a reduction from the problem of answering atomic queries
w.r.t. stratified sets of guarded DNTGDs to the problem of deciding the existence of canonical
models relative to a particular environment. This corresponds to the first step of our algorithm
for answering atomic queries w.r.t. stratified sets of guarded DNTGDs. The lemma also shows
that we can always assume a complete Σ-environment. Here, we say that a Σ-environment E =
(T , S,R+,R−, �) for I is complete if T is complete. Moreover, we say that a Σ-environment E∗ =
(T ∗, S∗, (R∗)+, (R∗)−, �∗) for I extends E (or is an extension of E) ifT ⊆ T ∗ and � ⊆ �∗, and all other
components are invariant (i.e., S = S∗, R+ = (R∗)+, and R− = (R∗)−). A complete Σ-environment
E∗ that extends a Σ-environment E is also called a completion of E.

Lemma B.11. Let I be an interpretation for a schema R, and let Σ be a stratified set of guarded
DNTGDs over R.
(1) For every atom α that is ground w.r.t. I , we have that (I , Σ) � |=strat α iff α � I and CMod(I , Σ |

EI,α ) is non-empty, where EI,α := (I ∪ {¬α },∅,∅,∅, �) for an arbitrary total order � on I .
(2) If E is a Σ-environment for I , then CMod(I , Σ | E) is non-empty iff there exists a completion E∗

of E such that CMod(I , Σ | E∗) is non-empty.
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Proof. We first prove part 1. Fix an atom α that is ground w.r.t. I , and let s be a stratifica-
tion of Σ of length l . To prove the “only if” direction, assume that (I , Σ) � |=strat α . Then, there
exists a J ∈ CMod(I , Σ) with α � J . The latter implies α � I . Since J ∈ CMod(I , Σ), there are

interpretations J0 := I and Ji ∈ chase(Ji−1, Σ
(i )
s ), for i ∈ {1, . . . , l }, such that J = Jl . Let � be

an arbitrary total order on I . It is straightforward to extend � to a chase order � w.r.t. s that
reflects the order of deriving the atoms in J by the chase sequences for the individual Ji . Then,

Ji ∈ chase(Ji−1, Σ
(i )
s | EI,α ↓, �) for each i ∈ {1, . . . , l }. Since J realizes I ∪ {¬α }, this proves J ∈

CMod(I , Σ | EI,α ).
For the “if” direction, assume that α � I and that CMod(I , Σ | EI,α ) is non-empty. Let J ∈

CMod(I , Σ | EI,α ). Then, J realizes I ∪ {¬α }, and there exists a chase order � w.r.t. s such that
� extends � and J can be obtained by �-aware chase sequences of I with Σ relative to E↓. In

particular, J = Jl , where J0 = I , and Ji ∈ chase(Ji−1, Σ
(i )
s ) for each i ∈ {1, . . . , l }, which implies

J ∈ CMod(I , Σ). Moreover, the fact that J realizes I ∪ {¬α } implies α � J , so (I , Σ) � |=strat α .
We now turn to part 2. Fix a Σ-environment E = (T , S,R+,R−, �) for I . The “if” direction is

trivial. For the “only if” direction, let J ∈ CMod(I , Σ | E). Then J ∪ S realizes T , and there is a
chase order � w.r.t. s such that � extends � and J can be obtained by �-aware chase sequences
of I with Σ relative to E↓. Let E∗ := (T ∗, S,R+,R−, �∗), where T ∗ consists of all R-literals � with
dom(�) ⊆ dom(I ) and J ∪ S |= �, and �∗ is the restriction of � to (T ∗)+. Then, E∗ is a complete Σ-
environment for I that extends E. Moreover, J ∪S realizesT ∗, � extends �∗, and J can be obtained
by �-aware chase sequences of I with Σ relative to E∗↓, which implies J ∈ CMod(I , Σ | E∗). �

B.1.3 The Self-reduction. This section provides a detailed description of the self-reduction
outlined in Section B.1.1, which corresponds to the key computation step of our algorithm for
answering atomic queries w.r.t. stratified sets of guarded DNTGDs. The input consists of an
interpretation I and a Σ-environment E = (T , S,R+,R−, �) for I . The goal is to reduce the ques-
tion “CMod(I , Σ | E) � ∅?” to simpler questions of the form “CMod(Ii , Σ | Ei ) � ∅?,” where
each Ii consists of a single atom. For instance, in Example B.10, we could reduce the question
“CMod(D, Σ | E) � ∅?” to three simpler questions:

(1) CMod({S (a,X )}, Σ | E1) � ∅?
(2) CMod({T (a,b,Z )}, Σ | E2) � ∅?
(3) CMod({B (a)}, Σ | E3) � ∅?

Here, the Ei are suitable Σ-environments that describe how the interpretation Ji given in Figure 1 is
embedded into the canonical model J in Equation (23). For example, E1 could be as in Example B.9.
(In general, we would also have to make sure that E3 blocks the application of DNTGD (21) with
homomorphism x �→ a, because this DNTGD will already be applied in J1 with the same homo-
morphism and head atom.)
At the surface of it, the reduction is quite straightforward: We first guess all Σ-rules r onT that

are applied in the underlying canonical model J and divide these into a set R0 of Σ-rules that are
applicable to I relative to S , and a set R of all remaining Σ-rules. In the above example,

R0 = {(σ1,x �→ a, S (x ,y))︸������������������︷︷������������������︸
r1

, (σ2,xy �→ ab,T (x ,y, z))︸�������������������������︷︷�������������������������︸
r2

, (σ3,xy �→ ab,B (x ))︸�������������������︷︷�������������������︸
r3

}, (30)

R = {(σ4,x �→ a,V (x ,y))︸�������������������︷︷�������������������︸
r4

}, (31)

where σ1, σ2, σ3, and σ4 correspond to the DNTGDs given by Equations (15), (17), (20), and (21). The
atoms βr with r ∈ R0 are the children of atoms in I in the dependency forest of J (cf. Section B.1.1).
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Fig. 2. Illustration of a self-reduction step using the example in Section B.1.1. We first guess all the Σ-rules
r1, r2, r3, r4 that are applicable in the underlying canonical model with their guards mapped to an atom over
dom(I ). We split these into two groups: Σ-rules r1, r2, r3 whose guards are mapped to I , and the remaining
Σ-rule r4 whose guard is not mapped to I . We then assign r4 and each of the ground atoms U (a,a), U (a,b),
B (b) that have not been derived yet to one of the Σ-rules r1, r2, r3. The idea is that r4 will be applied in the
subtree rooted at βr1 and that each atom assigned to ri will be derived in the subtree rooted at βri .

We assign each atom inT + that still needs to be derived (i.e., those atoms inT + \ (I ∪ S )) and each
Σ-rule in R to a Σ-rule in R0. The idea is that an atom assigned to a Σ-rule r ∈ R0 will eventually be
derived in a relativized model Jr generated from βr , and that a Σ-rule r ′ ∈ R assigned to a Σ-rule
r ∈ R0 will be applied during the construction of Jr . Returning to the above example, we could
assign r4 to r1, U (a,a) and U (a,b) to r2, and B (a) to r3. See Figure 2 for an illustration. It now
remains to ask for each r ∈ R0 if the atoms assigned to r can indeed be generated from βr in such
a way that the Σ-rules in R that have been assigned to r are applied (and the other rules in R0 ∪ R
are not). This corresponds to |R0 | new questions “CMod(Ir , Σ | Er ) � ∅?,” one for each r ∈ R0.

The following notion of a Σ-expansion captures all relevant information about a self-reduction
step such as the sets R0 and R of Σ-rules, the assignments of atoms inT+ \ (I ∪S ) and Σ-rules in R to
the Σ-rules in R0, and additional technical conditions that guarantee soundness and completeness
of the reduction. In the definition, we use the term Σ-rule onT with guard I to refer to a Σ-rule on
T with hr (guard (σr )) ∈ I . We also define the inverse f −1 : Y → 2X for a mapping f : X → Y by
f −1 (y) := {x ∈ X | f (x ) = y}.

Definition B.12 (Σ-expansion). Let I be an interpretation for a schema R, let Σ be a set of guarded
DNTGDs over R, let s be a stratification of Σ, and let E = (T , S,R+,R−, �) be a complete Σ-
environment for I .
A Σ-expansion of I relative to E is a tuple (R0,R, �, ρ,δ ) consisting of a set R0 of Σ-rules on T

with guard I , a set R of Σ-rules on T with guard T + \ I , a total order � on T + ∪ {βr | r ∈ R0} that
extends � and respects s , and mappings ρ : T+ \ (I ∪ S ) → R0 and δ : R → R0 with the following
properties:

(1) R+ ⊆ R0∪R, R−∩ (R0∪R) = ∅, and for each Σ-trigger (σ ,h) onT with (σ ,h) � tr(R+)∪tr(R−),
there exists an atom β ∈ head (σ ) with (σ ,h, β ) ∈ R0 ∪ R.

(2) For each atom α ∈ T + \ (I ∪ S ), we have dom(α ) ⊆ dom(βρ (α ) ).
(3) Let α1, . . . ,αn be the atoms inT + ∪ {βr | r ∈ R0}, sorted increasingly w.r.t. �. Then, for each

i ∈ {1, . . . ,n}, we have αi ∈ I , or there exists a Σ-rule r ∈ R0 such that either
(a) hr (body

+ (σr )) ⊆ {α1, . . . ,αi−1} ∪ S and αi = βr , or
(b) αi ∈ ρ−1 (r ) \ {βr }. �

Example B.13. Consider the database D, the set Σ of guarded DNTGDs, and the Σ-environment
E from Example B.10. Note that the set S of “side atoms” in E is empty. Let I := D, and let R0
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and R be as defined in Equations (30) and (31). We define ρ and δ so they assign the atoms in
T + \ (I ∪ S ) = {U (a,a),U (a,b),B (a)} and the Σ-rules in R to the Σ-rules in R0 as indicated in
Figure 2: ρ (U (a,a)) = ρ (U (a,b)) = r2, ρ (B (a)) = r3, and δ (r4) = r1. We also extend the total order
� on T + to the total order � on T + ∪ {S (a,X ),T (a,b,Z ),B (a)} with

A(a) < R (a,b) < S (a,X ) < T (a,b,Z ) < U (a,b) < U (a,a) < B (a).

It is straightforward to verify that (R0,R, �, ρ,δ ) is a Σ-expansion of I relative to E.

Example B.14. Let Σ be the stratified set of guarded DNTGDs given by Equations (15)–(22). Let
σ1–σ6 be given by DNTGDs (15) and (17)–(21). Consider the Σ-environment E := (T , S,R+,R−, �)
for I = {T (a,b,Z )}, where
• T = {A(a),B (a),R (a,b),T (a,b,Z ),U (a,a),U (a,b)} ∪ {¬β | β � J , dom(β ) ⊆ {a,b,Z }} with
J as in (23),
• S = {A(a),B (a),R (a,b)},
• R+ = ∅,
• R− = {(σ1,x �→ a, S (x ,y)), (σ2,xy �→ ab,T (x ,y, z)), (σ5,xy �→ ab,B (x )),
(σ6,x �→ a,V (x ,y))}, and
• � is the total order on T + with A(a) ≺ R (a,b) ≺ T (a,b,Z ) ≺ U (a,b) ≺ U (a,a) ≺ B (a).

Then, ({r1, r2},∅, �, ρ,δ ) is a Σ-expansion of I relative to E, where r1 = (σ3,xyz �→ abZ ,U (x ,y)),
r2 = (σ4,xyz �→ abZ ,U (x ,x )), and ρ is such that ρ (U (a,b)) = r1 and ρ (U (a,a)) = r2.

The Reduction Lemma below constitutes the main result of this section. It uses the following
notation: Given an R-type T and an atom α ∈ T +, we define T [α] := {� ∈ T | dom(�) ⊆ dom(α )}.

Lemma B.15 (Reduction Lemma). Let I and J be interpretations for R, let Σ be a stratified set of
guarded DNTGDs over R, and let E = (T , S,R+,R−, �) be a complete Σ-environment for I . Then, the
following are equivalent:

(1) J ∈ CMod(I , Σ | E).
(2) There exists a Σ-expansion (R0,R, �R , ρ,δ ) of I relative to E with the following properties: For

each r ∈ R0, let Er := (Tr , Sr ,R
+
r ,R

−
r , �r ), where Tr := T [βr ] ∪ {βr }, Sr := T +[βr ] \ ρ−1 (r ),

R+r := δ
−1 (r ),R−r is the set of all Σ-rules onT [βr ] that do not occur in R

+
r , and �r is the restriction

of �R to T +r . Then, there exist interpretations Jr ∈ CMod({βr }, Σ | Er ), for r ∈ R0, such that

J = I ∪
⋃
r ∈R0

Jr . (32)

Moreover, dom(I ) ∩ dom(Jr ) ⊆ dom(βr ) and dom(Jr ) ∩ dom(Jr ′ ) = dom(βr ) ∩ dom(βr ′ ), if
r � r ′.

Proof. Throughout this proof, we fix a stratification s of Σ, and we denote the length of s by l .

(1⇒ 2) Let J ∈ CMod(I , Σ | E). Then there exists a chase order � w.r.t. s that extends �, and there
exist interpretations J0 := I , J1 ∈ chase(J0, Σ

(1)
s | E↓, �), . . . , Jl ∈ chase(Jl−1, Σ

(l )
s | E↓, �) such that

J = Jl and J ∪ S realizes T . For each i ∈ {1, . . . , l }, fix a �-aware chase sequence Ci of Ji−1 with

Σ(i )
s relative to E↓ such that the result of Ci is Ji .
Let R̂ be the set of all Σ-rules (σ ,h, β ) onT such that for some i ∈ {1, . . . , l }, there exists a chase

step inCi that applies σ withh and β relative to S . The set R0 of the desired Σ-expansion consists of
all triples (σ ,h, β ) ∈ R̂ with h(guard (σ )) ∈ I . Similarly, the set R consists of all triples (σ ,h, β ) ∈ R̂
with h(guard (σ )) � I . Note that R+ ⊆ R̂ = R0 ∪ R and R− ∩ (R0 ∪ R) = R− ∩ R̂ = ∅. Moreover,
for each Σ-trigger (σ ,h) onT with (σ ,h) � tr(R+) ∪ tr(R−), there exists an atom β ∈ head (σ ) with
(σ ,h, β ) ∈ R̂ = R0 ∪ R.
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We now define the mappings ρ : T + \ (I ∪ S ) → R0 and δ : R → R0 of the Σ-expansion. The
construction will also yield an interpretation Jr and a set S ′r for each r ∈ R0, and it will guarantee
the following properties:

(P1) For all r ∈ R0, we have that Jr can be obtained by �-aware chase sequences of {βr } with Σ
relative to (S ′r ,R

+
r ,R

−
r ).

(P2) For all atoms β generated by one of the chase sequences Ci , i ∈ {1, . . . , l }, there exists an
r ∈ R0 with β ∈ Jr \ S ′r and dom(β ) ⊆ dom(Jr ). Furthermore, if β ∈ T + \ (I ∪ S ), then ρ (β ) is
such an r .

(P3) For all r ∈ R0, we have dom(I ) ∩ dom(Jr ) ⊆ dom(βr ).
(P4) For all distinct r , r ′ ∈ R0, we have dom(Jr ) ∩ dom(Jr ′ ) = dom(βr ) ∩ dom(βr ′ ).
(P5) Let α1, . . . ,αn be the atoms inT + ∪ {βr | r ∈ R0}, sorted increasingly w.r.t. �. Then, for each

i ∈ {1, . . . ,n}, we have αi ∈ I , or there exists a Σ-rule r ∈ R0 such that either
(a) hr (body

+ (σr )) ⊆ {α1, . . . ,αi−1} ∪ S and αi = βr , or
(b) αi ∈ ρ−1 (r ) \ {βr }.

The construction proceeds in l + 1 stages. In stage 0, we let Jr and Sr be empty for each r ∈ R0,
and we let ρ and δ be the empty mappings. Suppose now that stage i − 1 has been completed for
some i ∈ {1, . . . , l }. Then stage i proceeds as follows: Let r1, r2, . . . be the sequence of Σ-rules that
are applied inCi , listed in the same order as they are applied inCi . We consider these Σ-rules one
after the other, starting with r1. Let r j = (σ ,h, β ) be the current Σ-rule. We pick a Σ-rule r ∈ R0 as
follows:

Case 1: r j ∈ R0. In this case, we let r := r j .
Case 2: r j � R0. In this case, there exists a Σ-rule r ∈ R0 with h(guard (σ )) ∈ Jr . If r j ∈ R, then we

pick any such r . If r j � R, then r is unique (because dom(h(guard (σ ))) contains an element that
does not occur in dom(T )), and we pick this unique r .

Now, if βr j ∈ T + \ (I ∪ S ∪
⋃

r ′ ∈R0
Jr ′ ), then we let ρ (βr j ) = r . If r j ∈ R, then we also let δ (r j ) = r .

Finally, we add all atoms in h(body+ (σ )) \ Jr to S ′r , and the atom βr j to Jr . This completes the
construction. It is straightforward to verify that (P1)–(P5) are satisfied.

Let �R be the restriction of � to T + ∪ {βr | r ∈ R0}. Then, (R0,R, �R , ρ,δ ) is a Σ-expansion of I
relative to E: we have already argued that condition 1 of Definition B.12 is satisfied, and it is easy
to see that the remaining conditions of Definition B.12 follow from (P2), (P3), and (P5).
From (P2), we obtain Equation (32), so it remains to show that for each r ∈ R0 we have Jr ∈

CMod({βr }, Σ | Er ). Let r ∈ R0. Note that dom(S ′r ) ⊆ dom(Jr )∩dom(I∪S ), which implies dom(S ′r ) ⊆
dom(βr ) due to (P3) and the assumption that dom(S ) ⊆ dom(I ). SinceT is a complete R-type over
I , this implies S ′r ⊆ T +[βr ]. Furthermore, S ′r ∩ ρ−1 (r ) = ∅, since by (P2) we have α � S ′r for all
α ∈ ρ−1 (r ). Consequently, S ′r ⊆ T +[βr ] \ ρ−1 (r ) = Sr . By property (P1), this implies that each Jr is
obtained by �-aware chase sequences on {βr } with Σ relative to (Sr ,R

+,R−). Since Jr ∪ Sr realizes
T +[βr ], we conclude that Jr ∈ CMod({βr }, Σ | Er ).

(2 ⇒ 1) Let (R0,R, �R , ρ,δ ) be a Σ-expansion of I relative to E, and for each r ∈ R0 let Jr ∈
CMod({βr }, Σ | Er ). For all r , r ′ ∈ R0, we assume that dom(Jr ) ∩ dom(I ) ⊆ dom(βr ), and dom(Jr ) ∩
dom(Jr ′ ) = dom(βr ) ∩ dom(βr ′ ) if r � r ′. We show that

J := I ∪
⋃
r ∈R0

Jr

belongs to CMod(I , Σ | E).
It is easy to see that J ∪S realizesT . Indeed, we haveT + ⊆ J ∪S , because for each α ∈ T + \ (I ∪S )

with ρ (α ) = r , we have α ∈ T +[βr ] ∩ ρ−1 (r ) ⊆ T +r \ Sr ⊆ Jr where α ∈ T +[βr ] follows from
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condition 2 in Definition B.12 and the last inclusion follows from the fact that Jr ∪ Sr realizes Tr .
Furthermore, we have T− ∩ (J ∪ S ) = ∅. To see this, suppose, to the contrary, that there exists an
atom α ∈ T − ∩ (J ∪S ). If α ∈ I ∪S , then sinceT is a complete R-type over I and dom(S ) ⊆ dom(T ),
we have α ∈ T +, which violates thatT is an R-type. Hence, α ∈ J \ (I∪S ), which implies that α ∈ Jr
for some r ∈ R0. Since α ∈ T − and dom(T ) ⊆ dom(I ), we have α ∈ dom(Jr ) ∩ dom(I ) ⊆ dom(βr ).
This implies that α ∈ T −[βr ] and α ∈ T +[βr ] (sinceT is a complete R-type over I ), a contradiction.

It remains to show that there is a chase order � w.r.t. s such that � extends �, and J can be
obtained by �-aware chase sequences of I with Σ relative to E↓. For each r ∈ R0, let �r be a chase
order w.r.t. s such that �r extends �r , and Jr can be obtained by �r -aware chase sequences of {βr }
with Σ relative to (Er )↓. Let � be any chase order w.r.t. s that extends � and is consistent with each
�r on Jr ∪ Sr . Such a chase order exists, since the chase orders �r are consistent on T +, and since
T is a complete R-type over I . Note that each Jr can be obtained by �-aware chase sequences on
{βr } with Σ relative to (Er )↓ (since � is compatible with �r on Jr ∪ Sr ), which means that there

are interpretations Jr,0 := {βr } and Jr,i ∈ chase(Jr,i−1, Σ
(i )
s | (Er )↓, �), for i ∈ {1, . . . , l }, such that

Jr,l = Jr . Define

J0 := I and Ji := I ∪
⋃
r ∈R0

Jr,i .

We show that Ji ∈ chase(Ji−1, Σ
(i )
s | E↓, �) for each i ∈ {1, . . . , l }. Since J = I ∪ ⋃r ∈R0

Jr =
I ∪ ⋃r ∈R0

Jr,l = Jl , this proves that J can be obtained by �-aware chase sequences on I with Σ
relative to E↓.

Let i ∈ {1, . . . , l }, and let γ1,γ2,γ3, . . . be the list of all atoms in Ji \ (Ji−1 ∪S ) sorted increasingly
w.r.t. �. For each t � 0, let Kt := Ji−1 ∪ {γj | 1 � j � t }. We show that K0,K1,K2, . . . is a �-aware
chase sequence of Ji−1 with Σ(i )

s relative to E↓. First note that K0 = Ji−1. Next, consider any t � 1.

We show that Kt is the result of applying a DNTGD in Σ(i )
s to Kt−1 relative to S .

claim 1. There exists a Σ-rule r ∈ R0 such that either

(1) σr ∈ Σ(i )
s , hr (body

+ (σr )) ⊆ Kt−1 ∪ S and γt = βr ; or
(2) γt ∈ Jr,i and γt � βr .

Proof. Assume first that γt ∈ T + ∪ {βr | r ∈ R0}. Let α1, . . . ,αn be as in condition 3 of
Definition B.12, and assume that γt = αi . Since γt � I , there exists a Σ-rule r ∈ R0 such that
either

• hr (body+ (σr )) ⊆ {α1, . . . ,αi−1} ∪ S and αi = βr , or
• αi ∈ ρ−1 (r ) \ {βr }.

In the first case, we have σr ∈ Σ(i )
s (because αi ∈ Ji \ Ji−1) and {α1, . . . ,αi−1} ∪ S ⊆ Kt−1 ∪ S , which

implies 1. In the second case, we have αi ∈ Jr,i (because αi ∈ ρ−1 (r ) and αi ∈ Ji ) and αi � βr ,
which implies 2.

Now assume that γt � T + ∪ {βr | r ∈ R0}. Since γt � Ji−1, there exists a Σ-rule r ∈ R0 with
γt ∈ Jr,i . Furthermore, since γt � {βr | r ∈ R0}, we also have γt � βr . �

Let r ∈ R0 be as guaranteed by the claim. If σr ∈ Σ(i )
s , hr (body

+ (σr )) ⊆ Kt−1 ∪ S and γt = βr ,
then we can apply r to Kt−1 relative to S , and the result of this application is Kt . In the following,

we assume that γt ∈ Jr,i and γt � βr . Let C be a �-aware chase sequence of Ji−1 with Σ(i )
s relative

to (Er )↓. Since γt ∈ Jr,i \ Ji−1 and γt � βr , there exists a chase step inC that generates γt . Consider
the first such chase step inC , and assume that it applies a DNTGD σ with a homomorphism h and
an atom β relative to Sr . Note that Sr ⊆ S ∪⋃r ′ ∈R0\{r } Jr ′ . Since C is �-aware and γt � I ∪ S , we
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have α < γt and hence α ∈ Kt−1 ∪ S for each α ∈ h(body+ (σ )). It follows that we can apply σ to
Kt−1 with h and β relative to S , and that the result of this application is Kt .

Note that there might be DNTGDs σ ∈ Σ(i )
s and homomorphisms h such that σ was not applied

with h in the sequence K0,K1,K2, . . . . These correspond to applications of DNTGDs with homo-
morphisms that generate one of the atoms in Ji ∪ S , thus we can safely apply any such DNTGD
σ with any such homomorphism h as soon as all atoms in h(body+ (σ )) have been generated. The
properties of a Σ-expansion and of each Jr make sure that the resulting chase sequence is �-aware
of Ji−1 with Σ(i )

s relative to E↓. �

B.1.4 Proof of Theorem B.1. We now combine the results from the previous two subsections
to obtain a proof of the upper bounds in Theorem B.1. To this end, we describe an algorithm that
decides (D, Σ) � |=strat α within the desired time bounds. The algorithm uses an algorithm for the
following problem as a subroutine:

ACHECK
Input: a stratified set Σ of guarded DNTGDs over a schema R, an R-atom β , and a

Σ-environment E for {β }
Question: CMod({β }, Σ | E) � ∅?

Lemma B.11 (2) and Lemma B.15 (the Reduction Lemma) lead to the following:

Theorem B.16. ACHECK is in 2-EXPTIME. It is in EXPTIME if ar(R ) is bounded by a constant,
and in PTIME if |R | and ar(R ) are bounded by a constant.

Proof. We describe an alternating Turing machine for ACHECK. To this end, we use the follow-
ing family of mappings to canonize objects such as atoms or Σ-environments that involve elements
from Δ ∪ ΔN : Given an atom α = R (a1, . . . ,an ), let canα : {a1, . . . ,an } → {1, . . . ,n} be defined by
canα (a) := min {i � n | ai = a}. We extend canα in the obvious way to objects built from the
constants and nulls in {a1, . . . ,an }. For atoms β = S (b1, . . . ,bm ) with dom(β ) ⊆ {a1, . . . ,an },
we set canα (β ) := S (canα (b1), . . . , canα (bm )) and canα (¬β ) := ¬canα (β ), and for sets L of lit-
erals with dom(L) ⊆ {a1, . . . ,an }, we set canα (L) := {canα (�) | � ∈ L}. If r = (σ ,h, β ) is
a Σ-rule such that the range of h is in {a1, . . . ,an }, then we let canα (r ) := (σ , canα ◦ h, β ).
And given a Σ-environment E = (T , S,R+,R−, �) with dom(T ) ⊆ {a1, . . . ,an }, we define
canα (E) := (canα (T ), canα (S ), canα (R+), canα (R−), canα (�)), where canα (R∗) := {canα (r ) | r ∈ R∗}
for ∗ ∈ {+,−}, and canα (�) := {(canα (β ), canα (γ )) | (β,γ ) ∈ �}.
We use configurations (β,E, c ), where β is an atom, E = (T , S,R+,R−, �) is a Σ-environment for

{β }, and c assigns to each atom α ∈ T + \ ({β } ∪ S ) (respectively, to each Σ-rule r ∈ R+) a counter
c (α ) ∈ {0, 1, . . . ,d∗} (respectively, c (r ) ∈ {0, 1, . . . ,d∗}), for a constant d∗ as in Section 5.2.2, which
will also be specified specified later in this proof. The goal in such a configuration is to verify
that CMod({β }, Σ | E) is non-empty. Intuitively, the role of the counter is to prevent the machine
from postponing the derivation of an atom in T + \ ({β } ∪ S ) or the application of a Σ-rule in R+

indefinitely. To keep the space bounded, we store β and E in canonized form, which means that
β = canβ (β ) and E = canβ (E). Whenever we generate a new configuration (β ′,E ′, c ′), we first
apply canβ ′ to both β ′ and E ′ to canonize the configuration. It is straightforward to verify that
CMod({β ′}, Σ | E ′) is non-empty iff CMod({canβ ′ (β ′)}, Σ | canβ ′ (E ′)) is non-empty. We define

d∗ := |{(canβ (β ), canβ (E)) | β is an R-atom, and E is a Σ-environment for {β }}|,

where R refers to the schema of the given set Σ. (A concrete value for d∗ was already stated in
Section 5.2.2.)
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Fig. 3. Construction of the self-reduction tree for J0 ∈ CMod({β0}, Σ | E0). The root is labeled by (β0,E0).
The children of a node (β,E) correspond to the atoms βr , Σ-environments Er , and interpretations Jr ∈
CMod({βr }, Σ | Er ) guaranteed by the Reduction Lemma (Lemma B.15).

Now, given as input a stratified set Σ of guarded DNTGDs, an atom β0, and a Σ-environment
E0 = (T , S,R+,R−, �) for {β0}, the machine starts in configuration (β0,E0, c0), where c0 assigns the
integer d∗ to all atoms in T + \ ({β0} ∪ S ) and to all Σ-rules in R+. If the current configuration is
(β,E, c ) with E = (T , S,R+,R−, �), then it proceeds as follows:

(1) If c (α ) = 0 for some α ∈ T + \ ({β } ∪ S ), or if c (r ) = 0 for some r ∈ R+, then reject.
(2) Guess a completion E∗ = (T ∗, S,R+,R−, �∗) of E according to Lemma B.11 (2). Extend c to

(T ∗)+ \ ({β } ∪ S ) by setting c (α ) := d∗ for each α ∈ (T ∗)+ \ ({β } ∪ S ) with α � T+.
(3) Guess a Σ-expansion (R0,R, �R , ρ,δ ) of {β } relative to E∗ according to Lemma B.15. If no

such Σ-expansion exists, then reject.
(4) For each r ∈ R0, do the following:
(a) Compute Er = (Tr , Sr ,R

+
r ,R

−
r , �r ) as defined in Lemma B.15.

(b) For each α ∈ T +r \ ({β } ∪ Sr ), let cr (α ) := c (α ) − 1. For each r ′ ∈ R+r , let cr (r ′) := c (r ′) − 1
if r ′ ∈ R+, and cr (r ′) := d∗ if r ′ � R+.

(5) Accept iff for each r ∈ R0 the computation starting in configuration (βr ,Er , cr ) is accepting.

It is straightforward to check that the space required by the machine is exponential in general,
polynomial if ar(R ) is bounded, and logarithmic if ar(R ) and |R | are bounded. This implies the
desired time bounds.
It remains to prove that the machine accepts the input Σ, β0, and E0 iff CMod({β0}, Σ | E0) is

non-empty.

“Only If” From Lemma B.11 (2) and Lemma B.15, it is clear that if the input is accepted, then
CMod({β0}, Σ | E0) is non-empty. The counters guarantee that for each configuration (β,E) with
E = (T , S,R+,R−, �), we derive all atoms α ∈ T + \ ({β } ∪ S ) and apply all Σ-rules r ∈ R+ within at
most d∗ steps, where a step refers to a transition between two individual configurations.

“If” The proof of this direction is based on the concept of a self-reduction tree. Let β be an R-atom,
E = (T , S,R+,R−, �) a Σ-environment, and J ∈ CMod({β }, Σ | E). By induction, we define the self-
reduction tree SRJ (β,E) for J as follows: The root of SRJ (β,E) is labeled by (β,E). We assume that
E is complete; otherwise, we replace it by a completion E∗ of E with J ∈ CMod({β }, Σ | E∗), which
exists by Lemma B.11 (2). By Lemma B.15, there is a Σ-expansion (R0,R, �R , ρ,δ ) of {β } relative to
E such that J is the union of {β } and interpretations Jr ∈ CMod({βr }, Σ | Er ), where r ranges over
the Σ-rules in R0. For each r ∈ R0, we insert SRJr (βr ,Er ) into SRJ (β,E), and add an r -labeled edge,
from the root of SRJ (β,E) to the root of SRJr (βr ,Er ). See Figure 3 for an illustration. To simplify
the presentation, in the following we will often identify a node with its label:
Let u = (βu ,Eu ) be a node in SRJ (β,E), where Eu = (Tu , Su ,R

+
u ,R

−
u , �u ). Note that for each

atom α ∈ T+u \ ({βu } ∪ Su ), there exists a unique path u0,u1, . . . ,un from u0 = u to a descendent
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un = (β ′,E ′) such that β ′ = α , and for each i ∈ {1, . . . ,n − 1}, we have ui = (βi ,Ei ), Ei =
(T +i , Si ,R

+
i ,R

−
i , �i ), and α ∈ T +i \ ({βi } ∪ Si ). We call this the witness path for α at u. Similarly,

for each Σ-rule r ∈ R+, there exists a unique path u0,u1, . . . ,un from u0 = u to a descendent
un = (β ′,E ′) such that the edge, from un−1 to un is labeled r , and for each i ∈ {1, . . . ,n − 1}, we
have ui = (βi ,Ei ), Ei = (T +i , Si ,R

+
i ,R

−
i , �i ), and r ∈ R+i . We call this the witness path for r at u. For

each α ∈ T +u \ ({βu } ∪ Su ) and each r ∈ R+u , let d J (u,α ) be the length of the witness path for α at u,
and let d J (u, r ) be the length of the witness path for r at u. Let d J (u) be the maximum of d J (u,α )
and d J (u, r ), where α ranges over the atoms in T+u \ ({βu } ∪ Su ) and r ranges over the Σ-rules in
R+u .

We show that if CMod({β }, Σ | E) is non-empty, then there always exists a J ∈ CMod({β }, Σ | E)
such that d J (u) � d∗ for all nodes u in SRJ (β,E). This implies the “if” direction.
Suppose that CMod({β }, Σ | E) is non-empty. We construct the desired interpretation J by in-

duction. For the base case, we pick an arbitrary J0 ∈ CMod({β }, Σ | E). In the induction step, we
are given Ji ∈ CMod({β }, Σ | E). If d Ji (u) � d∗ for all nodes u in SRJi (β,E), then Ji is the desired
interpretation J , and we are done. Otherwise, we construct Ji+1 as follows: Let u = (βu ,Eu ) be a
node at minimal depth in SRJi (β,E) such that d Ji (u) > d∗. Assume Eu = (Tu , Su ,R

+
u ,R

−
u , �u ). We

apply the following reduction steps:

Reduction Step 1: Suppose that there exists an α ∈ T +u \ ({βu } ∪ Su ) with d Ji (u,α ) > d∗. Let
u0,u1, . . . ,un with n = d Ji (u,α ) be the witness path for α at u. Given up = (βp ,Ep ) and uq =
(βq ,Eq ), we write up ∼ uq if there exists a bijective mapping f : dom(βp ) → dom(βq ) such that

• f (a) = a for all a ∈ dom(βu ) ∩ dom(βup ),
• f −1 (a) = a for all a ∈ dom(βu ) ∩ dom(βuq ), and
• f (βp ) = βq and f (Ep ) = Eq , where f (Ep ) is obtained from Ep by replacing in Ep each
occurrence of an element a ∈ dom(βup ) by f (a).

Intuitively, up ∼ uq means that up and uq are “indistinguishable” from the perspective of u. Now,
by our choice of d∗, there exist p < q such that up ∼ uq . Replace the subtree rooted at up by an
isomorphic copy of the subtree rooted atuq . This yields the self-reduction tree SRJ ′ (β,E) for a new
interpretation J ′ ∈ CMod({β }, Σ | E), with a shorter witness path for α at u.

Reduction Step 2: Suppose that there exists an r ∈ R+u with d Ji (u, r ) > d∗. Let u0,u1, . . . ,un
with n = d Ji (u,α ) be the witness path for r at u. By our choice of d∗, there exist p < q such that
up ∼ uq . As in reduction step 1, we replace the subtree rooted at up by an isomorphic copy of
the subtree rooted at uq , which yields the self-reduction tree SRJ ′ (β,E) for a new interpretation
J ′ ∈ CMod({β }, Σ | E), with a shorter witness path for r at u.
We stress that none of these reduction steps increases the length of a witness path for any

atom α ′ ∈ T +u \ ({βu } ∪ Su ) or any Σ-rule r ′ ∈ R+u . This could only happen if the witness path
for α ′ (respectively, r ′) leads through up but not through uq . However, up ∼ uq and dom(α ′) ⊆
dom(βu ) (respectively, r ′ is a Σ-rule on Tu ), so α ′ (respectively, r ′) would be contained in both
T +up \ ({βup }∪Sup ) andT

+
uq
\ ({βuq }∪Suq ) (respectively, R+up and R

+
uq
), which means that the witness

path for α ′ (respectively, r ′) must visit uq and thus yields a contradiction. By the same reasoning,
we have d J ′ (v ) � d Ji (v ) for all nodes v that are not descendents of u.

Exhaustive application of the above reduction steps leads to an interpretation Ji+1 with Ji+1 ∈
CMod({β }, Σ | E) and d Ji+1 (u) � d∗. Note that SRJi (β,E) and SRJi+1 (β,E) are identical, except for
the subtrees rooted atu. Furthermore,d Ji+1 (v ) � d Ji (v ) for all nodesv that are not descendents ofu.
This guarantees that the sequence J0, J1, J2, . . . converges to an interpretation J ∈ CMod({β }, Σ | E)
such that d J (v ) � d∗ for all nodes v of SRJ (β,E). �
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We are now ready to give a proof of Theorem B.1.

Proof of Theorem B.1. The lower bounds follow from known lower bounds on answering
atomic queries with respect to guarded TGDs and negation-free guarded DNTGDs, as explained
at the beginning of Section B.1. It remains to prove the upper bounds. To this end, we describe a
Turing machine that checks (D, Σ) � |=strat α within the desired time bounds.

GivenD, Σ, and α , the machine first computes ED,α as defined in Lemma B.11 (1). It then guesses
a completion E∗ of ED,α according to Lemma B.11 (2), and a Σ-expansion (R0,R, �R , ρ,δ ) of D
relative to E∗ according to Lemma B.15. In the general case and in the case that ar(R ) is bounded by
a constant, we replace the non-deterministic guessing steps by loops over all possible completions
and Σ-expansions. The machine accepts the input iff CMod({βr }, Σ | Er ) � ∅ for each r ∈ R0,
where Er is defined as in Lemma B.15. From Lemma B.11 and Lemma B.15, it is clear that this will
be the case iff (D, Σ) � |=strat α .
Theorem B.16 implies that CMod({βr }, Σ | Er ) � ∅ can be checked in 2-EXPTIME in the general

case, in EXPTIME if ar(R ) is bounded, and in PTIME if both |R | and ar(R ) are bounded. This leads
to the upper bounds stated in Theorem B.1. �

B.2 UCBQs

We now generalize the results of Section B.1 to prove that the complexity bounds stated in The-
orem 5.9 also hold in the case of UBCQs. Most of the heavy lifting for the proof has been done
already in Section B.1, and all that remains is to generalize some of the concepts and results of
Section B.1.
We start with some basic notation and concepts regarding BCQs. Let Q be a BCQ. By var (Q ),

we denote the set of all variables that occur in Q . A partial match of Q in an interpretation I is
a partial mapping h : var (Q ) → dom(I ) such that for all atoms α in Q we have h(α ) ∈ I if h is
defined on all variables in α . Given a partial match h ofQ in I , let dom(h) be the set of all variables
x ∈ var (Q ) such that h(x ) is defined. We will occasionally identify a partial match h ofQ in I with
the (total) mapping h : dom(h) → dom(I ). Given V ⊆ var (Q ), we let Q[V ] be the subquery of Q
induced by all atoms of Q that contain at least one variable from V . Note that Q[V ] is a BCQ if V
is non-empty.
Leth be a partial match ofQ in I , let Σ be a stratified set of guardedDNTGDs, and letR0 be a set of

Σ-rules. A decomposition for (Q,h) over R0 is a tuple (Vr )r ∈R0 such that
⋃

r ∈R0
Vr = var (Q )\dom(h),

Vr ∩Vr ′ = ∅ for all distinct r , r ′ ∈ R0, there is no atom in Q that contains a variable from Vr and a
variable from Vr ′ for distinct r , r ′ ∈ R0, and for each r ∈ R0 the range of h |var (Q[Vr ]) is in dom(βr ).

Next, we generalize the concept of a Σ-environment. Let Q̂ be a UBCQ. A (Σ, Q̂ )-environment
for I is a pair (E,Q) consisting of a Σ-environment E = (T , S,R+,R−, �) for I and a set Q of pairs
(Q,h), where Q is a subquery of a disjunct of Q̂ and h is a partial match of Q in T+. Intuitively,
the additional component Q provides information about partial matches of some of the disjuncts
of Q̂ into an underlying canonical model J . If there is a partial match h′ of some disjunct of Q̂ in
J , then the component Q in (Q,h) ∈ Q corresponds to the subquery of that disjunct induced by
all atoms that are mapped into the “submodel” of J generated from I , and h is the restriction of
h′ to the variables in Q . A (Σ, Q̂ )-environment (E,Q) is complete if E is complete and Q consists
of all pairs (Q,h) such that Q is a subquery of a disjunct of Q̂ and h is a partial match of Q in T +.
A (Σ, Q̂ )-environment (E∗,Q∗) extends a (Σ, Q̂ )-environment (E,Q) if E∗ extends E and Q ⊆ Q∗.
A complete (Σ, Q̂ )-environment (E∗,Q∗) that extends a (Σ, Q̂ )-environment (E,Q) is also called a
completion of (E,Q).
The last ingredient to our proof of the complexity bounds for answering UBCQs are the fol-

lowing generalizations of Lemma B.11 and Lemma B.15: These lemmas use CMod(I , Σ | (E,Q)) to
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denote the set of all J ∈ CMod(I , Σ | E) such that for all (Q,h) ∈ Q there is no match ofQ in J that
extends h.

Lemma B.17. Let I be an interpretation for a schema R, let Σ be a stratified set of guarded DNTGDs

over R, and let Q̂ be a UBCQ over R.
(1) We have (I , Σ) � |=strat Q̂ iff CMod(I , Σ | (EI ,QI,Q̂ )) is non-empty, where EI := (I ,∅,∅,∅, �)

for an arbitrary total order � on I , and QI,Q̂ is the set of all pairs (Q,h) withQ a disjunct of Q̂

and h the empty mapping.

(2) If (E,Q) is a (Σ, Q̂ )-environment for I , then CMod(I , Σ | (E,Q)) is non-empty iff there exists a
completion (E∗,Q∗) of (E,Q) such that CMod(I , Σ | (E∗,Q∗)) is non-empty.

Proof. Point 2 is a straightforward generalization of Lemma B.11 (2). For point 1, if (I , Σ) � |=strat
Q̂ , then there is an interpretation J ∈ CMod(I , Σ) with J � |= Q̂ . The proof that J ∈ CMod(I , Σ | EI ) is
similar to the proof of the first part of Lemma B.11 (1). Let (Q,h) ∈ QI,Q̂ . Then, since J � |= Q̂ , there
is no match ofQ in J (that extends the empty mapping h). This implies J ∈ CMod(I , Σ | (EI ,QI,Q̂ )).

For the converse, let J ∈ CMod(I , Σ | (EI ,QI,Q̂ )). Then, J ∈ CMod(I , Σ). Since for every (Q,h) ∈
QI,Q̂ , there is no match of Q in J that extends the empty mapping h, we have J |= Q̂ . �

Lemma B.18 (Reduction Lemma for UBCQs). Let I be an interpretation for R, let Σ be a strat-

ified set of guarded DNTGDs over R, let Q̂ be a UBCQ over R, and let (E,Q) be a complete (Σ, Q̂ )-
environment for I , where E = (T , S,R+,R−, �). Then, the following are equivalent:
(1) CMod(I , Σ | (E,Q)) is non-empty.

(2) There exists a Σ-expansion (R0,R, �R , ρ,δ ) of I relative to E and (Σ, Q̂ )-environments (Er ,Qr )
for r ∈ R0, where Er is defined as in Lemma B.15, such that the following are true:

(a) For each r ∈ R0, the set CMod({βr }, Σ | (Er ,Qr )) is non-empty.
(b) For each pair (Q,h) ∈ Q and each decomposition (Vr )r ∈R0 for (Q,h) over R0, there exists an

r ∈ R0 such that (Q[Vr ],h |var (Q[Vr ]) ) ∈ Qr .

Proof. (1⇒ 2) Let J ∈ CMod(I , Σ | (E,Q)). Then, J ∈ CMod(I , Σ | E), so by Lemma B.15, there
exists a Σ-expansion (R0,R, �R , ρ,δ ) of I relative to E and interpretations Jr ∈ CMod({βr }, Σ | Er ),
for r ∈ R0, such that J = I ∪⋃r ∈R0

Jr . We now show that there are sets Qr for r ∈ R0 such that

• Jr ∈ CMod({βr }, Σ | (Er ,Qr )) for each r ∈ R0, and
• condition (b) is satisfied.

It suffices to show that for all (Q,h) ∈ Q and all decompositions (Vr )r ∈R0 for (Q,h) over R0, there
exists an r ∈ R0 such that the mapping h |var (Q[Vr ]) cannot be extended to a match of Q[Vr ] in Jr .
Consider a pair (Q,h) ∈ Q and a decomposition (Vr )r ∈R0 for (Q,h) over R0. For a contradiction,
suppose that for all r ∈ R0 the mapping h |var (Q[Vr ]) can be extended to a match hr of Q[Vr ] in Jr .
Since h and the mappings hr agree on all common variables, we can combine these mappings into
a match h′ of Q in J . However, since h′ ⊇ h, this contradicts the fact that J ∈ CMod(I , Σ | (E,Q)).
(2⇒ 1) Let (R0,R, �R , ρ,δ ) be a Σ-expansion of I relative to E. For each r ∈ R0, let (Er ,Qr ) be a
(Σ, Q̂ )-environment such that Er is defined as in Lemma B.15 and both (a) and (b) are satisfied. For
each r ∈ R0, let Jr ∈ CMod({βr }, Σ | (Er ,Qr )). Without loss of generality, we may assume that for
all r , r ′ ∈ R0 we have dom(I ) ∩ dom(Jr ) ⊆ dom(βr ), and dom(Jr ) ∩ dom(Jr ′ ) = dom(βr ) ∩ dom(βr ′ )
if r � r ′, which can be achieved by consistently replacing each null in dom(Jr ) \ dom(I ) by a fresh
one. By Lemma B.15,

J := I ∪
⋃
r ∈R0

Jr

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



35:80 G. Gottlob et al.

belongs to CMod(I , Σ | E). To show that J ∈ CMod(I , Σ | (E,Q)), it suffices to show that for all
(Q,h) ∈ Q there is no match h′ of Q in J that extends h.
For a contradiction, assume that there exists a pair (Q,h) ∈ Q and a match h′ of Q in J that

extends h. Since (E,Q) is complete, we may assume that h is defined on all variables x ∈ var (Q )
with h′(x ) ∈ dom(T +). For each r ∈ R0, let Vr := {x ∈ var (Q ) | h′(x ) ∈ dom(Jr ) \ dom(T +)}. Then,
(Vr )r ∈R0 is a decomposition for (Q,h) over R0. Now, for every r ∈ R0, the mapping h′|var (Q[Vr ]) is a
match of Q[Vr ] in Jr , and h′|var (Q[Vr ]) extends h |var (Q[Vr ]) . This implies that (b) does not hold and
yields the desired contradiction. �

We now combine the previous two lemmas to obtain our upper bounds on the complexity of
answering UBCQs with respect to stratified sets of guarded DNTGDs. As in the case of atomic
queries, we first provide upper bounds on the complexity of a suitable problem that we will use as
an “oracle”:

QCHECK
Input: a stratified set Σ of guarded DNTGDs over a schema R, an R-atom β , a UBCQ

Q over R, and a (Σ,Q )-environment (E,Q) for {β }
Question: CMod({β }, Σ | (E,Q)) � ∅?

Theorem B.19. QCHECK is in 2-EXPTIME. It is in PTIME if |R |, ar(R ), and wd(Q ) are bounded
by a constant.

Proof. We describe an alternating Turing machine for QCHECK. This machine is similar to
the one for ACHECK constructed in the proof of Theorem B.16. Essentially, the only difference is
that here we use the reduction lemma for UBCQs (Lemma B.18) instead of the reduction lemma
for atomic queries (Lemma B.15).
As in the proof of Theorem B.16, we use mappings canα to canonize objects such as atoms,

literals, sets of literals, and (Σ,Q )-environments that are built from the elements in dom(α ). We
use configurations (β,E,Q, c ), where β is an atom, (E,Q) with E = (T , S,R+,R−, �) is a (Σ,Q )-
environment for {β }, and c is a mapping that maps each atom inT + \ ({β } ∪S ) and each rule in R+

to an integer in {0, 1, . . . ,d∗}, where d∗ (whose concrete value was already given in Section 5.2.2)
is formally defined as follows:

d∗ := |{(canβ (β ), canβ (E), canβ (Q)) | β is an R-atom, and (E,Q) is a (Σ,Q )-environment for {β }}|.

The goal in such a configuration is to verify that CMod({β }, Σ | (E,Q)) is non-empty. As before,
we represent β , E, and Q in canonical form.

Now, given as input a stratified set Σ of guarded DNTGDs, an atom β0, and a (Σ,Q )-environment
(E0,Q0) with E0 = (T , S,R+,R−, �), the machine starts in configuration (β0,E0,Q0, c0), where c0
assigns the integer d∗ to all atoms in T + \ ({β0} ∪ S ) and to all Σ-rules in R+. If the current config-
uration is (β,E,Q, c ) with E = (T , S,R+,R−, �), then it proceeds as follows:

(1) If c (α ) = 0 for some α ∈ T + \ ({β } ∪ S ), or if c (r ) = 0 for some r ∈ R+, then reject.
(2) Guess a completion E∗ = (T ∗, S,R+,R−, �∗) of E according to Lemma B.17 (2). Extend c to

(T ∗)+ \ ({β } ∪ S ) by setting c (α ) := d∗ for each α ∈ (T ∗)+ \ ({β } ∪ S ) with α � T+.
(3) Guess a Σ-expansion (R0,R, �R , ρ,δ ) of {β } relative to E∗ and compute the corresponding

complete (Σ,Q )-environments (Er ,Qr ) for r ∈ R0 according to Lemma B.18. If no such Σ-
expansion exists, then reject.

(4) For each r ∈ R0, do the following:
(a) Compute Er = (Tr , Sr ,R

+
r ,R

−
r , �r ) as defined in Lemma B.15.

Journal of the ACM, Vol. 68, No. 5, Article 35. Publication date: October 2021.



Stable Model Semantics for Guarded Existential Rules and Description Logics 35:81

(b) For each α ∈ T +r \ ({β } ∪ Sr ), let cr (α ) := c (α ) − 1. For each r ′ ∈ R+r , let cr (r ′) := c (r ′) − 1
if r ′ ∈ R+, and cr (r ′) := d∗ if r ′ � R+.

(5) Accept iff for each r ∈ R0 the computation starting in configuration (βr ,Er ,Qr , cr ) is
accepting.

It is straightforward to check that the space required by the machine is exponential in general,
and logarithmic if ar(R ), |R |, and wd(Q ) are bounded by a constant. The proof of correctness is a
straightforward modification of the proof of Theorem B.16, where the nodes in the self-reduction
tree are labeled by triples (β,E,Q) instead of pairs (β,E). This is to ensure that reduction steps
that are applied in the proof of the “if” direction preserve “non-satisfaction” of Q . �

Theorem B.19 now leads to tight bounds for answering UBCQs with respect to stratified sets of
guarded DNTGDs, and we are finally able to accomplish the proof of Theorem 5.9.

Theorem 5.9 (Upper Bounds of Theorem 5.6 Restricted to UBCQs). Given as input a data-
base D for a schema R, a finite stratified set Σ of guarded DNTGDs over R, and a covered UNBCQ Q
over R, deciding (D, Σ) |=strat Q is:

(1) in 2-EXPTIME in general;
(2) in EXPTIME, if ar(R ) is bounded by a constant, and Q is acyclic;
(3) in co-NP in data complexity, or, if |R |, ar(R ), and wd(Q ) are bounded by a constant.

Proof. To prove the upper bounds, we describe a Turing machineTM that verifies (D, Σ) � |=strat
Q within the desired time bounds. Given D, Σ, and Q as input, the machine TM first computes
ED and QD,Q as defined in Lemma B.17 (1).TM then guesses a completion (E∗,Q∗) of (ED ,QD,Q )
according to Lemma B.17 (2), and a Σ-expansion (R0,R, �R , ρ,δ ) ofD relative to E∗ as well as (Σ,Q )-
environments (Er ,Qr ) for r ∈ R0 according to Lemma B.18. In the general case, we replace these
non-deterministic steps by loops over all completions, Σ-expansions, and (Σ,Q )-environments
(Er ,Qr ). The machine accepts the input iff CMod({βr }, Σ | (Er ,Qr )) � ∅ for each r ∈ R0. From
Lemma B.17 and Lemma B.18, it follows that the machine accepts the input iff (D, Σ) � |=strat Q .
Theorem B.19 implies that CMod({βr }, Σ | (Er ,Qr )) � ∅ can be checked in 2-EXPTIME in general,
and in PTIME if |R |, ar(R ), and wd(Q ) are bounded. This implies the upper bounds given in points
(1) and (2).

If ar(R ) is bounded, andQ is acyclic, then we simulateQ by adding to Σ a polynomial number of
guarded TGDs that imply a goal predicateGoal() in a canonical model J iffQ is true in J . It is easy to
see that this can be done in such away that the resulting set Σ′ of guardedDNTGDs is stratified and
contains at most |Q | additional predicates whose arities are at most ar(R ). Then, (D, Σ) � |=strat Q
iff (D, Σ′) � |=strat Goal(). Thus, the upper bound in point (2) follows from Theorem B.1. �

C DETAILS AND PROOFS FOR SECTION 6

We now prove Theorems 6.13 and 6.14. We first prove Theorem 6.13 by induction on the def-
inition of the canonical model of stratified sets of DNTGDs via the construction of the chase
(see Definition 4.10). To this end, we need to extend the chase construction by the applica-
tion of EGDs as follows: An EGD σ on R of the form Φ(x)→xi =x j is applicable to a data-
base D for R if there exists a homomorphism η : Φ(x)→D such that η(xi ) and η(x j ) are
different and not both constants. If η(xi ) and η(x j ) are different constants in Δ or cannot be
unified via homomorphisms, then there is a hard violation of σ , and the chase fails. Other-
wise, the result of the application of σ to D is the database h(D) obtained from D by replac-
ing every occurrence of an element e ∈ {η(xi ),η(x j )} in D by θ (η(xi )), where θ is a most gen-
eral homomorphism that unifies η(xi ) and η(x j ) such that θ (η(xi )) is the smallest null in the
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lexicographic order under all such homomorphisms. Note that h is a homomorphism, but not
necessarily an endomorphism of D, since h(D) is not necessarily a subset of D. But for the
special class of DNTGDs and EGDs that we define in this section, h is actually an endomorphism
of D.
The chase of a database D, in the presence of a stratified set ΣT of DNTGDs and a set ΣE of

EGDs, denoted CMod(D, ΣT ∪ ΣE ,), is computed by iteratively applying (1) a single DNTGD once,
according to the standard order, and (2) the EGDs, as long as they are applicable (i.e., until a fixpoint
is reached).

Example C.1. Consider the following set Σ = {σ1,σ2,σ3} of DNTGDs and EGDs:

σ1 : r (x ,y) → ∃z s (x ,y, z),
σ2 : s (x ,y, z) → y = z,
σ3 : r (x ,y), s (z,y,y) → x = y.

LetD be the database {r (a,b)}. In the computation of chase(D, Σ), we first apply σ1 and add the fact
s (a,b, z1), where z1 is a null. Then, the application of σ2 on s (a,b, z1) yields z1 = b, thus turning
s (a,b, z1) into s (a,b,b). Now, we apply σ3 on r (a,b) and s (a,b,b), and by equating a = b, the chase
fails; this is a hard violation, since a,b ∈ Δ.

We are now ready to prove Theorem 6.13.

Theorem 6.13. Let R be a relational schema, let ΣT be a stratified set of guarded DNTGDs on R,
and let ΣK be a set of keys on R. Then: If ΣK is SNC with ΣT , then ΣK is separable from ΣT relative
to UBCQs.

Proof. Intuitively, the main idea behind the proof is to show by induction on the construc-
tion of the iterative chase that each application of a key induces a homomorphism that does not
change atoms whose negations are required later by other rule applications. The positions in K∞
are the only positions whose values change when such a homomorphism is applied. Since no neg-
ative literal in a rule body contains a variable that occurs at a position in K∞ in the positive part
of the rule body, such a homomorphism then leaves negative literals unchanged.
Formally, suppose that, in the process of constructing the oblivious chase for a stratified set ΣT

of guarded DNTGDs, a DNTGD σ fires, deriving an atom a with the predicate r . Take any key
κ ∈ ΣK for r , where K is the corresponding set of positions of r . Then, as the set Hσ of positions
in a occupied by universally quantified variables is not a proper superset of the set K, there are
only two possible cases: (i) K=Hσ : In this case, κ is the only key that can fire. By our particular
chase order, this key is immediately applied and just eliminates the new atom a generated by σ ,
because a has fresh nulls in all positions but those of K. (ii) At least one position in K is occupied
by an existentially quantified variable in a: Then, the new fact a generated by the application of σ
contains a fresh null in a position in K, and therefore it cannot violate the key κ. It follows that the
oblivious chase only eliminates some facts generated by some DNTGDs, and we now intuitively
have to make sure that these facts are actually isomorphic to what has been derived before, as
otherwise removing them would make a difference, as illustrated by Example 6.10.
Let D be a database, ΣT be a stratified set of guarded DNTGDs, and κ be a key such that κ is

SNC with ΣT . Let D |= κ. Then, by (i) and (ii) above, constructing CMod(D, ΣT ∪ ΣK ) converges
to possibly infinite fixpoints without ever producing a hard violation. Furthermore, suppose that,
in the process of constructing CMod(D, ΣT ∪ ΣK ), the key κ is violated while deriving the atom
a from an element S of the chase constructed thus far, as in (i) above. Let h be the retraction of S
induced by applying κ on S . It is then not difficult to see that for all α ∈ dom(S ) that do not occur
in S at a position of K∞, we have h(α ) = α . Consequently, for all σ ∈ ΣT , all mappings μ with
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S |= μ (body (σ )), and all α ∈ μ (body− (σ )), we have h(α ) = α . In particular, h(S ) |= h(μ (body (σ ))).
Hence, there is a homomorphism from S ∈ CMod(D, ΣT ) to some S ′ ∈ CMod(D, ΣT ∪ ΣK ) (which is
in fact an endomorphism from S to S ′) that is defined by the union of all substitutions performed by
those keys that are applied. Conversely, there is also a homomorphism from any S ∈ CMod(D, ΣT ∪
ΣK ) to some S ′ ∈ CMod(D, ΣT ), as there is always some S ′ ∈ CMod(D, ΣT ) with S ⊆ S ′. Thus, for
every UBCQQ , it holds thatQ is true in all S ∈ CMod(D, ΣT ∪ΣE ) iffQ is true in all S ∈ CMod(D, ΣT ).
In summary, ΣK is separable from ΣT relative to UBCQs. �

We finally prove Theorem 6.14.

Theorem 6.14. Let R be a relational schema, let ΣT be a stratified set of guarded DNTGDs on R,
and let ΣK be a set of keys on R. Then: If ΣK is SNC with ΣT , then ΣK is separable from ΣT relative
to strongly covered UNBCQs.

Proof. The result follows from Theorem 6.13, applied to the UBCQ Q ′ relative to Σ′T and ΣK ,
where Q ′ and Σ′T are obtained from Q and ΣT by replacing every negative literal ¬α in Q by α ′

and by adding the corresponding rule β ∧ ¬α → α ′ to ΣT , respectively, where β is a cover of ¬α
in Q , and α ′ replaces the predicate R in α by a fresh predicate R′ that simulates the complement
of R-predicates. It is then not difficult to verify that K∞ relative to Σ′T and ΣK is obtained from K∞
relative to ΣT and ΣK by eventually adding the positions of fresh predicates, which occur only in
Q ′, but not in rule bodies in Σ′T . Thus, as Q is strongly covered, ΣK is SNC with Σ′T iff ΣK is SNC
with ΣT . �
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