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Decoherence can be useful in quantum walks
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We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle,
and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the
particle is becoming more delocalized with each step. However, the effect of a small amount of decoherence is
to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms.
Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and
more reliable hitting times across the hypercube.
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I. OVERVIEW [15] use a continuous time quantum walk to traverse a spe-
cial graph exponentially faster than any classical algorithm,

There is currently great interest within the quantum infor-and Shenvet al.[16] prove that a coined quantum walk can
mation community in quantum versions of random walks,match Grover’s algorithm searching an unstructured data-
because of the possibility that they may produce new, powbase.
erful types of quantum algorithms. Apart from Grover’'s Quantum walks themselvéboth discrete and continuous
search[1] (quadratic speed upall the quantum algorithms time) can be implemented efficiently on a quantum computer
known until very recently are essentially based on applical17—19, i.e., it is not necessary to provide a physical imple-
tion of the quantum Fourier transform, including Shor’s fac-mentation of a quantum walk to base an algorithm on them.
toring [2], which provides an exponential speed up over théNonetheless, quantum walks are interesting in their own
best known classical algorithms. Other types of quantunfight as physical systems in which a precise level of coherent
computation, such as quantum adiabatic computafgjn ~ control can be demonstrated. Several direct implementations
have not yet been shown to provide exponential speed upf discrete walks have been proposed, all with a quantum
over classical methods. Some of the most powerful knowr¢0in: a walk in the vibration modes of a trapped {@®], in
classical algorithms are based on classical random walks, $6€ phase of the field in a cavity containing an a{@m], and
it is a natural question to ask whether there are quanturiith an atom hopping between traps in an optical laftR#.
counterparts that can do even better. For example, a randofther than for these physical implementations, and recent
walk on a general graph can be used to address hard propork on coin decoherence by Bran al. [23-25, the effect
lems such as approxima‘[ing the permanb{ﬁAT, and graph of decoherence in quantum walks has not previously been
connectivity[4—6]. studied in any detail.

Before attempting to create quantum algorithms from The key observation of this paper is that, in small doses,
quantum walks, it is first useful to study their properties andrather than degrading the quantum features, decoherence in a
dynamics on simpler structures. Several quantum analogs éPined quantum walk can enhance the desirable quantum
a classical random walk on discrete lattices or graphs havépeed up, even though overall, quantum watiansisting as
been proposed. These include discrete time walks both witfhey do of extremely delocalized quantum partiglese
and without a quantum coifi7,8], and a continuous time highly sensitive to the effects of decoherence. This is very
walk [9]. The relationship between the continuous timeencouraging for the prospects of using quantum walks as the
quantum walk and discrete time quantum walks is not fullybasis of powerful quantum algorithms.
understood. For the cases where they have been studied onThe paper is organized as follows. First we review one of
the same graph, they give essentially the same results, e.gle simplest examples of a quantum walk, the coined walk
Ref.[10]. Quantum walks on the infinite line, the cycle, and on a discrete line, and describe the properties of the perfect
the hypercube have all been solved analyticel§—12, and ~ quantum walk. Then we present our results showing the ef-
some bounds are known for more general grdpis Onthe  fects of decoherence in the quantum walk on a line, on a
line and cycle, for most quantities of interest, such as th&ycle, on a hypercube, and on the “glued trees” graph of
standard deviation and the mixing time, there is a quadrati®ef. [15].
speed up over the classical walk. Kemp&3] recently

proved that the hitting time to the opposite corner of a hy- Il. COINED QUANTUM WALK
percube shows an exponential speed(appossibility also '
found numerically by Yamasalit al.[14]). Making an algo- We consider only coined quantum walks on discrete lat-

rithm out of a quantum walk requires significant further tices in this paper. Since the classical random walk requires a
work. Two have been proposed very recently, Chidl®l.  source of randomnegsoin tos$ in the dynamics, introduc-
ing a quantum coin is a natural way to proceed. For the walk
on an infinite line, the total Hilbert space B=C%®H ",
*Electronic address: Viv.Kendon@ic.ac.uk whereH” has support ox e Z. We label the coin states by
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{|=1),|+1)} for “move left” and “move right,” respec- 0.061
tively, and those of the particle bjx) for position on the 0.04 -
line. We write the tensor product states |asx), wherea [ ]
e{*1} is the state of the coin. The unitary operator describ-
ing a single step of the walk is % 0.02
:_Q +
U=S(H®1), 1) Zomr ]
| T 5 00k :
whereS is the conditional shift operatds|a,x)=|a,x+a), CIN
andH is the Hadamard operator 5 006 | | | ~ | | |
(Hel)|a,x)=(ala,x)+|—a,x))/2, (2) 0.041 coin y — p=0016 .
0.02 =
acting on the coin states only, it plays the role of a “coin /\L

toss.” It can be shown for unbiased quantum walks on a line G0 150 100 -5211, ) 0 " 50 100 150 200
in which the “coin toss” prepares an equal superposition of parhicie position

states, all such operators are essentially equivalent to the g1 1 pistribution of the particle position for a quantum walk
Hadamard operatdr2,26]. In higher dimensions, when the o 3 jine afterT=200 time steps. Pure quantufdotted, fully
particle has more than two choices of direction at each stepyassicaldashed, and decoherence at the rate shown on the part of
the choice of unbiased coin-toss operator becomes corrghe system indicated by the kegolid). Uniform distribution be-

spondingly riche{27,28. Unlike the classical case, where tween—T/\2<x<T/\2 (crossesis also shown.
each coin toss is independent of the previous coin tosses, in

the quantum case, unitarity of the evolution and hence re-

versibility implies the initial state of the coin has observableperfect Hadamard operator by applying a Gaussian spread of
consequences atl later time§. Specifically,.irj.the following  standard deviation/pm/4 about the perfect value of/2
(unless stated otherwiswe will choose the initial state to be implicit Eq. (2), compare Refi27]. An imperfect shift on the
(I+1)+i]-1))/y2 which results in a symmetric probability particle has been studied in R€22]. In each case we find
distribution[12,26,28. The dynamics of the quantum walk {he same general form for the decayog(T) from the quan-
thus consist of repeated application of the operétdo the  tym to the classical value, with small differences in the rates,
particle and coin, resulting in a spreading out on the linegs shown in Fig. 2. The slope of,(T) is finite asp—0 and
with interference causing the quantum speed up. zero atp=1. We calculatedr,(T) analytically (details in

The quantum walk on a line has been solved exdd®f  Ref. [29]) for pT<1 andT>1 for the case wher#, is the

using both real spacépath counting and Fourier space projector onto the preferred basjka,x)} (decohering both
methods. The solutions are complicated, mainly due to th%article and coi

“parity” property, i.e., the solutions must have support only

on evenfodd-) numbered lattice sites at evéodd times. -
The shape of the probability distribution for the particle po- _ b
sition consists of a nearly flat region around the center with op(T)=0(T)) 1 6\/§+O(p)
the same width as the classical binomial distribution, and

oscillating peaks out towards=+T/y2. Both quantum and This compares well with simulation data, once a second-

classical distributions are shown in Fig. 1, calculated numeri 4o correction foro(T) = (1— 1/\/5)1,2”_1“_) is taken

cally for T=200. The moments can be calculated, for a walk . : .
. _ ’ t t. The first-order d d th t |
starting at the origin|x|)=T/2 and (x?)= (1 12)T? into accoun e first-order dependence is thus proportiona

=g?(T). The standard deviatioffrom the origin o(T) is

: 4

1T 7T 17T 77T 7T 17T 7T T ™17
thus linear inT, in contrast toyT for the classical walk. - 50 -~ decoherence on particle only 4
g Ft ---- decoherence on coin only E
I1l. DECOHERENCE IN A QUANTUM WALK ON A LINE o 40[C ‘\\ — decoherence on both particle and coin _|
) ) ) § AN O imperfect Hadamard
In order to model decoherence in this system, we write & [ Q.
the coin-particle dynamics in terms of a density map{x) §3or ‘n\\ 7
that evolves according to 3 0 NN
g 20+ RN -
=] e el
= | e TS
pt+1)=(1-p)Up(UT+p2 PUp(MUTPT. (3) £l R okt S|
Here I’; is a projection that represents the action of the de- 05— 0|1 . 0|2 . 0|3 . 0|4 . 0.5 . 0.6 . 0.7 . ols . 0.9 —
coherer)ce ang is the probability of a decoherence e\{ent " “decoherence rate p (per time step)
happening per time step. We took E@) and evolved it
numerically for various choices oP;. Motivated by the FIG. 2. Standard deviationr,(T) of the particle on a line for

likely form of experimental errors, we also modeled an im-different models of decoherence, for= 100 time steps.
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T T e that p,T=2.6 for decoherence on both apdgT=5 for de-
10°F o E coherence on the particle only. These differences in the qual-
e, e ] ity of the uniform distribution are independent pfand T,
SR Yy 1 and provide an order of magnitude.6 down to 0.0 im-
\ / ] provement inv over the pure quantum value. Decoherence
! just on the coin does not enhance the uniformity of the dis-
v i 1 tribution, as Fig. 1 shows, there is a cuspxat0. However,
] for finite T, there is still a useful window within which even
coin only decoherence does not significantly degrade the lin-
ear spreading of the walk.

total variation: lIP(p) - PUII
=
T
|

-2 L M|

1010_3 102 107 10° V. DECOHERENCE ON A CYCLE
noise rate p (per time step)

If, instead of an infinite line, the quantum particle is al-
FIG. 3. The total variational distance of the particle positionlowed to walk on a cycle of siz&l points, the appropriate
distribution from the uniform distribution fof = 200 and decoher- quantity to measure the progress of the walk is the mixing
ence on coir(dotted, particle (dashed}, or both (solid). time. We immediately have to modify the classical definition,

because, unlike the classical random walk, which mixes to a
uniform distribution in the the long time limit, a unitary pro-
to pT, so the sensitivity to decoherence grows linearlyfin  cess such as that evolving the quantum walk does not mix to
for a given decoherence rape any limit at large times. We can instead define a time-
The quantum walk on infinite regular lattices of higher @veraged particle distribution
dimension shows a similar decoherence profile, as might be

expected, since the standard deviation of a classical random I B
walk is \T, independent of dimension. Px,p.T)=5 26 P(x,p,t), (6)
IV. DISTRIBUTION SHAPE ON A LINE which does always mix for large enough timgg11]. It is

The transition from quantum to classical in the standarcf@Sy t0 sample from the distributiét(x,p,T): run the walk
deviation of the particle position shown in Fig. 2 is qualita- 07 SOme randomly chosen number of stepste-T and
tively the same for all types of decoherence examined. HowM€asure the particle position at that tim&@he mixing time
ever, there are interesting differences in the shape of thi§ then defined as
distribution of the particle position. The decoherence rate
that gives the closest to uniform distribution has been se- M .= min{T|Vt>T:||P(x,p,t) — Py||n<€}, (7)
lected and plotted in Fig. 1, along with the pure quantum and
classical distributions for comparison. When the particle powhere P, is the limiting (uniform) distribution over the
sition is subject to decoherence that tends to localize theycle. The mixing time quantifies how long it takes for the
particle in the standard basis, this produces a highly uniformime-averaged probability distribution of the particle position
distribution between-T/+/2 for a particular choice gf. The  to reach its limiting value within a margin of small parameter
optimal decoherence rafg, can be obtained by calculating ¢>0.
the total variational distance between the actual and uniform The walk on a cycle is the simplest example of a walk on
distributions, the Cayley graph of an Abelian group, and was historically

the first to be treated analyticaljt1]. The dynamics of the
o _ walk on the cycle are the same as for the walk on a line, with
V(p’T)=||P(X'p’T)_P”(T)”‘V:§ P(x.p.T)=Pu(M, the particle position taken molj. Aharonov et al. [11]
(5) proved an upper bound for the mixing time O N logN).
The limiting distribution thus obtained depends on the choice
whereP(x,p,T) is the probability of finding the particle at of coin operatof28], in sharp contrast to the classical walk,
position x after T time steps, regardless of coin state, andwhich always mixes to a uniform distribution. For the Had-
Py(T)=\2/T for —T/\2<x<T/\2 and zero otherwise. amard coin used here, the odideycle mixes to the uniform
Figure 3 shows/(p,T) for T=200 with decoherence applied distribution, but the eved cycle does nof28].
to the coin, particle, and both at once. Decoherence on both We numerically evaluated the mixing times for walks on
particle and coin produces the best uniform distribution, butycles of sizes up tt=_80, both for pure states, and in the
at a cost of a lower decoherence rate, and sharper minimurpresence of the same types of decoherence as described in
i.e., greater sensitivity to the value pfWalks with decoher- the preceding section for the walk on a line. For ddid-
ence only on the particle can tolerate more variation in thecycles with no decoherence, we find that~N/e as com-
exact decoherence rate, while not achieving such a good unpared to the upper bound dfl .~NlogN/e in Ref. [11].
form distribution. The optimum decoherence rate depends owWhile we believe that the linear scaling withis the correct
the number of steps in the walk, we determined numericallyesult, obtaining a tighter bound analytically is a tough task,
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to mix to the uniform distribution. The asymptotes in Fig. 5
for N even and decoherence on the coin only,fer2/N, are
well fitted by epM_=N/4 for N divisible by 2, andepM,
=N/16 for N divisible by 4. For largemp, the mixing time
tends to the classical value d4%/16e [note this is not
log(1/e) because we are calculating the average mixing time,
Eq. (7)]. Although forN divisible by 4, the(coin-decohered
mixing time shows a minimum below the classical value at
p=2/N, this mixing time is=N?/32¢, i.e., still quadratic in
N. Thus, although noise on the coin causes the éveycle
to mix to the uniform distribution, it does not produce a
significant speed up over the classical random walk.
10 R e : For decoherence on the particle position, with
1 - 1 <16N?, epM.~1/(N/2—1) for N divisible by 2, and
epM _=1/(N/4+ 3) for N divisible by 4. Atp=16/N?, there
FIG. 4. Difference between the time averaged probability distri-is a minimum in the mixing time at a value roughly equal to
bution P(x,p,T) and the uniform distribution expressed as the totalthe (N*1)-cycle pure quantum mixing timeM (™"
variational distance, Eqg5) and(6) for the case with decoherence ~ o¢N/e (with a a constant of order unity The top three
on both coin and particle. Both axes are logarithmic. The value of |ines in Fig. 5 show how decoherence pulls an edeaycle
used in Fig. 5 is shown as a horizontal line. The top three solid linegown to mix to the uniform distribution at the same rate as
labeled on right are foN=22 with p=0 (A), p=0.001(B), P the neighboring oddN cycle. Decoherence on the particle
=0.02(C). The lower four lines are foN=21 with p=0 (solid,  pgition thus causes the evBineycle to mix to uniform in
p=0.002(dotted, p=0.01(short dashed p=0.02(long dasheil |ihaar time for a suitable choice of decoherence 8™

~16/MN?, independent ok.

because the time averaged probability distributix,p,T)
is a rather fluctuating quantity, especially fpr=0, as is
illustrated in Fig. 4. In this figure, the quantifyP(x,p,t) _For all types of decoherence, the oNdeycle shows a

—Pyl,, from Eq. (7) is plotted against time. The time at Minimum mixing time at a position somewhat earlier than

which the curves last cross the horizontal lineeat0.01 is e evenN cycle, roughlyp= 2/N?, but because of the os-
the mixing time as plotted in Fig. 5. A different choice of ~ Cillatory nature of P(x,p,T), the exact behavior is not a
thus causes a jump in the valuedf, if it happens to touch ~Smooth function op or e. As decoherence on the parti¢te
the next peak irﬂm— Pully- both) increases, the oscillations P(x,p, T) are damped out.
The lower set of lines on Fig. 4 shows how both these fea-
tures affect the mixing time. Apb=16/N?, the mixing time
A. Even-N cycles with decoherence passes smoothly through an inflexion and from then on be-

Under the action of a small amount of decoherence, th&aves in a quantitatively similar manner to the adjacent-sized
mixing time becomes shorter for all cases, typical results ar€venN cycles, including scaling al ™"~ N/ at the in-
shown in Fig. 5. Also, decoherence causes the éveyele  flexion. Thus for 6<p=<16/N? there is a region where the

mixing time stays linear ifN. Our overall conclusion is thus
s . . the same as for the walk on a line, there is a useful window
S : ] within which decoherence enhances rather than degrades the
quantum features of the walk.

B. Odd-N cycles with decoherence

VI. HYPERCUBE DECOHERENCE

The hypercubéBooleanN-cubg is also the Cayley graph
of a group, and provides a step on the way to quantum walks
on more complex structures. Since there [dredges joining
at each vertex, we need atdimensional coin to choose
between the possible paths at each step. This opens up a
correspondingly larger range of possible unitary operations
P to use for the coin toss, but a sensible choice is one that
10 decolllgreme ate p (per ﬁ}]?e step) 10 respects the symmetry of the underlying graph, and is as far
from the identity as possible. For the hypercube, this is the
FIG. 5. Numerical data for mixing times on cycles of sige ~ Grover operator, whose elements expressed d$>aN ma-
=29 andN=30 (d), for coin (dotted, particle(dashedj and both ~ trix are defined ass; =2/N—o;,. We also choose a sym-
(solid) subject to decoherence, usiag 0.01. AlsoN=28 (x) for ~ metric starting state for the coin with equal weights for all
coin. Both axes are logarithmic. possible directions from the chosen starting node. The high

mixing time
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I L — T L lective decoherence, but there is still a range effds 1/N
: one-shot {1} concurrent 1 within which the quantum speed up is preserved. Note that in
08k both the one-shot and concurrent cages,1/N is a critical
o= damping rate, smoothing out the second pé¢slkown at
5 around 40 €3N /2) steps in Fig. &
2 0.6
K=
E VII. “GLUED TREES” WALK
e 04—
g The graph used by Childst al. [15] is similar to the
02l hypercube in that it can also be mapped to a walk on a line.

It consists of two identical binary trees of depth glued at
their branches by a randomly distributed set of ed@ge®
per node, so the degree of the graph is three except for the
time step roots of the trees They use a continuous time walk for their
algorithm, but a discrete quantum walk using a three-
FIG. 6. Hitting probability on a nine-dimensional hypercube for dimensional Grover coin operator has essentially similar
one-shot(left) and concurrentright), perfect walk(circles, with propertieg 19,28. The effects of decoherence are similar to
p=0.05 (dotted, p=0.1=1/9 (solid). Classical hitting probability the hypercube. The peak in the probability of finding the
barely visible(dashed particle at the exit node occurs afteN2 3 steps, and is
around 0.6 for a pure walk. Decoherence reduces this peak
exponentially(in N) while spreading out the range of time
degree of symmetry in the hypercube allows the quantunsteps over which the probability is significantlgxponen-
walk to be mapped to a walk on a line with a different cointially) larger than the classical value.
toss operation at each poifit0]. While the mixing time for
a quantum walk on a hypercube is somewhat worse than a
cle?ssical random walk, }I/<pem|c[d3] proved that the hitting Vill. CONCLUSIONS

time to the opposite corner is polynomial, an exponential One of the generic ways in which classical random walks
speed up over the classical walk. are applied to algorithms is in the guise of Monte Carlo
Kempe discusses two types of hitting times, one shotMarkov chains and their variants, to sample an exponentially
where a measurement is made after a predetermined numbafge problem space to estimate statistical properties of the
of steps, and concurrent, where the desired location is mongystem. Fast mixing times and uniform sampling are neces-
tored continuously to see if the particle has arrived. In eactgary properties of the random walk process for it to perform
case, the key parameter is the probabifty of finding the efficiently. This is the sense in which we propose that a small
particle at the chosen location. We calculaBgnumerically  amount of decoherence in a walk on the line or the cycle is
and found that all forms of decoherence have a similar effecbeneficial, producing more uniform distributiofine) and
on Py, see Fig. 6, reducing the peaks and smoothing out thgaster mixing to a uniform distributiofcycle).
troughs. For the one-shot hitting time this is useful, raising On the hypercube and “glued trees” walks, the key quan-
Py, in the trough to well above the classical value, so it is notum property exploited by the examples in the literature is
longer necessary to know exactly when to measure.gor the opposite of a uniform distribution, the ability of a quan-
=<1/N, the height of the first peak scales d%,(p) tum walk to continue its forward march through the graph
=P, (0)exd—(N+a)p}, where Osa=<2 depending on despite the many possible “wrong turns” a classical random
whether coin, particle, or both are subject to decoherence. Awalk gets lost in. For the examples given, it is easy to deter-
exponential decrease in the presence of decoherence soundie a priori the best time to check for the particle having
about as bad as it could reasonably be, and for long times, dbund the target node. But for more complex graphs this may
course, decoherence reduces the walk to classical behavieoot be easy to calculate, so having a wider window of op-
However, the hitting times are short, ontyN /2 steps, and  portunity to successfully detect the particle could be an ad-
p=1/N only lowersP,, by a factor of 1¢. For algorithmic  vantage. Note that the concurrent hitting time is doing ex-
purposes this is insignificant, only a factor of order unity andactly this in a more precise way by monitoring the target
thus still exponentially better than classid@tandard ampli- node at every time step. For these type of walks, we do not
fication techniques can be used to bring the hitting probabilelaim that decoherence gives a major advantage, only that it
ity as close to 1 as desirgd\ote also, that the size of the is not detrimental for small decoherence rates.

graph(measured in number of nodds exponential i\, so We have also found numerically that the walk on a cycle
the decoherence has only a linear effect measured in terms ofixes in linear time[compared to the upper bound of
the size of the graph. O(NlogN) proved in Ref[11]], and show why it is hard to

Continuous monitoring of the target location as in theprove a tighter bound analytically because the quantities in-
concurrent hitting time is already a sort of controlled deco-volved are highly fluctuating.
herence, note that the height of the initial peak-atl#w/2 Overall, these results are quite promising for the develop-
steps is only about 2/3 that of the one-shot hitting probabil-ment of further quantum algorithms, and for the practical
ity. No extra features are produced by the addition of unseimplementation of quantum computing. They are also en-
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