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Decoherence can be useful in quantum walks

Viv Kendon* and Ben Tregenna
Optics Section, Blackett Laboratory, Imperial College, London, SW7 2BW, United Kingdom

~Received 11 September 2002; published 22 April 2003!

We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle,
and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the
particle is becoming more delocalized with each step. However, the effect of a small amount of decoherence is
to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms.
Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and
more reliable hitting times across the hypercube.
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I. OVERVIEW

There is currently great interest within the quantum inf
mation community in quantum versions of random wal
because of the possibility that they may produce new, p
erful types of quantum algorithms. Apart from Grover
search@1# ~quadratic speed up!, all the quantum algorithms
known until very recently are essentially based on appli
tion of the quantum Fourier transform, including Shor’s fa
toring @2#, which provides an exponential speed up over
best known classical algorithms. Other types of quant
computation, such as quantum adiabatic computation@3#,
have not yet been shown to provide exponential speed
over classical methods. Some of the most powerful kno
classical algorithms are based on classical random walks
it is a natural question to ask whether there are quan
counterparts that can do even better. For example, a ran
walk on a general graph can be used to address hard p
lems such as approximating the permanent,k-SAT, and graph
connectivity@4–6#.

Before attempting to create quantum algorithms fro
quantum walks, it is first useful to study their properties a
dynamics on simpler structures. Several quantum analog
a classical random walk on discrete lattices or graphs h
been proposed. These include discrete time walks both
and without a quantum coin@7,8#, and a continuous time
walk @9#. The relationship between the continuous tim
quantum walk and discrete time quantum walks is not fu
understood. For the cases where they have been studie
the same graph, they give essentially the same results,
Ref. @10#. Quantum walks on the infinite line, the cycle, an
the hypercube have all been solved analytically@10–12#, and
some bounds are known for more general graphs@11#. On the
line and cycle, for most quantities of interest, such as
standard deviation and the mixing time, there is a quadr
speed up over the classical walk. Kempe@13# recently
proved that the hitting time to the opposite corner of a h
percube shows an exponential speed up~a possibility also
found numerically by Yamasakiet al. @14#!. Making an algo-
rithm out of a quantum walk requires significant furth
work. Two have been proposed very recently, Childset al.
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@15# use a continuous time quantum walk to traverse a s
cial graph exponentially faster than any classical algorith
and Shenviet al. @16# prove that a coined quantum walk ca
match Grover’s algorithm searching an unstructured da
base.

Quantum walks themselves~both discrete and continuou
time! can be implemented efficiently on a quantum compu
@17–19#, i.e., it is not necessary to provide a physical imp
mentation of a quantum walk to base an algorithm on the
Nonetheless, quantum walks are interesting in their o
right as physical systems in which a precise level of coher
control can be demonstrated. Several direct implementat
of discrete walks have been proposed, all with a quant
coin: a walk in the vibration modes of a trapped ion@20#, in
the phase of the field in a cavity containing an atom@21#, and
with an atom hopping between traps in an optical lattice@22#.
Other than for these physical implementations, and rec
work on coin decoherence by Brunet al. @23–25#, the effect
of decoherence in quantum walks has not previously b
studied in any detail.

The key observation of this paper is that, in small dos
rather than degrading the quantum features, decoherence
coined quantum walk can enhance the desirable quan
speed up, even though overall, quantum walks~consisting as
they do of extremely delocalized quantum particles! are
highly sensitive to the effects of decoherence. This is v
encouraging for the prospects of using quantum walks as
basis of powerful quantum algorithms.

The paper is organized as follows. First we review one
the simplest examples of a quantum walk, the coined w
on a discrete line, and describe the properties of the per
quantum walk. Then we present our results showing the
fects of decoherence in the quantum walk on a line, o
cycle, on a hypercube, and on the ‘‘glued trees’’ graph
Ref. @15#.

II. COINED QUANTUM WALK

We consider only coined quantum walks on discrete
tices in this paper. Since the classical random walk requir
source of randomness~coin toss! in the dynamics, introduc-
ing a quantum coin is a natural way to proceed. For the w
on an infinite line, the total Hilbert space isH5C 2

^ H `,
whereH ` has support onxPZ. We label the coin states b
©2003 The American Physical Society15-1
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V. KENDON AND B. TREGENNA PHYSICAL REVIEW A67, 042315 ~2003!
$u21&,u11&% for ‘‘move left’’ and ‘‘move right,’’ respec-
tively, and those of the particle byux& for position on the
line. We write the tensor product states asua,x&, wherea
P$61% is the state of the coin. The unitary operator descr
ing a single step of the walk is

U5S~H ^ 1!, ~1!

whereS is the conditional shift operatorSua,x&5ua,x1a&,
andH is the Hadamard operator

~H ^ 1!ua,x&5~aua,x&1u2a,x&)/A2, ~2!

acting on the coin states only, it plays the role of a ‘‘co
toss.’’ It can be shown for unbiased quantum walks on a l
in which the ‘‘coin toss’’ prepares an equal superposition
states, all such operators are essentially equivalent to
Hadamard operator@12,26#. In higher dimensions, when th
particle has more than two choices of direction at each s
the choice of unbiased coin-toss operator becomes co
spondingly richer@27,28#. Unlike the classical case, wher
each coin toss is independent of the previous coin tosse
the quantum case, unitarity of the evolution and hence
versibility implies the initial state of the coin has observab
consequences atall later times. Specifically, in the following
~unless stated otherwise! we will choose the initial state to b
(u11&1 i u21&)/A2 which results in a symmetric probabilit
distribution @12,26,28#. The dynamics of the quantum wal
thus consist of repeated application of the operatorU to the
particle and coin, resulting in a spreading out on the li
with interference causing the quantum speed up.

The quantum walk on a line has been solved exactly@12#
using both real space~path counting! and Fourier space
methods. The solutions are complicated, mainly due to
‘‘parity’’ property, i.e., the solutions must have support on
on even-~odd-! numbered lattice sites at even~odd! times.
The shape of the probability distribution for the particle p
sition consists of a nearly flat region around the center w
the same width as the classical binomial distribution, a
oscillating peaks out towardsx56T/A2. Both quantum and
classical distributions are shown in Fig. 1, calculated num
cally for T5200. The moments can be calculated, for a w
starting at the origin,̂ uxu&5T/2 and ^x2&5(121/A2)T2

5s2(T). The standard deviation~from the origin! s(T) is
thus linear inT, in contrast toAT for the classical walk.

III. DECOHERENCE IN A QUANTUM WALK ON A LINE

In order to model decoherence in this system, we w
the coin-particle dynamics in terms of a density matrixr(t)
that evolves according to

r~ t11!5~12p!Ur~ t !U†1p(
i

PiUr~ t !U†Pi
† . ~3!

HerePi is a projection that represents the action of the
coherence andp is the probability of a decoherence eve
happening per time step. We took Eq.~3! and evolved it
numerically for various choices ofPi . Motivated by the
likely form of experimental errors, we also modeled an i
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perfect Hadamard operator by applying a Gaussian sprea
standard deviationApp/4 about the perfect value ofp/2
implicit Eq. ~2!, compare Ref.@27#. An imperfect shift on the
particle has been studied in Ref.@22#. In each case we find
the same general form for the decay ofsp(T) from the quan-
tum to the classical value, with small differences in the rat
as shown in Fig. 2. The slope ofsp(T) is finite asp→0 and
zero atp51. We calculatedsp(T) analytically ~details in
Ref. @29#! for pT!1 andT@1 for the case wherePi is the
projector onto the preferred basis$ua,x&% ~decohering both
particle and coin!,

sp~T!.s~T!H 12
pT

6A2
1O~p!J . ~4!

This compares well with simulation data, once a seco
order correction fors(T)5(121/A2)1/2(T21/T) is taken
into account. The first-order dependence is thus proportio

FIG. 1. Distribution of the particle position for a quantum wa
on a line afterT5200 time steps. Pure quantum~dotted!, fully
classical~dashed!, and decoherence at the rate shown on the par
the system indicated by the key~solid!. Uniform distribution be-
tween2T/A2<x<T/A2 ~crosses! is also shown.

FIG. 2. Standard deviationsp(T) of the particle on a line for
different models of decoherence, forT5100 time steps.
5-2
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DECOHERENCE CAN BE USEFUL IN QUANTUM WALKS PHYSICAL REVIEW A67, 042315 ~2003!
to pT, so the sensitivity to decoherence grows linearly inT
for a given decoherence ratep.

The quantum walk on infinite regular lattices of high
dimension shows a similar decoherence profile, as migh
expected, since the standard deviation of a classical ran
walk is AT, independent of dimension.

IV. DISTRIBUTION SHAPE ON A LINE

The transition from quantum to classical in the stand
deviation of the particle position shown in Fig. 2 is qualit
tively the same for all types of decoherence examined. H
ever, there are interesting differences in the shape of
distribution of the particle position. The decoherence r
that gives the closest to uniform distribution has been
lected and plotted in Fig. 1, along with the pure quantum a
classical distributions for comparison. When the particle
sition is subject to decoherence that tends to localize
particle in the standard basis, this produces a highly unifo
distribution between6T/A2 for a particular choice ofp. The
optimal decoherence ratepu can be obtained by calculatin
the total variational distance between the actual and unif
distributions,

n~p,T![uuP~x,p,T!2Pu~T!uu tv[(
x

uP~x,p,T!2Pu~T!u,

~5!

whereP(x,p,T) is the probability of finding the particle a
position x after T time steps, regardless of coin state, a
Pu(T)5A2/T for 2T/A2<x<T/A2 and zero otherwise
Figure 3 showsn(p,T) for T5200 with decoherence applie
to the coin, particle, and both at once. Decoherence on b
particle and coin produces the best uniform distribution,
at a cost of a lower decoherence rate, and sharper minim
i.e., greater sensitivity to the value ofp. Walks with decoher-
ence only on the particle can tolerate more variation in
exact decoherence rate, while not achieving such a good
form distribution. The optimum decoherence rate depend
the number of steps in the walk, we determined numeric

FIG. 3. The total variational distance of the particle positi
distribution from the uniform distribution forT5200 and decoher-
ence on coin~dotted!, particle~dashed!, or both~solid!.
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that puT.2.6 for decoherence on both andpuT.5 for de-
coherence on the particle only. These differences in the q
ity of the uniform distribution are independent ofp and T,
and provide an order of magnitude~0.6 down to 0.06! im-
provement inn over the pure quantum value. Decoheren
just on the coin does not enhance the uniformity of the d
tribution, as Fig. 1 shows, there is a cusp atx50. However,
for finite T, there is still a useful window within which eve
coin only decoherence does not significantly degrade the
ear spreading of the walk.

V. DECOHERENCE ON A CYCLE

If, instead of an infinite line, the quantum particle is a
lowed to walk on a cycle of sizeN points, the appropriate
quantity to measure the progress of the walk is the mix
time. We immediately have to modify the classical definitio
because, unlike the classical random walk, which mixes t
uniform distribution in the the long time limit, a unitary pro
cess such as that evolving the quantum walk does not mi
any limit at large times. We can instead define a tim
averaged particle distribution

P~x,p,T!5
1

T (
t50

T21

P~x,p,t !, ~6!

which does always mix for large enough timesT @11#. It is
easy to sample from the distributionP(x,p,T): run the walk
for some randomly chosen number of steps 0,t,T and
measure the particle position at that timet. The mixing time
is then defined as

M e5min$Tu;t.T:uuP~x,p,t !2Puuu tv,e%, ~7!

where Pu is the limiting ~uniform! distribution over the
cycle. The mixing time quantifies how long it takes for th
time-averaged probability distribution of the particle positi
to reach its limiting value within a margin of small paramet
e.0.

The walk on a cycle is the simplest example of a walk
the Cayley graph of an Abelian group, and was historica
the first to be treated analytically@11#. The dynamics of the
walk on the cycle are the same as for the walk on a line, w
the particle position taken mod(N). Aharonov et al. @11#
proved an upper bound for the mixing time ofO(N logN).
The limiting distribution thus obtained depends on the cho
of coin operator@28#, in sharp contrast to the classical wal
which always mixes to a uniform distribution. For the Ha
amard coin used here, the odd-N cycle mixes to the uniform
distribution, but the even-N cycle does not@28#.

We numerically evaluated the mixing times for walks o
cycles of sizes up toN.80, both for pure states, and in th
presence of the same types of decoherence as describ
the preceding section for the walk on a line. For oddN
cycles with no decoherence, we find thatM e;N/e as com-
pared to the upper bound ofM e;N logN/e in Ref. @11#.
While we believe that the linear scaling withN is the correct
result, obtaining a tighter bound analytically is a tough ta
5-3



t

th
a

5

e,

at

a

to

as
le

an
-

ea-

be-
zed

e

ow
s the

lks

up a
ons
that

far
the

-
all
igh

tri
ta
e
of
ne

V. KENDON AND B. TREGENNA PHYSICAL REVIEW A67, 042315 ~2003!
because the time averaged probability distributionP(x,p,T)
is a rather fluctuating quantity, especially forp50, as is
illustrated in Fig. 4. In this figure, the quantityuuP(x,p,t)
2Puuutv from Eq. ~7! is plotted against time. The time a
which the curves last cross the horizontal line ate50.01 is
the mixing time as plotted in Fig. 5. A different choice ofe
thus causes a jump in the value ofM e if it happens to touch
the next peak inuuP(x,p,t)2Puuu tv .

A. Even-N cycles with decoherence

Under the action of a small amount of decoherence,
mixing time becomes shorter for all cases, typical results
shown in Fig. 5. Also, decoherence causes the even-N cycle

FIG. 4. Difference between the time averaged probability dis
butionP(x,p,T) and the uniform distribution expressed as the to
variational distance, Eqs.~5! and~6! for the case with decoherenc
on both coin and particle. Both axes are logarithmic. The valuee
used in Fig. 5 is shown as a horizontal line. The top three solid li
labeled on right are forN522 with p50 ~A!, p50.001 ~B!, p
50.02 ~C!. The lower four lines are forN521 with p50 ~solid!,
p50.002~dotted!, p50.01 ~short dashed!, p50.02 ~long dashed!.

FIG. 5. Numerical data for mixing times on cycles of sizeN
529 andN530 (h), for coin ~dotted!, particle~dashed!, and both
~solid! subject to decoherence, usinge50.01. AlsoN528 (3) for
coin. Both axes are logarithmic.
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to mix to the uniform distribution. The asymptotes in Fig.
for N even and decoherence on the coin only, forp,2/N, are
well fitted by epMe.N/4 for N divisible by 2, andepMe

.N/16 for N divisible by 4. For largerp, the mixing time
tends to the classical value ofN2/16e @note this is not
log(1/e) because we are calculating the average mixing tim
Eq. ~7!#. Although forN divisible by 4, the~coin-decohered!
mixing time shows a minimum below the classical value
p.2/N, this mixing time is*N2/32e, i.e., still quadratic in
N. Thus, although noise on the coin causes the even-N cycle
to mix to the uniform distribution, it does not produce
significant speed up over the classical random walk.

For decoherence on the particle position, withp
,16/N2, epMe.1/(N/221) for N divisible by 2, and
epMe.1/(N/413) for N divisible by 4. Atp.16/N2, there
is a minimum in the mixing time at a value roughly equal
the (N61)-cycle pure quantum mixing time,M e

(min)

;aN/e ~with a a constant of order unity!. The top three
lines in Fig. 5 show how decoherence pulls an even-N cycle
down to mix to the uniform distribution at the same rate
the neighboring odd-N cycle. Decoherence on the partic
position thus causes the even-N cycle to mix to uniform in
linear time for a suitable choice of decoherence ratep(min)

;16/N2, independent ofe.

B. Odd-N cycles with decoherence

For all types of decoherence, the odd-N cycle shows a
minimum mixing time at a position somewhat earlier th
the even-N cycle, roughlyp52/N2, but because of the os
cillatory nature ofP(x,p,T), the exact behavior is not a
smooth function ofp or e. As decoherence on the particle~or
both! increases, the oscillations inP(x,p,T) are damped out.
The lower set of lines on Fig. 4 shows how both these f
tures affect the mixing time. Atp.16/N2, the mixing time
passes smoothly through an inflexion and from then on
haves in a quantitatively similar manner to the adjacent-si
even-N cycles, including scaling asM e

(min);aN/e at the in-
flexion. Thus for 0<p&16/N2 there is a region where th
mixing time stays linear inN. Our overall conclusion is thus
the same as for the walk on a line, there is a useful wind
within which decoherence enhances rather than degrade
quantum features of the walk.

VI. HYPERCUBE DECOHERENCE

The hypercube~BooleanN-cube! is also the Cayley graph
of a group, and provides a step on the way to quantum wa
on more complex structures. Since there areN edges joining
at each vertex, we need anN-dimensional coin to choose
between the possible paths at each step. This opens
correspondingly larger range of possible unitary operati
to use for the coin toss, but a sensible choice is one
respects the symmetry of the underlying graph, and is as
from the identity as possible. For the hypercube, this is
Grover operator, whose elements expressed as anN3N ma-
trix are defined asGjk52/N2d jk . We also choose a sym
metric starting state for the coin with equal weights for
possible directions from the chosen starting node. The h

-
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DECOHERENCE CAN BE USEFUL IN QUANTUM WALKS PHYSICAL REVIEW A67, 042315 ~2003!
degree of symmetry in the hypercube allows the quan
walk to be mapped to a walk on a line with a different co
toss operation at each point@10#. While the mixing time for
a quantum walk on a hypercube is somewhat worse tha
classical random walk, Kempe@13# proved that the hitting
time to the opposite corner is polynomial, an exponen
speed up over the classical walk.

Kempe discusses two types of hitting times, one sh
where a measurement is made after a predetermined nu
of steps, and concurrent, where the desired location is m
tored continuously to see if the particle has arrived. In e
case, the key parameter is the probabilityPh of finding the
particle at the chosen location. We calculatedPh numerically
and found that all forms of decoherence have a similar ef
on Ph , see Fig. 6, reducing the peaks and smoothing out
troughs. For the one-shot hitting time this is useful, rais
Ph in the trough to well above the classical value, so it is
longer necessary to know exactly when to measure. Fop
&1/N, the height of the first peak scales asPh(p)
5Ph(0)exp$2(N1a)p%, where 0&a&2 depending on
whether coin, particle, or both are subject to decoherence
exponential decrease in the presence of decoherence so
about as bad as it could reasonably be, and for long time
course, decoherence reduces the walk to classical beha
However, the hitting times are short, only;Np/2 steps, and
p.1/N only lowersPh by a factor of 1/e. For algorithmic
purposes this is insignificant, only a factor of order unity a
thus still exponentially better than classical.~Standard ampli-
fication techniques can be used to bring the hitting proba
ity as close to 1 as desired.! Note also, that the size of th
graph~measured in number of nodes! is exponential inN, so
the decoherence has only a linear effect measured in term
the size of the graph.

Continuous monitoring of the target location as in t
concurrent hitting time is already a sort of controlled dec
herence, note that the height of the initial peak at;Np/2
steps is only about 2/3 that of the one-shot hitting proba
ity. No extra features are produced by the addition of un

FIG. 6. Hitting probability on a nine-dimensional hypercube f
one-shot~left! and concurrent~right!, perfect walk~circles!, with
p50.05 ~dotted!, p50.1.1/9 ~solid!. Classical hitting probability
barely visible~dashed!.
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lective decoherence, but there is still a range of 0,p&1/N
within which the quantum speed up is preserved. Note tha
both the one-shot and concurrent cases,p.1/N is a critical
damping rate, smoothing out the second peak@shown at
around 40 ([3Np/2) steps in Fig. 6#.

VII. ‘‘GLUED TREES’’ WALK

The graph used by Childset al. @15# is similar to the
hypercube in that it can also be mapped to a walk on a l
It consists of two identical binary trees of depthN, glued at
their branches by a randomly distributed set of edges~two
per node, so the degree of the graph is three except for
roots of the trees!. They use a continuous time walk for the
algorithm, but a discrete quantum walk using a thre
dimensional Grover coin operator has essentially sim
properties@19,28#. The effects of decoherence are similar
the hypercube. The peak in the probability of finding t
particle at the exit node occurs after 2N13 steps, and is
around 0.6 for a pure walk. Decoherence reduces this p
exponentially~in N) while spreading out the range of tim
steps over which the probability is significantly~exponen-
tially! larger than the classical value.

VIII. CONCLUSIONS

One of the generic ways in which classical random wa
are applied to algorithms is in the guise of Monte Ca
Markov chains and their variants, to sample an exponenti
large problem space to estimate statistical properties of
system. Fast mixing times and uniform sampling are nec
sary properties of the random walk process for it to perfo
efficiently. This is the sense in which we propose that a sm
amount of decoherence in a walk on the line or the cycle
beneficial, producing more uniform distributions~line! and
faster mixing to a uniform distribution~cycle!.

On the hypercube and ‘‘glued trees’’ walks, the key qua
tum property exploited by the examples in the literature
the opposite of a uniform distribution, the ability of a qua
tum walk to continue its forward march through the gra
despite the many possible ‘‘wrong turns’’ a classical rand
walk gets lost in. For the examples given, it is easy to de
mine a priori the best time to check for the particle havin
found the target node. But for more complex graphs this m
not be easy to calculate, so having a wider window of o
portunity to successfully detect the particle could be an
vantage. Note that the concurrent hitting time is doing e
actly this in a more precise way by monitoring the targ
node at every time step. For these type of walks, we do
claim that decoherence gives a major advantage, only th
is not detrimental for small decoherence rates.

We have also found numerically that the walk on a cy
mixes in linear time @compared to the upper bound o
O(N logN) proved in Ref.@11##, and show why it is hard to
prove a tighter bound analytically because the quantities
volved are highly fluctuating.

Overall, these results are quite promising for the devel
ment of further quantum algorithms, and for the practic
implementation of quantum computing. They are also
5-5
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couraging for the experimental implementation of quant
walks as proposed in Refs.@20–22#. For the modest numbe
of steps in the proposals, our results suggest a very rea
able range in which quantum effects can be observed exp
mentally. Finally, it is also an intriguingly counterintuitiv
result in its own right, worthy of further study in the conte
of the transition from quantum to classical.
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