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Abstract. In discrete time, coined quantum walks, the coin degrees of freedom
offer the potential for a wider range of controls over the evolution of the walk than
are available in the continuous time quantum walk. This paper explores some of
the possibilities on regular graphs, and also reports periodic behaviour on small
cyclic graphs.
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1. Introduction

Quantum walks are analogues of classical random walks, designed primarily with the aim of
finding quantum algorithms that are faster than classical algorithms for the same problem. There
are two distinct types of quantum walk, corresponding to classical random walks with discrete
or continuous time (but both taking place in a discrete space). Continuous time quantum walks
were first introduced in 1997 by Farhi and Gutmann [1]. Discrete time quantum walks with a
quantum coin appeared in the early 1990s in work by Y Aharonov et al [2], then were developed
as quantum cellular automata by Meyer [3]–[5] in 1996. The first explicitly algorithmic context
for coined quantum walks came from D Aharonov et al [6] and Ambainis et al [7] in 2000.

Two algorithms for quantum walks have recently been presented. Childs et al [8] prove that a
continuous time quantum walk can find its way across a special type of graph exponentially faster
than any classical algorithm, and Shenvi et al [9] prove that a discrete time, coined quantum
walk can equal Grover’s search algorithm, by finding a marked item in an unsorted database
with a quadratic speed-up over the best known classical algorithm. These results are extremely
promising, but still a long way from the diversity of problems that classical random walks
provide the best known solutions for, such as approximating the permanent of a matrix [10],
finding satisfying assignments to Boolean expressions (k SAT with k > 2) [11], estimating the
volume of a convex body [12] and graph connectivity [13]. Classical random walks underpin
many standard methods in computational physics, such as Monte Carlo simulations, so a more
efficient quantum alternative would presumably widen the potential application of quantum
computers to problems in physics.

In much the same way as we now know almost everything about the properties and possible
states of two qubits, though quantum computers will clearly need far more than two qubits to be
useful, the simple quantum walk on a line has now been well studied, see for example [7, 14]–
[18], though there is no suggestion that it will lead to useful quantum walk algorithms by itself.
The quantum walk on a cycle is a step closer to algorithms. The N -cycle is the Cayley graph of
the cyclic group of size N , and in addition to proving that the coined quantum walk on a cycle has
a time-averaged mixing time almost quadratically faster than a classical random walk, Aharonov
et al [6] also provided a lower bound on the time-averaged mixing times for quantum walks on
general graphs of bounded degree, suggesting a quadratic improvement over classical random
walks is the best that can be achieved. Moore and Russell [19] solved both discrete and continuous
time quantum walks on the hypercube of size N , showing that both have an instantaneous mixing
time linear in N , logarithmically faster than classical random walks. However, they also showed
that time-averaged mixing times on the hypercube are slower than classical; the continuous
time walk never mixes in the sense of the time-averaged definition. Kempe [20] proved that a
quantum walk can travel from one corner of a hypercube to the opposite corner exponentially
faster than a classical random walk; however, there are other classical algorithms that can do this
task efficiently so this does not provide a quantum advantage over classical. For a recent survey
of quantum walks and a more complete list of references, see [21].

So far, though the published literature on discrete and continuous time quantum walks
tends to treat different problems, the evidence suggests that both can accomplish the same tasks.
They are clearly not exactly equivalent, and the computational equivalence observed depends on
choosing an appropriate form for the coin operator for the discrete time walks. This raises the
possibility that different choices of coin operator could perform other useful tasks that are not
easily accessible within the continuous time quantum walk model. In this paper, we present a
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study of the properties of different coin operators using both analytical and numerical methods.
Our results are of interest both in themselves as examples of quantum dynamics, and as potential
ingredients for quantum algorithms. The paper is organized as follows. After setting up our
notation, we discuss the possibilities for graphs of degrees two, three and four in sections 2–4
respectively. In section 5 we briefly mention graphs of higher degree and in section 6 we describe
periodic quantum walks on cyclic graphs.

1.1. Notation for a general quantum walk

A general coined quantum walk on a d-regular graph needs a coin Hilbert space, Hd with d
the degree of each vertex in the graph on which the walk takes place, and a position Hilbert
space HN with N the number of vertices in the graph (which can be infinite). The dynamics
of the walk are controlled by a coin flip operator C that acts on the coin Hilbert space, and a
conditional shift operator S that shifts the particle position according to the state of the coin.
Together, U ≡ S(C ⊗ IN) is the unitary operator for one step of the walk. If the particle and
coin start in state |ψ0〉, the state of the system after t steps of the walk is |ψt〉 = U t |ψ0〉.

A powerful technique for the solution of classical random walks that generalizes well to
the quantum case is that of Fourier transformation. When the walk occurs on the Cayley graph
of some group, the quantum walk simplifies greatly on consideration of the Fourier space of the
particle [6, 7]. Quantum walks on the infinite line, N -cycle and hypercube admit this type of
solution. An alternative method using path counting (path integrals) was also presented in [7]
and further refined in [16].

2. Graphs of degree two

We will consider the simplest examples first, coined quantum walks on the line and the cycle.
The walk on the line has already been analysed in detail and the equivalence of all unbiased
coin operators noted by several authors [7, 14, 17]. We first review these calculations, since the
notation and results will be used in our analysis of the walk on the N -cycle.

2.1. Quantum walk on an infinite line

The most general two-dimensional unitary coin operator C
(gen)
2 can be written as a 2 × 2 matrix

C
(gen)
2 =

( √
ρ

√
1 − ρeiθ

√
1 − ρeiφ −√

ρei(θ+φ)

)
, (1)

where 0 ≤ θ, φ ≤ π are arbitrary angles, 0 ≤ ρ ≤ 1, and we have removed an irrelevant global
phase so as to leave the leading diagonal element real. The Hadamard coin operator is obtained
with ρ = 1/2 and θ = φ = 0. The parameter ρ thus controls the bias of the coin, ρ = 1/2 being
a fair coin that chooses each of the two possible directions |R〉 (right) and |L〉 (left) with equal
probability. Trivial cases ρ = 0, 1 give oscillatory motion and uniform motion respectively. The
Fourier transformation is performed only over the particle Hilbert space,

|ψ̃(k, t)〉 =
∑

x

|ψ(x, t)〉eikx . (2)

Here the state vectors |ψ(x, t)〉 and |ψ̃ (k, t)〉 are two-component vectors, with the first component
being the amplitude of the right moving part and the second component being that of the left
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moving part, with k ∈ [0, 2π). Using the general form of the coin transition matrix for a
one-dimensional walk, equation (1), a single step of the walk becomes

|ψ̃(k, t + 1)〉 = C
(gen)
k |ψ̃(k, t)〉, (3)

where C
(gen)
k is a 2 × 2 matrix acting on the coin Hilbert space,

C
(gen)
k =

( √
ρeik

√
1 − ρei(k+θ)

√
1 − ρei(−k+φ) −√

ρei(−k+θ+φ)

)
. (4)

This matrix may be diagonalized, yielding eigenvalues

λ±
k = ±eiδe±iωk , (5)

where δ = (θ + φ)/2 and

sin(ωk) = √
ρ sin(k − δ). (6)

The associated eigenvectors are

|ξ̃±
k 〉 = 1

n±
k

(
eik

e−iθ (λ±
k − √

ρeik)/
√

1 − ρ

)
, (7)

with the normalization factor n±
k given by

(n±
k )

2 = 2{1 ∓ √
ρ cos(k − δ ∓ ωk)}/(1 − ρ). (8)

For a general unbiased initial coin state, |ψ(x, 0)〉 = √
η(|R〉+ eiα

√
1 − η|L〉)⊗|0〉, the Fourier

components at t = 0 can be found from equation (2),

|ψ̃(k, 0)〉 =
( √

η

eiα
√

1 − η

)
⊗ |k〉 ∀k. (9)

Collecting all these pieces together, it is possible to write down the Fourier components at all
later times t ,

|ψ̃(k, t)〉 = (C
(gen)
k )t |ψ̃(k, 0〉. (10)

Expressing C
(gen)
k in terms of its eigenvalues and eigenvectors, (C(gen)

k )t = (λ+
k )

t |ξ̃+
k 〉〈ξ̃+

k | +
(λ−

k )
t |ξ̃−

k 〉〈ξ̃−
k |, gives

|ψ̃(k, t)〉 = (λ+
k )

t |ξ̃+
k 〉〈ξ̃+

k |ψ̃(k, 0)〉 + (λ−
k )

t |ξ̃−
k 〉〈ξ̃−

k |ψ̃(k, 0)〉. (11)

The coefficients of |ξ̃±
k 〉 are given by

(λ±
k )

t〈ξ̃±
k |ψ̃(k, 0)〉 = (λ±

k )
t

n±
k

e−ik

{√
η −

√
1 − η

1 − ρ
ei(θ+α)(

√
ρ ∓ ei(k−δ)e∓iωk )

}
. (12)

All the subsequent statistics for the probability distribution may be found by inverting the Fourier
transform and applying standard methods from complex analysis [7, 16]. However, the question
of the effect of the extra degrees of freedom α and η pertaining to the quantum coin, and φ, θ
and ρ in the coin operator, may be answered directly from equation (12). The parameters η and
ρ appear in a non-trivial way and thus affect the subsequent evolution of the walk, but the phase
factor α occurs solely with the phase θ in the coin flip operator as the combination (θ + α). The
other influences on the evolution from the phases in the coin flip matrix come from the factor eiδt

in the eigenvalues, which is a global phase and therefore does not affect observable quantities,
and from phases of ei(k−δ) (explicitly and inωk), which disappear when k is integrated over its full
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Figure 1. Asymmetric distributions obtained with various initial states and
Hadamard coin for the walk on a line after 100 steps: coin bias η 
 0.85
(crosses), coin state |R〉 (circles), with symmetric (dashed) and classical (dotted)
for comparison. Only even-numbered positions are plotted, since the distribution
is zero on odd-numbered positions.

range during the inverse Fourier transform. Thus, for any given θ in the coin operator, one may
choose an α so as to give the full range of possible evolutions. This has been noted by several
authors, [7, 14, 17]. For the walk on a line, without loss of generality, one may thus restrict the
coin operator to one with real coefficients, and obtain the full range of behaviour by choosing
different initial coin states. Further restricting to unbiased coins (ρ = 1/2), the Hadamard coin

C
(H)
2 =

(
1 1
1 −1

)
, (13)

is thus the only possible type of coin for the quantum walk on a line.
The asymmetry of the distribution obtained for an initial coin state of |R〉 or |L〉 is now

well known, and is also obtained for unbiased initial states with α = 0 or π . However, it is
possible to create an even more biased distribution using the Hadamard (unbiased) coin operator,
by choosing a biased initial state with η 
 0.85, i.e., |ψ0〉 = (

√
0.85|R〉+

√
0.15|L〉)⊗|0〉. This

is shown in figure 1, along with the distributions for |R〉, and symmetric quantum and classical
distributions for comparison. The asymmetry of the distribution can be quantified by examining
the third moment, which we take about the origin, i.e., with reference to the initial location of the
particle, normalized by the second moment, 〈x3〉/〈x2〉3/2. This quantity is just greater than one for
the initial state with η 
 0.85, and around 0.7 for an initial state of |R〉 (obtained numerically; for
analytic formulae see [22, 23]; the value of η comes from cos(π/8) 
 0.85). By simply changing
the phase by π to

√
0.85|R〉 − √

0.15|L〉, the distribution becomes symmetric. Comparing this
with the unbiased coin initial state (|R〉 + i|L〉)/√2 that also gives a symmetric evolution, and
noting that the Hadamard operator is real, so any component with phase i remains orthogonal to
any real component, we can see that there are two distinct ways of arriving at a symmetric quantum
walk on a line. Initial states

√
0.85|R〉 − √

0.15|L〉 (biased) and (|R〉 + i|L〉)/√2 (symmetric)
give almost identical probability distributions, but the former is obtained by interference and the
latter by combining probabilities from two mirror image orthogonal components.
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This gives us our first insights into how to use the coin to control the walk. The quadratic
speed-up in the spreading of the quantum walk over classical is unaffected by the choice of
initial state or coin operator: the speed-up comes solely from the coherent wave motion along
the line. This is made clearest by noting that a maximally mixed initial coin state also produces
a symmetric distribution like the previous two examples. We can then control whether (and to
what degree) the waves will interfere constructively, destructively or not at all, by choosing the
phase and bias of the coin initial state.

2.2. Quantum walk on an N-cycle

The walk on an N -cycle is the same as the walk on the line but with the particle position taken
as x (modN ). It is also amenable to solution in the Fourier basis. The finite state space of the
particle gives rises to a discrete, finite momentum space defined by

|ψ̃N (k, t)〉 = 1√
N

N∑
x=0

|ψN (x, t)〉e2π ikx/N , k ∈ {0, 1, . . . , N − 1}. (14)

From here it is possible to proceed in a similar manner to that shown in section 2.1 for a walk
on an infinite line. Equation (3) may be used again, with the discrete version of C

(gen)
k given by

C
(N)
k =

( √
ρe2π ik/N

√
1 − ρei(2πk/N+θ)

√
1 − ρei(−2πk/N+φ) −√

ρei(−2πk/N+θ+φ)

)
. (15)

This may again be diagonalized, yielding eigenvalues

λ±
k = ±eiδe±iω(N)k , (16)

where now

sin(ω(N)k ) = √
ρ sin(2πk/N − δ), (17)

compare equation (6). The possible solutions for ω(N)k are bounded by sin−1(
√
ρ); e.g., for

ρ = 1/2, there are two solutions for ω(N)k , one in each of the regions [π/4, 3π/4] and
[−π/4,−3π/4]. The first solution corresponds to λ+

k and the second to λ−
k .

Classically, a random walk on a cycle tends to a uniform distribution over all points on the
cycle at long times. Since the quantum walk is unitary and reversible, it never reaches a uniform
distribution, the initial state influences the particle’s dynamics at all later times. However, we
can define a time-averaged distribution [6] which does tend to a limiting value for large T ,

P̄(x, T ) = 1

T

T −1∑
t=0

P(x, t), (18)

where P(x, t) = |U t |ψN (x, 0)〉|2. It is proven in [6] that

lim
T→∞

P̄(x, T ) =
∑

v,u∈λv=λu

〈ψN (x, 0)|φ±
v 〉〈φ±

u |ψN (x, 0)〉
∑

a

〈x, a|φ±
v 〉〈φ±

u |x, a〉, (19)

where the sum is taken only over degenerate eigenvectors of the position space evolution matrix
U , which are denoted by |φ±

v 〉, |φ±
u 〉, with eigenvalues λ±

v = λ±
u . The general initial state is once

again |ψN (x, 0)〉 = √
η(|R〉+eiα

√
1 − η|L〉)⊗|0〉. For the walk on an N -cycle, the eigenvectors

of U in the position basis are given by |φ±
v 〉 = |ξ±

k 〉 ⊗ |χk〉, where the |ξ±
k 〉 are the eigenvectors

of the matrix C
(N)
k and |χk〉 = 1√

N

∑
x e2π ikx/N |x〉, i.e., a discrete Fourier transform of the usual
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particle position basis states. (We omit labels of N from |ξ±
k 〉 and |χk〉 to keep the notation less

cluttered.) The associated eigenvalues of U are (by construction) equal to those of the matrices
C
(N)
k , namely λ±

k . Hence we can rewrite equation (19) in terms of the eigenvectors of C
(N)
k ,

lim
T→∞

P̄(x, T ) =
∑

a,k, j,b,c

〈ψN (x, 0)|χk, ξ
b
k 〉〈χ j, ξ

c
j |ψN (x, 0)〉〈x, a|χk, ξ

b
k 〉〈χ j, ξ

c
j |x, a〉. (20)

The sum is taken over k, j, b and c such that λb
k = λc

j . It was shown in [6] that since the |χk〉
induce a uniform distribution over the nodes, the limiting distribution will also be uniform if
all eigenvalues are distinct. The eigenvalues are degenerate in the general case if there exist
non-trivial solutions for

sin(2πk/N − δ) = sin(2π j/N − δ). (21)

This equation has solutions k = j and k + j (mod N ) = N/π(δ + π/2). The first is trivial, but
whether the second solution has roots depends on the coin flip operator and on N . For example,
when a Hadamard coin is used, θ = φ = δ = 0 so the condition becomes k + j (modN ) = N/2
which has roots only for even N . Thus for a Hadamard walk, cycles with an odd number of nodes
converge to the uniform distribution and those with an even number converge to a non-uniform
distribution derived below. However, for a given N , the coin flip operator with (δ +π/2) = π/N
gives roots when k + j (modN )1 which always has a solution, leading to a non-uniform limiting
distribution. Conversely, if δ is not a rational multiple of π , there can be no solutions, and
so the walk will always mix to the uniform distribution. Thus, by appropriate choice of coin
operator, a walk on any size cycle can be made to converge either to a uniform or to a non-uniform
probability distribution. This is in direct contrast to the classical case, in which the properties of
the limiting distribution depend solely on the form of the graph.

We note that the limit as the cycle size N → ∞ leads to the condition δ = −π/2 for a
non-uniform limiting distribution. This gives θ + φ = −π ; the simplest unbiased coin operator
corresponding to this is

C
(nu)
2 = 1√

2

(
1 −i
−i 1

)
. (22)

However, the practical limit of infinite cycle size is the walk on a line, where the opposite edges
of the walk never meet, and conditions for non-uniform distributions are not meaningful.

It is possible to derive the limiting distribution when there exist degenerate eigenvalues of
the evolution operator U . In these cases, the summation in equation (20) contains two distinct
types of term, those for which k = j and those for which j = N/π(δ + π/2)− k ≡ − k,

lim
T→∞

P̄(x, T ) =
∑
a,k,b

[|〈ψN (x, 0)|χk, ξ
b
k 〉|2|〈x, a|χk, ξ

b
k 〉|2

+ 〈ψN (x, 0)|χk, ξ
b
k 〉〈χ−k, ξ

−b
−k|ψN (x, 0)〉

× 〈x, a|χk, ξ
b
k 〉〈χ−k, ξ

−b
−k|x, a〉]. (23)

Using |〈x |χk〉|2 = 1/N ,
∑

a |〈a|ξ b
k 〉|2 = 1 and

∑
k,b |〈ψN (x, 0)|χk, ξ

b
k 〉|2 = 1, the first term is

easily seen to be the uniform distribution (1/N ). In the second term, the factor that determines
the form of the limiting distribution is

〈x |χk〉〈χ−k|x〉 = e4π ix/N(k−Nδ/2π−N/4), (24)

which controls the sign of the terms in the sums. When x = 0, all the terms in the summation are
positive, leading to a spike in the distribution about the origin. Similarly, if x = N/2, the phase
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Exit

columns

1 2 3 4 5 6 7 8 90

Entrance

Figure 2. ‘Glued trees’ graph used in the algorithm of [8]. Example shown is
for N = 4, with 2N + 1 = 9 columns labelled at the bottom of the figure, and
2(2(N+1) − 1) = 62 nodes. The task is to travel from entrance to exit without
getting lost in the randomly joined middle section of the graph. The gap between
columns 4 and 5 is for clarity in the figure and is not significant in the algorithm.

of each term is 2π(k − Nδ/2π− N/4) so the terms add coherently (remember (Nδ/π− N/2) is
an integer). Specifically, for the Hadamard coin, δ = 0 and the contribution to the sum is positive
if N/2 is even, i.e., N is divisible by four, or negative if N/2 is odd, leading to a minimum. The
Hadamard case has been independently calculated in more detail by Bednarska et al [24], who
also explore some possibilities for highly non-uniform limiting distributions generated by initial
states superposing several particle positions.

The effects of different coin flip operators have received little attention in the literature to
date, perhaps due to the minimal effect they have for a walk on a line. However, for quantum
walks containing closed cycles, the choice of coin flip operator determines which phase the
wavefronts have when they meet up with each other, selecting between whether constructive
or destructive interference occurs. Note that in [18] it was shown that decoherence in a walk
on a cycle causes all initial states and coin operators to mix to the uniform distribution even
while there is still a clear quantum speed up over the classical mixing times. The coherence
required for non-uniform limiting distributions is thus much more stringent than that required
for a quantum speed-up of the mixing time over classical. This suggests that in order to use the
effects of non-uniform limiting distributions it will be more useful if they have properties that
can be measured after relatively few steps of the walk, rather than waiting for long times.

3. Graphs of degree three

Regular lattices of degree three have been studied briefly numerically [25], where the spreading
rate was shown to be faster than classical. The ‘glued trees’ graph used for the algorithm
presented in [8] is also of degree three apart from the special start and end points that form the
roots of the two binary trees; see figure 2.

This structure is highly symmetric, despite the random connections in the middle, and,
provided a symmetric initial state is used at the entrance node, the whole quantum walk process
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Figure 3. Distribution over columns of the ‘glued trees’ graph of [8] with a
discrete time walk using a Grover coin. This is for a graph of size N = 7 (with
2N + 1 = 15 columns). The vertical dashed line indicates the position of the
random join between the two trees. The quantum walk reaches the far end in just
17 steps, with probability around 0.6 (the same as the continuous time version).

can be mapped to a walk on a line (the column positions shown in figure 2) with different biases
in the probabilities for moving right or left at each step. Childs et al [8] use a continuous time
walk for their algorithm, but if a three-dimensional coin based on Grover’s diffusion operator
with elements 2/d − δi j ,

C
(G)
3 = 1

3

(−1 2 2
2 −1 2
2 2 −1

)
, (25)

is used with a discrete walk, the amplitude also interferes constructively in the right way to reach
the opposite root of the trees quickly with high probability [18, 26]; see figure 3.

The Grover coin is biased but symmetric. The DFT (discrete Fourier transform) coin is
unbiased, but asymmetric in that you cannot interchange the labels on the directions without
changing the coin operator. For d = 3, it looks like

C
(D)
3 = 1√

3

( 1 1 1
1 eiω e−iω

1 e−iω eiω

)
, (26)
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Figure 4. As figure 3 but with DFT coin, after 12 (circles), 60 (squares) and 120
(triangles) steps of the walk. A classical random walk after 120 steps is shown
dashed.

where eiω and e−iω are the complex cube roots of unity. For d = 2, the DFT coin reduces to
the Hadamard coin, equation (13). If a DFT coin is used instead of a Grover coin on the ‘glued
trees’ graph, this keeps the amplitude near the starting point and the walk does not spread out
even as far as a classical random walk, see figure 4. While this is not useful in the context of the
‘glued trees’ problem, it is still highly non-classical behaviour, and with the right problem and
initial coin state the DFT coin operator may find its place in a useful quantum walk algorithm.

4. Graphs of degree four

Quantum walks on regular two-dimensional lattices have been investigated numerically by
Mackay et al [25]. They found that the choice of coin operator gave different prefactors to
the linear spreading rate of the quantum walk (compared to quadratic classically) and showed
some different symmetries for different coin operators.

Here we present a more systematic (but by no means comprehensive) investigation of the
effects of different unbiased coin operators combined with different initial states. We consider
mainly an unbounded, regular, square lattice, but also consider the cases where the edges are
joined in either normal periodic boundary conditions to give a torus, or twisted to give a Klein
bottle.

4.1. Quantum walk on a two-dimensional lattice

One obvious generalization of a Hadamard coin to two spatial dimensions is to take two Hadamard
coins, one for left or right (|L〉, |R〉), and one for up or down (|U 〉, |D〉). As shown in [25],
this simply produces the same pattern as the Hadamard coined walk on a line in both directions,
because the coin operator does not mix the two directions in any way; see figure 5. The standard
deviation is the same for all choices of initial state that produce a symmetric distribution, even
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Figure 5. Distribution obtained after 40 steps of a quantum walk on a
square lattice using a Hadamard coin operator and the symmetric initial state
equation (29).

maximally mixed, and is
√

2 larger than the standard deviation for the walk on the line, as noted
by Mackay et al [25].

More interesting are the degree-four DFT coin,

C
(D)
4 = 1

2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 , (27)

and degree-four Grover coin,

C
(G)
4 = 1

2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 (28)

(the only case where the Grover coin is unbiased), both used in [25]. Typical results for these
coins and a symmetric initial coin state

|ψ(sym)
0 〉 = 1

2(|L D〉 + i|LU 〉 + i|RD〉 − |RU 〉)⊗ |0〉
= 1

2(|L〉 + i|R〉)⊗ (|D〉 + i|U 〉)⊗ |0〉, (29)

with the particle starting at the origin, are shown in figures 6 and 7.
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Figure 6. Distribution obtained after 40 steps of a quantum walk on a square
lattice using a DFT coin operator and the symmetric initial state equation (29).

As noted in section 2, there is essentially only one type of coin operator for the quantum
walk on a line, the Hadamard operator, with the full range of outcomes accessible by adjusting
the coin initial state. For the walk on a two-dimensional lattice, the situation is obviously more
complicated: the three coins illustrated so far give distinctly different results whatever initial
coin state is chosen. The full range of possibilities is determined by the SU(4) group structure of
the unitary coin operator, but in order to sample the possibilities numerically, we chose to look at
unbiased coins (all elements have modulus one half) and to further restrict those elements to be
±1/2 or ±i/2. Choosing the leading diagonal entry to be +1/2 leads to a set of 640 such unitary
coin operators; however, there is a high degree of redundancy if one groups all results that are
the same apart from rotation or reflection. This can be done by using a simple initial state of
(say) |RU 〉, and recording the second moment of the distribution. The 640 coin operators then
fall into just ten types, with either 32, 64 or 128 coin operators of the original 640 in each type
(more symmetric distributions have fewer variations). The Hadamard, Grover and DFT coin
operators are all of different types.

We then varied the initial state of the coin, and looked for the maximum and minimum
second moments. These always occurred for symmetric distributions (zero first moment); the
second moment is thus equal to the variance in these cases. Our results contradict those of
Mackay et al, whose choices of initial states did not fully exploit the properties of the Grover
coin. Out of the ten types, the Grover type coin can produce both the maximum and minimum
possible second moments, meaning that, depending on the initial state, it can either spread fastest
or slowest from the starting point. The distributions make clear why; see figure 7. They have an
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Figure 7. Distribution obtained after 40 steps of a quantum walk on a square
lattice using a Grover coin operator and the symmetric initial state equation (29).

imperfect circular symmetry on the square lattice, with a central spike, and a ring with something
like the profile of the distribution of the walk on a line superimposed on it. The different initial
states control how much of the distribution is in the central spike and how much is in the ring,
leading to the minimum and maximum values of the standard deviation. In fact, most of the
distribution ends up in the central spike, except for exactly the right choice of initial state,

|ψ(G)
0 〉 = 1

2(|L D〉 − |LU 〉 − |RD〉 + |RU 〉). (30)

Figure 8 shows the distribution produced from this initial state; the contrast with figure 7 due to
the absence of the central spike is striking (though note the vertical axes have different scales).
Shenvi et al [9] exploit this property of the Grover operator in a different way in their quantum
walk search algorithm. Here they perturb the coin operator by applying a different operation
just at one marked vertex. This causes an initially uniform particle distribution over the whole
lattice to converge on the marked vertex, the reverse of a quantum walk starting at the origin and
spreading out.

A DFT coin is not so symmetric (at most rotationally symmetric through π , whereas both
Hadamard and Grover coin operators can produce distributions rotationally symmetric through
π/2), but with the right choice of initial condition it too can produce a ring shape with no central
spikes; see figure 9. The initial state that produces this distribution is

|ψ(D)
0 〉 = 1

2

(
|L D〉 +

1 − i√
2

|LU 〉 + |RD〉 − 1 − i√
2

|RU 〉
)
. (31)
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Figure 8. Distribution obtained after 40 steps of a quantum walk on a square
lattice using a Grover coin operator and the symmetric initial state equation (30).

The results presented by Mackay et al [25] did not test a sufficiently wide range of initial
states to draw representative conclusions about the effects of entangled coins on the distributions
obtained for the quantum walks. They attributed faster spreading to lack of entanglement between
the coin directions. However, the differences we have found between Hadamard coins and Grover
or DFT coins are not in the degree of spread per se, but in the extent to which this can be varied
simply through varying the initial coin state. Both the Grover and DFT coins produce faster
spreading than the Hadamard coins with the initial states noted above.

4.2. Cycles in two dimensions

By joining a square or rectangular section of a two-dimensional lattice at opposite edges, the
walk space becomes periodic in both directions. In one dimension there is only the N -cycle, but
in two dimensions the edges can be joined directly, or twisted like a Möbius strip. This gives
three structures that are two-dimensional analogues of the N -cycle, a torus, a closed Möbius strip
and a Klein bottle, depending on whether none, one or both pairs of the edges are joined twisted.
Periodic boundary conditions of these types are easy to implement numerically. We tested a
range of such structures using the same coins as for the walk on a lattice, and found similar
results to those for a walk on an N -cycle with respect to mixing times and limiting distributions.
Further results for two-dimensional cycles are presented at the end of section 6.
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Figure 9. Distribution obtained after 40 steps of a quantum walk on a square
lattice using a DFT coin operator and the symmetric initial state equation (31).

5. Graphs of higher degree

For completeness, we mention that the hypercube, first studied by Moore and Russell [19], and
later found by Kempe [20] to illustrate the possibility of an exponential speed-up with quantum
walks, uses a higher dimensional coin. A hypercube with 2N vertices has exactly N connections
to each vertex and thus requires an N -dimensional coin Hilbert space. Shenvi et al [9] also based
their quantum walk search algorithm on a hypercube, though, as they note, other lattices, such
as a square lattice, will do equally well. The symmetry of the hypercube with a Grover coin
is such that, with a symmetric initial state, the whole problem may be mapped to a walk on a
line with a variable coin operator, in the same way as for the ‘glued trees’ graph (see section 3).
Consequently, there is a wide range of possibilities with less symmetric higher dimensional coins
yet to be explored.

6. Periodicity in quantum walks

Systematic study of a quantum walk on an N -cycle (described in section 2.2) shows that, among
the smaller values of N , a number of completely periodic walks arise. This is the opposite
property to mixing: here the walk returns exactly to its initial state after a finite number of steps
�, whereupon it repeats the same set of steps and returns exactly again after 2� steps and so
on. There is no classical analogue of this property for random walks, since in the classical
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Figure 10. Probability of finding the particle at its initial position (x = 0) for
cycles of size N = 8 (upper) and N = 16 (lower) plotted against the time step of
the quantum walk using a Hadamard coin. Only even time steps are plotted, since
for odd time steps the probability of finding the particle at an even numbered node
is zero.

case the dynamics are not deterministic. A classical random walk on a cycle will return to its
starting state at irregular, unpredictable times. Note, too, that this periodicity is not connected
with whether the limiting distribution is uniform or not, since here we are concerned with exact
return to the initial state, rather than the time-averaged quantity in equation (18). Related ideas
in continuous time walks have been studied by Ahmadi et al [27], where they are concerned with
exact instantaneous uniform mixing, rather than exact instantaneous return to the initial state.

Using a Hadamard coin, the ‘cycle’ of size N = 2 is trivially periodic, returning to its
original state after two steps. A cycle of size N = 4 has a period of eight steps. This was first
noted by Travaglione and Milburn [28]. The cycle with N = 8 has a period of 24 steps, but
N = 16 is chaotic and does not return to its initial state exactly even after many thousands of
steps. This is illustrated in figure 10, where the probability of the particle being at its initial
position is plotted as a function of the time step. A probability of one is an exact return to the
initial state (modulo the coin state, which is not shown here, but does also, in fact, return to
exactly the initial state). If the coin is allowed to be biased, then a few more periodic examples
can be found, N = 6 with period 12, and N = 10 with period 60. With judicious choice of
phases in place of the Hadamard phases of θ = φ = 0, N = 3 has a period of 12, and N = 5
has a period of 60, clearly related to N = 6 and 10 respectively, but these were the only odd-N
cycles we found. These results are summarized in table 1.

The condition that must be satisfied for exact periodicity is obtained from equation (11),
which also holds for the walk on a cycle if the appropriate forms for the eigenvalues and
eigenvectors are substituted. The wavefunctions |ψt〉 at two different times, t and t + �, are
set equal, giving

(λ±
k )

� = 1 ∀k ∈ {0, 1 . . . N − 1}. (32)
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Table 1. Known periods in a walk on a cycle. Coin phase δ = 0 unless specified.

N Period � Bias in coin ρ

2 2 1
2

3 12 1
3 , δ = π

3

4 8 1
2

5 60
(

sin(π/6)
sin(π/5)

)2
, δ = 3π

5

6 12 1
3

8 24 1
2

10 60
(

sin(π/6)
sin(π/5)

)2 
 0.7236

16 Chaotic 1
2

Using equation (16) gives

(δ + ωk)� = 2π j+,

(δ − ωk + π)� = 2π j−,
(33)

where j± are integers. Substituting these into equation (17) gives

cos
(π j

�

)
= √

ρ cos
(2πk

N
− πm

�

)
∀k, (34)

where ρ is the bias in the coin operator, m is an integer specifying the relative phases in the coin
operator through mπ/� − π/2 = δ = (θ + φ)/2, k is the integer Fourier variable and j is an
integer that can be different for each k, but must be odd or even to match whether m is odd or
even. Clearly, the larger N is, the harder it is to find solutions for equation (34) for all k at the
same time (apart from the trivial solutions for ρ = 0 or 1). We do not know whether we have
found all possible solutions that give periodic quantum walks on a cycle, but we conjecture that
there are only a finite number of such solutions and that we have found nearly all if not all of
them.

We also studied periodicity on two-dimensional cycles, as described in section 4.2. With
a Hadamard coin and a torus made from suitable small dimensions, periodicity is also obtained
in the cases predictable from table 1. For a closed Möbius strip or Klein bottle, the twisted
dimension is only periodic if the size is half that in table 1, because the twist causes the walk
to traverse the cycle twice before returning to its initial state. The Grover coin shows the same
periodicities as the Hadamard coin. However, a DFT coin only shows perodicity for a torus of
dimensions 4 × 4, and not at all on the twisted surfaces. This is due to the asymmetry of the
DFT coin compared to the Grover and Hadamard coins. During the double circuit of the twisted
surface, the wavefunction interferes with a mirror image of itself, so periodicity will only be
observed with coins that produce suitably mirror symmetric distributions.
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7. Summary

We have studied discrete, coined quantum walks on regular lattices, in one and two spatial
dimensions (graphs with vertices of degree two, three and four). Both the bias (away from equal
probability of choosing each direction) and the phases in the coin operator, and the initial state of
the coin, can be used to control the evolution of the quantum walk. In a quantum walk on a line,
we have found a biased initial state of the coin which produces a higher degree of asymmetry
than the simple |L〉 or |R〉 initial states. The same bias produces a symmetric distribution when
combined with the opposite phase between the coin components. This illustrates two distinct
ways to obtain the same symmetric distribution, by interference, and by combination of two
orthogonal biased distributions each a mirror image of the other. In a quantum walk on a cycle,
we have determined the condition for mixing to a uniform limiting distribution, for a general coin
operator and initial state. Non-uniform limiting distributions are highly sensitive to decoherence,
so, to make use of the properties of such walks, it will be best to measure effects that occur after
a reasonably short number of steps of the walk. Quantum walks of degree three have a more
interesting choice of coin operators; an example in which a Grover coin solves a problem (‘glued
trees’) efficiently, while a DFT coin stays nearer the starting point than even a classical random
walk, illustrates the range of possibilities to be explored. Numerical study of regular lattices
in two dimensions (degree-four graphs) shows that the Grover and DFT coins have interesting
properties independent of the symmetry of the lattice (circular spreading on a square lattice).
Suitable choice of initial state makes the Grover coin spread fastest or slowest out of all the
coin operators tested, in contrast to the conclusions in [25], where only a few initial states were
tested. Finally, a small set of exactly periodic quantum walks on cycles of sizes 2, 3, 4, 5, 6, 8
and 10 has been found, and the condition on which this exact periodicity depends derived. Such
periodicities are of interest in their own right, and we also suggest that it may be possible to
exploit them to pick out small scale regularities in larger structures.
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