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Scaling theory of three-dimensional spinodal turbulence
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A scaling theory for spinodal decomposition in the inertial hydrodynamic regime is presented. The scaling
involves three relevant length scales, the domain size, the Taylor microscale, and the Kolmogorov dissipation
scale. This allows for the presence of an inertial ‘‘energy cascade,’’ familiar from theories of turbulence, and
improves on earlier scaling treatments based on a single length: these, it is shown, cannot be reconciled with
energy conservation. This theory reconciles thet2/3 scaling of the domain size, predicted by simple scaling,
with the physical expectation of a saturating Reynolds number at late times.

PACS number~s!: 64.75.1g
if
a
d

n
n

th
b

n-
te
io
te
n
ze
en

s,

rv

is
e

va
rv
tiv

ze
r
d

m

og-
ely
ri-
e-
ntil
ly

m-

a
wo
-
ry
face
re
k,
ns.

is
ted
t
,

not
in

li-
cial

in
le
al,p
A binary fluid mixture will undergo phase separation,
the two fluids are mutually repulsive, below some critic
temperature. Presented here is a theoretical study of the
namics of spinodal decomposition in three dimensions, i
50/50 mixture where the two fluids are incompressible a
have the same shear viscosity,h, and density,r. Starting
from a completely mixed state, quenched to far below
critical temperature, the initial separation is dominated
diffusion until well-defined interfaces form between two i
terlocking domains of single fluid regions. The ensuing la
stage coarsening is then driven by the interfacial tens
resisted by viscosity as the bulk fluid flows so as to flat
the interfaces and enlarge the domain size. The coarse
can be followed through the average domain si
L, most commonly measured by the inverse first mom
of the spherically averaged structure factor,S(k) of the
difference in the concentrations of the two fluid
L52p*S(k)dk/*kS(k)dk. Using a simple~single length
scale! scaling theory, Siggia@1# predicted that the domain
size first shows linear growth,L;t, in the viscous hydrody-
namic regime. Furukawa@2# extended this, predicting a
crossover to a slower growth rate oft2/3 in the inertial hy-
drodynamic regime. These growth rates have been obse
in numerical simulation, see, e.g.,@3–7#. Linear growth has
been observed experimentally@8#.

In what follows, I show that the simple scaling theory
inconsistent with energy conservation in the inertial regim
a minimal alternative is presented, based on three rele
length scales, which allows both force balance and conse
tion of energy to be maintained at late times. The alterna
scaling theory recovers theL;t2/3 scaling, but gives differ-
ent scalings for other quantities~such as velocity gradients!.
This allows the physical requirement, recently emphasi
by Grant and Elder@9#, that the fluid Reynolds numbe
should not diverge in the long time limit, to be reconcile
with the t2/3 scaling.

The scaling approach developed here ignores the ano
lous scaling corrections of modern turbulence theory@10#.
The analysis of spinodal decomposition presented below

*Present address: Optics Section, The Blackett Laboratory, Im
rial College, London, SW7 2BW, United Kingdom.
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thus an approximate one, but as legitimate as the Kolm
orov theory of homogeneous turbulence. As such, it is lik
to be a useful tool for interpreting simulations and expe
ments on the inertial hydrodynamic regime of spinodal d
composition, and may be the best description available u
the ~simpler! problem of homogeneous turbulence is ful
solved.

The system can be described by the isothermal inco
pressible Navier-Stokes equation~NSE!,

r
]v

]t
1r~v•¹!v5h¹2v2¹•P, ~1!

wherev is the fluid velocity.~This can be represented by
single variable regardless of fluid composition since the t
fluids have identical properties.! Included in the pressure ten
sor, P, is the interfacial stress which comes from capilla
forces; the excess Laplace pressure in the curved inter
drives the bulk fluid away from regions of tight curvatu
which eventually collapse into narrow ‘‘necks’’ that brea
leading to further enlargment of the remaining bulk domai
Using simple scaling arguments@1,2,11#, the interfacial force
density,¹•P, can be approximated bys/L2, wheres is the
interfacial tension between the two fluids. The interface
assumed to remain locally smooth and completely percola
throughout the phase separation process, with constans.
This is reasonable provided diffusion is rapid on the scalej,
of the interfacial width~to maintain local equilibrium on the
time scale of the interfacial motion! while being negligible
over scales of the order of the domain size so it does
contribute to the domain growth rate. This requires care
simulation work@7#, but in real fluids,L@j can easily be
arranged.

The linear scaling is readily obtained from Eq.~1! by
neglecting the inertial terms on the left-hand side~lhs! and
equating the viscous term to the interfacial one, usingv;L̇
and ¹;1/L. When the inertial terms are no longer neg
gible, reversing this argument and equating the interfa
force to the inertial terms, producesL;t2/3. This assumes
that there is only one relevant macroscopic length scale
the system.~Clearly there is also a microscopic length sca
in the width of the interface, but it will be assumed, as usu
that this does not affect the macrosopic growth@12#.!
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A Reynolds number can be defined@2# by ReL5rLL̇/h.
Clearly for L;t2/3, ReL;t1/3, and thus ReL is predicted to
grow without bound in the inertial regime. Recently, Gra
and Elder@9# suggested that this unbounded growth of t
Reynolds number is unphysical, and there should be a fur
crossover of the domain growth rate tot1/2 ~or slower! in
order that ReL remains finite. However, the first simulatio
studies to reliably reach the inertial regime@7# did not find
evidence of any final growth rate slower thant2/3. Below it is
argued that ReL does not quantify the inertial effects whic
occur in the bulk fluid, which are instead properly charact
ized by the Reynolds number, Rev5ruv•¹vu/(hu¹2vu), that
is, the ratio of the nonlinear to the viscous terms in the NS
and that while ReL diverges, Rev does not. It is easily see
that Rev must remain finite. Infinite Rev implies an infinite
energy density, while the fluid mixture starts with a fini
energy density from the free energy difference between
mixed and separated states.

I start from the energy equation for the system, wh
~ignoring heat flow! may be written as

]

]t
~rv2/2!1v•¹~rv2/2!52h~¹v!21v•¹•P

1~h/r!¹2~rv2/2!, ~2!

where (¹v)2[(¹v):(¹v). Since we are not concerned wit
the local convective or diffusive energy flows, it is mo
convenient to average over the whole system and write
global energy balance per unit volume as

d

dt
^rv2/2&52h^~¹v!2&1« in , ~3!

where« in is the rate of energy transfer to the fluid from th
interface, which can be approximated bysL̇/L2 ~force
3velocity!.

I now show that, in the inertial hydrodynamic regime, t
simple scaling theory is inconsistent with energy conser
tion, by considering the behavior of the global energy b
ance under the scaling predicted for this regime@2#. Apply-
ing the simple scaling to each term in Eq.~3!, and replacing
L by t2/3 gives

2rt25/3;2ht221st25/3. ~4!

The dissipation term (2ht22) clearly becomes negligible
compared to the other two terms, as originally assum
However, the kinetic energy in the fluid and the ener
stored in the interface areboth decreasingover time; thus,
energy conservation cannot possibly be maintained excep
including the dissipation term in the energy balance eq
tion. Likewise, the viscous term should never be neglecte
the NSE because it involves the highest order in derivati
and is thus a singular perturbation: however smallh is, the
asymptotic physics is radically altered from that withh50.

I now allow for more general scaling behavior in the NS
and global energy balance equations by introducing two n
lengths,L¹ and L¹2, with associated scaling exponentsa8
anda9, for the velocity first and second derivatives respe
tively, and allowing the velocity to scale astb. Terms asso-
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ciated with the interface are still assumed to have sca
determined by the domain size. The scaling quantities
defined as follows:

domain size: L;ta,

fluid velocity: v;tb,

velocity first derivative: ¹v;v/L¹;tb2a8,

velocity second derivative: ¹2v;v/L¹2
2 ;tb22a9.

This supposes that the interface remains smooth, but all
nontrivial structure in the fluid velocity at smaller scale
Using these scalings to write the NSE, Eq.~1!, and energy
balance equation, Eq.~3!, as powers oft gives, respectively,

NSE: rbtb211rt2b2a8;htb22a91st22a, ~5!

energy: rbt2b21;2ht2b22a81st2a21, ~6!

where the prefactors have been left in to facilitate identifi
tion of the terms. This more general scaling ignores
anomalous scaling corrections of modern turbulence the
@10#, but is sufficient to make progress on the problem
spinodal decomposition. The local energy equation, Eq.~2!,
becomes

rbt2b211rt3b2a8;2ht2b22a81st2a211~h/r!t2b22a9.
~7!

Solutions fora, a8, a9, andb in Eqs.~5! and~6! will later
be checked in Eq.~7! to confirm that there are no discrepa
cies predicted for the behavior of the local energy flo
within this three-length-scaling analysis.

As already pointed out, dissipation must remain sign
cant, so we look for a three-way balance between the te
in the energy balance equation, Eq.~6!, giving for the expo-
nents,

2b2152b22a852a21. ~8!

This givesa851/2 andb52a/2. Substituting these bac
into the NSE, Eq.~5!, gives

rt2a/2211rt2a21/2;ht2a/222a91st22a. ~9!

There is no solution to this with all four terms having th
same exponent; solutions can instead be found by balan
the terms off in pairs. Numbering the terms 1–4 from left
right, the pairing that gives the inertial regime scaling is te
1 with term 4, and term 2 with term 3, givinga52/3, and
a955/12, withb52a/2521/3. The four terms in the NSE
thus scale as follows:

rt24/31rt27/6;ht27/61st24/3. ~10!

The physical interpretation of this is that the moving inte
face gives rise to large scale velocity motion viar]v/]t. The
nonlinear term,rv•¹v, then transfers the energy from larg
length scales to small length scales where it is finally
moved by dissipation. This is the familiar ‘‘energy cascad
of turbulence theory. Note that scaling arguments only p
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TABLE I. Summary of predicted scaling exponents for the viscous and inertial regimes. The new t
has the same predictions for the viscous regime as the simple theory, apart from the NSE termrv•¹v.
Entries are powers of time,t; an entry of 0 indicates the quantity is constant, while an entry of50 indicates
the quantity is assumed to be zero in the viscous approximation. Bold entries indicate new scaling pre
that differ from the simple theory.

Quantity Viscous Inertial regime

regime simple scaling new scaling

Domain size L 1 2/3 2/3
Length for fluid velocity first derivative L¹ 1 2/3 1/2
Length for fluid velocity second derivative L¹2 1 2/3 5/12
Fluid velocity v 0 21/3 21/3

r]v/]t 50 24/3 24/3
NSE rv•¹v 50/21 24/3 27/6
terms h¹2v 22 25/3 27/6

s/L2 22 24/3 24/3
Reynolds number from interface ReL5(r/h)LL̇ 1 1/3 1/3

Reynolds number in fluid Rev5rv•¹v/h¹2v 50 1/3 0
Dissipation rate «5h(¹v)2 22 22 25/3
Taylor microscale l5(5h^v2&/«)1/2 1 2/3 1/2
Kolmogorov dissipation scale ld52p(h3/r3«)1/4 1/2 1/2 5/12
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dict that the paired terms balance approximately, so the n
linear term,rv•¹v, is, in general, larger than the viscou
term, h¹2v, due to the energy ‘‘in transit’’ from large to
small scales, contained in a series of eddies of decrea
size. The transverse components ofr]v/]t are thus also
larger than required to balance the interfacial force, to
count for the rotational motion fromrv•¹v. The length
scales associated with¹ and¹2 both grow more slowly than
L, with L¹;t1/2, and L¹2;t5/12, so there is an increasin
separation of length scales within the system. The dissipa
is thus decoupled from the interfacial energy input, and
longer affects the domain growth rate. The Reynolds nu
ber, defined as the ratio of the nonlinear to viscous ter
Rev5ruv•¹vu/(hu¹2vu), remains finite~satisfying the physi-
cal demand of Grant and Elder@9#!, while the domain size
grows ast2/3 ~contrary to their deduction thata< 1

2 ). With
this scaling, the local energy equation, Eq.~7!, becomes

2
r

3
t25/31rt23/2;2ht25/31st25/31

h

r
t23/2. ~11!

The local convective and diffusive terms are dominant, a
balance each other, representing the energy moved aroun
the turbulent fluid flow.

These results are summarized in Table I, alongside
predictions of the simple scaling theory, for compariso
~Results for the viscous hydrodynamic regime are a
shown.! In particular, notice that in the new scaling theo
for the inertial regime, the lengthsL¹ andL¹2 have the same
scaling asl5(5h^v2&/«)1/2, the Taylor microscale, andld
52p(h3/r3«)1/4, the Kolmogorov dissipation scale respe
tively. The Taylor microscale characterizes the length sca
in a turbulent fluid at which dissipation becomes significa
while the Kolmogorov dissipation scale marks the sma
scale end of the dissipation range@13#. Thus, although these
new scaling results have been obtained without specific in
from turbulence theory, the extra length scales for the ve
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ity derivatives turn out to~within prefactors! coincide with
key characteristic quantities in turbulence phenomenolo
providing strong support for the new theory.

It is easily shown that the familiar linear scaling of th
viscous regime@1# is consistent with energy conservation b
substitutinga5a85a951 andb50 into Eqs.~5! and ~6!,
giving

rt21;ht221st22, ~12!

ht22;st22, ~13!

respectively. In the energy equation, Eq.~13!, there is a
simple balance between energy input and dissipation, bu
the NSE, Eq.~12!, the nonlinear term on the lhs, which wa
assumed to be negligible in the original simple scaling ar
ment, appears to be decaying more slowly (t21) than the rhs
terms (t22). Recalling that the viscous regime is not the lo
time asymptotic regime, and only expected to hold for tim
earlier than some crossover time~before which the nonlinea
term will be smaller than the other two terms!, this apparent
difficulty is eliminated.

There are a few further potential solutions to the exp
nents in Eqs.~5! and ~6!, which I will now discuss briefly.
All can be eliminated on physical grounds. In the inert
regime, where the NSE terms are balanced in pairs, the o
possible pairings of terms must checked. It is not possible
balance term 1 with term 2 and term 3 with term 4 beca
the nonlinear term~term 2! is a force perpendicular tov ~this
is obvious when it is written in the alternative form,2rv
3¹3v) and therefore it cannot change the magnitude ov,
impying b50. However, term 1 is proportional tob, so is
only nonzero ifbÞ0. Matching term 1 with term 3, and term
2 with term 4 gives a solution for the exponents of,a
51/2, a851/2, a951/2 andb521/4. Physically, this so-
lution has just one length scale in the system, but the velo
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is decoupled from the interface,v;t21/4, while L̇(t);t21/2.
In the local energy equation, Eq.~7!, this solution becomes

2
r

4
t23/21rt25/4;2ht23/21st23/21

h

r
t23/2. ~14!

The convective term,rt25/4, will eventually come to domi-
nate over all the other terms; thus, it cannot represen
asymptotic solution for late times. There is one further so
tion for b50, obtained by solving Eqs.~5! and ~6! for the
remaining exponents,a, a8, and a9, giving, a51/3, a8
52/3, anda951/3. The length scale for velocity gradients
related to the domain size byL¹;L2(t), suggesting that the
nonlinear term is mixing on scales larger than the dom
size. Physically, this could correspond to a ‘‘turbulent rem
ing’’ regime as suggested by Grant and Elder@9#. However,
the resulting breakup of the interface is liable to invalida
the assumptions made in deriving the scaling approxima
for the interfacial force. Thus, although this appears to b
consistent solution to the NSE and energy balance equat
it seems unlikely that the system could, in fact, ever achi
such a scaling.

In summary, I have obtained consistent scaling beha
for domain growth in the spinodal decomposition of a sy
metric binary fluid mixture by including two extra macro
scopic length scales for the velocity derivatives to ena
energy balance to be satisfied. The velocity itself is s
found to scale asL̇(T). In a system restricted to derivative
up to second order~the NSE is, itself, an approximatio
based on separation of macroscopic and molecular le
and time scales!, one length scale per derivative would see
to be a reasonable maximum for the purpose of simple s
ing arguments, and it does not seem to be possible to sa
the NSE and energy equations using fewer.

With this new scaling, the inertial regime scaling ofL
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;t2/3 is maintained while the fluid Reynolds number, Rev ,
measured as the actual ratio of the nonlinear to the visc
terms in the NSE, remains finite. The Reynolds number
tained from the domain size, ReL , is not a good estimate o
Rev in the inertial regime so it is not physically significan
that ReL continues to grow without bound. The key point fo
the scaling behavior ofL is that the driving force from the
interface balances against the acceleration term alone,
decoupled from what happens in the remainder of the fl
motion. The nonlinear and viscous terms are free to find th
own balance independent of the driving force, provided t
they do, eventually, remove energy from the system.

There is, as yet, no simulation or experimental work th
tests this new scaling theory. The simulation work repor
in @7,14#, while showing hints of possible different scalin
for the NSE terms, was not able to probe far enough into
inertial regime to provide a significant test. UsingL0
5h2/(rs) and t05h3/(rs2) to provide nondimensiona
length (L/L0) and time (t/t0), Ref. @7# suggests thatL/L0
.106, t/t0.109 will be required, at least an order of mag
nitude beyond present simulation capabilities. Experimen
work, though more feasible, will not be easy to perfor
Using values for water,h51023 Kg m21 s21, and for water-
paraffin, s52.431022 Kg s22, with the projection from
simulation work of L/L0.106 to estimate the interfacia
force (s/L2), the density matching of the two mutually re
pulsive fluids must be better than one part in 104 for terres-
trial gravitational effects to remain small in the required r
gime (L;4 cm). The micro-gravity environment of th
space shuttle would ease this constraint@15#.
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