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Scaling theory of three-dimensional spinodal turbulence
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A scaling theory for spinodal decomposition in the inertial hydrodynamic regime is presented. The scaling
involves three relevant length scales, the domain size, the Taylor microscale, and the Kolmogorov dissipation
scale. This allows for the presence of an inertial “energy cascade,” familiar from theories of turbulence, and
improves on earlier scaling treatments based on a single length: these, it is shown, cannot be reconciled with
energy conservation. This theory reconciles tH& scaling of the domain size, predicted by simple scaling,
with the physical expectation of a saturating Reynolds number at late times.

PACS numbsdis): 64.75+g

A binary fluid mixture will undergo phase separation, if thus an approximate one, but as legitimate as the Kolmog-
the two fluids are mutually repulsive, below some critical orov theory of homogeneous turbulence. As such, it is likely
temperature. Presented here is a theoretical study of the d{e be a useful tool for interpreting simulations and experi-
namics of spinodal decomposition in three dimensions, in aments on the inertial hydrodynamic regime of spinodal de-
50/50 mixture where the two fluids are incompressible ancdcomposition, and may be the best description available until
have the same shear viscosity, and density,p. Starting the (simplep problem of homogeneous turbulence is fully
from a completely mixed state, quenched to far below thesolved.
critical temperature, the initial separation is dominated by The system can be described by the isothermal incom-
diffusion until well-defined interfaces form between two in- pressible Navier-Stokes equati@NSE),
terlocking domains of single fluid regions. The ensuing late-
stage coarsening is then driven by the interfacial tension, ﬂ
resisted by viscosity as the bulk fluid flows so as to flatten Pt
the interfaces and enlarge the domain size. The coarsening
can be followed through the average domain sizeyvherev is the fluid veIocity.(This can be represented by a
L, most commonly measured by the inverse first momengingle variable regardless of fluid composition since the two
of the spherically averaged structure fact&(k) of the fluids have identical propertigdncluded in the pressure ten-
difference in the concentrations of the two fluids, Sor, P, is the interfacial stress which comes from capillary
L=2mfS(k)dk/[kS(k)dk. Using a simple(single length forces; the excess Laplace pressure in the curved interface
scal scaling theory, Siggidl] predicted that the domain drives the bulk fluid away from regions of tight curvature
size first shows linear growt}h_’Nt, in the viscous hydrody_ which eventually CO”apse into narrow “necks” that break,
namic regime. Furukaw#2] extended this, predicting a leading to further enlargment of the remaining bulk domains.
crossover to a slower growth rate 62 in the inertial hy-  Using simple scaling argumeritt,2,11], the interfacial force
drodynamic regime. These growth rates have been observé@nsity,V - P, can be approximated hy/L?, whereo is the
in numerical simulation, see, e.§3—7]. Linear growth has interfacial tension between the two fluids. The interface is
been observed experimental§]. assumed to remain locally smooth and completely percolated

In what follows, | show that the simple scaling theory is throughout the phase separation process, with constant
inconsistent with energy conservation in the inertial regime;This is reasonable provided diffusion is rapid on the scgle,

a minimal alternative is presented, based on three releva®f the interfacial width(to maintain local equilibrium on the
length scales, which allows both force balance and conservdime scale of the interfacial motigrwhile being negligible
tion of energy to be maintained at late times. The alternativ@Vver scales of the order of the domain size so it does not
scaling theory recovers tHe~t22 scaling, but gives differ- contribute to the domain growth rate. This requires care in
ent scalings for other quantitiésuch as velocity gradients ~ simulation work[7], but in real fluids,L>¢ can easily be
This allows the physical requirement, recently emphasizedranged.

by Grant and Eldef9], that the fluid Reynolds number  The linear scaling is readily obtained from EQ@) by
should not diverge in the long time limit, to be reconciled neglecting the inertial terms on the left-hand sittes) and
with the t?® scaling. equating the viscous term to the interfacial one, using-

The scaling approach developed here ignores the anomand V~1/L. When the inertial terms are no longer negli-
lous scaling corrections of modern turbulence the[d®].  gible, reversing this argument and equating the interfacial
The analysis of spinodal decomposition presented below iforce to the inertial terms, producés~t?3. This assumes

that there is only one relevant macroscopic length scale in

the system(Clearly there is also a microscopic length scale

*Present address: Optics Section, The Blackett Laboratory, Impdn the width of the interface, but it will be assumed, as usual,
rial College, London, SW7 2BW, United Kingdom. that this does not affect the macrosopic groyta].)

+p(v-V)v=9V—V.P, (1)
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A Reynolds number can be definf2] by Rq =pLL/».  ciated with the interface are still assumed to have scaling
Clearly for L~t23 Rq~tY3, and thus Reis predicted to determined by the domain size. The scaling quantities are
grow without bound in the inertial regime. Recently, Grantdefined as follows:
and Elder[9] suggested that this unbounded growth of the
Reynolds number is unphysical, and there should be a further
crossover of the domain growth rate t4? (or slowe) in

domain size: L~t%,

order that Re remains finite. However, the first simulation fluid velocity:  v~t#,

studies to reliably reach the inertial regirfi@ did not find o o -,
evidence of any final growth rate slower thigfi. Below it is velocity first derivative: Vv~v/Lg~t#"¢,
argued that Redoes not quantify the inertial effects which

occur in the bulk fluid, which are instead properly character- velocity second derivative: V2v~ v/L$2~t'3*2“".

ized by the Reynolds number, Rep|v- Vv|/(75|V?3V|), that
|s,éh?]rat|oh9|f the r(qunhnear to tr(‘je viscous terms |n_|the NSEqhis supposes that the interface remains smooth, but allows
and that while Re diverges, Rgdoes not. It is easily seen ,onyivial structure in the fluid velocity at smaller scales.

that Rg must remain finite. Infinite Reimplies an infinite Using these scalings to write the NSE, Ed), and energy

energy density, while the fluid mixture starts with a finite |,551ce equation. E63). as powers of gives. respectivel
energy density from the free energy difference between the a E@®),asp gives. resp 4

mixed and separated states. _ _ NSE: plgtﬁ—1+pt2ﬁ—a’~ ntgfza”JrUtfza, (5)
| start from the energy equation for the system, which
(ignoring heat flow may be written as energy: pBt2f i~ — ntZ,B—Za’ fot-al 6)

where the prefactors have been left in to facilitate identifica-
tion of the terms. This more general scaling ignores the
anomalous scaling corrections of modern turbulence theory
+(nlp)VZ(pv?l2),  (2) [10], but is sufficient to make progress on the problem of

) ) _spinodal decomposition. The local energy equation, (4.
where Vv)“=(Vv):(Vv). Since we are not concerned with pecomes

the local convective or diffusive energy flows, it is more
convenient to average over the whole system and write th%ﬁt2ﬁ—l+pt3b’—a’~ — ntzﬁ‘2“'+at‘“‘1+(n/p)tzﬁ‘z‘”".
global energy balance per unit volume as 7)

J
—(po?2)+ V-V (pv?2)= = (V)2 +v- V. P

d ) ) Solutions fore, a’, ", andB in Egs.(5) and(6) will later
a@v 12)=—n{(VV)*) +&in, (3)  be checked in Eq(7) to confirm that there are no discrepan-
cies predicted for the behavior of the local energy flows
within this three-length-scaling analysis.

As already pointed out, dissipation must remain signifi-
cant, so we look for a three-way balance between the terms

Xvelocity). . . L i
I now show that, in the inertial hydrodynamic regime, the Ir?emg energy balance equation, &), giving for the expo

simple scaling theory is inconsistent with energy conserva-
tion, by considering the behavior of the global energy bal- 2B—1=2B—2a'=—a—1. (8
ance under the scaling predicted for this regir®2g Apply-

ing the simple scaling to each term in H@), and replacing This givesa’=1/2 and 8= — a/2. Substituting these back
L by t?? gives into the NSE, Eq(5), gives

whereeg,, is the rate of energy transfer to the fluid from the
interface, which can be approximated hyL/L? (force

_pt75/3~ _ 77t72_i_0_t75/3 (4) pt*a/Z*l_’_pt*a*l/Zw 7]t*a/272a”_"_(J_‘tfza' (9)

There is no solution to this with all four terms having the
Same exponent; solutions can instead be found by balancing
the terms off in pairs. Numbering the terms 1—4 from left to
right, the pairing that gives the inertial regime scaling is term

The dissipation term + t~2) clearly becomes negligible
compared to the other two terms, as originally assume
However, the kinetic energy in the fluid and the energ
stored in the interface argoth decreasingver time; thus, . ) L
energy conservation cannot possibly be maintained except b]y”W'th term 4, and term 2 with term 3, giving=2/3, and
including the dissipation term in the energy balance equa® — °/12, WithB=—a/2=—1/3. The four terms in the NSE
tion. Likewise, the viscous term should never be neglected ifhus scale as follows:
the NSE becau;e it involves thg highest order in derivatives pt*4’3+ pr7/6~ mfws+ ot =48 (10)
and is thus a singular perturbation: however smals, the
asymptotic physics is radically altered from that wifs=0.  The physical interpretation of this is that the moving inter-
I now allow for more general scaling behavior in the NSEface gives rise to large scale velocity motion pi&/dt. The
and global energy balance equations by introducing two newionlinear termpv- Vv, then transfers the energy from large
lengths,Ly and Lyz2, with associated scaling exponenrts  length scales to small length scales where it is finally re-
and «”, for the velocity first and second derivatives respec-moved by dissipation. This is the familiar “energy cascade”
tively, and allowing the velocity to scale #8. Terms asso- of turbulence theory. Note that scaling arguments only pre-
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TABLE I. Summary of predicted scaling exponents for the viscous and inertial regimes. The new theory
has the same predictions for the viscous regime as the simple theory, apart from the NS&/ t&n
Entries are powers of timé, an entry of O indicates the quantity is constant, while an entry 0findicates
the quantity is assumed to be zero in the viscous approximation. Bold entries indicate new scaling predictions
that differ from the simple theory.

Quantity Viscous Inertial regime
regime simple scaling new scaling

Domain size L 1 2/3 2/3
Length for fluid velocity first derivative Ly 1 2/3 12
Length for fluid velocity second derivative Ly2 1 2/3 5/12
Fluid velocity v 0 -1/3 —-1/3
povl ot =0 —4/3 —4/3

NSE pv-Vv =0/-1 —4/3 —7/6
terms Vv -2 —5/3 —-7/6
all? -2 —4/3 —4/3

Reynolds number from interface Re =(p/ 7,)|_|'_ 1 1/3 1/3
Reynolds number in fluid Re pv-Vv/9V3 = 1/3 0
Dissipation rate e=1n(Vv)?2 -2 -2 —5/3
Taylor microscale A=(57(v?)/e)Y? 1 2/3 12
Kolmogorov dissipation scale Ng=2m(7%p3e) ¥4 1/2 1/2 5/12

dict that the paired terms balance approximately, so the nority derivatives turn out tqwithin prefactor$ coincide with
linear term,pv- Vv, is, in general, larger than the viscous key characteristic quantities in turbulence phenomenology,
term, V2v, due to the energy “in transit” from large to providing strong support for the new theory.

small scales, contained in a series of eddies of decreasing It is easily shown that the familiar linear scaling of the
size. The transverse components @fv/dt are thus also viscous regimgl] is consistent with energy conservation by
larger than required to balance the interfacial force, to acsubstitutinga=a’'=a"=1 andB=0 into Eqgs.(5) and(6),
count for the rotational motion fronpv-Vv. The length  giving

scales associated with andV?2 both grow more slowly than

L, with Ly~tY? and Ly2~t%*2 so there is an increasing pt I~ gt 2+ gt 2, (12)
separation of length scales within the system. The dissipation

is thus decoupled from the interfacial energy input, and no 5 P

longer affects the domain growth rate. The Reynolds num- A (13

ber, defined as the ratio of the nonlinear to viscous terms,

Re,= p|v- VV|/(7|V?3V|), remains finitgsatisfying the physi-
cal demand of Grant and EIdg®]), while the domain size
grows ast?® (contrary to their deduction that<3). With
this scaling, the local energy equation, E@), becomes

_ gt’5’3+pt’3’2~ gt~ 5By g5 gt—slz. (11)

respectively. In the energy equation, Ed.3), there is a
simple balance between energy input and dissipation, but in
the NSE, Eq(12), the nonlinear term on the lhs, which was
assumed to be negligible in the original simple scaling argu-
ment, appears to be decaying more slovily}) than the rhs
terms ¢~ 2). Recalling that the viscous regime is not the long
time asymptotic regime, and only expected to hold for times
earlier than some crossover tirtteefore which the nonlinear

The local convective and diffusive terms are dominant, anderm will be smaller than the other two termthis apparent
balance each other, representing the energy moved around Bifficulty is eliminated.

the turbulent fluid flow.

There are a few further potential solutions to the expo-

These results are summarized in Table |, alongside theents in Eqs(5) and (6), which | will now discuss briefly.
predictions of the simple scaling theory, for comparison.All can be eliminated on physical grounds. In the inertial
(Results for the viscous hydrodynamic regime are alsgegime, where the NSE terms are balanced in pairs, the other
shown) In particular, notice that in the new scaling theory possible pairings of terms must checked. It is not possible to
for the inertial regime, the lengths; andLy2 have the same balance term 1 with term 2 and term 3 with term 4 because
scaling as\ = (57(v?)/e)*?, the Taylor microscale, andy;  the nonlinear terniterm 2 is a force perpendicular t (this
=2m(75°lp3e)Y* the Kolmogorov dissipation scale respec-is obvious when it is written in the alternative forr,pv
tively. The Taylor microscale characterizes the length scalex VX v) and therefore it cannot change the magnitude,of
in a turbulent fluid at which dissipation becomes significantimpying 8=0. However, term 1 is proportional {8, so is
while the Kolmogorov dissipation scale marks the small-only nonzero if3+ 0. Matching term 1 with term 3, and term
scale end of the dissipation ranffe8]. Thus, although these 2 with term 4 gives a solution for the exponents of,
new scaling results have been obtained without specific input 1/2, a’=1/2, o”"=1/2 andB= —1/4. Physically, this so-
from turbulence theory, the extra length scales for the veloclution has just one length scale in the system, but the velocity
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is decoupled from the interface~t~ ¥4 while L(t)~t~¥2  ~t??is maintained while the fluid Reynolds number,,Re

In the local energy equation, E¢f), this solution becomes measured as the actual ratio of the nonlinear to the viscous
terms in the NSE, remains finite. The Reynolds number ob-
tained from the domain size, Reis not a good estimate of
Re, in the inertial regime so it is not physically significant

) e . that Rg continues to grow without bound. The key point for
The convective termpt™ >, will eventually come to domi-  he scaling behavior of is that the driving force from the
nate over all the other terms; thus, it cannot represent apyertace halances against the acceleration term alone, so is
a_\symptotlc solutlon_ for late tlme_zs. There is one further SOIu'decoupled from what happens in the remainder of the fluid
tion for 5=0, obtained by solving Eq5) and(6) for the motion. The nonlinear and viscous terms are free to find their

r_emaining e”x_ponentsa, a', and o”, giving, .a:1/3'. o' . own balance independent of the driving force, provided that
=2/3, anda” = 1/3. The length scale for velocity gradients is they do, eventually, remove energy from the system.

. . — 2 . - A . i
related to the domain size ly;~L"(t), suggesting that the There is, as yet, no simulation or experimental work that

n_onlinear term Is T“ix"‘g on scales Iarger“than the dom.airiests this new scaling theory. The simulation work reported
size. Ph_ysmally, this could correspond to a “turbulent remix-in (7.14], while showing hints of possible different scaling
ing” regime as suggested by Grant and EIfi8. However, (e NSE terms, was not able to probe far enough into the
the resulting breakup of the interface is liable to 'nva“dateinertial regime to provide a significant test. Usirlg,

the assumptions made in deriving the scaling approximation_ 2 _ .3 2 ; ; ;
for the interfacial force. Thus, although this appears to be "f‘er:]gt/rgp(l(_fl)L a)ngntg tir?1e/(€/(t7 )) g)efpr[c;\]ncsiﬁggzggr?ﬁgtsllfnal
consistent solution to the NSE and energy balance equationg 106 t/t0>0109 will be req(:Ji,red ét least an order of rr(l)ag—

it seems unlikely that the system could, in fact, ever aCh'ev%itude beyond present simulation capabilities. Experimental

Su?h a scaling. 'h btained istent lina behavi work, though more feasible, will not be easy to perform.
n summary, | nave oblained consistent scaling benavioryq;, \qjyes for watery=10"3Kg m~1s"1, and for water-

for domain growth in the spinodal decomposition of a SYM haraffin, o=2.4x10"2Kg's 2, with the projection from
metric binary fiuid mixture by |nclu_d|ng two extra macro- simulatfon work of L/Ly> 106' to estimate the interfacial
scopic length scales for the.velocny derlva}tlvgs to ?nab.lq‘orce (o/L?), the density matching of the two mutually re-
energy balance to be satisfied. The velocity itself is St'”pulsive fluidé must be better than one part irf 1r terres-
found to scale a&(T). In a system restricted to derivatives yig| gravitational effects to remain small in the required re-

up to second ordg—z(the NSE is, itsglf, an approximation 4ime (L~4 cm). The micro-gravity environment of the
based on separation of macroscopic and molecular lengtfl,5.e shuttle would ease this constrir].

and time scalesone length scale per derivative would seem

to be a reasonable maximum for the purpose of simple scal- | would like to thank Mike Cates and Ignacio Pagonabar-

ing arguments, and it does not seem to be possible to satisfaga for valuable discussions and a careful reading of the

the NSE and energy equations using fewer. manuscript, and EPSRC for financial support. This work was
With this new scaling, the inertial regime scaling lof funded in part by EPSRC GR/M56234.

_ %t’3’2+pt’5’4~ e e gt—slz. (14)
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