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Complementarity and quantum walks
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We show that quantum walks interpolate between a coherent “wave walk” and a random walk depending on
how strongly the walker’s coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum
property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker
takes vs the sharpness of the interference pattern. A physical implementation of a quantuthevallantum
quincun® should thus have an identifiable walker and the capacity to demonstrate the interpolation between
wave walk and random walk depending on the strength of measurement.
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I. INTRODUCTION yields full information on the walker’s path
) . . We then define a quantum quincunx as a physical imple-

Random walks are essential to physics as stochastic phgsentation of a quantum walk, which must have an identifi-
nomena, to mathematics as Wiener processes, and t0 cOje walker and interpolate between a random walk and a
puter science for algorithms. The quantum walk, both in itspjtary quantum walk as the measurement strength is varied.
continuous[1] and in its discret¢2—4] incarnations, is re- pjore precisely, we require a guantum quincunx to hdye
ceiving significant attention because it is a natural generali-sing|e walker, (i) a measurement process that can be em-
zation of random walks to quantum systems, because quagoyed to acquire varying degrees of knowledge about the
tum walks may be physically implemented by quincunxessaih of the walker, andii) an identifiable interference phe-
[5-7], and because quantum walks could provide a basis faiomenon whose deterioration can be linked to the acquisi-
future quantum algorithmf8—10]. However, an identifiable  tjon of knowledge about the walker’s path. This view on
benefit of the quantum walk, namely the enhancement 0fomplementarityone walker and a tradeoff between which-
spreading over its classical counterpart, is a wave phenomyaih ys interferengefollows the information-theoretic per-
enon which has been realized interferometrically in an Opliypective of complementarity introduced by Wootters and
cal quincunx[11], and proposed in other settings2-14. 7ok [1g].
The realization of aspects of the quantum walk in a classical s proceed as follows: first we provide background on
optics setting has raised the question of what exactly i$omplementarity in Sec. Il and then introduce our notation
“quantum” about the quantum walk. We resolve this issue oty general graphs, recalling the definition of a classical ran-
comparing and contrasting the deterministic wave walk VS @om walk on such graphs, in Sec. lll. This is followed in
genuine quantum walk by properly accounting for the role ofgec_ |\ by the definition in our notation of a unitary quantum
complementaritf15-17. walk on a general graph. In Sec. V we extend the definition

Although complementarity has been at the heart of quang, include partial measurements of the quantum walker. An
tum mechanics since the dawn of the sub[é€ 17, studies  gxample of the walk on Al-cycle is given in Sec. VI. In Sec.
of complementarity often focus on simple, illustrative casesy|| e describe in detail how to perform a measurement of
such as two-slit interferendel8] and two-channel interfer- o path taken by the walker by measuring the state of the
ometry[19,20;; we significantly expand the field by provid- aker’s coin, followed by a general treatment of quantum
ing an analysis of complementarity for general graphs. Tqya|ks with nonunitary evolutions in Sec. VIIl. In Sec. IX we

incorporate complementarity into quantum walks, we extendjiscyss how the wave walk relates to quantum walks, and in
from the typical view of a quantum walk defined as unitary gec. x we summarize our results.

local transition rules over the Hilbert space for the vertices of

the graph and the states of the walker’s coin by allowing a

measurement process, either on the transitions, or on the coin !l COMPLEMENTARITY FOR QUANTUM WALKS
outcomes, or both. The measurement is performed by entan-
gling the walker or coin to ancillary degrees of freedom, with
the strength of coupling to the ancilla determining whethe
the quantum walk is coherefio coupling to ancilla yielding
the unitary quantum wajkor random(strong coupling that

In its original formulation16,17], complementarity is the
rinciple that one classical description of a system, which
explains certain phenomena for a quantum system, is incom-
patible with the simultaneous use of another classical de-
scription used to explain other phenomena. In simpler terms,
a quantum system can exhibit different, incompatible prop-
erties that are each manifested under different circumstances.
*Electronic address: V.Kendon@Ileeds.ac.uk The most well-known example of complementarity is wave-
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particle duality: objects such as single electrons or single
photons can be described as being corpusdplarticlelike
under some circumstancesvhen the phenomenon being
studied, such as particle detection, can be explained by de-
scribing these objects as localized, indivisible partickasd
undular(wavelike under other circumstancéshen the phe-
nomenon being studied, such as interferometry, can be ex-
plained by regarding the objects as extended, interfering
waves. The attributes of waves and particles make these two
descriptions mutually incompatible, yet electrons or photons
can be made to exhibit the features of both these two incom- FIG. 1. An example of a general graph, wikh=6 vertices la-
patible descriptions depending on how they are observed. beleduy 03 -ve, and eight edges labelag e A labeling of

Complementarity is at the heart of quantum mechanics; : . o
Electrons and photons are described by quantum theory i e possible choices of paths from each vertex is given by the letters
a,b,c.d, the degree of this graph being 4.

order that these mutually incompatible descriptions can b
reconciled. Quantum mechanics provides a unified frame-
work for describing quantum systems that can be corpusculawalker at a time who can opt for different paths that interfere
or wavelike under different circumstances. Systems are imwith each other, and the acquisition of information about the
fact regarded as quantum when complementarity is manifespath destroys the interference and restores the classical walk.
Although the early descriptions of complementarity con-An experiment that observes one phenomenon of the quan-
cerned mutually incompatible measurements, Wootters antlim walk, the interference, is really only observing a “wave
Zurek presented an information-theoretic description ofwalk”; we will show that aquantumoptical quincunx can
complementarity, which elucidates that complementarity camdentify that there has been one walker, learn about the path,
be quantified as a tradeoff between knowledge of which waynd show that interference diminishes as path information is
each particle goes vs the sharpness of the interference patteybtained.
obtained via repeated preparations and measurerhg8ls
This tradeoff between corpuscular and undular behavior has Il. GENERAL GRAPHS
been examined in detail for photons both in a theoretical
context using a photon number quantum nondemolition mea- We cast our discussion of quantum walks in a very gen-
suremenf19] and experimentally using nondeterministic lin- €ral setting where the walk takes place on a general graph
ear optical gatef21]. G(V,E) with
While complementarity has been well studied in quantum V={o:j e 7} (1)
physics, its role in identifying the “quantumness” of quantum Vi) N
information tasks has not been explored. Recent controversyie set of vertices, anf={e;;/} the set of edges, whees,
over what is “guantum” about quantum walks motivates usconnects vertices; andv;, as shown in Fig. 1. The number
to examine the role of complementarity in this context. Theof edges adjoining vertex; is d; and the degree of the graph
controversy over the quantum walk is exemplified by theis d=max d;. The complexity of the graph is associated with
statement by Knighet al. in the abstract of their paper en- |v|=N, and the degred is constant adl varies. For simplic-
titled “Quantum walk on the line as an interference phenomity, we assumeindirectededges(e;» =e;/;), and at most one
enon” that, “the coined quantum walk on a line can be Un'edge between any pair of Vertic@]., is uniqué_
derstood as an interference phenomenon, can be CIaSSica”y In a random Wa|k' the walker’s choice of which edge to
implemented, and indeed already has beft?]. In their  follow from a given vertex is randortfor which we include
conclusions, they state that they have “shown thafguan- 5 d-dimensional coin but this choice of edges can be
tum walk] along a line can be simulated in a purely classicakyejghted (some edges are preferred over othes biased
implementation, involving nothing more than wave interfer- the coin outcomes are not uniformly distributed over all
ence of electromagnetic fields.” Their work shows that thechoices. In general the nature of the coin is correlated with
quantumness of the coin, which is a sgirparticle for the  the vertex from which the coin is tossed, e.g., the coin is

quantum walk on the line, and its possible entanglement Withjj_sided at vertex; or the bias of the coin may biedepen-
the walker’s path, do not by themselves make the quanturgent.

walk quantum. The question then arises whether this reason-

ing is sufficient to claim as they do, that the quantum walk is IV. UNITARY QUANTUM WALK
purely a wave phenomenon that “can be simulatefby]
wave interference of electromagnetic fields.” In contrast to the classical random walk, the quantum

Our position is that the quantum walk may indeed bewalk permits the walker to follow all edges in a superposi-
implemented by an optical system, but not by one that igion state, essentially as Feynman paths through the graph.
strictly described by classical electromagnetic theory. ThéMNe first describe the unitary quantum walk, and then gener-
optical quincunx of Bouwmeestat al. [11] certainly dis- alize to include measurement of the walker’s progress. The
plays the interference features of the quantum walk on thenitary quantum walk is deterministic, the walker's wave
line, but the quantumness of the quantum walk must connedtinction is in the Hilbert spacé+,. which contains the
two seemingly incompatible descriptions: there is a singléN-dimensional Hilbert space,
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Hy=spad|i):j € Znili' =8} C Hye (2)  Watrous[2], and is also described by Ambaini$0]. The
) ] ) ) interferometric scheme of Hillergt al. [24] is also equiva-
of vertex states. For a coin we havelalimensional Hilbert |ent. The astute reader will have noted that there is thus far

space, nothing random in the dynamics of a unitary quantum walk,
= spar|k.k e Z and (KlK'). = S, 3 it being a perfectly deterministic, reversible unitary evolu-
He=sparlkjck € Zd) (ke kk} & tion. Randomness does arise if one measures the position of
whered is the degree of the graph. The basis stateg{gf the walker after a number of time steps, when the walker will
are given by be found on one of the vertices with a probability given by
. . o , the squared modulus of the walker’'s wave function over the
Bzl =ldlci e ZukeZd @ gagn
with cardinalityNd. For a basis stat, k), the indexj iden-
tifies the vertex number ardthekth state of the coin. For an V. NONUNITARY QUANTUM WALK
edgeeg;;; we associate the coin stadtevith the edge ab;, and ) .
the coin statek’ with the other end of the edge af. The We now generalize to include measurements as part of

values ofk and k' are arbitrary but fixed throughout the €ach step of the quantum walk dynamicather than only
quantum walk, to ensure the quantum walker traverses thafter the final step Quantum walks with measurements have

ent motivations from ours. The inclusion of measurements

GINX Lg— InX 2g:(j,00 = £(5,K) = (j",K"), (5  requires nonunitary evolution, therefore we introduce density
where(j,k) and (j’ k') label each end oé; matrices to describe the walker’s state. Thime-dependent

The quantum walk undergoes a unitary evolution by rep-OIenSIty operator

etition of two steps: a coin toss and a conditional swap. The - KRG K 9
coin operator p=2> 2 ol 11, K0¢ " K| 9

j,k ]",k’
C:Hye — Hyclli K — > Cf&lj,T()C (6) is a positive(p=p' with positive real spectruim unit-trace,
keZq bounded linear operator df,., in the basish,., Eq.(4). The

state is pure iffp?=p. A typical initial condition isp(t=0)

is a block diagonal matrix with each block labeled joyThe — _ . .
j dependence of the coin matrix allows sufficient freedom in_|0’(?><0’0| cqrrgspondmg o the walker starting at vertex
arrying a coin in the 0 state.

the quantum walk dynamics for the quantum coherencé In general the density operator is mapped to a new density

properties of the coin to vary between vertices, for vertices t% erator via a completely positive. or CP. ma
act as origins and end points, and for vertices to have differ- P pietely p ' » map,

ent degrees from each other.df has degreel;<d, we re- Tpr—Tp. (10)

~=0 for all k val label . "
guire Ci .O or altk values ot us:_ad to label an edgevat The CP map7 performs one coin flip and the conditional
This restricts the coin operator so it only produces states th%twap over one time step. As a CP map

have a valid mapping undet

I Tp=2 TpT, 2 TITi=1, (11)

i i L ie® ie®
Ca=Cabii" (7 L . . .
with i an index of nonunitary evolutionary “instances” and

we have the special case of a fixed degree graph where tlie corresponding Kraus operator. These instances may be
coin operator is identical for all vertices. As examples, adiscerned by a measurement record, withe record index.
two-sided coin has been employed in analyses of the quan-he cardinality of® can be finite, countably infinite, or even
tum walk on the lingd3] and quantum walk on the cycld], unc;ountable. In the case of unitgry evolqti@)lhas a ca_lrdi-
and a multisided coin for quantum walks on regular latticeshality of 1, so there is a unique, unitary for which

in higher dimension$22,23|. p—>Tp=TpT". Unitary quantum walk evolution can thus be
The unitary conditional swap operator is given by expressed as
SHye— Hucli, Ky =i, K), (8) p(t) =T"'p(0), T=SC, SCp= SCC'S', (12

which updates the position of the walker and the coin statevhere, for the discrete time walk, we assutaeZ. Thus, for
according to the mappingin Eq. (5), i.e., moves the walker the unitary walk, the transition is given By=SC and the
and coin to the vertex;, along edgeg;;,. We note that, by nonunitary walk can be understood as a collection, or sum,
our stipulation thak andk’ label opposite ends ofj;,, it  of instances of nonunitary coin flips, with randomness, fol-
follows thatS=S%, and is thus unitary as required for quan- lowed by a conditional swap.
tum evolution. The sequence of a coin flip and a conditional
swap is a transition over the unit time step, which we denote VI. WALK ON THE CYCLE
by unitaryT=SC

This formulation of a(pure statg coined quantum walk At this stage application to a well-known example is help-
on a general graph has appeared in a different form due tful, and we consider the quantum walk on a cycle, see Fig. 2.
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0 % N the path of the walker. We will explain this in detail for a
y | two-sided coin such as the one used for the walk on a cycle
v described in the previous section. Suppose that measure-
! ments of the coin state are performed after each coin flip, in
the coin state basif0),/1)}. This measurement can be per-
formed by adding an ancilla that serves as the coin meter,
and the meter state becomes correlated by interacting with
k: the coin. The Hilbert space for the ancilla is of the same
dimension as the Hilbert space for the coin, so the meter’s
Hilbert space isH,,=H,, given by Eq.(13). Letting

¥~

=

Y

o= D0l =o', 7. =|1)(0] =7, (17)
FIG. 2. An example of a cycle graph, with=7 vertices labeled ’ | ¢ | ’ | m |
vg,U1" Vg, @nd seven edges. Arrows indicate the direction of travel _ oo
for coin state|0) (anticlockwis¢ and |1) (clockwise. The cyclic 205= 04+ 0, 2|Uy_ 7-7 04 (18)
labeling of the vertices does away with the need to label the edges.
20,=[o,,0_], 21,= 1, 7], (19

The quantum walk on the cycle has the advantagesihas  the meter couples to the coin via the interacti@i|

finite-dimensional(as opposed to the walk on the line, for (/8 o (A T i B A O T i (A
example, which has Fi)rﬁ)finitely many vertices, hence an W(B) = (€797 @ e mHm)ent i (e mhey
infinite-dimensional Hilbert spaged=2 for all vertices, ® e (mI7%) (] @ e TP (] @ 7774 (20)
which is the smallest nontrivial degree, and the quantum

walk on the cycle may be experimentally achievafses]. The uncoupled case correspondsW0), and W(1) corre-

The Hilbert space for a two-sided coin is given b=, ;pondg to the strong-coupling linfa controlled—NQT opera-
for tion) with resultant sharp measurements. The interpolation

between the limits is achieved by allowingto vary con-
H,=spar|0),|1)}. (13)  tinuously over the domaif0,1].
To perform a measurement, we first prepare the meter in

The Hilbert space for the graph-+coin is given by the |0),, state, then allow it to interact with the coin, which is

Hye=H, ® He. (14)  in an arbitrary qubit state{0).+ 7|1).,

We can choose all blocks of the coin matrix to be identical W(B8)(¥0)c + 7/1)¢)|0)m = ¥100) e + 71} cOS(B7/2)[0),
2X 2 matrices, in this case the unbiased two-sided coin op- +5sin(B/2)| L. (22)
erator is given by a generalized Hadamard transformation
[23] Tracing over the meter state yields the<2 coin density-

. matrix transformation
©2liet -1 ) Trm{Ww)R ; 772) o )}WT(B)}
vy |1 00

with a free phase degree of freedam(typically ¢=m/2). ) .
Assuming that the vertices are labeled in sequence around :< bl Y7 005(137"/2)) (22)
the cycle, we can employ the simplicity of assigni®y to ¥ n cos(Bml2) | 7%
moving fromuv; to v,; and|1) to moving fromuv; to v;_; . : .
(rather than IallaelingJ each end of the edg@se cojnditio]nal The coin values correspond to the pointer b#a8 29, with
swap operation becomes the degree of decoherence dependmgBon. _ _
These measurements of the coin provide information on
s= 3 D [j- (- )PmodN)j| ® |s)e]| (16) path (_:hoices_, that the walker makes. If the walker’s_initial
ee{0,1} jeZy state is localized at one known vertex, then perfect coin state
. o ) measurements suffice to inform the observer as to the exact
yielding the transformatioj, e)=|j~(~1)°,#). ~trajectory of the walker. The paramei@mllows the observer
‘The quantum walk on the cycle has been well studied: ity acquire as much or as little information as desired, thereby
mixes faster than a classical random walk, both for Un'taryallowing the degree of knowledge of which trajectory the
quantum walk$4], and when a small amount of decoherence,ygker followed and the complementary degree of coherence
is appl_|ed in the form of nonunitary random measurements ofeqyction to be controlled. To see the effect of varyjgg
the coin and/or the walker’s positid26]. first note that3=0 corresponds to no measurement of the
coin. In this case the last matrix in E@2) corresponds to
perfect coherence because the @®s/2) term becomes
unity. As B increases from 0 to 1, cd@w/2) — 0 and perfect
Now that we have the machinery in place to describedecoherence emerges: the random walk arises because the
nonunitary quantum walks on general graphs, we can returand states of the quantum walk are just probability-weighted
to the question of complementarity and consider how to traclsums of each path.

VIl. MEASUREMENTS OF THE COIN
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VIII. QUANTUM WALKS IN OPEN SYSTEMS eter[11]. The typical source for interferometry is a coherent
laser source, which is often described as producing a coher-

also arise from other processes besides measuring the coent state[14], a certain coherent superposition of different
. P ng - “humbers of photons, where the photon number states are
in the case of the quantum walk on the cycle in a cavity

guantum electrodynamics realization, cavity damping jigd'vVen by|n}, and the indeterminacy of the photon number is

. ; . : [ i Al
naturally associated with measuring the phase of the intra hecessary in order for the phase variance to be small

avity field [6], which corresponds to direct measurements o hough interferometric experiments can be fully described by
y ' P . classical fields, the coherent state provides a bridge to con-
the vertex states for the quantum walk on the cycle. In thi

case the decoherence mechanism is due to measurements e](:t the quantum and classical field descriptions, with the

vertex occupation, not the coin state, but the classical rarPROtons playing the role of the walkers in the system.
P ’ ' Second quantization seems to present a dilemma with re-
dom walk emerges all the same.

spect to the requirement of an identifiable walker: a coherent
For more general quantum walks, weak or strong mea- .

. . : state of walkers is given by
surements of the state of the coin generalize the unitary evo-

lution of Eqg.(12) to the nonunitary case

Nonunitary evolution of the quantum walk of course can

— ala?2 a_n

Tprs S SGpCTS, (23 @y =2, i =9

ie®

where|n),, is a number state of walkers along the graph. The
parametera is complex, whose square modulug? is the
mean energy, the discrete energy distribution is Poissonian,
and arda) is the phase. Let us deal with two challenges:

Re qguantum walk with multiple walkers ar{td) the indefi-

A . : niteness of the number of walkers. With respect to challenge
to an ancilla in an extended Hilbert spakig and performing (a), generalizing the quantum walk from onertvalkers is

projective(von Neumanpmeasurements of the ancilla State'.straightforvvard: as the-walker system involves noninteract-

The positive operator-valued measure of the coin state i3S ; o
then obtained by tracing over ancilla states. The coin can be g walkers, so the Hilbert space for the walkers is given by

. . : ; . : (5N and the completely positive map generalizes7to".
m -dim vc !
considered as a qudit of dimensian and ad-dimensional Then-walker system is a simple extension of the one-walker
ancillary qudit suffices. The qudit-qudit coupling that inter-

. system as a tensor productrobne-walker systems with one
polates from no measurement of the coin state to weak me

: . ax Medime step given by ®"p®". Each walker carries its own coin,
surements to sharp measurements with full information is a b9 7o

complicated generalizatiof81] of the qubit-qubit coupling and thesen comslare coupled to meter q#d|ts, sollmeasure-
in Eq. (20). A projective measurement of the ancilla gives ment a_nd complementarity arise via this coupling. Essen-
none ' som-e or all of the information about the coin qudit tially this n-walker system is equivalent to repeating the one-
* ' . . . . .. walker quantum walln times.

depending on the qudit-qudit coupling strength, which, with .

X 2 ' With respect to challengéb), the wave walk appears to
full measurements, then vyields the classical walk on the Lo
graph. Measurements of coin states are sufficient to reduceeﬁrs3 ﬁ;%i:g:;?ﬁ;cseoioxglS:ragﬂrzna;gni:favéi;kgggggsbter:éand
quantum walk on the graph to a classical walk on the samé y

: ) . phase, which is complementary to number, to be reasonably
graph provided the walker starts in a basis S[3@. sharp in order to provide strong coherence. However, it has

become abundantly clear recenf83-35 that the coherent
IX. OPTICAL QUANTUM QUINCUNX state and number state offer complementary. yet convenient
alternative representations. The quantum optics implementa-
Having incorporated measurement into quantum walkgion [11-14 can be described within the photon number su-
and shown that measurement introduces complementaritperselection frameworl35], so each run of the optical quin-
which interpolates between the random walk and the unitargunx experiment can be interpreted as having a fixed number
guantum walk, we now consider the quantum quincunx: af photons, and this number of photons can be postselected
physical system which implements a quantum walk. Our reby an ideal photon counting measurement on all the output
quirements for a quantum quincunx are that the systgm fields.
has an identifiable walkefii) exhibits both the unitary quan- Complementarity in the quantum walk would be mani-
tum walk and the random walk as complementary features diested by allowing each photon to be tracked during its evo-
the quantum walk, andiii) interpolates between these two lution. This requirement is not easily met, but a practical
complementary extremes according to a controllable degreapproach is as follows: the parametef® in Eq. (24) corre-
of measurement that provides information about the walker'sponds to the laser flux, and attenuating the laser so that
path. |aj?<1 ensures that multiphoton contributions are negli-
The quantum quincunx can be realized in various physicagjible. Then each run overwhelmingly corresponds to no pho-
systemg5-7], but here the optical quincunx provides a con-ton or one photon. In this single-photon regif®§,37], the
venient system for understanding quincunxes and the represence of the photon can be ascertained by a photodetec-
guirements for a quantum quincunx. Furthermore, the opticafion at the output: the presence of the photon is postselected
quincunx has been realized experimentally as an interferonwhen the photodetector at the output clicks, announcing that

with C; the Kraus operators for different instances of coin-
state randomization.

According to Naimark's theorem30], the positive
operator-valued measure of coin state that yields the CP m
of Eqg. (23) can be realized by coupling the coin stateHp
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this run of the quantum quincunx had a walker. The photon’shis case the device is quantumoptical quincunx. The
path is _ascertained b_y quantum non(_jemolition measureguantumness of the quincunx is essential to manifest the
ments, either by a nonlinear optical medium for deterministiccomplementarity properties of the quantum walk, namely the

detection of the photon without destroyind 119] or by non-  tradeoff between information about the walker’s path and the
deterministic linear optical detectig@1]. Operating in alow interference.

photon flux regime and performing photon number quantum
nondemolition measurements of path would allow a continu-
ous interpolation between the the unitary quantum walk and X. CONCLUSIONS
the random walk, thus extending the optical quincunx to a ) ) o
fully functioning quantum quincunx. We are thus able to elu- N this paper we have incorporated complementarity into
cidate what has been achieved by the optical quincunx othe theory of quantum walks, thereby addressing the issue of
Bouwmeesteet al. [11] towards an optical implementation What is “quantum” about the quantum walk, as well as ex-
of the quantum walk and what needs to be added to provideéending the concept of complementarity well beyond the
a full implementation. usual physical systemge.g., interferometry to quantum
The optical quincunx emulates the undular properties, owalks on general graphs. Our analysis of complementarity in
interference, of the quantum walk, as stated by Knigfhetl.  quantum walks builds on the approach of coined quantum
[13], but this is performed without an identifiable, single walks and replaces unitary evolution by the much more gen-
walker. In fact the transition to the distribution for a classicaleral completely positive map approach, which is relevant to
random walk should also be achievable if the interferometegonsiderations of experimental realizations of quantum
is allowed to decohere. If the relative phases between inteﬁvan(s_ Through measurement, the quantum walk may exhibit
ferometer paths are fully decohered, for example by dispefihe unitary quantum walk, the random walk, and intermedi-
sive media in the paths, the resultant interferometer outpUite processes depending on the strength of the measurement.
will not correspond to a superposition of paths but rather Qe gefine a quantum quincunx as a physical implementation
an incoherent, probability-weighted distribution of outputs. ¢ o quantum walk, including measurement of path, that can

ghlts.tl)n(;pherent sum of paths is precisely the random walkje ,onstrate the essential properties of complementarity in a
IS'II;‘IUUSI?E.e experiment of Bouwmeestet al. could be guantum walk: interference traded off with which-path infor-
modified to demonstrate features of both the random wau£“a“9”- and the |r1_d|V|S|b!I|ty of the quantum walker. An ex-
tension of the optical quincunx experiment of Bouwmeester

distribution and the quantum walk interference effect, but

complementarity dictates three criteria to achieve quantum‘-at al. [11] operated in the single photon regime with postse-

ness. Just demonstrating a decoherence of wavelike interfeI >ction for the presence of a photon, and in W.h.'Ch the inter-
ence is insufficient to establish the corpuscular property o erometer_ arms_contained _photon hondemolition measure-
the objects: one must demonstrate their indivisibility. TheMeNt devices, would turn this into a fully quantum quincunx.
walker should be a single photon, and there are several pos-
sible methods to achieve tHi87]. One is to produce photon
pairs, for example via parametric downconversion, and ob-
tain one photon conditioned on detecting its partner; another V.K. appreciates useful discussions with P. L. Knight, E.
approach is to produce single photons on demand by Roldan, and J. Sipe. B.C.S. acknowledges valuable discus-
source such as a quantum dot in a strong cavity; a thirgions with S. D. Bartlett, D. W. Berry, M. Hillery, D. Meyer,
approach, which is currently the easiest, is to postselect thend J. Watrous. This work was funded in part by UK Engi-
results on detecting a single photon, thereby eliminatingneering and Physical Sciences Research Council Grant No.
vacuum and multiphoton contributions and sorting dataGR/N2507701, Alberta’s informatics Circle of Research Ex-
based on one and only one photon having been in the systercellence(iCORE), and the Australian DEST Innovation Ac-

In summary, an optical quincunx can implement the quan€ess Program fund to support collaboration with the Euro-
tum walk when it operates in the single photon regime. Inpean Fifth Framework project QUPRODIS.
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