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We show that quantum walks interpolate between a coherent “wave walk” and a random walk depending on
how strongly the walker’s coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum
property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker
takes vs the sharpness of the interference pattern. A physical implementation of a quantum walksthe quantum
quincunxd should thus have an identifiable walker and the capacity to demonstrate the interpolation between
wave walk and random walk depending on the strength of measurement.
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I. INTRODUCTION

Random walks are essential to physics as stochastic phe-
nomena, to mathematics as Wiener processes, and to com-
puter science for algorithms. The quantum walk, both in its
continuousf1g and in its discretef2–4g incarnations, is re-
ceiving significant attention because it is a natural generali-
zation of random walks to quantum systems, because quan-
tum walks may be physically implemented by quincunxes
f5–7g, and because quantum walks could provide a basis for
future quantum algorithmsf8–10g. However, an identifiable
benefit of the quantum walk, namely the enhancement of
spreading over its classical counterpart, is a wave phenom-
enon which has been realized interferometrically in an opti-
cal quincunxf11g, and proposed in other settingsf12–14g.
The realization of aspects of the quantum walk in a classical
optics setting has raised the question of what exactly is
“quantum” about the quantum walk. We resolve this issue of
comparing and contrasting the deterministic wave walk vs a
genuine quantum walk by properly accounting for the role of
complementarityf15–17g.

Although complementarity has been at the heart of quan-
tum mechanics since the dawn of the subjectf16,17g, studies
of complementarity often focus on simple, illustrative cases
such as two-slit interferencef18g and two-channel interfer-
ometry f19,20g; we significantly expand the field by provid-
ing an analysis of complementarity for general graphs. To
incorporate complementarity into quantum walks, we extend
from the typical view of a quantum walk defined as unitary
local transition rules over the Hilbert space for the vertices of
the graph and the states of the walker’s coin by allowing a
measurement process, either on the transitions, or on the coin
outcomes, or both. The measurement is performed by entan-
gling the walker or coin to ancillary degrees of freedom, with
the strength of coupling to the ancilla determining whether
the quantum walk is coherentsno coupling to ancilla yielding
the unitary quantum walkd or randomsstrong coupling that

yields full information on the walker’s pathd.
We then define a quantum quincunx as a physical imple-

mentation of a quantum walk, which must have an identifi-
able walker and interpolate between a random walk and a
unitary quantum walk as the measurement strength is varied.
More precisely, we require a quantum quincunx to havesid a
single walker,sii d a measurement process that can be em-
ployed to acquire varying degrees of knowledge about the
path of the walker, andsiii d an identifiable interference phe-
nomenon whose deterioration can be linked to the acquisi-
tion of knowledge about the walker’s path. This view on
complementaritysone walker and a tradeoff between which-
path vs interferenced follows the information-theoretic per-
spective of complementarity introduced by Wootters and
Zurek f18g.

We proceed as follows: first we provide background on
complementarity in Sec. II and then introduce our notation
for general graphs, recalling the definition of a classical ran-
dom walk on such graphs, in Sec. III. This is followed in
Sec. IV by the definition in our notation of a unitary quantum
walk on a general graph. In Sec. V we extend the definition
to include partial measurements of the quantum walker. An
example of the walk on aN-cycle is given in Sec. VI. In Sec.
VII we describe in detail how to perform a measurement of
the path taken by the walker by measuring the state of the
walker’s coin, followed by a general treatment of quantum
walks with nonunitary evolutions in Sec. VIII. In Sec. IX we
discuss how the wave walk relates to quantum walks, and in
Sec. X we summarize our results.

II. COMPLEMENTARITY FOR QUANTUM WALKS

In its original formulationf16,17g, complementarity is the
principle that one classical description of a system, which
explains certain phenomena for a quantum system, is incom-
patible with the simultaneous use of another classical de-
scription used to explain other phenomena. In simpler terms,
a quantum system can exhibit different, incompatible prop-
erties that are each manifested under different circumstances.
The most well-known example of complementarity is wave-*Electronic address: V.Kendon@leeds.ac.uk
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particle duality: objects such as single electrons or single
photons can be described as being corpuscularsparticleliked
under some circumstancesswhen the phenomenon being
studied, such as particle detection, can be explained by de-
scribing these objects as localized, indivisible particlesd and
undularswaveliked under other circumstancesswhen the phe-
nomenon being studied, such as interferometry, can be ex-
plained by regarding the objects as extended, interfering
wavesd. The attributes of waves and particles make these two
descriptions mutually incompatible, yet electrons or photons
can be made to exhibit the features of both these two incom-
patible descriptions depending on how they are observed.

Complementarity is at the heart of quantum mechanics.
Electrons and photons are described by quantum theory in
order that these mutually incompatible descriptions can be
reconciled. Quantum mechanics provides a unified frame-
work for describing quantum systems that can be corpuscular
or wavelike under different circumstances. Systems are in
fact regarded as quantum when complementarity is manifest.

Although the early descriptions of complementarity con-
cerned mutually incompatible measurements, Wootters and
Zurek presented an information-theoretic description of
complementarity, which elucidates that complementarity can
be quantified as a tradeoff between knowledge of which way
each particle goes vs the sharpness of the interference pattern
obtained via repeated preparations and measurementsf18g.
This tradeoff between corpuscular and undular behavior has
been examined in detail for photons both in a theoretical
context using a photon number quantum nondemolition mea-
surementf19g and experimentally using nondeterministic lin-
ear optical gatesf21g.

While complementarity has been well studied in quantum
physics, its role in identifying the “quantumness” of quantum
information tasks has not been explored. Recent controversy
over what is “quantum” about quantum walks motivates us
to examine the role of complementarity in this context. The
controversy over the quantum walk is exemplified by the
statement by Knightet al. in the abstract of their paper en-
titled “Quantum walk on the line as an interference phenom-
enon” that, “the coined quantum walk on a line can be un-
derstood as an interference phenomenon, can be classically
implemented, and indeed already has been”f12g. In their
conclusions, they state that they have “shown that thefquan-
tum walkg along a line can be simulated in a purely classical
implementation, involving nothing more than wave interfer-
ence of electromagnetic fields.” Their work shows that the
quantumness of the coin, which is a spin-1

2 particle for the
quantum walk on the line, and its possible entanglement with
the walker’s path, do not by themselves make the quantum
walk quantum. The question then arises whether this reason-
ing is sufficient to claim as they do, that the quantum walk is
purely a wave phenomenon that “can be simulated…fbyg
wave interference of electromagnetic fields.”

Our position is that the quantum walk may indeed be
implemented by an optical system, but not by one that is
strictly described by classical electromagnetic theory. The
optical quincunx of Bouwmeesteret al. f11g certainly dis-
plays the interference features of the quantum walk on the
line, but the quantumness of the quantum walk must connect
two seemingly incompatible descriptions: there is a single

walker at a time who can opt for different paths that interfere
with each other, and the acquisition of information about the
path destroys the interference and restores the classical walk.
An experiment that observes one phenomenon of the quan-
tum walk, the interference, is really only observing a “wave
walk”; we will show that aquantumoptical quincunx can
identify that there has been one walker, learn about the path,
and show that interference diminishes as path information is
obtained.

III. GENERAL GRAPHS

We cast our discussion of quantum walks in a very gen-
eral setting where the walk takes place on a general graph
GsV,Ed with

V = hv j ; j P ZNj s1d

the set of vertices, andE=hejj 8j the set of edges, whereejj 8
connects verticesv j andv j8, as shown in Fig. 1. The number
of edges adjoining vertexv j is dj and the degree of the graph
is d=maxj dj. The complexity of the graph is associated with
uVu=N, and the degreed is constant asN varies. For simplic-
ity, we assumeundirectededgessejj 8;ej8 jd, and at most one
edge between any pair of verticessejj 8 is uniqued.

In a random walk, the walker’s choice of which edge to
follow from a given vertex is randomsfor which we include
a d-dimensional coind, but this choice of edges can be
weightedssome edges are preferred over othersd or biased
sthe coin outcomes are not uniformly distributed over all
choicesd. In general the nature of the coin is correlated with
the vertex from which the coin is tossed, e.g., the coin is
dj-sided at vertexv j or the bias of the coin may bej depen-
dent.

IV. UNITARY QUANTUM WALK

In contrast to the classical random walk, the quantum
walk permits the walker to follow all edges in a superposi-
tion state, essentially as Feynman paths through the graph.
We first describe the unitary quantum walk, and then gener-
alize to include measurement of the walker’s progress. The
unitary quantum walk is deterministic, the walker’s wave
function is in the Hilbert spaceHvc which contains the
N-dimensional Hilbert space,

FIG. 1. An example of a general graph, withN=6 vertices la-
beledv0,v1¯v5, and eight edges labelede01¯e45. A labeling of
the possible choices of paths from each vertex is given by the letters
ha,b,c,dj, the degree of this graph being 4.
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Hv = spanhu jlv: j P ZN,vk j u j8lv = d j j 8j , Hvc, s2d

of vertex states. For a coin we have ad-dimensional Hilbert
space,

Hc = spanhuklc:k P Zdj andhckkuk8lc = dkk8j , s3d

whered is the degree of the graph. The basis states ofHvc
are given by

Bvc = hu j ,kl ; u jlvuklc; j P ZN,k P Zdj s4d

with cardinalityNd. For a basis stateu j ,kl, the indexj iden-
tifies the vertex number andk thekth state of the coin. For an
edgeejj 8 we associate the coin statek with the edge atv j, and
the coin statek8 with the other end of the edge atv j8. The
values of k and k8 are arbitrary but fixed throughout the
quantum walk, to ensure the quantum walker traverses the
graph in a consisent manner. We define the mapping

z:ZN 3 Zd → ZN 3 Zd:s j ,kd ° zs j ,kd = s j8,k8d, s5d

wheres j ,kd and s j8 ,k8d label each end ofejj 8.
The quantum walk undergoes a unitary evolution by rep-

etition of two steps: a coin toss and a conditional swap. The
coin operator

C:Hvc → Hvc:u j ,kl ° o
k̃PZd

C
kk̃

j u j ,k̃lc s6d

is a block diagonal matrix with each block labeled byj . The
j dependence of the coin matrix allows sufficient freedom in
the quantum walk dynamics for the quantum coherence
properties of the coin to vary between vertices, for vertices to
act as origins and end points, and for vertices to have differ-
ent degrees from each other. Ifv j has degreedj ,d, we re-

quire C
kk̃

j
=0 for all k̃ values not used to label an edge atv j.

This restricts the coin operator so it only produces states that
have a valid mapping underz.

If

C
kk̃

j
= C

kk̃

j8 ∀ j , j8, s7d

we have the special case of a fixed degree graph where the
coin operator is identical for all vertices. As examples, a
two-sided coin has been employed in analyses of the quan-
tum walk on the linef3g and quantum walk on the cyclef4g,
and a multisided coin for quantum walks on regular lattices
in higher dimensionsf22,23g.

The unitary conditional swap operator is given by

S:Hvc → Hvc:u j ,kl ° u j8,k8l, s8d

which updates the position of the walker and the coin state
according to the mappingz in Eq. s5d, i.e., moves the walker
and coin to the vertexv j8 along edgeejj 8. We note that, by
our stipulation thatk and k8 label opposite ends ofejj 8, it
follows thatS=S−1, and is thus unitary as required for quan-
tum evolution. The sequence of a coin flip and a conditional
swap is a transition over the unit time step, which we denote
by unitaryT=SC.

This formulation of aspure stated coined quantum walk
on a general graph has appeared in a different form due to

Watrous f2g, and is also described by Ambainisf10g. The
interferometric scheme of Hilleryet al. f24g is also equiva-
lent. The astute reader will have noted that there is thus far
nothing random in the dynamics of a unitary quantum walk,
it being a perfectly deterministic, reversible unitary evolu-
tion. Randomness does arise if one measures the position of
the walker after a number of time steps, when the walker will
be found on one of the vertices with a probability given by
the squared modulus of the walker’s wave function over the
graph.

V. NONUNITARY QUANTUM WALK

We now generalize to include measurements as part of
each step of the quantum walk dynamicssrather than only
after the final stepd. Quantum walks with measurements have
been considered by Aharonovet al. f25g though with differ-
ent motivations from ours. The inclusion of measurements
requires nonunitary evolution, therefore we introduce density
matrices to describe the walker’s state. Thestime-dependentd
density operator

r = o
j ,k

o
j8,k8

r jk
j8k8u j ,klk j8,k8u s9d

is a positivesr=r† with positive real spectrumd, unit-trace,
bounded linear operator onHvc, in the basisBvc, Eq.s4d. The
state is pure iffr2=r. A typical initial condition isrst=0d
= u0,0lk0,0u corresponding to the walker starting at vertexv0

carrying a coin in the 0 state.
In general the density operator is mapped to a new density

operator via a completely positive, or CP, map,

T:r ° Tr. s10d

The CP mapT performs one coin flip and the conditional
swap over one time step. As a CP map,

Tr = o
iPQ

Ti
†rTi, o

iPQ

Ti
†Ti = 1, s11d

with i an index of nonunitary evolutionary “instances” andTi
the corresponding Kraus operator. These instances may be
discerned by a measurement record, withi the record index.
The cardinality ofQ can be finite, countably infinite, or even
uncountable. In the case of unitary evolution,Q has a cardi-
nality of 1, so there is a unique, unitaryT for which
r°Tr=TrT†. Unitary quantum walk evolution can thus be
expressed as

rstd = T trs0d, T ; SC, SCr ; SCrC†S†, s12d

where, for the discrete time walk, we assumetPZ. Thus, for
the unitary walk, the transition is given byT=SC, and the
nonunitary walk can be understood as a collection, or sum,
of instances of nonunitary coin flips, with randomness, fol-
lowed by a conditional swap.

VI. WALK ON THE CYCLE

At this stage application to a well-known example is help-
ful, and we consider the quantum walk on a cycle, see Fig. 2.
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The quantum walk on the cycle has the advantages thatHv is
finite-dimensionalsas opposed to the walk on the line, for
example, which has infinitely many vertices, hence an
infinite-dimensional Hilbert spaced, d=2 for all vertices,
which is the smallest nontrivial degree, and the quantum
walk on the cycle may be experimentally achievablef5,6g.
The Hilbert space for a two-sided coin is given byHc=H2
for

H2 = spanhu0l,u1lj. s13d

The Hilbert space for the graph+coin is given by

Hvc = Hv ^ Hc. s14d

We can choose all blocks of the coin matrix to be identical
232 matrices, in this case the unbiased two-sided coin op-
erator is given by a generalized Hadamard transformation
f23g

Hw ;
1
Î2

S 1 − ieiw

ie−iw − 1
D , s15d

with a free phase degree of freedomw stypically w=p /2d.
Assuming that the vertices are labeled in sequence around
the cycle, we can employ the simplicity of assigningu0l to
moving from v j to v j+1 and u1l to moving from v j to v j−1
srather than labeling each end of the edgesd. The conditional
swap operation becomes

S= o
«Ph0,1j

o
jPZN

u j − s− 1d«modNlk j u ^ u«lk«u s16d

yielding the transformationSu j ,«l= u j −s−1d« ,«l.
The quantum walk on the cycle has been well studied: it

mixes faster than a classical random walk, both for unitary
quantum walksf4g, and when a small amount of decoherence
is applied in the form of nonunitary random measurements of
the coin and/or the walker’s positionf26g.

VII. MEASUREMENTS OF THE COIN

Now that we have the machinery in place to describe
nonunitary quantum walks on general graphs, we can return
to the question of complementarity and consider how to track

the path of the walker. We will explain this in detail for a
two-sided coin such as the one used for the walk on a cycle
described in the previous section. Suppose that measure-
ments of the coin state are performed after each coin flip, in
the coin state basishu0l,u1lj. This measurement can be per-
formed by adding an ancilla that serves as the coin meter,
and the meter state becomes correlated by interacting with
the coin. The Hilbert space for the ancilla is of the same
dimension as the Hilbert space for the coin, so the meter’s
Hilbert space isHm=H2, given by Eq.s13d. Letting

s+ ; u1lck0u = s−
†, t+ ; u1lmk0u = t−

†, s17d

2sx = s+ + s−, 2isy = s− − s+, s18d

2sz = fs+,s−g, 2tz = ft+,t−g, s19d

the meter couples to the coin via the interactionf27g

Wsbd = seisp/4dsy ^ e−isp/4dtxde−ibsp/4dsx^txse−isp/4dsy

^ e−isp/4dtzds1 ^ e−ips1−bdty/4ds1 ^ e−iptz/4d. s20d

The uncoupled case corresponds toWs0d, and Ws1d corre-
sponds to the strong-coupling limitsa controlled-NOT opera-
tiond with resultant sharp measurements. The interpolation
between the limits is achieved by allowingb to vary con-
tinuously over the domainf0,1g.

To perform a measurement, we first prepare the meter in
the u0lm state, then allow it to interact with the coin, which is
in an arbitrary qubit stategu0lc+hu1lc,

Wsbdsgu0lc + hu1lcdu0lm = gu00lcm + hu1lcfcossbp/2du0lm

+ sinsbp/2du1lmg. s21d

Tracing over the meter state yields the 232 coin density-
matrix transformation

TrmHWsbdFS ugu2 gh*

g*h uhu2
D ^ S1 0

0 0
DGW†sbdJ

= S ugu2 gh*cossbp/2d
g*h cossbp/2d uhu2

D . s22d

The coin values correspond to the pointer basisf28,29g, with
the degree of decoherence depending onb.

These measurements of the coin provide information on
path choices that the walker makes. If the walker’s initial
state is localized at one known vertex, then perfect coin state
measurements suffice to inform the observer as to the exact
trajectory of the walker. The parameterb allows the observer
to acquire as much or as little information as desired, thereby
allowing the degree of knowledge of which trajectory the
walker followed and the complementary degree of coherence
reduction to be controlled. To see the effect of varyingb,
first note thatb=0 corresponds to no measurement of the
coin. In this case the last matrix in Eq.s22d corresponds to
perfect coherence because the cossbp /2d term becomes
unity. Asb increases from 0 to 1, cossbp /2d→0 and perfect
decoherence emerges: the random walk arises because the
end states of the quantum walk are just probability-weighted
sums of each path.

FIG. 2. An example of a cycle graph, withN=7 vertices labeled
v0,v1¯v6, and seven edges. Arrows indicate the direction of travel
for coin stateu0l santiclockwised and u1l sclockwised. The cyclic
labeling of the vertices does away with the need to label the edges.
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VIII. QUANTUM WALKS IN OPEN SYSTEMS

Nonunitary evolution of the quantum walk of course can
also arise from other processes besides measuring the coin;
in the case of the quantum walk on the cycle in a cavity
quantum electrodynamics realization, cavity damping is
naturally associated with measuring the phase of the intrac-
avity field f6g, which corresponds to direct measurements of
the vertex states for the quantum walk on the cycle. In this
case the decoherence mechanism is due to measurements of
vertex occupation, not the coin state, but the classical ran-
dom walk emerges all the same.

For more general quantum walks, weak or strong mea-
surements of the state of the coin generalize the unitary evo-
lution of Eq. s12d to the nonunitary case

T:r ° o
iPQ

SCirCi
†S†, s23d

with Ci the Kraus operators for different instances of coin-
state randomization.

According to Naimark’s theoremf30g, the positive
operator-valued measure of coin state that yields the CP map
of Eq. s23d can be realized by coupling the coin state inHc
to an ancilla in an extended Hilbert spaceHa and performing
projectivesvon Neumannd measurements of the ancilla state.
The positive operator-valued measure of the coin state is
then obtained by tracing over ancilla states. The coin can be
considered as a qudit of dimensiond, and ad-dimensional
ancillary qudit suffices. The qudit-qudit coupling that inter-
polates from no measurement of the coin state to weak mea-
surements to sharp measurements with full information is a
complicated generalizationf31g of the qubit-qubit coupling
in Eq. s20d. A projective measurement of the ancilla gives
none, some, or all of the information about the coin qudit,
depending on the qudit-qudit coupling strength, which, with
full measurements, then yields the classical walk on the
graph. Measurements of coin states are sufficient to reduce a
quantum walk on the graph to a classical walk on the same
graph provided the walker starts in a basis statef32g.

IX. OPTICAL QUANTUM QUINCUNX

Having incorporated measurement into quantum walks
and shown that measurement introduces complementarity,
which interpolates between the random walk and the unitary
quantum walk, we now consider the quantum quincunx: a
physical system which implements a quantum walk. Our re-
quirements for a quantum quincunx are that the systemsid
has an identifiable walker,sii d exhibits both the unitary quan-
tum walk and the random walk as complementary features of
the quantum walk, andsiii d interpolates between these two
complementary extremes according to a controllable degree
of measurement that provides information about the walker’s
path.

The quantum quincunx can be realized in various physical
systemsf5–7g, but here the optical quincunx provides a con-
venient system for understanding quincunxes and the re-
quirements for a quantum quincunx. Furthermore, the optical
quincunx has been realized experimentally as an interferom-

eterf11g. The typical source for interferometry is a coherent
laser source, which is often described as producing a coher-
ent statef14g, a certain coherent superposition of different
numbers of photons, where the photon number states are
given by unl, and the indeterminacy of the photon number is
necessary in order for the phase variance to be small. Al-
though interferometric experiments can be fully described by
classical fields, the coherent state provides a bridge to con-
nect the quantum and classical field descriptions, with the
photons playing the role of the walkers in the system.

Second quantization seems to present a dilemma with re-
spect to the requirement of an identifiable walker: a coherent
state of walkers is given by

ualw = e−uau2/2o
n=0

`
an

În!
unlw, s24d

whereunlw is a number state of walkers along the graph. The
parametera is complex, whose square modulusuau2 is the
mean energy, the discrete energy distribution is Poissonian,
and argsad is the phase. Let us deal with two challenges:sad
the quantum walk with multiple walkers andsbd the indefi-
niteness of the number of walkers. With respect to challenge
sad, generalizing the quantum walk from one ton walkers is
straightforward: as then-walker system involves noninteract-
ing walkers, so the Hilbert space for the walkers is given by
Hvc

^n, and the completely positive map generalizes toT ^n.
Then-walker system is a simple extension of the one-walker
system as a tensor product ofn one-walker systems with one
time step given byT ^nr^n. Each walker carries its own coin,
and thesen coins are coupled ton meter qudits, so measure-
ment and complementarity arise via this coupling. Essen-
tially this n-walker system is equivalent to repeating the one-
walker quantum walkn times.

With respect to challengesbd, the wave walk appears to
emerge through second quantization of walker number, and
the indeterminacy of walker number in Eq.s24d enables the
phase, which is complementary to number, to be reasonably
sharp in order to provide strong coherence. However, it has
become abundantly clear recentlyf33–35g that the coherent
state and number state offer complementary yet convenient
alternative representations. The quantum optics implementa-
tion f11–14g can be described within the photon number su-
perselection frameworkf35g, so each run of the optical quin-
cunx experiment can be interpreted as having a fixed number
of photons, and this number of photons can be postselected
by an ideal photon counting measurement on all the output
fields.

Complementarity in the quantum walk would be mani-
fested by allowing each photon to be tracked during its evo-
lution. This requirement is not easily met, but a practical
approach is as follows: the parameteruau2 in Eq. s24d corre-
sponds to the laser flux, and attenuating the laser so that
uau2!1 ensures that multiphoton contributions are negli-
gible. Then each run overwhelmingly corresponds to no pho-
ton or one photon. In this single-photon regimef36,37g, the
presence of the photon can be ascertained by a photodetec-
tion at the output: the presence of the photon is postselected
when the photodetector at the output clicks, announcing that
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this run of the quantum quincunx had a walker. The photon’s
path is ascertained by quantum nondemolition measure-
ments, either by a nonlinear optical medium for deterministic
detection of the photon without destroying itf19g or by non-
deterministic linear optical detectionf21g. Operating in a low
photon flux regime and performing photon number quantum
nondemolition measurements of path would allow a continu-
ous interpolation between the the unitary quantum walk and
the random walk, thus extending the optical quincunx to a
fully functioning quantum quincunx. We are thus able to elu-
cidate what has been achieved by the optical quincunx of
Bouwmeesteret al. f11g towards an optical implementation
of the quantum walk and what needs to be added to provide
a full implementation.

The optical quincunx emulates the undular properties, or
interference, of the quantum walk, as stated by Knightet al.
f13g, but this is performed without an identifiable, single
walker. In fact the transition to the distribution for a classical
random walk should also be achievable if the interferometer
is allowed to decohere. If the relative phases between inter-
ferometer paths are fully decohered, for example by disper-
sive media in the paths, the resultant interferometer output
will not correspond to a superposition of paths but rather to
an incoherent, probability-weighted distribution of outputs.
This incoherent sum of paths is precisely the random walk
distribution.

Thus the experiment of Bouwmeesteret al. could be
modified to demonstrate features of both the random walk
distribution and the quantum walk interference effect, but
complementarity dictates three criteria to achieve quantum-
ness. Just demonstrating a decoherence of wavelike interfer-
ence is insufficient to establish the corpuscular property of
the objects; one must demonstrate their indivisibility. The
walker should be a single photon, and there are several pos-
sible methods to achieve thisf37g. One is to produce photon
pairs, for example via parametric downconversion, and ob-
tain one photon conditioned on detecting its partner; another
approach is to produce single photons on demand by a
source such as a quantum dot in a strong cavity; a third
approach, which is currently the easiest, is to postselect the
results on detecting a single photon, thereby eliminating
vacuum and multiphoton contributions and sorting data
based on one and only one photon having been in the system.

In summary, an optical quincunx can implement the quan-
tum walk when it operates in the single photon regime. In

this case the device is aquantumoptical quincunx. The
quantumness of the quincunx is essential to manifest the
complementarity properties of the quantum walk, namely the
tradeoff between information about the walker’s path and the
interference.

X. CONCLUSIONS

In this paper we have incorporated complementarity into
the theory of quantum walks, thereby addressing the issue of
what is “quantum” about the quantum walk, as well as ex-
tending the concept of complementarity well beyond the
usual physical systemsse.g., interferometryd to quantum
walks on general graphs. Our analysis of complementarity in
quantum walks builds on the approach of coined quantum
walks and replaces unitary evolution by the much more gen-
eral completely positive map approach, which is relevant to
considerations of experimental realizations of quantum
walks. Through measurement, the quantum walk may exhibit
the unitary quantum walk, the random walk, and intermedi-
ate processes depending on the strength of the measurement.
We define a quantum quincunx as a physical implementation
of a quantum walk, including measurement of path, that can
demonstrate the essential properties of complementarity in a
quantum walk: interference traded off with which-path infor-
mation, and the indivisibility of the quantum walker. An ex-
tension of the optical quincunx experiment of Bouwmeester
et al. f11g operated in the single photon regime with postse-
lection for the presence of a photon, and in which the inter-
ferometer arms contained photon nondemolition measure-
ment devices, would turn this into a fully quantum quincunx.
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