
Approach an autonomous vessel as a single robot with Robot Operating
System in virtual environment
Jaewoo Choi, Byongug Jeong , Gerasimos Theotokatos and Tahsin Tezdogan

Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK

ABSTRACT
This project aims at developing an efficient simulation environment for the vessel navigation
system. The design of the overall navigation system is described along with its application for
the case study of an autonomous vessel. The UNITY and Robot Operating System were utilised
as the virtual environment and the main control framework, respectively. By treating the
autonomous vessel as a single robot, each part of the system was formulated to enhance the
efficiency and visualisation in the development progresses for autonomous system. The virtual
environment using UNITY overwhelms the space-time constraints in the testing stage. The
navigation system combined with conventional navigation algorithms and a computer vision
algorithm were implemented in the Robot Operating System. Hence, the navigation system
was enhanced by an assistant object detection algorithm to be more active on fusing environ-
ment information. The excellence of the proposed object detection model was demonstrated
with reliable performance with 94% mean Average Precision, which renders the model exhibit-
ing visual sensibility in navigation. Overall, it is believed that this study can contribute to
offering some insights into developing autonomous marine vessels.

ARTICLE HISTORY
Received 1 October 2021
Accepted 30 November 2021

KEYWORDS
Autonomous vehicle; ROS;
UNITY; object detection

Introduction

The autonomous vessel is an inevitable change in
the maritime industry. Many facilities and nations
are deeply engaged to achieve this goal. For exam-
ple, DNV-GL the class of Norway has been taking
part in many projects for vessel autonomation such
as “ReVolt” and “DNV involvement” from 2014
(DNVGL 2018). A container ship named “ReVolt” is
planned to service in the short-sea segment and
operate with no crews. Another well-known project
YARA Birkland developed by YARA and Kongsberg
is under progress as well. Their fully autonomous
vessel called “YARA Birkland” has been delivered in
November 2020, and it is planned to launch in late
2021 after finishing further preparation for autono-
mous operation. But the control systems of the
projects like YARA Birkland is not open to all people
since the developing autonomous system is pro-
gressed separately by each organisation or
company.

Global heavy industry companies are also investing
in autonomous navigation systems. SAMSUN heavy
industry has developed the smart ship system
“SVESSEL” and tested it. HYUNDAI heavy industry has
developed an advanced navigation assistance system
called Hi-NAS, which uses radar ARPA, AIS, and
a forward-looking camera (Jeon, Park, and Woo 2019).

In many different sites, many organisations and com-
panies have already planned or are already in the
process of autonomous vessels.

The reason why many associations and compa-
nies emphasise autonomation in the shipping
industry is that this has many strong advantages.
The most attractive benefit is in terms of safety,
majority of accidents in the maritime industry is
caused by human. Not only immature skills but
also decision error leads to huge loss (Chauvin
et al. 2013), and it is expected that those human
errors can be eliminated through autonomous ves-
sels. Alleviating road congestion and lowering main-
tenance costs are the other considered benefits
coming from automation. Project “YARA Birkeland”
is going to replace transportation with more than
40,000 trucks in populated urban areas (Evensen
2020). Moreover, since there is a positive aspect in
reducing NOx and CO2 emission by replacing those
diesel-powered truck in terms of a global issue,
autonomous system coming from electrification
and digitalisation is getting more developed and
accelerated.

In the stages of developing an autonomous vessel,
extensive tests are required to give a shape of it.
Especially in the software development step, simula-
tion can be a great advantage to assess its basic
functionalities in pre-designed stages. With strong

CONTACT Byongug Jeong byongug.jeong@strath.ac.Uk Department of Naval Architecture, Ocean and Marine Engineering, University of
Strathclyde, Glasgow, UK

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING
2022, VOL. 6, NO. 1, 50–66
https://doi.org/10.1080/25725084.2021.2014244

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-8509-5824
http://orcid.org/0000-0003-3547-8867
http://orcid.org/0000-0002-7032-3038
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/25725084.2021.2014244&domain=pdf&date_stamp=2022-03-21

advantages that there is no restriction in test scenar-
ios, navigation and control systems can be easily
tested in high-risk situations. Because it is
a simulation environment, there is not any cost or
time loss. Model properties can be easily changed,
and the life cycle of a model can be tested (Boschert
and Rosen 2016) as well.

Our autonomous model has benefits described as
below. Unity is an effective virtual environment to
develop the system. It is a game engine, which is
originated to develop the computer game. It has
a more user-friendly interface compared with unreal
engine and requires less computer capacity to develop
with a function like Python API supporting (Bartneck
et al. 2015). Simulation can be visualised and easily
changed. ROS (Robot Operating System) is another
benefit in developing progress. The meta-system
started from a project developing robots in the uni-
versity became one of the standard robot system fra-
meworks, which proposed a reliable environment to
develop robots.

While many new algorithms are proposed to sup-
plement previous studies, few projects focused on
testing models fully equipped with navigation mod-
ules. Most of the path algorithms are tested in a two-
dimensional numerical environment. To close a gap
between practical implementation and theoretical
methods, this study proposes to develop a platform
for vessel simulations. By treating the model as a single
robot, the robot consists of various components called
packages in ROS system. By applying ROS, it is available
to attach or detach specific parts of system.
Visualisation tools supported by ROS is another bene-
fit, which help us to understand current communica-
tion status easier.

Literature review

There are many attempts to apply ROS and unity in
the research area. In the case of vessel autonoma-
tion, the physical vessel was made and controlled
by ROS (Conte et al. 2018), which is remarkable in
terms of the fact that ROS was applied for control
of a ship model. However, this research was only
developed and carried out by the physical model,
and the experiment was limited to a specific envir-
onmental conditions like lakes or water-tank with
a scaled-down model. Given this, proper under-
standing of autonomous controls in heavy weathers
like a rainy day, heavy wind and current was not
attainable.

In some other projects, ROS and unity have been
combined to simulate and test the physical robot in
the virtual environment. Those techniques were used
to monitor the 3D robotic process in fixed-link welding
work and to introduce teleoperation interfaces in the
wheel-drive model (Sita et al. 2017; Codd-downey et al.

2014). Even though ROS has several advantages, the
majority of applying ROS in the project has relied on
land robots such as wheel-drive robots and four-feet
walking robots.

In terms of vessel navigation, various methods have
been introduced and applied. They can be divided into
two different points: one is global path planning; the
other is local path planning (real-time). A global path
plan process finding an optimal route to goal based on
static environments with stationary obstacles. On the
other hand, the local path plan considers dynamic envir-
onments with dynamic obstacles.

A-star, Dijkstra, dynamic augmented multi-object
particle swarm optimisation (PSO), and EEA algo-
rithms have been developed and often applied for
global navigation. Both A-start and Dijkstra are grid
map-based path planning, which has benefits in
computation time and avoidance of local optimum.
A Dijkstra path algorithm was introduced in 1959 by
EW Dijkstra, which was to find the shortest routes
between nodes. The Dijkstra algorithm selects the
node with the smallest sum of weights from the
starting node to the current node and includes the
path in the shortest path. This process is repeated
until all nodes are selected. Searching all the nodes
makes this algorithm inefficient. The A-star algo-
rithm is proposed by improving the inefficiency of
the Dijkstra algorithm. A-star algorithm gives prior-
ity to nodes that are supposed to be better than
others by using a heuristic function. Because of this,
the A-star algorithm has higher efficiency. Even
though the earlier A-star algorithm only targets
minimising the path length in a grid map, the algo-
rithm has been improved. In order to overcome the
weakness of the A-star algorithm that the path does
not conform with the motion constraint of the
robot, enhanced A-star algorithms considering
orientation restriction were proposed by Fernandes
et al. and Wang et al (Fernandes et al. 2015; Wang
and Xiang 2018).

In addition, velocity obstacle (VO), potential field,
and dynamic window approach (DWA) were intro-
duced and widely applied for the local path plan-
ning. VO is proposed by Fiorini et al in 1998, which
was an optimal method to avoid collisions between
two moving objects (Fiorini and Shiller 1998).
Animesh et al had introduced a similar approach
named collision cone in 1998 (Chakravarthy and
Ghose 1998). This has been improved to Reciprocal
Velocity Obstacles (RVO) and Hybrid Reciprocal
Velocity Obstacles (HRVO) (Snape et al. 2011) to
overcome the oscillation problem. RVO has another
condition that the velocity which guarantees colli-
sion-free is the average of its current velocity (Van
Den Berg, Lin, and Manocha 2008). HRVO combined
the characteristics of VO and RVO by indicating the
limitation of RVO, which cause a collision in the

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 51

specific situation. The dynamic window approach
suggests a collision-avoidance model, which aims
to maximise the objective function. The function
grant values by the parameter of heading and dis-
tance to obstacles and current velocity (Fox,
Burgard, and Thrun 1997).

Object detection models have been rapidly and
continuously improved. Since Regions with
Convolutional Neural Network (R-CNN) was first
introduced in 2014, Fast-RCNN and Faster-RCNN
are followed one after another in 2015 and 2016,
respectively. Fast-RCNN increases the processing
speed by implementing CNN once while each
region proposal passes through CNN in RCNN.
Instead of concrete training in classification and
bounding-box regression, Fast-RCNN suggest
a multi-task loss to train both modules at once
(Girshick 2015). Faster-RCNN is constructed by
Region Proposal Networks (RPN), which share con-
volutional layers while Fast-RCNN utilised indepen-
dent RPN, which means that RPN and RCNN
detectors share the same CNN features. So, this
method was confirmed to improve the efficiency
of the model because both modules can be trained
at the same time. Even though models based on
RCNN have been improved significantly, the models
are not feasible to be used in real-time sensing.
YOLO (You Only Look Once) proposed by
J Redmon et al in 2016 overcome the limitation of
models based on RCNN. By implementing the clas-
sification process and bounding-box regression pro-
cess at once, it shows dominant improvement in
terms of speed. YOLO shows 155 FPS, which can
be available to use in real-time processing while
Faster R-CNN ZF represents 18 FPS (Redmon et al.
2016). Nevertheless, YOLO is not a perfect solution
for the object detection model. Even though YOLO
also has been improved with a fourth version
(Bochkovskiy, Wang, and Liao 2020), it has a trade-
off between speed and accuracy compared with
R-CNN models because of YOLO process classifica-
tion and bounding-box regression at once.

In a way to fill in some research gap, this project was
to propose an optimal objection detection method for
an autonomous surface vessel. To achieve real-time
detection, YOLO v4 was applied and the simulation
was conducted under the Unity environment.
Different from wheel-drive or four feet walking robots,
developing surface water vehicles was restricted by
their working environment. Water environment such
as lake or water tank was essential to test its function-
alities. Considering those restrictions, the virtual envir-
onment can be a great benefit in the initial stage of
developing an autonomous vessel control system.
Basic function can be easily applied on the model
and tested. Dijkstra and DWA algorithms are applied
for autonomous navigation, and object detection

models carry out recognising different markers. The
vessel takes different actions depending on what the
marker is.

Simulation environment

Unity and ROS are quite popular to researchers work-
ing in the games area. Each environment to implement
the model is described in the following section to get
the idea of both systems.

Robot Operating System

ROS (Robot Operating System) is a novel meta operating
system, which has been fully oriented to the specific
needs of the robotic platforms. There are many robots
operating systems such as OPROS, NAOqi and ROS etc.;
each system has its benefits and characteristics. But
other robot operating system except ROS is not free of
charge or not open source. This is the main reason that
most robot developers use the ROS. Beginners can easily
experience the interface of the system in open confer-
ences or classes. Even ROS can be modified for
a purpose by companies because it is an open-source
system. One of the best examples is NASA (National
Aeronautics and Space Administration), which is posi-
tively utilising ROS in its mission. VIPER which is a lunar
probe to explore and carry out a special mission on the
moon is developed by ROS2. The software operating
system is intended to be released for general use (NASA
2021). This virtuous circle makes ROS a valuable robot
operating system.

Even though its name has an operating system,
ROS can be described as a meta-operating system.
This can be called middleware or software framework.
It was originated from the Switchyard system devel-
oped by Morgan Quigley who was engaged in the
STAIR (Stanford AI Robot) project at Stanford
University. ROS is currently maintained by Open
Robotics. ROS is installed in a general operating sys-
tem such as Ubuntu based on Linux and windows. So,
ROS utilise a common processor management sys-
tem, file system and program utilities in the operating
system. This gives users strong benefits. The user does
not need to install another operating system to oper-
ate ROS.

The strongest aspect of ROS is the node and mes-
sage base communicating system. When it comes to
developing one system, there is no distinct sorting
point. The construction of the system is distinguished
by its developer. So, it is hard to understand by users
who is not a developer of it. If someone tries to
implement one system to another model, it takes
a long time to understand code and construction.
However, message type information transferring
enables one system to divide into packages. Each
function of the system can be divided by package,

52 J. CHOI ET AL.

and this can be easily used by another user if the
required parameter is constructed by a justified mes-
sage. Therefore, people do not need to make their
code every time, instead, they can attach the package
that someone has developed. This can reduce the
developing time enormously, so developers can
focus on their specific work more. This is the main
purpose of ROS to reuse and share the code in robot
development. Not only these benefits, but ROS can
also be developed in various languages and support
efficient tools and peer-to-peer communications
(Quigley et al. 2009). MATLAB, Python, and Lisp are
supported while C++ is a standard. Specifically, rospy,
roscpp, and rosplib can be utilised as libraries for
programming in ROS (ROS). Because of these attrac-
tions, ROS has been continuous growth showing an
increase in usage. In the annual metrics report of
July 2020 (ROS 2020), the total number of packages
is 86,128, which is increased by 55.81% compared
with that of packages in 2019.

Unity

Unity is a game engine developed by Unity
Technologies. The game engine is software or ele-
ments of software that contain various functions for
operating games. The main functions of the game
engine are the rendering engine for 3D graphics,
a physics engine for physics effect. The first version is
released in 2005 supporting macOS only. Unity sup-
ports more than 20 platforms now. Unity has a very
intuitional Graphical User Interface (GUI). Tools by way
of WYSIWYG (What You See Is What You Get) is very
comfortable. It requires less capacity compared with
other game engines, which has fewer restrictions for
new users. Another strong part of Unity characteristics
is the asset and prefab. In any game object, a scene can
be turned into a form of asset. It is easy to store and
share with others in the asset store. The prefab is

stored as a form of asset, and it is easy to reuse. For
example, this prefab function is useful to make
a dataset for training an object detection model.

Development environment

The setup of the simulation environment is described in
Figure 1. There are two operating system environments,
which are windows and ubuntu. Windows is the main
operating system for running Unity. The main character-
istics of the vessel are constructed in unity scripts. Linear
velocity, angular velocity, odometry position, GPS posi-
tion, and lidar data are generated in this environment. The
Unity environment receives linear and angular forces to
control the vessel. On top of the windows host operating
system, Ubuntu is installed with a virtual machine. ROS is
installed in Ubuntu because ROS is developed based on
Linux so, it is most stable in Linux operating system.

The raw data generated from unity is sent to Ubuntu
OS through GRPC. The received data is constructed into
ROS message type to be utilized in ROS communication.
In terms of ROS topic list, PoseStamped, TwistStamped,
and PointCloud2 represent the position, velocities, and
lidar data, respectively. GPS position is transferred into
ROS parameter as “/scenario_instance/local_origin_lati-
tude” and “/scenario_instance/local_origin _longitude.”
The main control of the vessel is carried out on ROS in
Unbuntu OS. The concept of communication inside ROS
can be simply described as “Publish” and “Subscribe.”
Nodes publish or subscribe to topics that contain the
information. Each topic has its message type defined by
the ROS system.

Communication between ROS and Unity

To communicate between two independent equipment,
a network framework is required. In Inter-Process
Communication (IPC), there are several ways such as
shared memory, message queue, PIPE, and socket.

Figure 1. Simulation environment (setting and communication).

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 53

Among them, the socket type is widely used through
rosbridge package. Rosbirdge makes ROS topics and ser-
vices available over either standard TCP (Transmission
control protocol) sockets or WebSocket as JSON format.
It is convenient because it is provided by an API. But the
more data is required, the harder it becomes to format the
data.

Google Remote Procedure Call (GRPC)
GRPC is utilised in order to communicate between
Unity and ROS in our model. GRPC, which was
developed by Google, is a way to communicate
between server to client. It is an open-source fra-
mework that combines HTTP/2 and protocol buffer.
The HTTP/2 is a strong advantage compared with
socket/WebSocket. Protocol Buffer serialises the
data to communicate, which means that data
expression is changed into a byte unit. Compared
with JSON format based on text, it requires less
memory and increases the data transferring speed
(Popić et al. 2016). The other characteristic of GRPC
is HTTP/2. HTTP/1.1, which is the previous version,
responds to clients when requests exist.
Connections have to be made in every single
request, so it is inefficient and shows slow speed

(Fielding et al. 1999). On the other hand, enhanced
HTTP/2 manage to send multiple messages into
a single connection, which is more efficient than
HTTP/1.1.

Figure 2 shows the page load time between
HTTP/1.1 and HTTP/2. As the number of request
increase, page load time of HTTP/1.1 is getting
increase while HTTP/2 shows constant page load
time. Compared with socket type communication
(De Saxcé, Oprescu, and Chen 2015), GRPC is more
suitable for our model considering real-time detec-
tion and control because of efficient bidirectional
communication.

Methodology

To control the model in Unity, it is required to con-
struct a representative model in ROS. The model and
control structure in ROS are described below.

Model definition

A vessel model follows three degrees of freedom. It is,
however, assumed that the weather is culm, so there is
not any pitch and yaw during the scenarios. The vessel

Figure 2. Comparing the loading time between HTTP/1.1 and HTTP/2 (De Saxcé, Oprescu, and Chen 2015).

Figure 3. Vessel model with coordinate systems (base_link, navigation, base_scan) in ROS RVIZ, and Unity (NJORD 2021).

54 J. CHOI ET AL.

is controlled by three forces and momentum, which
are forward, backward, and momentum by z-axis. Four
cameras and one lidar are equipped, and each camera
visualise forward, backward, port, and starboard sides.
Lidar is in the same position as cameras. More details of
vessel coordinate systems are described below.

Coordinate system
Each joint in a robot has its coordinate system. When
a robot wants to grab something, the coordinate sys-
tem on the robot arm moves and rotates (Yoshikawa
1990). Position based on robot center frame needs to
be converted into robot arm’s frame.

Figure 3 shows the virtual model created in ROS and
the model in Unity. The position received from Unity
represents that of the vessel center (base_link). The lidar
data received, however, is based on the lidar equipment.
In order to make a precise navigation map, the error
between these two coordinate systems is corrected.

Another purpose of coordinate system transform is
navigation. To navigate, the robot should recognise
where he is. An absolute reference frame and local
body-fixed frame are required to figure out position
and rotation, which are represented as
P0 ¼ xo; y0; z0; wj j

t ,P1 ¼ x1; y1; z1; wj j
t , respectively.

Point P is an arbitrary point of a rigid body. The homo-
genous coordinate w is zero for vector transformation
and is one for points transformation. The body-fixed
reference frame is described by homogenous
transformation.

P0 ¼ M0;1P1 (Eq:1)

Where transformation matrix is described as,

M0;1 ¼
R0;1 t0;1

0 0 0 1

�
�
�
�

�
�
�
� ¼

xx yx zx
xy yy zy
xz yz zz

tx
ty
tz

0 0 0 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼

xx

xy
xz
0

yx

yy
yz
0

zx

zy
zz
0

tx

ty
tz
1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

(Eq:2)

Figure 4. Coordinates transformation.

Figure 5. Constructed coordinates in the model.

Figure 6. Communication diagram by node while mapping (RQT).

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 55

Where R0;1 is 3 × 3 orthogonal rotation matrix, t0;1 is the
position of the origin of the body-fixed reference frame in
the absolute reference frame (Yoshikawa 1990). This infor-
mation is delivered by message type “Odometry” in ROS.
Figure 4 shows how coordinates of vessel center is trans-
formed by that of odometry. Fortunately, the vessel posi-
tion is expressed by the coordinate system of a fixed
frame (Odom) in Unity. So, this position is directly used
to indicate the current position of the model in the global
frame. On the other hand, the velocities are expressed by
a body frame (Base_link). Figure 5 shows the coordinate
system representing position of the vessel and equip-
ments in ROS.

Control structure
ROS supports a plenty of toolboxes, which are useful to
understand and demonstrate robot communication sta-
tus. RQT is one of the toolboxes, which show current
communication status, signal value, transform of coordi-
nate systems, etc. Figure 6 demonstrate current commu-
nication status while generating a map. Node is usually
represented by the shape of “/xxx” and communicate
with other nodes by messages. The below RQT graph
shows the communication line between nodes.

“robot_state_publisher” is constructed to gener-
ate information of vessel coordinate systems and
their joints. The vessel has a base link as “base_-
link”, and links “navigation” and “base_scan” are
joint with it. Lidar is equipped in the “base_scan”
frame. This node publishes message type “trans-
form” as well. “ros_adapter” is a node that publishes
the position, velocity of the model, and lidar infor-
mation. The position of the vessel is published by
the message type “geometry_msgs/PoseStamped,”
which deliver the vessel position as x,y,z and orien-
tation as x,y,z, w by homogenous coordinate. In the
case of velocity, it is delivered by “geometry_msgs/
TwistStamped,” which demonstrate linear velocities

and angular velocities in each axis. The lidar infor-
mation is delivered by the message type of
‘PointCloud2ʹ. ‘PointCloud2ʹ type message is con-
verted into “LaserScan” type message to be utilised
in the navigation package. “navigation” publishes
the required vessel velocity to get to the target
point based on Dijkstra and DWA (Dynamic-
Window Approach) algorithms. In order to reach
the ordered velocities, forces and momentums are
controlled by the PID controller. Ordered forces and
momentums are published through the ‘ros_clients’
node.

Figure 7 demonstrates the schematic diagram of
a designed navigation system. Once the destination is
ordered by the set of x, y in the fixed frame and heading,
the global path is generated by considering a current
position and the map. While the vessel navigates follow-
ing a global path, real-time sensing for collision avoidance
is carried out by considering the current position, Images
from the camera, and Lidar information within a specific
boundary.

Figure 7. Schematic diagram of the proposed autonomous navigation with object detection model.

Figure 8. Simulation environment in the unity.

56 J. CHOI ET AL.

Navigation

The main navigation system is based on open
packages. Navigation, Pointcloud_to_laserscan,
Yolov4-for-darknet_ros, gmapping are utilised to
develop a navigation system. A Navigation package
is an open package that enables robots to navigate
autonomously. Dijkstra and Dynamic window
approach (DWA) are utilised in global and local
path planning, respectively. A detailed description
of both algorithms is followed below. The gmap-
ping package generates a map of where a robot is
going to navigate globally, while a local map is
updated by lidar data in real time. ROS receives
lidar messages from Unity with the form of ‘sen-
sor_msgs/PointCloud2ʹ. So, it should be converted
into “sensor_msgs/LaserScan” in order to be utilised
in gmapping and navigation packages. Figure 8
shows the simulation environment with the model
and PointCloud projected in ROS rviz. Yolov4-for-
darknet_ros package provides the ability to detect
objects in real-time. Yolov4 is trained by our data
set and the weights are derived from there. Original
darknet provided the source where the father of
YOLO services the YOLO model in open-source by
darknet (Bochkovskiy and Wang 2020).

Global path planning

Dijkstra algorithm.
Dijkstra algorithms find the shortest paths from
a source node to a destination node. When the
algorithm finds all distances from the initial node,
the shortest path can be defined. The fundamental
algorithm of Dijkstra can be described by a few
steps. First, the distance of a source node is initia-
lised as zero. Then, all distances of unvisited vertex
V were defined as “infinity” and a previous vertex as
“undefined.” Second, the distances of neighborhood
nodes from an initial node are input. Third, the
node which requires a minimum distance among
unvisited nodes is selected. Fourth, the minimum
distance considering other distances (sum of dis-
tances passing the other nodes) is updated. Fifth,
it repeats the third and fourth procedures (Dijkstra
1959). Dijkstra algorithm is widely used to find the
shortest paths in robots with the A star algorithm.
A star algorithm shows relatively high searching
speed without considering all nodes. Dijkstra, how-
ever, shows higher performances in terms of accu-
racy. Because it considers all nodes, while A star
considers the nodes by heuristic search. In our
model, the processing speed between the two
methods is not too big relatively. Because the map
is not huge. So, the Dijkstra algorithm is utilised
instead of the A star algorithm. When a robot is
placed in an unknown place, it is not available to
calculate. So, to find the globally shortest path,

a map should be pre-defined to calculate it. The
virtual environment map is made by using the
gmapping package, while the global map is pro-
vided by ECDIS in the case of real vessels.

Local path planning

VO (Velocity Obstacle).
In a previous project, VO (Velocity Obstacle) had been
considered and tested as a local planning algorithm.
VO is a simple and reliable collision avoidance
method that has been developed constantly as RVO
(Van Den Berg, Lin, and Manocha 2008) and HRVO
(Snape et al. 2011).

The main idea of collision avoidance by VO is that
VO is the area of all velocities, which can result in
a collision with an obstacle (Fiorini and Shiller 1998);
therefore, if a robot choose the outside of the VO area,
the robot is free from collisions. However, there are
limitations to implement it in our model.

The condition of applying VO is that the velocity
and position of both two obstacles should be calcu-
lated. This is usually given by Radar. Radar is, however,
not equipped in the model, which means that the
model cannot measure the velocity of moving obsta-
cles. So, local planning algorithms should be indepen-
dent of external parameters.

DWA (Dynamic Window Approach)

DWA (Dynamic Window Approach) is a well-known
method, which is widely applied in robot navigation.
In order to apply DWA, it requires a robot velocity and
a distance from obstacles, while VO is carried out by
both velocities. Robots applied by the DWA algorithm
optimise a local route by maximising the objective
function.

G v; ωð Þ ¼ σ α � headingðv; ωð Þ þ β � dist v; ωð Þ þ γ
� vel v; ωð ÞÞ

(Equation3)

DWA Objective equation. Where, heading is a standard
to determine the progress, and it is maximised if the
robot head for the target directly. dist is the distance
between the robot and the closest obstacles on the
trajectory. Small distance means that the robot is more
likely to collide with an obstacle. So, the robot takes
a roundabout way. vel is the forward velocity to get to
the goal faster. σ is the function that can be controlled
by users to change the rate of the weighted sum (Fox,
Burgard, and Thrun 1997). In the moving obstacle
collision avoidance point of view, the difference
between VO and DWA is that VO eliminates the risk
of collision by selecting velocity, which guarantees
a free from the collision. On the other hand, DWA
minimises the collision risk by maximising the distance
from obstacles. So, the DWA algorithm is more

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 57

practical due to the direct implementation of the para-
meter from LIDAR, which measures the distance from
obstacles.

Mapping

In order to achieve autonomous navigation, it is essen-
tial to know the map of the navigation area.

Through the map, Robot knows where it is now, and
then this can plan its next path. In the case of the vessel,
it was provided by a physical map. Officers confirm the
vessel’s position on the map by latitude and longitude.
Nowadays, ECDIS (Electronic Chart Display and
Information System) is available in the majority of ves-
sels, and it is available to use this electronic map for
autonomous navigation. In our model, gmapping pack-
age is utilised in order to make a global map.

Object detection

Different from object classification, Object detection
is the way to specify the place and name of multiple
objects within an image. In autonomous navigation,
recognising the object is essential to navigate. When
it is required to navigate following a specific route
because of the draft, navigation should care about the
position of buoys. When a vessel faces a dynamic
object during navigating, the vessel acts in different
ways in accordance with whether the objects are
vessels or not. If the dynamic object is a vessel, the
autonomous vessel should avoid collision according
to the COLREGs. The cameras equipped in the vessel
take a video and send a picture every second. In order
to perform real-time decisions, image recognition
should be fast and accurate. There are predominant
and practical models introduced in the research area.
RCNN (Region-based Convolutional Neural Network)
and YOLO (You Only Look Once) are the ones.

RCNN is a model proposed by Ross Girshick,
which can recognise the multiple objects in an
image. The main idea is that many region proposals
are generated up to 2000, and each one passes the
CNN. Then these are classified by using class-
specific linear SVMs (Support Vector Machine)
(Girshick et al. 2015). This has been developed as
fast-RCNN (Girshick 2015), Faster-RCNN (Ren et al.
2015), and Mask RCNN (He et al. 2017). The com-
puting speed, which is one of the main drawbacks,

has been improved by changing the structure of
the model. The full image passes the CNN and
then extract the fixed-length feature vector from
the feature map by a region of interest (RoI), while
the initial RCNN pass each object proposal pass the
CNN. This reduces the time cost significantly. Faster
RCNN is even more improved by changing the
module of region proposal from selective-search
base to RPN (Region Proposal Network), which
enable the model into one end-to-end structure.

YOLO (You Only Looks Once) is introduced by
Joseph Redmon at the University of Washington.
Different from RCNN, YOLO is constructed with
a single neural network to predict bounding box
and class probabilities, which is inspired by the
GoogLeNet model for image classification (Redmon
et al. 2016). Thanks to the simple structure, it is
much faster than R-CNN. There are other advan-
tages compared with R-CNN. YOLO see the entire
image while RCNN reasons locally. So, it has
a smaller number of background errors.

In our model, YOLO version four is applied in order
to detect makers. Speed is the main reason to choose
the model. YOLO shows the highest real-time perfor-
mance in models (Redmon et al. 2016) and shows
dominant value in FPS (Frame Per Seconds). In real-
time sensing, YOLO is the most appropriate model
because navigation decisions should be carried out
every second. RCNN has been developed but still
demonstrate insufficient performance to use as a real-
time model (Redmon et al. 2016).

Results and discussion

In this study, a reliable and efficient simulation
environment for developing a navigation system is
introduced. The simulation environment can not
only overcome the space-time constraints but also
be used to test risky situations. While developing
a system, Nodes and message type communication
provide developers with visualisation of current
communication status intuitionally, which increase
the productivity of the whole process.

A conventional navigation algorithm just takes the
information of circumstances by numerical values. This
is essential to treat the information inside computers. This
process converting visual or complex information into
numerical parameters, however, lost much other

Table 1. Performances of YOLOv4 by Hyperparameter.
Model Learning rate Batch-size/Subdivision Resolution (Width x Height) mAP (%) Average IoU (%) F1-score Total detection time (sec)

Model 1 0.0013 64/8 320 x 160 91.90 66.12 0.85 3
Model 2 0.0013 64/8 640 x 320 94.87 70.89 0.89 5
Model 3 0.0013 64/16 640 x 384 93.19 71.3 0.89 5
Model 4 0.0013 64/16 640 x 352 94.28 70.63 0.88 5
Model 5 0.00261 64/8 320 x 160 91.70 68.37 0.86 2
Model 6 0.00261 64/8 640 x 352 94.57 72.39 0.89 4

58 J. CHOI ET AL.

information. By applying object detection on the naviga-
tion system, the system directly uses visual information,
which broadens the boundary of information. Detailed
descriptions and results about the system are followed.

Navigation

Control system
The overall control can be simply divided into
three modules. One is the navigation module, the
other is the object detection module, and the
other is the PID control module. The navigation
module defines a global route by the Dijkstra
algorithm, while the local cost map changes the
local route when facing unexpected obstacles.

Unexpected obstacles mean obstacles that do not
exist during making the global map. So, avoiding
any static obstacles or dynamic obstacles is carried
out by DWA.

Below Figure 9 and Figure 10 shows an overall
algorithm for making a global path and local path
with object detection while Figure 11 represent the
algorithm when detecting markers.

While following the path for navigation, the ves-
sel should consider the sign of markers. When
a vessel detects a green lateral marker, it should
pass the path putting the marker on the starboard
side. Even though global path design optimal path,
navigation package output desired velocity of the
vessel and then, PID control continuously adjusts
the forces and moment of the vessel to minimise
the error between actual velocity and outputted
velocity.

Object detection

Collecting and pre-processing images
Images for training are collected in a Unity environ-
ment. Lots of markers were placed in arbitrary posi-
tions. The Images are saved every five seconds
automatically. RGB values coming from the ROS mes-
sage are saved in a specific folder. The script used for
saving images is attached in the appendix. LabelImg is
used in order to carry out labelling with a bounding

Figure 9. Projected environment by Lidar in ROS RVIZ.

Figure 10. Algorithm for optimal route.

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 59

box. Each labelled file with.txt extension consists of 5
components: class, x position, y position, width, height.
Figure 12 shows lebelling programme ' LabelImg‘ and
assigned position for markers.

Training
The model is trained by a computer equipped with
INTEL i9 – 10980XE 3.00 GHz x 36, NVIDIA GeForce
RTX 3090 and 32 GB RAM. NVIDIA Driver version is

Figure 11. Algorithm for action by object detection.

Figure 12. LabelImg program for labelling and labeled text file (representing class, x position, y position, width, height).

60 J. CHOI ET AL.

470.57.02. CUDA 11.4 and cuDNN v8.2.2.26 are
installed to utilised GPU in training. A total of
2,972 images are prepared to train the model.
The numbers of train and validation data set are
2,522 images (85%) and 450 images (15%), respec-
tively. To get a precise model, different hyperpara-
meters are tested. The performances of models are
compared by AP (Average Precision) with RP graph
(Recall-Precision). mAP (mean Average Precision) is
compared as well.

Performance
Among various YOLO models, YOLO v4 and YOLO v4
tiny models are trained and tested. Different learning
rates, batch sizes with subdivision and resolution are
tested. Figure 13. shows loss and mAP of the YOLOv4
while training with various hyperparameters. on the
other hand, Figure 14 shows those of the YOLO-tiny. In
the case of batch size and subdivision, the value is
restricted by the capacity of the GPU. In our cases,
GPU has 32 GB, and it allows to allocate a maximum

Figure 13. YOLO v4 models – Training process (red line – mAP, blue line – Loss). Model 1–0.0013, 64/8, 320 × 160Model 2–
0.0013, 64/8, 640 × 320Model 3–0.0013, 64/16, 640 × 382Model 4–0.0013, 64/16, 640 × 352Model 5–0.00261, 64/8,
320 × 160Model 6–0.00261, 64/8, 640 × 352

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 61

of 64 batch size with 8 subdivisions when applying
640 × 320 resolution. If a bigger batch size or higher
resolution is implemented, warning “CUDA out of
memory” happen.

There is a trade-off between precision and processing
speed. YOLO-tiny is the model, which reduces the num-
ber of convolutional layers to increase processing speed.
It handles images with 155 fps, which is three times faster
than that of YOLO (Redmon et al. 2016). However,
because of thinner convolutional layers, it generally
shows less precision compared with YOLO v4. Below
Table 1 represents performances by various hyperpar-
ameters.

Compared with models 1 and 2 (5 and 6), it is
clear that the model which has higher resolution
represents higher performances in every measure-
ment. Because the model has less loss with
respect to data features. YOLOv4 model 2 made
up 94.87% mAP and 0.89 F1-score, which is pre-
dominant performance to detect objects. Total
training times are around 8 hours in our
environment.

As can be seen in Table 2, YOLOv4 – tiny represent
relatively low mAP compared with all other YOLOv4
models. mAP of the YOLOv4-tiny model with the big-
gest batch size (128), and 640 × 352 resolution repre-
sents only 55.16 percentages. In terms of detection
time, the total detection time of YOLOv4-tiny shows
2 seconds, which is half that of YOLOv4. Total training
time for YOLOv4-tiny models takes around 2 hours,
which is one fourth of YOLOv4.

As can be seen in Figure 16, trained model is tested in
unseen pictures. Figure 15 shows confidence by lateral.
The confidence of all laterals represents more than 95%

within 60 meters. It suddenly plunges between 60 and 80
meters. Even though the confidence maintains around
50% at distance of more than 100 meters, 50% is equal to
the random probability. Therefore, the model can be
utilised within 100 meters showing more than 60%
confidence.

Limitations

The Unity environment does not have the ability to
simulate collision yet. In order to make the simula-
tion environment more similar to reality, a collision
body should be considered. So, when the model
collides with obstacles, it can trigger the signal
that a collision happens. The vessel can successfully
navigate based on the map created. There is, how-
ever, the mandatory rule, which vessels should fol-
low known as COLREGs. In the case of the fastest
trajectory to a goal which does not follow the
COLREGs, the autonomous vessel should put prefer-
ence in the rule. In order to embody the task, the
algorithm should be modified.

Even though the model follows three degrees of
freedom, the effect of yaw is ignored in this study.
However, the vessel’s heading is continuously changed
by the effect of current and wind. The model should be
tested on various weather conditions.

Constructing a vessel system should consider many
sensors. All parameters from sensors should be prop-
erly adjusted and formed in order to be used in navi-
gation. At that point, more settings should be done
and tested to figure out optimum set-up. When it
comes to success in setting up the parameters, differ-
ent navigation algorithms should be considered. The

Figure 13. Continued.

62 J. CHOI ET AL.

Figure 14. YOLO v4 – tiny models – Training process (red line – mAP, blue line – Loss). Model 7–0.0013, 64/8, 640 × 352Model 8–
0.00261, 64/8, 320 × 160Model 9–0.00261, 64/8, 640 × 352Model 10–0.00261, 128/8, 640 × 352

Table 2. Performances of YOLOv4-tiny by Hyperparameter.
Model Learning rate Batch-size/Subdivision Resolution (Width x Height) mAP (%) Average IoU (%) F1-score Total detection time (sec)

Model 7 0.0013 64/8 640 x 352 55.08 69.63 0.57 2
Model 8 0.00261 64/8 320 x 160 9.71 64.53 0.13 1
Model 9 0.00261 64/8 640 x 352 56.61 72.37 0.59 2
Model 10 0.00261 128/8 640 x 352 55.16 72.05 0.60 2

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 63

Majority of vessels are equipped with radar. These
enable a vessel to take the information of dynamic
obstacles like heading and speed. These are very valu-
able to predict the movement of obstacles. While
applying DWA as local panning algorithms, other algo-
rithms like VO can be tested and compared. Moreover,
there are many attempts to applying reinforcement
learning in the vessel navigation. Even though Direct
application of the Deep Reinforcement Learning (DRL)
into navigation have uncertainties, the valuable model
applying a DRL in the boundary of decision-making
stage with grid map approach enable a vessel to navi-
gate by following specific algorithm while the vessel
has ability to reflect experiences during various
encounter circumstances (Woo and Kim 2020). This
different approach can be a great option in the prior
stage of collision avoidance for the vessel to have an
ability of active decisions.

Future study

PID control is a reliable method, which has been widely
used. Even though there is a general PID tuning
method like the Ziegler-Nichols method (Ziegler and

Nichols 1942), the weakness of PID is, however, that it
should be practically adjusted to find out the optimal
setting: parameters such as proportional gain, integral
gain, and derivative gain. More tests are required to
achieve reliable control from a navigation package to
a PID package.

There is a trade-off between accuracy and speed.
Even though YOLO is currently a suitable way to use
in real-time sensing, it has limited performance to use
because of its accuracy. R-CNN shows better accuracy
compared with YOLO. During vessel navigation,
a small error can lead to a huge economic risk. In
order to prevent the accident from the error, accurate
detection is important. Therefore, other object detec-
tion models should be considered and tested. Not
only YOLO and RCNN but also other object detection
models are continuously improved by year and year
(Liu et al. 2020). YOLO is improved with version 4 in
2020 by increasing accuracy with different bags of
Specials and Freebies (Bochkovskiy, Wang, and Liao
2020). Mask R-CNN is now applicable to make masks,
not the bounding box (He et al. 2017). A new novel
method called Multi-Level Feature Pyramid Network
(MLFPN) is proposed to extract features from input
images (Zhao et al. 2019) by considering the charac-
teristics of each model, an optimal model should be
chosen.

Conclusions

In this research, an autonomous vessel is introduced in
a simulation environment. Based on the research study
discussed in the preceding sections, the following con-
clusions can be drawn:

(1) ROS and UNITY is an efficient developing and
simulation environment. Representing the sys-
tem as a set of nodes is easy to understand
communication status and to find out problem
points. Utilising a unity as a simulation

Figure 15. Confidence by lateral.

Figure 16. Testing by unseen picture (red lateral: confidence),
YOLOv4.

64 J. CHOI ET AL.

environment erases the space-time constraints
in testing process and provides optimal environ-
ment for testing risky situations.

(2) Throughout the case study, the navigation sys-
tem with Dijkstra and DWA algorithms has been
made and proven to be a successful system for
autonomous navigation on the vessel.

(3) Object detection model YOLO v4 enhances support
navigation system to be active by recognising
object. Detection accuracy shows remarkable per-
formance with 94% for distinguishing sea-markers,
which overwhelm that of human being. Within 100
meters, the confidence of the model is more than
97%. It, however, rapidly drop after 60 meters. The
model with consistent performance can be a part of
autonomous system or utilised to support current
navigation system.

(4) This project can be considered as a pilot study that
brings directions and methods to move towards
the realisation of autonomous marine vehicles
with excellent performance in object detection,
which is a fundamental element to be equipped
with those ships.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Byongug Jeong http://orcid.org/0000-0002-8509-5824
Gerasimos Theotokatos http://orcid.org/0000-0003-3547-
8867
Tahsin Tezdogan http://orcid.org/0000-0002-7032-3038

References

Bartneck, C., M. Soucy, K. Fleuret, and E. B. Sandoval “The Robot
engine—Making the Unity 3D Game Engine Work for HRI.”
2015 24th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), 2015. IEEE, 431–437.

Bochkovskiy, A., and C.-Y. Wang 2020. YOLOv4 darknet- Git
Hub source

Bochkovskiy, A., C.-Y. Wang, and H.-Y. M. Liao 2020. “Yolov4:
Optimal Speed and Accuracy of Object Detection.” arXiv
preprint arXiv:2004.10934.

Boschert, S., and R. Rosen. 2016. “Digital Twin—the
Simulation Aspect.” Mechatronic Futures, no. Springer.
https://doi.org/10.1007/978-3-319-32156-1_5

Chakravarthy, A., and D. Ghose. 1998. “Obstacle Avoidance in
A Dynamic Environment: A Collision Cone Approach.” IEEE
Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 28: 562–574.

Chauvin, C., S. Lardjane, G. Morel, J.-P. Clostermann, and
B. Langard. 2013. “Human and Organisational Factors in
Maritime Accidents: Analysis of Collisions at Sea Using the
HFACS.” Accident Analysis & Prevention 59: 26–37.

Codd-Downey, R., P. M. Forooshani, A. Speers, H. Wang, and
M. Jenkin “From ROS to Unity: Leveraging Robot and Virtual
Environment Middleware for Immersive Teleoperation.” 2014
IEEE International Conference on Information and
Automation (ICIA), 2014. Hailar, China: IEEE, 932–936.

Conte, G., D. Scaradozzi, D. Mannocchi, P. Raspa,
L. Panebianco, and L. Screpanti. 2018. “Development and
Experimental Tests of a ROS Multi-agent Structure for
Autonomous Surface Vehicles.” Journal of Intelligent &
Robotic Systems 92: 705–718.

De Saxcé, H., I. Oprescu, and Y. Chen “Is HTTP/2 Really Faster
than HTTP/1.1?” 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2015.
Hong Kong, China: IEEE, 293–299.

Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion
with Graphs.” Numerische mathematik 1: 269–271.

DNVGL,. 2018. “Autonomous and Remotely Operated Ships.”
Class Guideline DNVGL-CG-0264 https://rules.Dnvgl.com/
docs/pdf/DNVGL/CG/2018-09/DNVGL-CG-0264.Pdf,
https://rules.Dnvgl.com/docs/pdf/DNVGL/CG/2018-09/
DNVGL-CG-0264.Pdf

Evensen, M. H. 2020. Safety and Security of Autonomous Vessels.
Based on the Yara Birkeland Project. University of Bergen.

Fernandes, E., P. Costa, J. Lima, and G. Veiga “Towards an
Orientation Enhanced Astar Algorithm for Robotic
Navigation.” 2015 IEEE International Conference on
Industrial Technology (ICIT), 2015. IEEE, 3320–3325.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-lee 1999. Hypertext Transfer pro-
tocol–HTTP/1.1. RFC 2616, june.

Fiorini, P., and Z. Shiller. 1998. “Motion Planning in Dynamic
Environments Using Velocity Obstacles.” The International
Journal of Robotics Research 17: 760–772.

Fox, D., W. Burgard, and S. Thrun. 1997. “The Dynamic
Window Approach to Collision Avoidance.” IEEE Robotics
& Automation Magazine 4: 23–33.

Girshick, R. “Fast R-CNN.” Proceedings of the IEEE international
conference on computer vision, 2015. 1440–1448.

Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2015.
“Region-based Convolutional Networks for Accurate
Object Detection and Segmentation.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 38:
142–158.

He, K., G. Gkioxari, P. Dollár, and R. Girshick “Mask R-CNN.”
Proceedings of the IEEE international conference on com-
puter vision, 2017. 2961–2969.

Jeon, M., J. Park, and J. Woo. 2019. “Development of HHI’s
Advanced Navigation Assistance System for Safe Voyage.”
IFAC-PapersOnLine 52: 111–113.

Liu, L., W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen. 2020. “Deep Learning for Generic Object
Detection: A Survey.” International Journal of Computer
Vision 128: 261–318.

NASA 2021. “VIPER’s Mission Operations.” chapter- Software:
Creating and Building on Open-Source Code.

NJORD 2021. https://www.njordchallenge.com/the-
competition/rules

Popić, S., D. Pezer, B. Mrazovac, and N. Teslić
“Performance Evaluation of Using Protocol Buffers in
the Internet of Things Communication.” 2016
International Conference on Smart Systems and
Technologies (SST), 2016. IEEE, 261–265.

JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING 65

https://doi.org/10.1007/978-3-319-32156-1_5
https://rules.Dnvgl.com/docs/pdf/DNVGL/CG/2018-09/DNVGL-CG-0264.Pdf
https://rules.Dnvgl.com/docs/pdf/DNVGL/CG/2018-09/DNVGL-CG-0264.Pdf
https://rules.Dnvgl.com/docs/pdf/DNVGL/CG/2018-09/DNVGL-CG-0264.Pdf
https://rules.Dnvgl.com/docs/pdf/DNVGL/CG/2018-09/DNVGL-CG-0264.Pdf
https://www.njordchallenge.com/the-competition/rules
https://www.njordchallenge.com/the-competition/rules

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng “ROS: An Open-source Robot
Operating System.” ICRA workshop on open source soft-
ware, 2009. Kobe, Japan, 5.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi “You Only
Look Once: Unified, Real-time Object Detection.”
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016. 779–788.

Ren, S., K. He, R. Girshick, and J. Sun. 2015. “Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks.”
Advances in Neural Information Processing Systems 28: 91–99.

ROS 2020. Metrics-report-2020-07.
Sita, E., C. M. Horváth, T. Thomessen, P. Korondi, and A. G. Pipe

“ROS-Unity3D Based System for Monitoring of an Industrial
Robotic Process.” 2017 IEEE/SICE International Symposium
on System Integration (SII), 2017. IEEE, 1047–1052.

Snape, J., J. Van Den Berg, S. J. Guy, and D. Manocha. 2011.
“The Hybrid Reciprocal Velocity Obstacle.” IEEE
Transactions on Robotics 27: 696–706.

Van Den Berg, J., M. Lin, and D. Manocha “Reciprocal Velocity
Obstacles for Real-time Multi-agent Navigation.” 2008 IEEE
International Conference on Robotics and Automation, 2008.
IEEE, 1928–1935.

Wang, Z., and X. Xiang “Improved Astar Algorithm for Path
Planning of Marine Robot.” 2018 37th Chinese Control
Conference (CCC), 2018. IEEE, 5410–5414.

Woo, J., and N. Kim. 2020. “Collision Avoidance for an
Unmanned Surface Vehicle Using Deep Reinforcement
Learning.” Ocean Engineering 199: 107001.

Yoshikawa, T. 1990. Foundations of Robotics: Analysis and
Control. MIT press.

Zhao, Q., T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling
“M2det: A Single-shot Object Detector Based on Multi-level
Feature Pyramid Network.” Proceedings of the AAAI con-
ference on artificial intelligence, 2019. 9259–9266.

Ziegler, J. G., and N. B. Nichols. 1942. “Optimum Settings for
Automatic Controllers.” In Trans. ASME, 64. https://doi.org/
10.1115/1.2899060

66 J. CHOI ET AL.

https://doi.org/10.1115/1.2899060
https://doi.org/10.1115/1.2899060

	Abstract
	Introduction
	Literature review
	Simulation environment
	Robot Operating System
	Unity
	Development environment
	Communication between ROS and Unity
	Google Remote Procedure Call (GRPC)

	Methodology
	Model definition
	Coordinate system
	Control structure

	Navigation
	Global path planning
	Dijkstra algorithm

	Local path planning
	VO (Velocity Obstacle)

	DWA (Dynamic Window Approach)
	Mapping
	Object detection

	Results and discussion
	Navigation
	Control system

	Object detection
	Collecting and pre-processing images
	Training
	Performance

	Limitations
	Future study

	Conclusions
	Disclosure statement
	ORCID
	References

