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ABSTRACT
This project aims at developing an efficient simulation environment for the vessel navigation 
system. The design of the overall navigation system is described along with its application for 
the case study of an autonomous vessel. The UNITY and Robot Operating System were utilised 
as the virtual environment and the main control framework, respectively. By treating the 
autonomous vessel as a single robot, each part of the system was formulated to enhance the 
efficiency and visualisation in the development progresses for autonomous system. The virtual 
environment using UNITY overwhelms the space-time constraints in the testing stage. The 
navigation system combined with conventional navigation algorithms and a computer vision 
algorithm were implemented in the Robot Operating System. Hence, the navigation system 
was enhanced by an assistant object detection algorithm to be more active on fusing environ-
ment information. The excellence of the proposed object detection model was demonstrated 
with reliable performance with 94% mean Average Precision, which renders the model exhibit-
ing visual sensibility in navigation. Overall, it is believed that this study can contribute to 
offering some insights into developing autonomous marine vessels.
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Introduction

The autonomous vessel is an inevitable change in 
the maritime industry. Many facilities and nations 
are deeply engaged to achieve this goal. For exam-
ple, DNV-GL the class of Norway has been taking 
part in many projects for vessel autonomation such 
as “ReVolt” and “DNV involvement” from 2014 
(DNVGL 2018). A container ship named “ReVolt” is 
planned to service in the short-sea segment and 
operate with no crews. Another well-known project 
YARA Birkland developed by YARA and Kongsberg 
is under progress as well. Their fully autonomous 
vessel called “YARA Birkland” has been delivered in 
November 2020, and it is planned to launch in late 
2021 after finishing further preparation for autono-
mous operation. But the control systems of the 
projects like YARA Birkland is not open to all people 
since the developing autonomous system is pro-
gressed separately by each organisation or 
company.

Global heavy industry companies are also investing 
in autonomous navigation systems. SAMSUN heavy 
industry has developed the smart ship system 
“SVESSEL” and tested it. HYUNDAI heavy industry has 
developed an advanced navigation assistance system 
called Hi-NAS, which uses radar ARPA, AIS, and 
a forward-looking camera (Jeon, Park, and Woo 2019). 

In many different sites, many organisations and com-
panies have already planned or are already in the 
process of autonomous vessels.

The reason why many associations and compa-
nies emphasise autonomation in the shipping 
industry is that this has many strong advantages. 
The most attractive benefit is in terms of safety, 
majority of accidents in the maritime industry is 
caused by human. Not only immature skills but 
also decision error leads to huge loss (Chauvin 
et al. 2013), and it is expected that those human 
errors can be eliminated through autonomous ves-
sels. Alleviating road congestion and lowering main-
tenance costs are the other considered benefits 
coming from automation. Project “YARA Birkeland” 
is going to replace transportation with more than 
40,000 trucks in populated urban areas (Evensen 
2020). Moreover, since there is a positive aspect in 
reducing NOx and CO2 emission by replacing those 
diesel-powered truck in terms of a global issue, 
autonomous system coming from electrification 
and digitalisation is getting more developed and 
accelerated.

In the stages of developing an autonomous vessel, 
extensive tests are required to give a shape of it. 
Especially in the software development step, simula-
tion can be a great advantage to assess its basic 
functionalities in pre-designed stages. With strong 
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advantages that there is no restriction in test scenar-
ios, navigation and control systems can be easily 
tested in high-risk situations. Because it is 
a simulation environment, there is not any cost or 
time loss. Model properties can be easily changed, 
and the life cycle of a model can be tested (Boschert 
and Rosen 2016) as well.

Our autonomous model has benefits described as 
below. Unity is an effective virtual environment to 
develop the system. It is a game engine, which is 
originated to develop the computer game. It has 
a more user-friendly interface compared with unreal 
engine and requires less computer capacity to develop 
with a function like Python API supporting (Bartneck 
et al. 2015). Simulation can be visualised and easily 
changed. ROS (Robot Operating System) is another 
benefit in developing progress. The meta-system 
started from a project developing robots in the uni-
versity became one of the standard robot system fra-
meworks, which proposed a reliable environment to 
develop robots.

While many new algorithms are proposed to sup-
plement previous studies, few projects focused on 
testing models fully equipped with navigation mod-
ules. Most of the path algorithms are tested in a two- 
dimensional numerical environment. To close a gap 
between practical implementation and theoretical 
methods, this study proposes to develop a platform 
for vessel simulations. By treating the model as a single 
robot, the robot consists of various components called 
packages in ROS system. By applying ROS, it is available 
to attach or detach specific parts of system. 
Visualisation tools supported by ROS is another bene-
fit, which help us to understand current communica-
tion status easier.

Literature review

There are many attempts to apply ROS and unity in 
the research area. In the case of vessel autonoma-
tion, the physical vessel was made and controlled 
by ROS (Conte et al. 2018), which is remarkable in 
terms of the fact that ROS was applied for control 
of a ship model. However, this research was only 
developed and carried out by the physical model, 
and the experiment was limited to a specific envir-
onmental conditions like lakes or water-tank with 
a scaled-down model. Given this, proper under-
standing of autonomous controls in heavy weathers 
like a rainy day, heavy wind and current was not 
attainable.

In some other projects, ROS and unity have been 
combined to simulate and test the physical robot in 
the virtual environment. Those techniques were used 
to monitor the 3D robotic process in fixed-link welding 
work and to introduce teleoperation interfaces in the 
wheel-drive model (Sita et al. 2017; Codd-downey et al. 

2014). Even though ROS has several advantages, the 
majority of applying ROS in the project has relied on 
land robots such as wheel-drive robots and four-feet 
walking robots.

In terms of vessel navigation, various methods have 
been introduced and applied. They can be divided into 
two different points: one is global path planning; the 
other is local path planning (real-time). A global path 
plan process finding an optimal route to goal based on 
static environments with stationary obstacles. On the 
other hand, the local path plan considers dynamic envir-
onments with dynamic obstacles.

A-star, Dijkstra, dynamic augmented multi-object 
particle swarm optimisation (PSO), and EEA algo-
rithms have been developed and often applied for 
global navigation. Both A-start and Dijkstra are grid 
map-based path planning, which has benefits in 
computation time and avoidance of local optimum. 
A Dijkstra path algorithm was introduced in 1959 by 
EW Dijkstra, which was to find the shortest routes 
between nodes. The Dijkstra algorithm selects the 
node with the smallest sum of weights from the 
starting node to the current node and includes the 
path in the shortest path. This process is repeated 
until all nodes are selected. Searching all the nodes 
makes this algorithm inefficient. The A-star algo-
rithm is proposed by improving the inefficiency of 
the Dijkstra algorithm. A-star algorithm gives prior-
ity to nodes that are supposed to be better than 
others by using a heuristic function. Because of this, 
the A-star algorithm has higher efficiency. Even 
though the earlier A-star algorithm only targets 
minimising the path length in a grid map, the algo-
rithm has been improved. In order to overcome the 
weakness of the A-star algorithm that the path does 
not conform with the motion constraint of the 
robot, enhanced A-star algorithms considering 
orientation restriction were proposed by Fernandes 
et al. and Wang et al (Fernandes et al. 2015; Wang 
and Xiang 2018).

In addition, velocity obstacle (VO), potential field, 
and dynamic window approach (DWA) were intro-
duced and widely applied for the local path plan-
ning. VO is proposed by Fiorini et al in 1998, which 
was an optimal method to avoid collisions between 
two moving objects (Fiorini and Shiller 1998). 
Animesh et al had introduced a similar approach 
named collision cone in 1998 (Chakravarthy and 
Ghose 1998). This has been improved to Reciprocal 
Velocity Obstacles (RVO) and Hybrid Reciprocal 
Velocity Obstacles (HRVO) (Snape et al. 2011) to 
overcome the oscillation problem. RVO has another 
condition that the velocity which guarantees colli-
sion-free is the average of its current velocity (Van 
Den Berg, Lin, and Manocha 2008). HRVO combined 
the characteristics of VO and RVO by indicating the 
limitation of RVO, which cause a collision in the 
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specific situation. The dynamic window approach 
suggests a collision-avoidance model, which aims 
to maximise the objective function. The function 
grant values by the parameter of heading and dis-
tance to obstacles and current velocity (Fox, 
Burgard, and Thrun 1997).

Object detection models have been rapidly and 
continuously improved. Since Regions with 
Convolutional Neural Network (R-CNN) was first 
introduced in 2014, Fast-RCNN and Faster-RCNN 
are followed one after another in 2015 and 2016, 
respectively. Fast-RCNN increases the processing 
speed by implementing CNN once while each 
region proposal passes through CNN in RCNN. 
Instead of concrete training in classification and 
bounding-box regression, Fast-RCNN suggest 
a multi-task loss to train both modules at once 
(Girshick 2015). Faster-RCNN is constructed by 
Region Proposal Networks (RPN), which share con-
volutional layers while Fast-RCNN utilised indepen-
dent RPN, which means that RPN and RCNN 
detectors share the same CNN features. So, this 
method was confirmed to improve the efficiency 
of the model because both modules can be trained 
at the same time. Even though models based on 
RCNN have been improved significantly, the models 
are not feasible to be used in real-time sensing. 
YOLO (You Only Look Once) proposed by 
J Redmon et al in 2016 overcome the limitation of 
models based on RCNN. By implementing the clas-
sification process and bounding-box regression pro-
cess at once, it shows dominant improvement in 
terms of speed. YOLO shows 155 FPS, which can 
be available to use in real-time processing while 
Faster R-CNN ZF represents 18 FPS (Redmon et al. 
2016). Nevertheless, YOLO is not a perfect solution 
for the object detection model. Even though YOLO 
also has been improved with a fourth version 
(Bochkovskiy, Wang, and Liao 2020), it has a trade- 
off between speed and accuracy compared with 
R-CNN models because of YOLO process classifica-
tion and bounding-box regression at once.

In a way to fill in some research gap, this project was 
to propose an optimal objection detection method for 
an autonomous surface vessel. To achieve real-time 
detection, YOLO v4 was applied and the simulation 
was conducted under the Unity environment. 
Different from wheel-drive or four feet walking robots, 
developing surface water vehicles was restricted by 
their working environment. Water environment such 
as lake or water tank was essential to test its function-
alities. Considering those restrictions, the virtual envir-
onment can be a great benefit in the initial stage of 
developing an autonomous vessel control system. 
Basic function can be easily applied on the model 
and tested. Dijkstra and DWA algorithms are applied 
for autonomous navigation, and object detection 

models carry out recognising different markers. The 
vessel takes different actions depending on what the 
marker is.

Simulation environment

Unity and ROS are quite popular to researchers work-
ing in the games area. Each environment to implement 
the model is described in the following section to get 
the idea of both systems.

Robot Operating System

ROS (Robot Operating System) is a novel meta operating 
system, which has been fully oriented to the specific 
needs of the robotic platforms. There are many robots 
operating systems such as OPROS, NAOqi and ROS etc.; 
each system has its benefits and characteristics. But 
other robot operating system except ROS is not free of 
charge or not open source. This is the main reason that 
most robot developers use the ROS. Beginners can easily 
experience the interface of the system in open confer-
ences or classes. Even ROS can be modified for 
a purpose by companies because it is an open-source 
system. One of the best examples is NASA (National 
Aeronautics and Space Administration), which is posi-
tively utilising ROS in its mission. VIPER which is a lunar 
probe to explore and carry out a special mission on the 
moon is developed by ROS2. The software operating 
system is intended to be released for general use (NASA 
2021). This virtuous circle makes ROS a valuable robot 
operating system.

Even though its name has an operating system, 
ROS can be described as a meta-operating system. 
This can be called middleware or software framework. 
It was originated from the Switchyard system devel-
oped by Morgan Quigley who was engaged in the 
STAIR (Stanford AI Robot) project at Stanford 
University. ROS is currently maintained by Open 
Robotics. ROS is installed in a general operating sys-
tem such as Ubuntu based on Linux and windows. So, 
ROS utilise a common processor management sys-
tem, file system and program utilities in the operating 
system. This gives users strong benefits. The user does 
not need to install another operating system to oper-
ate ROS.

The strongest aspect of ROS is the node and mes-
sage base communicating system. When it comes to 
developing one system, there is no distinct sorting 
point. The construction of the system is distinguished 
by its developer. So, it is hard to understand by users 
who is not a developer of it. If someone tries to 
implement one system to another model, it takes 
a long time to understand code and construction. 
However, message type information transferring 
enables one system to divide into packages. Each 
function of the system can be divided by package, 
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and this can be easily used by another user if the 
required parameter is constructed by a justified mes-
sage. Therefore, people do not need to make their 
code every time, instead, they can attach the package 
that someone has developed. This can reduce the 
developing time enormously, so developers can 
focus on their specific work more. This is the main 
purpose of ROS to reuse and share the code in robot 
development. Not only these benefits, but ROS can 
also be developed in various languages and support 
efficient tools and peer-to-peer communications 
(Quigley et al. 2009). MATLAB, Python, and Lisp are 
supported while C++ is a standard. Specifically, rospy, 
roscpp, and rosplib can be utilised as libraries for 
programming in ROS (ROS). Because of these attrac-
tions, ROS has been continuous growth showing an 
increase in usage. In the annual metrics report of 
July 2020 (ROS 2020), the total number of packages 
is 86,128, which is increased by 55.81% compared 
with that of packages in 2019.

Unity

Unity is a game engine developed by Unity 
Technologies. The game engine is software or ele-
ments of software that contain various functions for 
operating games. The main functions of the game 
engine are the rendering engine for 3D graphics, 
a physics engine for physics effect. The first version is 
released in 2005 supporting macOS only. Unity sup-
ports more than 20 platforms now. Unity has a very 
intuitional Graphical User Interface (GUI). Tools by way 
of WYSIWYG (What You See Is What You Get) is very 
comfortable. It requires less capacity compared with 
other game engines, which has fewer restrictions for 
new users. Another strong part of Unity characteristics 
is the asset and prefab. In any game object, a scene can 
be turned into a form of asset. It is easy to store and 
share with others in the asset store. The prefab is 

stored as a form of asset, and it is easy to reuse. For 
example, this prefab function is useful to make 
a dataset for training an object detection model.

Development environment

The setup of the simulation environment is described in 
Figure 1. There are two operating system environments, 
which are windows and ubuntu. Windows is the main 
operating system for running Unity. The main character-
istics of the vessel are constructed in unity scripts. Linear 
velocity, angular velocity, odometry position, GPS posi-
tion, and lidar data are generated in this environment. The 
Unity environment receives linear and angular forces to 
control the vessel. On top of the windows host operating 
system, Ubuntu is installed with a virtual machine. ROS is 
installed in Ubuntu because ROS is developed based on 
Linux so, it is most stable in Linux operating system.

The raw data generated from unity is sent to Ubuntu 
OS through GRPC. The received data is constructed into 
ROS message type to be utilized in ROS communication. 
In terms of ROS topic list, PoseStamped, TwistStamped, 
and PointCloud2 represent the position, velocities, and 
lidar data, respectively. GPS position is transferred into 
ROS parameter as “/scenario_instance/local_origin_lati-
tude” and “/scenario_instance/local_origin _longitude.” 
The main control of the vessel is carried out on ROS in 
Unbuntu OS. The concept of communication inside ROS 
can be simply described as “Publish” and “Subscribe.” 
Nodes publish or subscribe to topics that contain the 
information. Each topic has its message type defined by 
the ROS system.

Communication between ROS and Unity

To communicate between two independent equipment, 
a network framework is required. In Inter-Process 
Communication (IPC), there are several ways such as 
shared memory, message queue, PIPE, and socket. 

Figure 1. Simulation environment (setting and communication).
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Among them, the socket type is widely used through 
rosbridge package. Rosbirdge makes ROS topics and ser-
vices available over either standard TCP (Transmission 
control protocol) sockets or WebSocket as JSON format. 
It is convenient because it is provided by an API. But the 
more data is required, the harder it becomes to format the 
data.

Google Remote Procedure Call (GRPC)
GRPC is utilised in order to communicate between 
Unity and ROS in our model. GRPC, which was 
developed by Google, is a way to communicate 
between server to client. It is an open-source fra-
mework that combines HTTP/2 and protocol buffer. 
The HTTP/2 is a strong advantage compared with 
socket/WebSocket. Protocol Buffer serialises the 
data to communicate, which means that data 
expression is changed into a byte unit. Compared 
with JSON format based on text, it requires less 
memory and increases the data transferring speed 
(Popić et al. 2016). The other characteristic of GRPC 
is HTTP/2. HTTP/1.1, which is the previous version, 
responds to clients when requests exist. 
Connections have to be made in every single 
request, so it is inefficient and shows slow speed 

(Fielding et al. 1999). On the other hand, enhanced 
HTTP/2 manage to send multiple messages into 
a single connection, which is more efficient than 
HTTP/1.1.

Figure 2 shows the page load time between 
HTTP/1.1 and HTTP/2. As the number of request 
increase, page load time of HTTP/1.1 is getting 
increase while HTTP/2 shows constant page load 
time. Compared with socket type communication 
(De Saxcé, Oprescu, and Chen 2015), GRPC is more 
suitable for our model considering real-time detec-
tion and control because of efficient bidirectional 
communication.

Methodology

To control the model in Unity, it is required to con-
struct a representative model in ROS. The model and 
control structure in ROS are described below.

Model definition

A vessel model follows three degrees of freedom. It is, 
however, assumed that the weather is culm, so there is 
not any pitch and yaw during the scenarios. The vessel 

Figure 2. Comparing the loading time between HTTP/1.1 and HTTP/2 (De Saxcé, Oprescu, and Chen 2015).

Figure 3. Vessel model with coordinate systems (base_link, navigation, base_scan) in ROS RVIZ, and Unity (NJORD 2021).

54 J. CHOI ET AL.



is controlled by three forces and momentum, which 
are forward, backward, and momentum by z-axis. Four 
cameras and one lidar are equipped, and each camera 
visualise forward, backward, port, and starboard sides. 
Lidar is in the same position as cameras. More details of 
vessel coordinate systems are described below.

Coordinate system
Each joint in a robot has its coordinate system. When 
a robot wants to grab something, the coordinate sys-
tem on the robot arm moves and rotates (Yoshikawa 
1990). Position based on robot center frame needs to 
be converted into robot arm’s frame.

Figure 3 shows the virtual model created in ROS and 
the model in Unity. The position received from Unity 
represents that of the vessel center (base_link). The lidar 
data received, however, is based on the lidar equipment. 
In order to make a precise navigation map, the error 
between these two coordinate systems is corrected.

Another purpose of coordinate system transform is 
navigation. To navigate, the robot should recognise 
where he is. An absolute reference frame and local 
body-fixed frame are required to figure out position 
and rotation, which are represented as 
P0 ¼ xo; y0; z0; wj j

t ,P1 ¼ x1; y1; z1; wj j
t , respectively. 

Point P is an arbitrary point of a rigid body. The homo-
genous coordinate w is zero for vector transformation 
and is one for points transformation. The body-fixed 
reference frame is described by homogenous 
transformation. 

P0 ¼ M0;1P1 (Eq:1) 

Where transformation matrix is described as, 

M0;1 ¼
R0;1 t0;1
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Figure 4. Coordinates transformation.

Figure 5. Constructed coordinates in the model.

Figure 6. Communication diagram by node while mapping (RQT).
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Where R0;1 is 3 × 3 orthogonal rotation matrix, t0;1 is the 
position of the origin of the body-fixed reference frame in 
the absolute reference frame (Yoshikawa 1990). This infor-
mation is delivered by message type “Odometry” in ROS. 
Figure 4 shows how coordinates of vessel center is trans-
formed by that of odometry. Fortunately, the vessel posi-
tion is expressed by the coordinate system of a fixed 
frame (Odom) in Unity. So, this position is directly used 
to indicate the current position of the model in the global 
frame. On the other hand, the velocities are expressed by 
a body frame (Base_link). Figure 5 shows the coordinate 
system representing position of the vessel and equip-
ments in ROS. 

Control structure
ROS supports a plenty of toolboxes, which are useful to 
understand and demonstrate robot communication sta-
tus. RQT is one of the toolboxes, which show current 
communication status, signal value, transform of coordi-
nate systems, etc. Figure 6 demonstrate current commu-
nication status while generating a map. Node is usually 
represented by the shape of “/xxx” and communicate 
with other nodes by messages. The below RQT graph 
shows the communication line between nodes.

“robot_state_publisher” is constructed to gener-
ate information of vessel coordinate systems and 
their joints. The vessel has a base link as “base_-
link”, and links “navigation” and “base_scan” are 
joint with it. Lidar is equipped in the “base_scan” 
frame. This node publishes message type “trans-
form” as well. “ros_adapter” is a node that publishes 
the position, velocity of the model, and lidar infor-
mation. The position of the vessel is published by 
the message type “geometry_msgs/PoseStamped,” 
which deliver the vessel position as x,y,z and orien-
tation as x,y,z, w by homogenous coordinate. In the 
case of velocity, it is delivered by “geometry_msgs/ 
TwistStamped,” which demonstrate linear velocities 

and angular velocities in each axis. The lidar infor-
mation is delivered by the message type of 
‘PointCloud2ʹ. ‘PointCloud2ʹ type message is con-
verted into “LaserScan” type message to be utilised 
in the navigation package. “navigation” publishes 
the required vessel velocity to get to the target 
point based on Dijkstra and DWA (Dynamic- 
Window Approach) algorithms. In order to reach 
the ordered velocities, forces and momentums are 
controlled by the PID controller. Ordered forces and 
momentums are published through the ‘ros_clients’ 
node.

Figure 7 demonstrates the schematic diagram of 
a designed navigation system. Once the destination is 
ordered by the set of x, y in the fixed frame and heading, 
the global path is generated by considering a current 
position and the map. While the vessel navigates follow-
ing a global path, real-time sensing for collision avoidance 
is carried out by considering the current position, Images 
from the camera, and Lidar information within a specific 
boundary.

Figure 7. Schematic diagram of the proposed autonomous navigation with object detection model.

Figure 8. Simulation environment in the unity.
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Navigation

The main navigation system is based on open 
packages. Navigation, Pointcloud_to_laserscan, 
Yolov4-for-darknet_ros, gmapping are utilised to 
develop a navigation system. A Navigation package 
is an open package that enables robots to navigate 
autonomously. Dijkstra and Dynamic window 
approach (DWA) are utilised in global and local 
path planning, respectively. A detailed description 
of both algorithms is followed below. The gmap-
ping package generates a map of where a robot is 
going to navigate globally, while a local map is 
updated by lidar data in real time. ROS receives 
lidar messages from Unity with the form of ‘sen-
sor_msgs/PointCloud2ʹ. So, it should be converted 
into “sensor_msgs/LaserScan” in order to be utilised 
in gmapping and navigation packages. Figure 8 
shows the simulation environment with the model 
and PointCloud projected in ROS rviz. Yolov4-for- 
darknet_ros package provides the ability to detect 
objects in real-time. Yolov4 is trained by our data 
set and the weights are derived from there. Original 
darknet provided the source where the father of 
YOLO services the YOLO model in open-source by 
darknet (Bochkovskiy and Wang 2020).

Global path planning

Dijkstra algorithm.
Dijkstra algorithms find the shortest paths from 
a source node to a destination node. When the 
algorithm finds all distances from the initial node, 
the shortest path can be defined. The fundamental 
algorithm of Dijkstra can be described by a few 
steps. First, the distance of a source node is initia-
lised as zero. Then, all distances of unvisited vertex 
V were defined as “infinity” and a previous vertex as 
“undefined.” Second, the distances of neighborhood 
nodes from an initial node are input. Third, the 
node which requires a minimum distance among 
unvisited nodes is selected. Fourth, the minimum 
distance considering other distances (sum of dis-
tances passing the other nodes) is updated. Fifth, 
it repeats the third and fourth procedures (Dijkstra 
1959). Dijkstra algorithm is widely used to find the 
shortest paths in robots with the A star algorithm. 
A star algorithm shows relatively high searching 
speed without considering all nodes. Dijkstra, how-
ever, shows higher performances in terms of accu-
racy. Because it considers all nodes, while A star 
considers the nodes by heuristic search. In our 
model, the processing speed between the two 
methods is not too big relatively. Because the map 
is not huge. So, the Dijkstra algorithm is utilised 
instead of the A star algorithm. When a robot is 
placed in an unknown place, it is not available to 
calculate. So, to find the globally shortest path, 

a map should be pre-defined to calculate it. The 
virtual environment map is made by using the 
gmapping package, while the global map is pro-
vided by ECDIS in the case of real vessels.

Local path planning

VO (Velocity Obstacle).
In a previous project, VO (Velocity Obstacle) had been 
considered and tested as a local planning algorithm. 
VO is a simple and reliable collision avoidance 
method that has been developed constantly as RVO 
(Van Den Berg, Lin, and Manocha 2008) and HRVO 
(Snape et al. 2011).

The main idea of collision avoidance by VO is that 
VO is the area of all velocities, which can result in 
a collision with an obstacle (Fiorini and Shiller 1998); 
therefore, if a robot choose the outside of the VO area, 
the robot is free from collisions. However, there are 
limitations to implement it in our model.

The condition of applying VO is that the velocity 
and position of both two obstacles should be calcu-
lated. This is usually given by Radar. Radar is, however, 
not equipped in the model, which means that the 
model cannot measure the velocity of moving obsta-
cles. So, local planning algorithms should be indepen-
dent of external parameters.

DWA (Dynamic Window Approach)

DWA (Dynamic Window Approach) is a well-known 
method, which is widely applied in robot navigation. 
In order to apply DWA, it requires a robot velocity and 
a distance from obstacles, while VO is carried out by 
both velocities. Robots applied by the DWA algorithm 
optimise a local route by maximising the objective 
function. 

G v; ωð Þ ¼ σ α � headingðv; ωð Þ þ β � dist v; ωð Þ þ γ
� vel v; ωð ÞÞ

(Equation3) 

DWA Objective equation. Where, heading is a standard 
to determine the progress, and it is maximised if the 
robot head for the target directly. dist is the distance 
between the robot and the closest obstacles on the 
trajectory. Small distance means that the robot is more 
likely to collide with an obstacle. So, the robot takes 
a roundabout way. vel is the forward velocity to get to 
the goal faster. σ is the function that can be controlled 
by users to change the rate of the weighted sum (Fox, 
Burgard, and Thrun 1997). In the moving obstacle 
collision avoidance point of view, the difference 
between VO and DWA is that VO eliminates the risk 
of collision by selecting velocity, which guarantees 
a free from the collision. On the other hand, DWA 
minimises the collision risk by maximising the distance 
from obstacles. So, the DWA algorithm is more 
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practical due to the direct implementation of the para-
meter from LIDAR, which measures the distance from 
obstacles.

Mapping

In order to achieve autonomous navigation, it is essen-
tial to know the map of the navigation area.

Through the map, Robot knows where it is now, and 
then this can plan its next path. In the case of the vessel, 
it was provided by a physical map. Officers confirm the 
vessel’s position on the map by latitude and longitude. 
Nowadays, ECDIS (Electronic Chart Display and 
Information System) is available in the majority of ves-
sels, and it is available to use this electronic map for 
autonomous navigation. In our model, gmapping pack-
age is utilised in order to make a global map.

Object detection

Different from object classification, Object detection 
is the way to specify the place and name of multiple 
objects within an image. In autonomous navigation, 
recognising the object is essential to navigate. When 
it is required to navigate following a specific route 
because of the draft, navigation should care about the 
position of buoys. When a vessel faces a dynamic 
object during navigating, the vessel acts in different 
ways in accordance with whether the objects are 
vessels or not. If the dynamic object is a vessel, the 
autonomous vessel should avoid collision according 
to the COLREGs. The cameras equipped in the vessel 
take a video and send a picture every second. In order 
to perform real-time decisions, image recognition 
should be fast and accurate. There are predominant 
and practical models introduced in the research area. 
RCNN (Region-based Convolutional Neural Network) 
and YOLO (You Only Look Once) are the ones.

RCNN is a model proposed by Ross Girshick, 
which can recognise the multiple objects in an 
image. The main idea is that many region proposals 
are generated up to 2000, and each one passes the 
CNN. Then these are classified by using class- 
specific linear SVMs (Support Vector Machine) 
(Girshick et al. 2015). This has been developed as 
fast-RCNN (Girshick 2015), Faster-RCNN (Ren et al. 
2015), and Mask RCNN (He et al. 2017). The com-
puting speed, which is one of the main drawbacks, 

has been improved by changing the structure of 
the model. The full image passes the CNN and 
then extract the fixed-length feature vector from 
the feature map by a region of interest (RoI), while 
the initial RCNN pass each object proposal pass the 
CNN. This reduces the time cost significantly. Faster 
RCNN is even more improved by changing the 
module of region proposal from selective-search 
base to RPN (Region Proposal Network), which 
enable the model into one end-to-end structure.

YOLO (You Only Looks Once) is introduced by 
Joseph Redmon at the University of Washington. 
Different from RCNN, YOLO is constructed with 
a single neural network to predict bounding box 
and class probabilities, which is inspired by the 
GoogLeNet model for image classification (Redmon 
et al. 2016). Thanks to the simple structure, it is 
much faster than R-CNN. There are other advan-
tages compared with R-CNN. YOLO see the entire 
image while RCNN reasons locally. So, it has 
a smaller number of background errors.

In our model, YOLO version four is applied in order 
to detect makers. Speed is the main reason to choose 
the model. YOLO shows the highest real-time perfor-
mance in models (Redmon et al. 2016) and shows 
dominant value in FPS (Frame Per Seconds). In real- 
time sensing, YOLO is the most appropriate model 
because navigation decisions should be carried out 
every second. RCNN has been developed but still 
demonstrate insufficient performance to use as a real- 
time model (Redmon et al. 2016).

Results and discussion

In this study, a reliable and efficient simulation 
environment for developing a navigation system is 
introduced. The simulation environment can not 
only overcome the space-time constraints but also 
be used to test risky situations. While developing 
a system, Nodes and message type communication 
provide developers with visualisation of current 
communication status intuitionally, which increase 
the productivity of the whole process.

A conventional navigation algorithm just takes the 
information of circumstances by numerical values. This 
is essential to treat the information inside computers. This 
process converting visual or complex information into 
numerical parameters, however, lost much other 

Table 1. Performances of YOLOv4 by Hyperparameter.
Model Learning rate Batch-size/Subdivision Resolution (Width x Height) mAP (%) Average IoU (%) F1-score Total detection time (sec)

Model 1 0.0013 64/8 320 x 160 91.90 66.12 0.85 3
Model 2 0.0013 64/8 640 x 320 94.87 70.89 0.89 5
Model 3 0.0013 64/16 640 x 384 93.19 71.3 0.89 5
Model 4 0.0013 64/16 640 x 352 94.28 70.63 0.88 5
Model 5 0.00261 64/8 320 x 160 91.70 68.37 0.86 2
Model 6 0.00261 64/8 640 x 352 94.57 72.39 0.89 4
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information. By applying object detection on the naviga-
tion system, the system directly uses visual information, 
which broadens the boundary of information. Detailed 
descriptions and results about the system are followed.

Navigation

Control system
The overall control can be simply divided into 
three modules. One is the navigation module, the 
other is the object detection module, and the 
other is the PID control module. The navigation 
module defines a global route by the Dijkstra 
algorithm, while the local cost map changes the 
local route when facing unexpected obstacles. 

Unexpected obstacles mean obstacles that do not 
exist during making the global map. So, avoiding 
any static obstacles or dynamic obstacles is carried 
out by DWA.

Below Figure 9 and Figure 10 shows an overall 
algorithm for making a global path and local path 
with object detection while Figure 11 represent the 
algorithm when detecting markers.

While following the path for navigation, the ves-
sel should consider the sign of markers. When 
a vessel detects a green lateral marker, it should 
pass the path putting the marker on the starboard 
side. Even though global path design optimal path, 
navigation package output desired velocity of the 
vessel and then, PID control continuously adjusts 
the forces and moment of the vessel to minimise 
the error between actual velocity and outputted 
velocity.

Object detection

Collecting and pre-processing images
Images for training are collected in a Unity environ-
ment. Lots of markers were placed in arbitrary posi-
tions. The Images are saved every five seconds 
automatically. RGB values coming from the ROS mes-
sage are saved in a specific folder. The script used for 
saving images is attached in the appendix. LabelImg is 
used in order to carry out labelling with a bounding 

Figure 9. Projected environment by Lidar in ROS RVIZ.

Figure 10. Algorithm for optimal route.
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box. Each labelled file with.txt extension consists of 5 
components: class, x position, y position, width, height. 
Figure 12 shows lebelling programme ' LabelImg‘ and 
assigned position for markers. 

Training
The model is trained by a computer equipped with 
INTEL i9 – 10980XE 3.00 GHz x 36, NVIDIA GeForce 
RTX 3090 and 32 GB RAM. NVIDIA Driver version is 

Figure 11. Algorithm for action by object detection.

Figure 12. LabelImg program for labelling and labeled text file (representing class, x position, y position, width, height).

60 J. CHOI ET AL.



470.57.02. CUDA 11.4 and cuDNN v8.2.2.26 are 
installed to utilised GPU in training. A total of 
2,972 images are prepared to train the model. 
The numbers of train and validation data set are 
2,522 images (85%) and 450 images (15%), respec-
tively. To get a precise model, different hyperpara-
meters are tested. The performances of models are 
compared by AP (Average Precision) with RP graph 
(Recall-Precision). mAP (mean Average Precision) is 
compared as well.

Performance
Among various YOLO models, YOLO v4 and YOLO v4 
tiny models are trained and tested. Different learning 
rates, batch sizes with subdivision and resolution are 
tested. Figure 13. shows loss and mAP of the YOLOv4 
while training with various hyperparameters. on the 
other hand, Figure 14 shows those of the YOLO-tiny. In 
the case of batch size and subdivision, the value is 
restricted by the capacity of the GPU. In our cases, 
GPU has 32 GB, and it allows to allocate a maximum 

Figure 13. YOLO v4 models – Training process (red line – mAP, blue line – Loss). Model 1–0.0013, 64/8, 320 × 160Model 2– 
0.0013, 64/8, 640 × 320Model 3–0.0013, 64/16, 640 × 382Model 4–0.0013, 64/16, 640 × 352Model 5–0.00261, 64/8, 
320 × 160Model 6–0.00261, 64/8, 640 × 352
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of 64 batch size with 8 subdivisions when applying 
640 × 320 resolution. If a bigger batch size or higher 
resolution is implemented, warning “CUDA out of 
memory” happen.

There is a trade-off between precision and processing 
speed. YOLO-tiny is the model, which reduces the num-
ber of convolutional layers to increase processing speed. 
It handles images with 155 fps, which is three times faster 
than that of YOLO (Redmon et al. 2016). However, 
because of thinner convolutional layers, it generally 
shows less precision compared with YOLO v4. Below 
Table 1 represents performances by various hyperpar- 
ameters.

Compared with models 1 and 2 (5 and 6), it is 
clear that the model which has higher resolution 
represents higher performances in every measure-
ment. Because the model has less loss with 
respect to data features. YOLOv4 model 2 made 
up 94.87% mAP and 0.89 F1-score, which is pre-
dominant performance to detect objects. Total 
training times are around 8 hours in our 
environment.

As can be seen in Table 2, YOLOv4 – tiny represent 
relatively low mAP compared with all other YOLOv4 
models. mAP of the YOLOv4-tiny model with the big-
gest batch size (128), and 640 × 352 resolution repre-
sents only 55.16 percentages. In terms of detection 
time, the total detection time of YOLOv4-tiny shows 
2 seconds, which is half that of YOLOv4. Total training 
time for YOLOv4-tiny models takes around 2 hours, 
which is one fourth of YOLOv4.

As can be seen in Figure 16, trained model is tested in 
unseen pictures. Figure 15 shows confidence by lateral. 
The confidence of all laterals represents more than 95% 

within 60 meters. It suddenly plunges between 60 and 80 
meters. Even though the confidence maintains around 
50% at distance of more than 100 meters, 50% is equal to 
the random probability. Therefore, the model can be 
utilised within 100 meters showing more than 60% 
confidence.

Limitations

The Unity environment does not have the ability to 
simulate collision yet. In order to make the simula-
tion environment more similar to reality, a collision 
body should be considered. So, when the model 
collides with obstacles, it can trigger the signal 
that a collision happens. The vessel can successfully 
navigate based on the map created. There is, how-
ever, the mandatory rule, which vessels should fol-
low known as COLREGs. In the case of the fastest 
trajectory to a goal which does not follow the 
COLREGs, the autonomous vessel should put prefer-
ence in the rule. In order to embody the task, the 
algorithm should be modified.

Even though the model follows three degrees of 
freedom, the effect of yaw is ignored in this study. 
However, the vessel’s heading is continuously changed 
by the effect of current and wind. The model should be 
tested on various weather conditions.

Constructing a vessel system should consider many 
sensors. All parameters from sensors should be prop-
erly adjusted and formed in order to be used in navi-
gation. At that point, more settings should be done 
and tested to figure out optimum set-up. When it 
comes to success in setting up the parameters, differ-
ent navigation algorithms should be considered. The 

Figure 13. Continued.
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Figure 14. YOLO v4 – tiny models – Training process (red line – mAP, blue line – Loss). Model 7–0.0013, 64/8, 640 × 352Model 8– 
0.00261, 64/8, 320 × 160Model 9–0.00261, 64/8, 640 × 352Model 10–0.00261, 128/8, 640 × 352

Table 2. Performances of YOLOv4-tiny by Hyperparameter.
Model Learning rate Batch-size/Subdivision Resolution (Width x Height) mAP (%) Average IoU (%) F1-score Total detection time (sec)

Model 7 0.0013 64/8 640 x 352 55.08 69.63 0.57 2
Model 8 0.00261 64/8 320 x 160 9.71 64.53 0.13 1
Model 9 0.00261 64/8 640 x 352 56.61 72.37 0.59 2
Model 10 0.00261 128/8 640 x 352 55.16 72.05 0.60 2
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Majority of vessels are equipped with radar. These 
enable a vessel to take the information of dynamic 
obstacles like heading and speed. These are very valu-
able to predict the movement of obstacles. While 
applying DWA as local panning algorithms, other algo-
rithms like VO can be tested and compared. Moreover, 
there are many attempts to applying reinforcement 
learning in the vessel navigation. Even though Direct 
application of the Deep Reinforcement Learning (DRL) 
into navigation have uncertainties, the valuable model 
applying a DRL in the boundary of decision-making 
stage with grid map approach enable a vessel to navi-
gate by following specific algorithm while the vessel 
has ability to reflect experiences during various 
encounter circumstances (Woo and Kim 2020). This 
different approach can be a great option in the prior 
stage of collision avoidance for the vessel to have an 
ability of active decisions.

Future study

PID control is a reliable method, which has been widely 
used. Even though there is a general PID tuning 
method like the Ziegler-Nichols method (Ziegler and 

Nichols 1942), the weakness of PID is, however, that it 
should be practically adjusted to find out the optimal 
setting: parameters such as proportional gain, integral 
gain, and derivative gain. More tests are required to 
achieve reliable control from a navigation package to 
a PID package.

There is a trade-off between accuracy and speed. 
Even though YOLO is currently a suitable way to use 
in real-time sensing, it has limited performance to use 
because of its accuracy. R-CNN shows better accuracy 
compared with YOLO. During vessel navigation, 
a small error can lead to a huge economic risk. In 
order to prevent the accident from the error, accurate 
detection is important. Therefore, other object detec-
tion models should be considered and tested. Not 
only YOLO and RCNN but also other object detection 
models are continuously improved by year and year 
(Liu et al. 2020). YOLO is improved with version 4 in 
2020 by increasing accuracy with different bags of 
Specials and Freebies (Bochkovskiy, Wang, and Liao 
2020). Mask R-CNN is now applicable to make masks, 
not the bounding box (He et al. 2017). A new novel 
method called Multi-Level Feature Pyramid Network 
(MLFPN) is proposed to extract features from input 
images (Zhao et al. 2019) by considering the charac-
teristics of each model, an optimal model should be 
chosen.

Conclusions

In this research, an autonomous vessel is introduced in 
a simulation environment. Based on the research study 
discussed in the preceding sections, the following con-
clusions can be drawn:

(1) ROS and UNITY is an efficient developing and 
simulation environment. Representing the sys-
tem as a set of nodes is easy to understand 
communication status and to find out problem 
points. Utilising a unity as a simulation 

Figure 15. Confidence by lateral.

Figure 16. Testing by unseen picture (red lateral: confidence), 
YOLOv4.
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environment erases the space-time constraints 
in testing process and provides optimal environ-
ment for testing risky situations.

(2) Throughout the case study, the navigation sys-
tem with Dijkstra and DWA algorithms has been 
made and proven to be a successful system for 
autonomous navigation on the vessel.

(3) Object detection model YOLO v4 enhances support 
navigation system to be active by recognising 
object. Detection accuracy shows remarkable per-
formance with 94% for distinguishing sea-markers, 
which overwhelm that of human being. Within 100 
meters, the confidence of the model is more than 
97%. It, however, rapidly drop after 60 meters. The 
model with consistent performance can be a part of 
autonomous system or utilised to support current 
navigation system.

(4) This project can be considered as a pilot study that 
brings directions and methods to move towards 
the realisation of autonomous marine vehicles 
with excellent performance in object detection, 
which is a fundamental element to be equipped 
with those ships.
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