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Abstract

Many recent papers in macroeconomics have used large vector autoregressions (VARs) involving 100
or more dependent variables. With so many parameters to estimate, Bayesian prior shrinkage is vital in
achieving reasonable results. Computational concerns currently limit the range of priors used and render
di�cult the addition of empirically important features such as stochastic volatility to the large VAR. In this
paper, we develop variational Bayes methods for large VARs which overcome the computational hurdle
and allow for Bayesian inference in large VARs with a range of hierarchical shrinkage priors and with
time-varying volatilities. We demonstrate the computational feasibility and good forecast performance of
our methods in an empirical application involving a large quarterly US macroeconomic data set.
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1 Introduction

This paper develops variational Bayesian (VB) methods for large Bayesian VARs with hierarchical shrinkage

priors and multivariate stochastic volatility and shows them to have a much lower computational burden than

the Markov chain Monte Carlo (MCMC) methods which are currently predominant in the Bayesian VAR

literature. We demonstrate that VB methods are accurate and are scaleable. They can be used in practice

even in very large VARs.

To explain why VB methods can be a useful tool for the researcher working with Bayesian VARs, note

that in recent years we have seen the emergence of a literature which uses VARs with a large number of

dependent variables. The seminal paper was Banbura, Giannone and Reichlin (2010). Subsequently large

VARs have been used in many empirical applications in macroeconomics and �nance; see, among many others,

Bloor and Matheson (2010), Carriero, Kapetanios and Marcellino (2010), Carriero, Kapetanios and Marcellino

(2012), Koop (2013), Gefang (2014), Giannone, Lenza, Momferatou and Onorante (2014), Banbura, Giannone

and Lenza (2015), Koop and Korobilis (2016, 2019), Jarocinski and Mackowiak (2017), Carriero, Clark and

Marcellino (2016, 2018, 2019) and Chan (2018). The computational methods used in these papers fall into two

general categories: i) those which use MCMC methods and ii) those which avoid the use of MCMC methods

by using natural conjugate priors (for which analytical results are available). It is noteworthy that papers

in category i) tend to use VARs which are much smaller than papers in category ii). For instance, Banbura,

Giannone and Reichlin (2010) use a natural conjugate prior and work with 131 variables whereas Chan (2018)

uses MCMC methods and works with 20 variables. The reason for this is largely computational: the time

taken to carry out Bayesian inference or prediction in models which require the use of MCMC methods is

much greater than that taken when using models for which analytical results are available.

In the large VAR literature there is a growing realization that it is computationally di�cult (if not

impossible) to use MCMC methods with 100 or more variables, especially in the context of a recursive

forecasting exercise where MCMC methods are used repeatedly on an expanding or rolling window of data.

However, macroeconomic researchers currently wish to work with over 100 variables and it is easy to imagine

that, in the near future, they will want to work with many more.1

If MCMC methods cannot be used with large VARs, then there is a risk that the large Bayesian VAR

literature will not be able to expand to the increasingly large datasets that economists wish to work with.

This is because the natural conjugate approaches which provide analytical results have their limitations. In

particular, empirically-necessary extensions of the VAR such as adding stochastic volatility are not possible

with the natural conjugate prior. Nor is it possible, using the natural conjugate prior, to accommodate the

1In the US, the popular FRED-MD and FRED-QD data sets, produced by the Federal Reserve Bank of St. Louis, contain
well over 100 monthly variables and well over 200 quarterly variables, respectively.
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hierarchical priors which are increasingly used in the machine learning literature to ensure shrinkage and

sparsity. The VAR literature has typically used MCMC methods to handle such extensions (see, e.g., George,

Sun and Ni, 2008, Koop, 2013, Korobilis, 2013 and Kastner and Huber, 2021).

In this paper we show how an alternative approach, VB, can be used for Bayesian inference in cases where

MCMC methods are computationally-infeasible. VB methods will be discussed in the next section, but their

key properties are that they provide an approximation to the Bayesian posterior and predictive distributions

in the VAR and are computationally much faster than MCMC methods, which makes VB a useful substitute

for MCMC in Bayesian VAR forecasting exercises involving huge VARs.

We develop VB methods for a range of hierarchical shrinkage priors that are popular in the machine

learning literature and have been used in regression or with small or medium sized VARs. These include the

horseshoe, priors which fall in the least absolute shrinkage and selection operator (LASSO) class, the stochastic

search variable selection (SSVS) prior and adaptive shrinkage Je�reys' and t-priors. Our methods allow for

automatic shrinkage on the VAR error covariances as well as the VAR coe�cients themselves. We also develop

VB methods which can be used to add stochastic volatility to any of the VARs with hierarchical shrinkage.

In an empirical exercise involving a large data set of quarterly US macroeconomic variables we show that

VB methods are accurate and forecast well. In particular, we demonstrate the accuracy of VB methods using

a data set of 10 variables. We show that, for some of the shrinkage priors, MCMC methods and VB methods

produce mean squared forecast error (MSFE) results that are virtually identical. For the remainder of the

priors, results are very close to one another. We do, however, �nd VB tends to underestimate predictive

variances slightly. We also demonstrate the forecasting performance of VB methods using a large data set of

100 variables. In this dimension, MCMC methods are not feasible, but we show good forecasting performance

can be obtained using VB methods.

2 Variational Bayesian Inference

VB methods have been growing in popularity as a practical way of doing Bayesian inference in models for which

MCMC would be too computationally demanding. The basic theory justifying VB is provided in many papers

including Ormerod and Wand (2010), You, Omerod and Muller (2014) and Blei, Kucukelbir and McAuli�e

(2017). Here we explain the basic theory and necessary ingredients to use VB methods in practice in a general

context where p (θ|y) is the posterior of interest involving data y and parameters θ. VB methods approximate

this posterior with another simpler density q (θ) that is as close as possible to it in a Kullback-Leibler (KL)

sense. It is important to be clear from the outset that VB methods are approximate in the sense that q (θ) is
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not the same as p (θ|y). This is the type of approximation which we refer to in the following material. MCMC

methods are only exact if an in�nite number of draws are taken and, thus, in practice are also approximate.

VB requires the choice of a class of approximating densities, q (θ) (e.g. the normal density is a popular

choice). The optimal VB density is the one within this class that has parameters chosen so as to make the

VB density as close as possible to the posterior. For instance, the mean and variance-covariance matrix of the

normal are estimated so as to minimize the KL distance between the normal approximation and the posterior.

Minimizing KL can be shown to be equivalent to maximizing the evidence lower bound (ELBO):

ELBO = E (log p (θ, y))− E (log q (θ)) ,

where the expectations are taken with respect to q (θ). Thus, VB involves optimizing a function (the ELBO),

which is typically much faster than doing MCMC.

Computation is particularly easy if the class of approximating densities is taken from the so-called mean

�eld variational family:

q (θ) =

M∏
m=1

qm (θm) ,

where θm for m = 1, ..,M are the blocks of parameters which make up θ.

If we assume the prior for the blocks of parameters are independent, then the ELBO can be written as:

ELBO = E (log p (y|θ)) +
M∑
m=1

E (log p (θm))−
M∑
m=1

E (log qm (θm)) . (1)

Note that the −E(log qm(θm)) terms are the entropies of each approximating density and, thus, working with

densities with known entropies is convenient when doing VB inference.

Within this family, it can be proved (see, for instance, Section 2.2 of Ormerod and Wand, 2010) that the

optimal choice for qm (θm) involves the full conditional posterior densities used in a Gibbs sampler and is given

by:

qm (θm) = exp [E (log p (θm|y, θ−m))] , (2)

where θ−m denotes all parameters except for those in θm and the expectation is taken over q (θ−m).

Thus, VB is particularly easy for any model which admits Gibbs sampling. The full conditional posteriors

used in Gibbs sampling appear in (2) and, thus, in the ELBO in (1). The ELBO also involves the likelihood

and prior and is easy to evaluate if each approximating density has a known entropy. The expectations in (2)

and (1) are calculated using optimization (not posterior simulation) in a similar fashion to the expectations
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maximization (EM) algorithm of Dempster, Laird and Rubin (1977).

The theoretical properties of VB methods depend to some extent on the speci�c class of models under

consideration. However, You, Omerod and Muller (2014) derive the theoretical properties of VB for linear

regression models with independent normal inverse Gamma priors.2 They prove that VB point estimates

are statistically valid in a frequentist sense. That is, they are consistent and provide asymptotically valid

standard errors. All the models in this paper use hierarchical normal priors for regression coe�cients which

are independent of the error variances. The prior hierarchies depend on model-speci�c prior hyperparameters.

Thus, conditional on the prior hyperparameters, the theory of You, Omerod and Muller (2014) applies

immediately to the VB methods used in this paper. And, since the in�uence of the hierarchical prior will vanish

asymptotically, their theoretical results will also apply unconditionally. Thus, we have a strong frequentist

justi�cation for our Bayesian methods.

Note that the MCMC type of approximation error is under the control of the researcher and can be made

arbitrarily small by taking a su�cient number of draws; and MCMC methods are sometimes referred to as

`exact' as a consequence. That `exactness', however, comes at a cost in terms of computational speed, which

becomes infeasible when the number of draws required to e�ciently explore a very large parameter space entails

a prohibitive computational cost. By contrast, VB methods are typically much faster. This speed advantage,

coupling with VB's nice statistical properties, makes VB an e�ective alternative approach to estimating models

with too many parameters that are infeasible to estimate using MCMC.

3 Variational Bayes Methods for VARs Using Conventional Priors

In this section, we describe VB methods for a conventional, non-hierarchical, prior. We do this not because it

is important in and of itself, but because this is a key building block for our VB algorithms using hierarchical

shrinkage priors. That is, there are many non-hierarchical priors which have been used with VARs in the

past which involve subjectively-elicited prior hyperparameters. See, for instance, Dieppe, Legrand and van

Roye (2016) which discusses a range of popular priors including the Minnesota prior, the natural conjugate

prior and the independent normal-Wishart prior. For the Minnesota and natural conjugate priors, analytical

posterior and predictive results are available. Hence, MCMC methods are not required and they can be used

with large VARs. However, these priors have restrictive properties and cannot easily be extended (e.g. to

allow for stochastic volatility) without resort to MCMC methods. With the independent normal-Wishart prior

MCMC methods are required.3 All of these are conventional, subjectively-elicited, non-hierarchical priors.

2The fact that the prior exhibits independence between regression coe�cients and the error variance is important. Theoretical
properties of VB for natural conjugate priors which do not exhibit such independence are di�erent.

3VB methods for this prior have been developed in Hajargasht and Wozniak (2018).
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In this paper, our interest lies in developing fast VB approaches to estimating large VARs using hierarchical

priors which allow for automatic shrinkage. We stress that, due to the huge computational cost, it is not feasible

to use MCMC to estimate such models. But all our priors will be hierarchical extensions of a conventional

prior. Hence, we begin with a conventional VAR prior in this section.

Throughout this paper, we work with the following VAR (or extensions of it):

A0yt = b0 + B1yt−1 + . . .+ Bpyt−p + εt, εt ∼ N(0,Σ), (3)

for t = 1, . . . , T where yt is an n× 1 vector of endogenous variables, b0 is a n× 1 vector of intercept terms, Bi

is the n× n matrix of lag i VAR coe�cients, Σ = diag(σ2
1 , . . . , σ

2
n) and A0 is an n× n lower triangular matrix

with ones on the diagonal.

We can rewrite (3) as

yt = Xtβ + Wta + εt, (4)

where Xt = In⊗[1,y
′

t−1, . . . ,y
′

t−p] is an n×K matrix, β = vec([b0,B1, . . . ,Bp]
′
) is K×1 vector of coe�cients,

a consists of the free elements ofA0 stacked by rows withWt being the n×mmatrix containing the appropriate

contemporaneous elements of yt. Equation (4) can be written in terms of n independent equations, with the

ith equation being:

yi,t = zi,tθi + εi,t, εi,t ∼ N(0, σ2
i ). (5)

where zi,t is a row vector with ki elements and θi is a vector containing the elements of β and a pertaining

to the ith equation. Below we also use notation where Zi = (zi,1, . . . , zi,T )′, yi = (yi,1, . . . , yi,T )′ and εi =

(εi,1, . . . , εi,T )′.

There are two advantages of writing the VAR in this form. The �rst advantage is computational. This

speci�cation allows for equation-by-equation estimation of the VAR. This breaks the task of working with

the huge K dimensional vector of VAR coe�cients into that of working with n smaller ki dimensional sets

of regression coe�cients. As documented in, e.g., Carriero, Clark and Marcellino (2016), working directly

with the posterior covariance matrix for all the VAR coe�cients jointly involves O(n6) manipulations whereas

equation-by-equation estimation reduces this to O(n4). For large values of n the computational bene�ts of

this are huge. Secondly, the elements of A0 relate to the error covariances of the reduced form VAR (i.e. the

latter covariance can be written as (A−1
0 )Σ(A−1

0 )′). When n is large, the number of error covariances can be

large and it can be desirable to shrink many of them to zero. Using the speci�cation in (5) means that this

shrinkage can easily be done using the same prior as is used on the VAR coe�cients.
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The prior we use for the parameters in the ith equation is:4

θi ∼ N(0,Vi), (6)

σ−2
i ∼ G(ν, s), (7)

where G denotes the Gamma distribution. We call this the normal independent prior.

Textbook derivations for the normal linear regression model with independent normal-Gamma prior (e.g.

chapter 3 of Koop, 2003) can be used to derive the full conditional posteriors. You, Ormerod and Muller

(2014) derive the VB approximating densities using these full conditional posteriors and (2). For equation i,

these are

q(θi) ∼ N(θ̄i, V̄i), (8)

q(σ−2
i ) ∼ G(ν +

T

2
, s̄i), (9)

where

V̄i = [(
ν + T

2

s̄i
)Z
′

iZi + V−1
i )]−1,

θ̄i = (
ν + T

2

s̄i
)V̄iZ

′

iyi, (10)

s̄i = s+
1

2

∥∥yi − Ziθ̄i
∥∥2

+
1

2
tr(Z

′

iZiV̄i). (11)

Note that the VB approximating densities depend on three arguments: θ̄i, V̄i and s̄i. These are optimized

in an iterative process.5 Beginning with an intialization of any two of these, the algorithm iterates using

the preceding formulae. After each iteration, ELBOi is calculated. Iteration continues until the increase

in ELBOi between the jth and (j − 1)th iteration is less than some convergence criterion. The formula for

4We adopt a notational convention where prior hyperparameters selected by the researcher are denoted using lower bars. We
do not adopt this convention for Vi since, in the next section, we will use a hierarchical structure which means it will depend on
other parameters. Our notation also assumes that most prior hyperparameters are chosen to be the same in every equation. This
can be trivially relaxed by adding i subscripts to the prior hyperparameters.

5Throughout this paper, we adopt a notational convention where upper bars denote quantities which are optimized in a VB
algorithm.
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ELBOi is given in the Technical Appendix. This algorithm is done independently for each of the i = 1, .., n

equations, which means it can be parallelized to increase computational e�ciency.

4 Variational Bayes Methods for the VAR with Hierarchical

Shrinkage Priors

We have emphasized the fact that, with large VARs, over-parameterization concerns can be serious and, thus,

Bayesian prior shrinkage is desirable. In this section, we develop VB methods for a range of priors which do

this shrinkage in an automatic fashion. These priors are all hierarchical and have been used in the machine

learning literature. These all are hierarchical extensions of the VAR and prior of the preceding section. That

is, whereas the prior of the preceding section depended on hyperparameters chosen by the researcher, in this

section we will work with priors that involve a hierarchical structure and require less input from the researcher.

But, conditional on a particular hierarchy, all the theoretical results derived above still hold and we will draw

upon them in this section.

4.1 Adaptive shrinkage t-prior

The adaptive shrinkage t-prior, as used in, e.g., Korobilis (2013), adopts the same prior at the �rst level of the

hierarchy as the conventional prior of Section 3. However, the prior covariance matrix for the coe�cients in

equation i becomes:

Vi = diag(τi,1, . . . , τi,ki). (12)

The degree of shrinkage is controlled by τi = (τi,1, . . . , τi,ki)
′ which are treated as unknown parameters. The

prior for each of these is

τ−1
i,j ∼ G(a0, b0), for j = 1, . . . , ki.

The VB approximating densities, q(θi) and q(σ2
i ) are the same as (8) and (9) since their conditional

posteriors (now additionally conditional on τi) are the same as in the preceding section. Hence, we only need

to derive q(τ−1
i ). Given the form of the conditional posterior for τi,j given in Korobilis (2013), we can derive:

q(τ−1
i,j ) ∼ G(a0 +

1

2
,
θ̄2
i,j + V̄jj

i

2
+ b0),

8
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where V̄jj
i is the (j, j)th element of V̄i, Thus, the new term that VB updates is

τ−1
i,j =

a0 + 1
2

θ̄2i,j+V̄jj
i

2 + b0

.

As before, VB iterates over θ̄i, V̄i and s̄i, but now we additionally have to iterate over τ−1
i,j . The ELBO used

to assess convergence is given in the Technical Appendix.

We also use the adaptive shrinkage Je�reys' prior (see Korobilis, 2013) which takes the form

τi,j ∼ 1
τi,j

, for j = 1, . . . τi,ki .

This can be viewed as a special case of the adaptive shrinkage t-prior with a0 = b0 = 0.

4.2 The Adaptive LASSO

The adaptive LASSO maintains the prior covariance matrix given in (12), but allows for a di�erent treatment

of the prior shrinkage parameters, τi. In particular, it assumes:

τi,j ∼ Exp(λi,j

2 ), for j = 1, . . . , ki

with

λi,j ∼ G(a0, b0).

With this hierarchical shrinkage prior, the optimal VB approximating densities for q(θi) and q(σ−2
i ) are

the same as in Section 3, but we now add approximating densities for τi and λi where λi = (λi,1, . . . , λi,ki)
′.

These are

q(τ−1
i,j ) ∼ iG(

√
λ̄i,j

θ̄2
i,j + V̄jj

i

, λ̄i,j),

where iG denotes the inverse Gaussian distribution and

q(λi,j) ∼ G(a0 + 1, 0.5τ̄i,j + b0).

These involve the following terms to be iterated in the VB algorithm:

τ−1
i,j =

√
λ̄i,j

θ̄2
i,j + V̄jj

i

,
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λ̄i,j =
a0 + 1

0.5τ̄i,j + b0
,

and τ̄i,j denotes
1

τ−1
i,j

.

The evidence lower bound is given in the Technical Appendix. In our empirical section, we also use the

Bayesian LASSO of Park and Casella (2008). This is the same as the adaptive LASSO but sets λi,j = λi, so

that we now have a global shrinkage parameter which is the same for all coe�cients in equation i.

4.3 Horseshoe prior

Another popular hierarchical shrinkage prior is the horseshoe prior of Carvalho, Polson and Scott (2010). It

has attractive theoretical properties, including an ability to adapt to di�erent patterns of sparsity and has

been found to be quite robust.

To the equation-by-equation VAR set up involving (5), (6) and (7), the horseshoe prior adds the assumptions

that:

Vi = diag(λi,1τi, . . . , λi,kiτi),

where the priors for the new parameters are

λ−1
i,j |νi,j ∼ G(

1

2
,

1

νi,j
),

τ−1
i |ξi ∼ G(

1

2
,

1

ξi
),

ν−1
i,1 , . . . , ν

−1
i,ki

, ξ−1
i ∼ G(

1

2
, 1)

and i indexes equations and j indexes coe�cients.

The optimal q(θi) and q(σ
−2
i ) are the same as in preceding sub-sections. The conditional posteriors for the

remaining parameters using the horseshoe prior can be found in Makalic and Schmidt (2015). These can be

used to derive:

q(λ−1
i,j ) ∼ G(1, ν−1

i,j +
θ̄2
i,j + V̄jj

i

2
τ−1
i ),

q(τ−1
i ) ∼ G(

ki + 1

2
, ξ−1
i +

1

2
λ−1
i,j

ki∑
j=1

(θ̄2
i,j + V̄jj

i )),

q(ν−1
i,j ) ∼ G(1, 1 + λ−1

i,j )
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and

q(ξ−1
i ) ∼ G(1, 1 + τ−1

i ).

The terms which are updated in the VB iterations are (10), (11),

λ−1
i,j =

1

ν−1
i,j + τ−1

i

θ̄2i,j+V̄jj
i

2

,

τ−1
i =

ki + 1

2ξ−1
i + [λ−1

i,j

∑ki
j=1(θ̄2

i,j + V̄jj
i )]

,

ν−1
i,j = 1/(1 + λ−1

i,j ),

ξ−1
i = 1/(1 + τ−1

i ).

These values can be plugged into the formula for Vi and used to update V̄i. The formula for the evidence

lower bound used to assess convergence is given in the Technical Appendix.

4.4 SSVS

One of the widely used hierarchical shrinkage priors is the SSVS prior which assumes that Vi =

diag(vi,1, . . . , vi,ki) and

vi,j =


κi,j,0

κi,j,1

if γi,j = 0

if γi,j = 1

where κi,j,0 is chosen to be large and κi,j,1 to be small. In words, if γi,j = 1 then a prior which strongly

shrinks the jth coe�cient in the ith equation towards zero is used. The prior for γi = (γi,1, . . . , γi,ki) follows a

Bernoulli distribution

P (γi,j = 1) = πi,j ,

with

P (γi,j = 0) = 1− πi,j .

The VB approximating densities for θi and σ
2
i are the same as in the preceding section. The remaining

approximating densities can be derived based on posterior conditionals given in George, Sun and Ni (2008).
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The approximating density for γi is

q(γi) ∝ Bernoulli(π̄i,j)

where

π̄i,j =

1
κi,j,1

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,1

)πi,j

1
κi,j,1

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,1

)πi,j + 1
κi,j,0

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,0

)(1− πi,j)
.

Finally, we have

Vi = diag(v̄i,1, . . . , v̄i,ki).

where

v̄i,j = π̄i,jκi,j,1 + (1− π̄i,j,j)κi,j,0.

The evidence lower bound for the VAR with SSVS prior is given in the Technical Appendix.

4.5 Adding Stochastic Volatility to the VAR

Many papers, using many di�erent macroeconomic data sets, have found stochastic volatility to be an

important feature and that failing to take it into account can lead to poor forecasting performance (see,

e.g., Clark, 2011). Thus, it is important to develop methods for adding stochastic volatility to the VAR using

any of the priors in the preceding sub-sections. In this sub-section, we do so with a VB method.

We assume the model is the same as in any of the preceding sub-sections, except that the error variance

in equation i is now exp(hi,t) where

hi,t = hi,t−1 + ζi,t, ζi,t ∼ N(0, σ2
hi

),

σ−2
hi
∼ G(a1, b1).

hi,0 ∼ N(0, V i,h),

where the initial conditions hi,0 are treated as parameters to be estimated.

The auxiliary mixture sampler of Kim, Shephard and Chib (1998) is a popular way of doing MCMC with

stochastic volatility models. We use this sampler for our MCMC results, but it is very slow precluding its use

in large models. Instead we use VB assuming the VB density of the log-volatilities is normal. There are several

ways of obtaining the mean and variance of this single normal distribution using VB methods. In a recent
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paper, Chan and Yu (2020) compare di�erent VB methods involving normal approximations for stochastic

volatility models and propose a new one. They demonstrate, both theoretically and in practice, that their new

algorithm is more accurate than previous algorithms. Accordingly, this is the VB algorithm we use in this

paper.

The Technical Appendix provides complete details of this algorithm. Here we outline the justi�cation for

and steps involved in it. Let hi = (hi,1, .., hi,T )′. From (2) the optimal VB density for hi is

qhi
(hi) ∝ exp

[
E
(
log p

(
hi|y, θi, hi,0, σ2

hi

))]
.

Chan and Yu (2020) derive this unrestricted optimal VB density and note that it is not normal. They use

a normal optimal VB density which is as close as possible to this unrestricted optimal VB density in a KL

sense. The minimization of the KL distance is done using the Newton-Raphson method. This minimization

problem can be done quickly since, as shown by Chan and Yu (2020), the Hessian of the objective function is

banded and fast band matrix routines can be exploited. Note that this is a global approximation to the joint

distribution of the entire vector of log-volatilities in equation i and Chan and Yu (2020) show, in a Monte

Carlo study, the approximation to be very accurate.

It is worth noting that other VB approximations for stochastic volatility models have been proposed. The

theoretical properties of some of these are discussed in Frazier, Loaiza-Maya and Martin (2021). We highlight

this paper since it compares the method of Chan and Yu (2020) to one based on the methods of Loaiza-Maya,

Smith, Nott and Danaher (2021). It discusses some possible theoretical weaknesses of the Chan and Yu (2020)

method (i.e. a lack of Bayesian consistency), but also concludes that in terms of prediction (particularly at

shorter horizons) it performs almost as well as the more accurate method of Loaiza-Maya, Smith, Nott and

Danaher (2021). However, the latter method includes an MCMC step for drawing the volatilities thus adding

substantially to the computational burden. Given the need for fast computation in our high dimensional

models, in this paper we use the methods of Chan and Yu (2020). However, it would be simple to modify our

methods by replacing the blocks of the algorithm which use the methods of Chan and Yu (2020) with blocks

based on Loaiza-Maya, Smith, Nott and Danaher (2021).

4.6 Choice of Prior Hyperparameters

With the exception of the horseshoe prior and Je�reys' prior, our priors involve hyperparameters which must

be selected. The Technical Appendix provides the values we use for these. Here we describe the general issues

which infuse our choices. In extensive experimentation, we have found it is not acceptable to simply use the

same choices for all VAR dimensions. This is unsurprising. Each equation in the VAR has np+ 1 right-hand
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side variables most of which are probably unimportant. As VAR dimension increases the number of right-hand

side increases and the need for a prior which induces sparsity increases. Our prior hyperparameter choices

re�ect this. We have found that working with relatively non-informative priors is �ne if n = 10 or even 20,

but not with n = 100. Accordingly, for the t-prior, both variants of the LASSO and the SSVS prior, our prior

hyperparameters depend on n and p and induce a higher degree of shrinkage in larger models.

For the non-informative Je�reys' prior, adding increasing shrinkage as n increases is not possible. In an

earlier version of this paper we found large VAR models adopting Je�reys' prior to forecast very poorly. This

inadequate shrinkage suggests that it is unsuitable for use in VAR of very large dimensions. The horseshoe

prior, too, involves no hyperparameters. There is evidence that high-dimensional VAR using horseshoe prior,

too, forecasts poorly. We have found the reason for this to be that the prior for τ−1
i given in (4.3) allocates

too much prior probability to non-sparse regions of the parameter space. However, we have found that simply

�xing τi to a value which implies tighter shrinkage as VAR dimension increases work much better. The results

in the empirical section of this paper re�ect such an approach and, for the large VAR with n = 100, set

τ̄i =
1

K +m
,

where K is the number of VAR coe�cients and m is the number of elements in a. Adopting the same strategy

for Je�reys' prior also improves forecast performance and, thus, in our empirical section we do so.

5 Empirical Work

In this section, we present evidence on the performance of VB methods with various hierarchical priors using

quarterly US data from 1959Q4 through 2019Q4 taken from the Federal Reserve Bank of St. Louis' FRED-QD

data set. All variables are transformed to stationarity following recommendations in the FRED-QD data base.

All variables are standardized to have mean zero and standard deviation one.

We present results from VARs of various dimensions. Our small/medium/large data sets contains n =

10/20/100 variables. The list of variables in each data set is given in the Data Appendix. The main justi�cation

for use of VB methods is that their computational burden is potentially much less than MCMC methods. This

motivates our choice of VAR dimensions. With our small data set, MCMC computation is not that onerous

and we can do extensive comparisons between VB and MCMC methods. With the large data set, a huge

computation burden results when using MCMC methods and, hence, we focus on VB methods with this data

set.

In this empirical exercise we aim to answer several questions. Two of these relate to computation time: How
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much faster are VB methods than MCMC methods? and How scaleable are VB methods? These are addressed

in the following sub-section. The subsequent sub-section addresses the question: How accurate are estimates

produced by VB methods? It does so by comparing posteriors produced by VB (which is an approximate

method) to those produced by MCMC (which, if a su�cient number of replications is taken, can be expected

to be highly accurate). The third sub-section is a recursive forecasting exercise which addresses the question:

How good are VB methods combined with hierarchical priors at macroeconomic forecasting? This sub-section

o�ers a detailed comparison of forecast performance for the various priors and VAR dimensions. The �nal

sub-section addresses the question: How accurate are the predictive densities produced by VB? It does so by

comparing predictive densities produced by VB and MCMC using the small data set with a particular focus

on the tails of the predictive densities.

The results in this paper use p = 1 lag with results for longer lag lengths being put in the Empirical

Appendix. In the forecasting exercise, di�erent lag length choices tend to lead to very similar forecast

performance but p = 1 tends to forecast slightly better than longer lag lengths.

5.1 Computation Time

Table 1 presents computation time in seconds to estimate a model using a standard desktop with an Intel

Core i7-7700 @ 3.6GHz processor and 16 GB of RAM. For MCMC methods we take 22, 000 draws and discard

an initial 2, 000 burn-in draws. These values lead to convergence as assessed by standard MCMC diagnostics.

For VB methods, we judge convergence to have occurred when the change in the ELBO is less than 10−4.

Computation time is likely to depend mostly on VAR dimension and, hence, we present results for the VARs

of di�erent dimensions. Remember that estimation proceeds one equation at a time and that the number of

VAR coe�cients in the ith equation is ki = n∗p+ i. But the number of prior hyperparameters to be estimated

in the prior covariance matrix Vi can also have an impact on computation time. Accordingly, Table 1 lists

the number of these to be estimated for the ith equation for each prior.
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Table 1: Computation times (in seconds)

10 variables 20 variables 100 variables

Models No. params. in prior cov. MCMC VB MCMC VB MCMC VB

Homoskedastic

normal-independent 0 30.4 0.2 69.5 0.3 1541.9 1.3

Horseshoe ki + 1 41.9 0.6 91.8 1.1 1756.2 10.3

LASSO ki 123.8 0.6 242.0 1.0 2649.2 11.8

Adaptive LASSO 2ki 136.4 0.7 244.7 0.7 2671.6 3.3

t-prior ki 34.6 0.2 73.1 0.3 1603.2 1.3

SSVS 2ki 33.2 0.2 71.0 0.3 1559.1 1.7

Je�reys' ki 65.0 0.3 136.8 0.4 1976.7 17.3

Heteroskedastic

normal-independent 0 182.7 5.1 399.4 8.0 3100.7 110.1

Horseshoe ki + 1 186.5 6.7 416.3 10.6 3327.2 89.4

LASSO ki 253.1 6.5 533.7 12.0 3609.8 145.5

Adaptive LASSO 2ki 255.9 6.0 543.3 9.3 3575.5 125.5

t-prior ki 181.6 5.0 420.7 7.6 3406.6 110.5

SSVS 2ki 174.9 4.6 421.0 7.3 3244.9 64.4

Je�reys' ki 175.5 3.3 402.9 6.1 3481.0 181.1

The general picture here is that VB is much faster than MCMC. MCMC methods are very slow with the

large data set. To estimate a single model takes roughly an hour for any of the priors considered in this paper

when stochastic volatility is added. Clearly, running an extensive recursive forecasting exercise by repeatedly

re-running the MCMC algorithm on an expanding window of data would lead to a huge computational burden.

In contrast VB methods are much faster with the time for estimating a single model being a minute or two for

the various priors with the large data set. The reason for this is largely due to the fact that the optimization

problems within VB converge very quickly, usually within a few iterations. In contrast, MCMC involves taking

a large number (here 22000) draws. The computation time for each iteration is roughly comparable to the

computation time for each draw. The speed improvements of VB are simply due to its having fewer iterations

than MCMC has draws.

VB methods are also found to be scaleable in the sense that the computational time is increasing roughly

at a linear rate with n (e.g. computation times for the 100 variable models are roughly 10 times as big as

those for 10 variable models). In contrast, MCMC methods are less scaleable with the computational burden

increasing at a greater than linear rate. In this paper, we are working with a maximum of n = 100. With this

value, MCMC methods are just feasible. But for larger values of n (e.g. n = 200 or more) that researchers are
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interested in working with, our results suggest VB methods are practical whereas MCMC methods are not.

The computation times for both VB and MCMC are similar across hierarchical priors indicating that the

number of parameters in the prior covariance to be estimated has only a small impact on computation time.

The VAR without a hierarchical prior will tend to have faster computation since it has fewer parameters

to estimate.6 But the addition of any of our hierarchical priors does not lead to large increases in the

computational burden. Interestingly, the relatively parameter-rich SSVS prior is leading to relatively fast

computation. This is because the variable inclusion indicators have Bernoulli distributions which can be

handled very quickly.

Table 1 also shows that the inclusion of stochastic volatility will inevitably slow down computation. This

slowdown is, proportionally, larger for VB than for MCMC. Consider, for instance, the 100 variables models. If

we compare the heteroskedastic to homoskedastic versions of each model it can be seen that VB computation

times are up to 100 times larger for the former than the latter. However, for MCMC the computation times

approximately double. Hence, the computational bene�ts of using VB lie mostly in its faster estimation of

huge numbers of VAR coe�cients with lesser bene�ts arising from the VB treatment of stochastic volatility.

Nonetheless, the most important revelation of our exercises is that even with SV incorporated, VB is still

much faster than MCMC.

5.2 The Accuracy of VB

The accuracy of VB estimation can be investigated by comparing VB results to MCMC results. We have done

extensive comparisons and found VB to be highly accurate. For the sake of brevity we do not report a full

set of results for our many di�erent priors, VAR dimensions and parameters. We illustrate our �ndings in

Figures 1, 2, 3 and 4. These �gures are for the small VAR-SV with adaptive LASSO prior. Figures 1, 2 and

3 produce parameter estimates for three key variables. They plot VB point estimates7 and MCMC posterior

means for each individual VAR coe�cient, covariance term (i.e. the vector of parameters we call a) and the

volatilities. Figure 4 compares impulse responses to a monetary policy shock, where in the VB's case, the

impulse responses are derived using the point estimates of the parameters, while in the case of MCMC, the

plotted impulse responses are the posterior means of the impulse responses computed in each iterations. The

Empirical Appendix contains comparable �gures for the other priors.

All of these �gures show that VB and MCMC posterior means are virtually identical and in the few cases

they are not they are at least very similar. Given that the stochastic volatility model is not a normal linear

6The exception to this arises in the heteroskedastic model and is due to slower convergence of the Newton-Raphson optimization
that is required to �nd the global normal approximation in the Chan and Yu (2020) algorithm. This optimization is required for
both VB and MCMC.

7VB point estimates are the means of the VB approximating densities.
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state space model, it is possible that using a normal approximation to the posterior of the volatilities will be

poor. But Figure 3 indicates that this is not the case.
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Figure 1: VAR Coe�cients: Comparison of MCMC posterior means and VB point estimates
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Figure 2: Covariances: Comparison of MCMC posterior means and VB point estimates
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Figure 3: Volatilities: Comparison of MCMC posterior means and VB point estimates

0 2 4 6 8 10 12 14 16 18 20

-5

0

5 10-3

-0.1

-0.05

0

0.05
Real GDP

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0

0.2

0.4

0.6

0.8
Unemployment rate

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2 10-3

-0.1

-0.05

0

PCE Inflation

MCMC
VB

Figure 4: Impulse Responses: Comparison of results derived via MCMC and VB

19

Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage 



1 2 3 4 5 6 7 8 9 10 11
VAR coefficients

0.05

0.1

0.15

Po
st

er
io

r S
ta

nd
ar

d 
D

ev
ia

tio
n Real GDP

MCMC
VB

1 2 3 4 5 6 7 8 9 10 11
VAR coefficients

0.01

0.015

0.02

0.025

0.03

Po
st

er
io

r S
ta

nd
ar

d 
D

ev
ia

tio
n Unemployment rate

MCMC
VB

1 2 3 4 5 6 7 8 9 10 11
VAR coefficients

0

0.1

0.2

0.3

Po
st

er
io

r S
ta

nd
ar

d 
D

ev
ia

tio
n PCE Inflation

MCMC
VB

Figure 5: VAR Coe�cients: Comparison of MCMC posterior standard deviations and VB standard deviations
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Figure 6: Covariances: Comparison of MCMC posterior standard deviations and VB standard deviations

As a summary of the accuracy of VB for all the priors, we present Tables 2, 3 and 4. These tables, which

are for models with n = 10, contain summary statistics across all VAR coe�cients or across all error covariance

terms of the absolute value of the di�erence between the MCMC and VB estimates. For the homoskedastic

version of each model we also present �ndings for the error variances.

Tables 2, 3 and 4 show VB results to be very accurate. The median of our divergence measure is very small
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for every prior. With one exception, it is never greater than 0.01. The one exception is for Je�reys' prior,

but even here the median absolute divergence between VB and MCMC is small. For most of the priors, the

maximum divergence is also very small. Again, the main exception is Je�reys' prior which has a small number

of coe�cients where the divergence is larger. Overall, we are �nding VB to be highly accurate.

Table 2: Absolute Value of Deviations between MCMC posterior means and VB point estimates- VAR
coe�cients

Homoskedastic Heteroskedastic

Models Median 10th percentile 90th percentile Max Median 10th percentile 90th percentile Max

normal-independent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06

Horseshoe 0.01 0.00 0.02 0.06 0.01 0.00 0.03 0.11

LASSO 0.00 0.00 0.02 0.16 0.00 0.00 0.02 0.10

Adaptive LASSO 0.00 0.00 0.01 0.07 0.00 0.00 0.01 0.07

t-prior 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.04

SSVS 0.00 0.00 0.03 0.69 0.00 0.00 0.02 0.26

Je�reys' 0.00 0.00 0.10 0.26 0.02 0.00 0.10 0.57

Table 3: Absolute Value of Deviations between MCMC posterior means and VB point estimates - Covariance
terms

Homoskedastic Heteroskedastic

Models Median 10th percentile 90th percentile Max Median 10th percentile 90th percentile Max

normal-independent 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.06

Horseshoe 0.01 0.00 0.04 0.10 0.01 0.00 0.06 0.12

LASSO 0.00 0.00 0.08 0.16 0.01 0.00 0.04 0.09

Adaptive LASSO 0.00 0.00 0.02 0.07 0.01 0.00 0.02 0.07

t-prior 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.07

SSVS 0.01 0.00 0.17 0.69 0.01 0.00 0.10 0.26

Je�reys' 0.01 0.00 0.14 0.24 0.03 0.00 0.24 0.58
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Table 4: Absolute Value of Deviations between MCMC posterior means and VB point estimates - Error
Variances

Homoskedastic Heteroskedastic

Models Median 10th percentile 90th percentile Max Median 10th percentile 90th percentile Max

normal-independent 0.00 0.00 0.00 0.00 - - - -

Horseshoe 0.00 0.00 0.01 0.02 - - - -

LASSO 0.00 0.00 0.00 0.00 - - - -

Adaptive LASSO 0.00 0.00 0.00 0.00 - - - -

t-prior 0.00 0.00 0.00 0.00 - - - -

SSVS 0.00 0.00 0.01 0.01 - - - -

Je�reys' 0.02 0.01 0.05 0.06 - - - -

This sub-section discusses the accuracy of VB by comparing VB point estimates to MCMC posterior

means. It is well known that VB methods have a tendency to underestimate posterior variances, see for

example Giordano, Broderick and Jordan (2018). This is shown in Figures 5 and 6, which present the posterior

standard deviations that are associated with the posterior means plotted in Figures 1 and 2. It can be seen

that the VB standard deviations are consistently somewhat smaller than the VB ones. We would expect under-

estimated posterior variances to lead to under-estimated predictive variances which could have an impact on

forecast performance. This is an issue we will investigate in the following sub-section

5.3 Forecasting Comparison

In this sub-section, we carry out a forecasting exercise using our small, medium and large data sets. We forecast

three variables: GDP growth, in�ation (based on the PCE price index) and the unemployment rate for forecast

horizons h = 1 and 4. The forecast evaluation period begins in 1990Q1. We remind the reader that, with our

larger data sets, MCMC methods are not feasible and, hence, all results involving the larger data sets are based

on VB methods only. We use MSFEs and average log scores (i.e. averages of the log predictive distributions)8

to evaluate forecast performance. To benchmark our results, we use individual AR(1)-GARCH(1,1) models for

the three variables being forecast.9 Both MSFEs and average log scores are particular sample realizations. To

examine whether a model can forecast better than the benchmark in population, we carry out the one-sided

sign test of equal predictive accuracy de�ned in sub-section 1.2.1 of Diebold and Mariano (1995). In the

tables, ***, ** and * denote rejection of the null hypothesis of equal predictive accuracy of a model and the

AR(1)-GARCH(1,1) benchmark at the 1%, 5% and 10% level of signi�cance, respectively. Rejection of the

8In this paper the average log score is used as a positively-oriented score, i.e., a model with larger average log score is deemed
to have better probabilistic forecast than another model with smaller average log score.

9We use non-informative prior Bayesian methods to estimate and forecast with the AR(1)-GARCH(1,1) models. Computation
is done using the MCMC algorithm of Chan and Grant (2016).
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null hypothesis means that the VAR is forecasting better than the benchmark.

Tables 5, 6 and 7 present results for GDP growth, in�ation and the unemployment rate, respectively.

The most important point about these tables is that we were able to produce them. That is, the use of VB

methods means that it is computationally feasible to carry out a large VAR forecasting exercise using models

with hierarchical shrinkage priors and stochastic volatility.

Table 5: Forecasting results for Real GDP

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models MSFE Ave. Log Scores MSFE Ave. Log Scores

AR-GARCH(1,1) 0.26 0.31 -1.23 -1.46 0.26 0.31 -1.23 -1.46

100 Variables Models

normal-independent 0.23 0.28*** -1.31 -1.36 0.24 0.28*** -1.20*** -1.51

Horseshoe 0.24 0.32 -1.21 -1.63 0.27 0.44 -2.43 -4.86

LASSO 0.26 0.28** -1.35 -1.37 0.24 0.28** -16.35 -14.01

Adaptive LASSO 0.19* 0.27** -1.17 -1.41 0.18 0.28* -1.15*** -1.90

t-prior 0.20* 0.27** -1.18 -1.44 0.19 0.28 -1.25 -2.02

SSVS 0.19 0.30 -1.16 -1.38 0.19 0.29 -1.23*** -1.97

Je�reys' 0.20 0.28** -1.28 -1.39 0.21** 0.28** -1.20*** -1.62

20 Variables Models

normal-independent 0.20* 0.30 -1.22 -1.38 0.19** 0.30 -3.51 -2.99

Horseshoe 0.19** 0.35 -1.15 -1.60 0.19** 0.31 -1.16*** -2.05

LASSO 0.20*** 0.30 -1.22 -1.41 0.19 0.29 -1.11*** -1.66

Adaptive LASSO 0.18 0.33 -1.15 -1.55 0.18* 0.28 -1.12*** -1.89

t-prior 0.19* 0.37 -1.16 -1.65 0.19* 0.32 -1.18*** -2.24

SSVS 0.20 0.38 -1.18 -1.73 0.20** 0.33 -1.27 -2.39

Je�reys' 0.19* 0.35 -1.15 -1.63 0.19*** 0.30*** -1.14*** -1.92

10 Variables Models

normal-independent 0.24 0.32 -1.27 -1.45 0.22 0.32 -1.19*** -1.76

Horseshoe 0.23 0.36 -1.25 -1.56 0.21 0.32 -1.17*** -1.81

LASSO 0.22 0.31 -1.25 -1.45 0.20 0.30** -1.15*** -1.60

Adaptive LASSO 0.22 0.33 -1.24 -1.52 0.20 0.30 -1.14*** -1.66

t-prior 0.23 0.37 -1.26 -1.57 0.21 0.33 -1.18*** -1.86

SSVS 0.24 0.39 -1.27 -1.62 0.21 0.34 -1.21*** -2.01

Je�reys' 0.22 0.33 -1.24 -1.53 0.20 0.30 -1.17*** -1.72
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Table 6: Forecasting results for the Unemployment rate

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models MSFE Ave. Log Scores MSFE Ave. Log Scores

AR-GARCH(1,1) 0.07 0.27 -0.34 -5.80 0.07 0.27 -0.34 -5.80

100 Variables Models

normal-independent 0.55 0.66 -1.65 -1.73 0.54 0.64 -3.68 -20.71

Horseshoe 0.02*** 0.14*** 0.12*** -7.57 0.02*** 0.24** -1.23 -30.11

LASSO 0.02*** 0.16*** 0.11*** -6.69 0.02*** 0.17*** -7.97 -26.97

Adaptive LASSO 0.02*** 0.15*** 0.13*** -7.37 0.02*** 0.15*** -0.21*** -14.26

t-prior 0.02*** 0.15*** 0.12*** -7.43 0.02*** 0.15** -0.32*** -15.72

SSVS 0.05 0.25 -0.57 -6.95 0.08 0.35 -1.67 -13.30

Je�reys' 0.01*** 0.14*** 0.14*** -5.48 0.02*** 0.15*** 0.04*** -10.36

20 Variables Models

normal-independent 0.04 0.25 -0.35 -5.07 0.05 0.28 -3.13 -13.16

Horseshoe 0.01*** 0.14*** 0.18*** -5.43 0.01*** 0.14*** 0.16*** -12.36

LASSO 0.01*** 0.15*** 0.19*** -5.37 0.01*** 0.14*** 0.16*** -12.86

Adaptive LASSO 0.01*** 0.14*** 0.18*** -5.49 0.01*** 0.14*** 0.16*** -12.14

t-prior 0.01*** 0.14*** 0.17*** -5.45 0.01*** 0.15*** 0.15*** -12.97

SSVS 0.01*** 0.14*** 0.15** -5.27 0.01*** 0.14*** 0.14*** -12.80

Je�reys' 0.01*** 0.14*** 0.16*** -5.27 0.01*** 0.14*** 0.18*** -11.64

10 Variables Models

normal-independent 0.02*** 0.16*** 0.07*** -4.94 0.02*** 0.16*** 0.03*** -10.62

Horseshoe 0.02*** 0.16*** 0.05** -4.98 0.02*** 0.15*** 0.06*** -10.08

LASSO 0.02*** 0.16*** 0.05*** -4.84 0.02*** 0.15*** 0.08*** -9.64

Adaptive LASSO 0.02*** 0.16*** 0.05*** -4.97 0.02*** 0.15*** 0.06*** -9.87

t-prior 0.02*** 0.17*** 0.04** -5.00 0.02*** 0.16*** 0.07*** -10.02

SSVS 0.02*** 0.17*** 0.04** -5.10 0.02*** 0.16*** 0.06*** -10.60

Je�reys' 0.02*** 0.16*** 0.04*** -5.05 0.02*** 0.15*** 0.05*** -9.69
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Table 7: Forecasting results for PCE In�ation

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models MSFE Ave. Log Scores MSFE Ave. Log Scores

AR-GARCH(1,1) 1.36 1.17 -1.97 -2.11 1.36 1.17 -1.97 -2.11

100 Variables Models

normal-independent 1.17*** 1.17 -2.07 -2.13 1.15*** 1.18 -1.94*** -2.19

Horseshoe 1.14 1.16 -2.35 -2.77 1.13 1.38 -3.30 -7.51

LASSO 1.16*** 1.17 -2.05 -2.11* 1.15*** 1.19 -21.37 -25.33

Adaptive LASSO 1.25*** 1.15* -2.29 -2.36 1.19** 1.16*** -3.00 -5.55

t-prior 1.26** 1.17** -2.24 -2.35 1.20** 1.17** -2.92 -5.33

SSVS 1.16** 1.17 -2.22 -2.34 1.12*** 1.16 -1.99 -2.24

Je�reys' 1.23 1.19 -2.13 -2.21 1.22 1.19 -3.95 -3.05

20 Variables Models

normal-independent 1.19** 1.17 -2.10 -2.14 1.16*** 1.17 -2.12 -3.86

Horseshoe 1.21 1.17 -2.13 -2.20 1.20** 1.18 -1.97*** -2.20

LASSO 1.16*** 1.17 -2.05 -2.11*** 1.17*** 1.17 -1.93*** -2.15

Adaptive LASSO 1.20 1.17 -2.12 -2.20 1.22* 1.17 -1.98 -2.22

t-prior 1.22 1.20 -2.13 -2.23 1.19 1.20 -2.01 -2.26

SSVS 1.28 1.20 -2.16 -2.25 1.28 1.19 -2.06 -2.28

Je�reys' 1.21 1.18 -2.13 -2.22 1.20 1.18 -1.99 -2.21

10 Variables Models

normal-independent 1.23 1.16 -2.12 -2.15 1.19*** 1.16 -1.95*** -2.17

Horseshoe 1.24** 1.17 -2.13 -2.17 1.19*** 1.15* -1.96*** -2.19

LASSO 1.18*** 1.17 -2.06 -2.11 1.18*** 1.17 -1.96*** -2.16

Adaptive LASSO 1.23** 1.16 -2.13 -2.16 1.18*** 1.16* -1.96*** -2.18

t-prior 1.25** 1.17 -2.13 -2.18 1.19*** 1.16* -1.96*** -2.18

SSVS 1.27 1.17 -2.14 -2.18 1.20** 1.16** -1.96*** -2.15

Je�reys' 1.24 1.16 -2.13 -2.17 1.19*** 1.15 -1.97*** -2.16

In general, we are �nding VARs with hierarchical priors to forecast very well for the unemployment rate

and, to a lesser extent and with some exceptions, for GDP growth and in�ation relative to the benchmark

AR(1)-GARCH(1,1) model.

For GDP, VARs and VAR-SVs with various hierarchical priors almost all produce smaller MSFEs than the

benchmark for both h = 1 and h = 4. In many cases the forecast improvements are statistically signi�cant.

There is evidence that models of n = 20 forecast better than either larger (n = 100) or smaller (n = 10)

models when using MSFEs. Results from average log scores are mixed. VAR-SVs of all dimensions are
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typically producing better log-scores for h = 1 but for h = 4 the forecasts tend to be slightly worse than

the benchmark. The homoskedastic VARs are forecasting slightly better than the benchmark for n = 20 and

n = 100 but are roughly the same for the small VAR. The LASSO is forecasting very poorly for the large

VAR-SV (but not for the homoskedastic VARs).

For unemployment, in most cases VAR and VAR-SV models yield smaller MSFEs than that of the

benchmark model at the 1% signi�cance level. Forecasts for h = 1 measured by average log scores show

a similar pattern, apart from in the cases of VAR-SVs with n = 100. The good forecasting results produced by

the various shrinkage priors for VARs of various dimensions, however, are elusive when we examine the average

log scores for the h = 4 forecasts. In particular, for the h = 4 forecasts, VAR-SV models are substantially

worse than the benchmark despite the fact that the relevant MSFEs tend to be substantially better than the

benchmark. This pattern (which is repeated to a lesser extent with some other priors with other variables) is

due to the fact that our iterative forecasts involve simulating volatility processes h = 4 periods out of sample.

Occasionally this produces unduly large volatilities, especially for VAR-SVs with n = 100. It is interesting that

this occurs for the more persistent variables (unemployment and in�ation) rather than for the less persistent

variable (GDP growth).

For in�ation, the general patterns is that models with hierarchical shrinkage priors produce good point

forecasts, but density forecasts for larger models are often beaten by the benchmark. The contrast between the

results of MSFE and average log scores is particularly strong notable for the model with n = 100. Measured by

MSFE, VAR-SVs with n = 100 give better h = 1 forecasts than their homoskedastic counterparts in all cases.

In addition, MSFE values show that all the VAR and VAR-SV models outperform the benchmark model for

h = 1 forecast. MSFE results associated with the h = 4 forecast horizon, however, show that benchmark model

is only outperformed in a few cases. By contrast, values of average log scores show that VAR and VAR-SV

models do not outperform the benchmark except for two cases: when LASSO and normal-independent priors

are used to estimate VAR-SVs with n = 20 and n = 100, respectively, for h = 1 forecast. Comparing average

log scores also indicate that VAR-SVs with n = 100 tend to be the worst performing models with the LASSO

forecasting particularly poorly.

A comparison of results across the di�erent hierarchical priors indicates that most of the di�erent approaches

are leading to quite similar forecast performance. So we cannot provide a recommendation of one prior which

is particularly well suited for working with large VARs. However, there are two priors which in a few cases are

inferior to the rest, especially when measured by the average log score. These are the LASSO prior and, to a

lesser extent, the horseshoe prior. The former produces poor forecasts of GDP when used with the VAR-SV

with n = 100. The latter forecasts the unemployment rate poorly, also for the n = 100 case. These are two of

the simplest priors, lacking the more sophisticated prior hierarchies of the other priors which may be useful in
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the high-dimensional models where VB methods would be required. Remember that the LASSO is a special

case of the adaptive LASSO and involves a single global shrinkage parameter common to all coe�cients in

each equation. Clearly there are cases where this is too restrictive and the more �exible adaptive LASSO is

to be preferred.

With regards to VAR dimension, we are �nding some evidence of the bene�ts of working with larger

VARs. For unemployment and GDP growth forecasting, there is evidence that working with n = 20 leads to

better forecasts than working with n = 10, in the form of smaller MSFEs, higher average log scores and even

signi�cant Diebold-Mariano test results. However, for GDP, moving to n = 100 leads to a slight deterioration

in forecast performance relative to n = 20. For unemployment, in some cases we are �nding n = 100 to forecast

best and in the remainder of cases models with n = 20 are best. For in�ation, with the exception of the h = 4

average log scores noted above, the di�erent VAR dimensions are leading to similar forecasts.

In the previous discussion of results, we noted some cases where the results of MSFEs and average log

scores were not consistent with one another. Of course, the former relate to point forecasts and the latter

to density forecasts so it is always possible that they may tell di�erent stories. VB methods are known to

under-estimate posterior variances and so it is worth considering what e�ect this is having on our density

forecasts. The following sub-section o�ers a more detailed investigation of VB forecast performance in the

tails of distributions. Here we brie�y note that we have investigated predictive variances and their impact on

average log scores in our small data set using the VAR-SV and the horseshoe prior. A comparison of VB and

MCMC estimates of predictive variances as well as average log scores is available in the Empirical Appendix.

What we �nd is that, for much of the time, VB is underestimating posterior variances and, as expected,

this feeds into an underestimation of predictive variances. However, the magnitude of this under-estimate is

typically not large.

5.4 Comparing VB to MCMC Forecasts

In this sub-section, we provide a comparison of VB to MCMC forecasts using the small data set for which

MCMC computation is practical. In addition to presenting MCMC-based MSFEs and average log scores, we

provide evidence on the forecast performance of VB in the tails of the distribution. It is in relation to the tails

and higher moments of the distribution where the normal approximation we use with our VB methods could

lead to inaccuracies. It is well-known that global-local shrinkage priors can lead to posteriors which depart

substantially from normality. For instance, Betancourt and Girolami (2015) document funnel shaped posteriors

when working with the horseshoe prior. Of course, the normal approximation relates to the posterior, not

the predictive. Particularly when stochastic volatility is added, it is possible to get very non-normal fat tailed
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predictive densities even if the VAR coe�cients are modelled using a normal likelihood and a normal prior

(see, e.g., Carriero, Clark and Marcellino 2020). Nevertheless it is worthwhile to see how well our VB methods

do in modelling the tails of predictive densities. We compare tail forecasts using the quantile score. This is the

standard method of evaluating tail forecast performance. Following Gneiting and Ranjan (2011), we de�ne

the quantile score for quantile τ as

QSτi,t = (yit − Qτi,t) (τ − I{yit ≤ Qτi,t}) ,

where Qτi,t is the predictive quantile of the i
th variable. I{yt ≤ Qτi,t} has a value of 1 if the realized value

is at or below the predictive quantile and 0 otherwise. We evaluate the QS in the upper and lower tails by

setting τ = 0.9 and τ = 0.1, respectively.

Tables 8, 9 and 10 contain our results for the comparison of VB and MCMC. The comparison of quantile

scores can be done directly o� these tables. The comparison of MSFEs and average log scores can be done by

comparing the bottom panels of these tables to the VB results for the 10 variables model in Tables 5, 6 and

7, respectively.

In terms of the MSFEs and quantile scores, we are �nding that MCMC and VB are producing results which,

with a few exceptions, are very similar. This result holds for both tails of the predictive density. However,

when looking at average log scores, there are a few cases where more substantive di�erences occur between

MCMC and VB. Consider, for instance, h = 1 forecasts of real GDP growth. When using VB we found these

to be consistently better than the benchmark for all the priors. However, when using MCMC the comparable

numbers in Table 5 show a forecast performance which is roughly the same and sometimes slightly worse than

the benchmark.

The di�erences between our MSFE and average log score �ndings in the MCMC versus VB comparison can

partly be explained by VB's tendency to under-estimate posterior variances. As noted above and documented

in the Empirical Appendix for the n = 10 case, this is leading VB to produce predictive variances which are

slightly smaller than those produced by MCMC. In relation to models with stochastic volatility, it is worth

stressing that the MCMC results use the auxiliary mixture sampler of Kim, Shephard and Chib (1998) whereas

the VB results use the algorithm of Chan and Yu (2020). This is an additional reason for VB and MCMC

results to be di�erent and it is notable that the di�erence between VB and MCMC results is less for the

homoskedastic models than for models with stochastic volatility.

The nature of the forecast metrics used also can account for some of the reason why VB and MCMC are

producing similar results for quantile scores and MSFEs, but somewhat less similar results when using average

log scores. The latter involve evaluating the predictive density at a realized value of a variable whereas the
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former do not. Evaluating a predictive density can be very sensitive to approximation error. For example, a

slight change to a point forecast will not change an MSFE much, but a slight change in an estimated predictive

density can have a more substantial impact on an average log score.

The preceding discussion suggests that VB works better as a method for producing point forecasts as

opposed to density forecasts. But it is also worth noting that, in several cases, VB is producing better average

log scores than MCMC. For instance, VB's slight underestimation of predictive variances is actually bene�tting

density forecast performance for the unemployment rate for h = 1. This indicates that, at least for certain

variables, that some of our shrinkage priors may not be doing enough to overcome the over-parameterization

problems of large VARs. In these cases, VB's tendency to underestimate posterior variances is acting like an

additional form of shrinkage.
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Table 8: Comparison of VB and MCMC Forecasting Results Using the Small Data Set: Results for Real GDP
Measured by Quantile Score, MSFE and Average Log Score

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models Quantile Scores - 10% Quantile Scores - 90% Quantile Scores - 10% Quantile Scores - 90%

VB

normal-independent 0.19 0.21 0.20 0.22 0.18 0.23 0.16 0.19

Horseshoe 0.18 0.22 0.20 0.24 0.17 0.22 0.15 0.19

LASSO 0.19 0.21 0.19 0.22 0.18 0.22 0.15 0.19

Adaptive LASSO 0.18 0.21 0.19 0.23 0.17 0.22 0.15 0.19

t-prior 0.18 0.22 0.20 0.24 0.17 0.22 0.15 0.19

SSVS 0.18 0.22 0.20 0.25 0.18 0.23 0.15 0.19

Je�reys' 0.18 0.21 0.20 0.23 0.17 0.22 0.15 0.19

MCMC

normal-independent 0.19 0.21 0.20 0.22 0.18 0.22 0.17 0.20

Horseshoe 0.18 0.21 0.20 0.24 0.17 0.21 0.16 0.20

LASSO 0.18 0.22 0.20 0.24 0.17 0.22 0.16 0.20

Adaptive LASSO 0.18 0.22 0.20 0.25 0.17 0.21 0.16 0.21

t-prior 0.18 0.22 0.20 0.25 0.17 0.21 0.16 0.21

SSVS 0.18 0.22 0.20 0.24 0.17 0.21 0.16 0.20

Je�reys' 0.18 0.22 0.21 0.26 0.17 0.22 0.16 0.21

MCMC - MSFE and Ave. Log Scores

MSFE Ave. Log Scores MSFE Ave. Log Scores

normal-independent 0.24 0.32 -1.28 -1.47 0.22 0.32 -1.25 -1.80

Horseshoe 0.22 0.33 -1.26 -1.55 0.20 0.30 -1.21 -1.82

LASSO 0.23 0.35 -1.28 -1.58 0.21 0.32 -1.24 -1.89

Adaptive LASSO 0.23 0.36 -1.28 -1.61 0.21 0.33 -1.24 -1.95

t-prior 0.23 0.36 -1.28 -1.62 0.21 0.33 -1.25 -1.95

SSVS 0.22 0.35 -1.27 -1.59 0.20 0.32 -1.23 -1.92

Je�reys' 0.25 0.40 -1.31 -1.71 0.22 0.36 -1.29 -2.14
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Table 9: Comparison of VB and MCMC Forecasting Results Using the Small Data Set: Results for
Unemployment Rate Measured by Quantile Score, MSFE and Average Log Score

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models Quantile Scores - 10% Quantile Scores - 90% Quantile Scores - 10% Quantile Scores - 90%

VB

normal-independent 0.04 0.09 0.06 0.19 0.05 0.10 0.05 0.19

Horseshoe 0.05 0.11 0.06 0.19 0.05 0.10 0.05 0.19

LASSO 0.05 0.10 0.06 0.19 0.05 0.10 0.05 0.19

Adaptive LASSO 0.05 0.11 0.06 0.19 0.05 0.10 0.05 0.19

t-prior 0.05 0.11 0.06 0.19 0.05 0.10 0.05 0.19

SSVS 0.05 0.11 0.06 0.19 0.05 0.11 0.05 0.19

Je�reys' 0.05 0.11 0.06 0.19 0.05 0.10 0.05 0.19

MCMC

normal-independent 0.04 0.10 0.06 0.19 0.04 0.09 0.05 0.19

Horseshoe 0.05 0.11 0.06 0.19 0.04 0.10 0.05 0.19

LASSO 0.05 0.11 0.06 0.19 0.04 0.10 0.05 0.19

Adaptive LASSO 0.05 0.12 0.06 0.19 0.05 0.10 0.05 0.19

t-prior 0.05 0.11 0.06 0.19 0.05 0.10 0.05 0.19

SSVS 0.05 0.11 0.06 0.19 0.04 0.10 0.05 0.19

Je�reys' 0.05 0.12 0.06 0.19 0.04 0.11 0.05 0.19

MCMC - MSFE and Ave. Log Scores

MSFE Ave. Log Scores MSFE Ave. Log Scores

normal-independent 0.02 0.16 0.04 -5.11 0.02 0.16 0.03 -9.29

Horseshoe 0.02 0.16 0.02 -5.20 0.02 0.15 0.04 -9.09

LASSO 0.02 0.16 0.02 -5.24 0.02 0.15 0.05 -9.20

Adaptive LASSO 0.02 0.16 0.02 -5.30 0.02 0.15 0.03 -9.41

t-prior 0.02 0.16 0.02 -5.28 0.02 0.15 0.04 -9.35

SSVS 0.02 0.16 0.02 -5.26 0.02 0.15 0.04 -9.32

Je�reys' 0.02 0.18 0.01 -5.57 0.02 0.17 0.02 -9.89
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Table 10: Comparison of VB and MCMC Forecasting Results Using the Small Data Set: Results for PCE
In�ation Measured by Quantile Score, MSFE and Average Log Score

Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4

Models Quantile Scores - 10% Quantile Scores - 90% Quantile Scores - 10% Quantile Scores - 90%

VB

normal-independent 0.37 0.40 0.38 0.36 0.38 0.42 0.34 0.37

Horseshoe 0.37 0.40 0.40 0.36 0.37 0.41 0.34 0.37

LASSO 0.39 0.40 0.37 0.36 0.40 0.42 0.32 0.38

Adaptive LASSO 0.38 0.40 0.38 0.36 0.38 0.41 0.34 0.38

t-prior 0.37 0.40 0.40 0.36 0.37 0.42 0.35 0.38

SSVS 0.37 0.40 0.40 0.36 0.38 0.41 0.35 0.37

Je�reys' 0.37 0.40 0.39 0.36 0.38 0.41 0.35 0.38

MCMC

normal-independent 0.37 0.40 0.39 0.36 0.37 0.42 0.34 0.39

Horseshoe 0.37 0.40 0.38 0.36 0.38 0.42 0.34 0.39

LASSO 0.37 0.40 0.39 0.36 0.37 0.42 0.34 0.39

Adaptive LASSO 0.36 0.40 0.39 0.37 0.38 0.42 0.35 0.39

t-prior 0.36 0.40 0.39 0.37 0.38 0.42 0.35 0.39

SSVS 0.36 0.40 0.39 0.37 0.38 0.41 0.35 0.39

Je�reys' 0.37 0.40 0.40 0.37 0.39 0.41 0.36 0.39

MCMC - MSFE and Ave. Log Scores

MSFE Ave. Log Scores MSFE Ave. Log Scores

normal-independent 1.22 1.17 -2.13 -2.17 1.17 1.16 -1.99 -2.21

Horseshoe 1.23 1.16 -2.13 -2.17 1.17 1.16 -2.00 -2.23

LASSO 1.23 1.17 -2.14 -2.18 1.18 1.16 -2.00 -2.22

Adaptive LASSO 1.25 1.17 -2.15 -2.20 1.18 1.16 -2.01 -2.22

t-prior 1.25 1.17 -2.15 -2.20 1.18 1.16 -2.01 -2.22

SSVS 1.24 1.17 -2.14 -2.19 1.18 1.16 -2.01 -2.22

Je�reys' 1.30 1.17 -2.18 -2.22 1.22 1.16 -2.01 -2.21

6 Conclusions and Further Discussion

The computational demands of a Bayesian analysis using large VARs can be very large, or even prohibitive,

when MCMC methods are used; and empirically interesting versions of large VARs involving hierarchical

shrinkage priors have, in the past, required use of MCMC methods. In response to this situation, we have

developed VB methods for VARs with a range of hierarchical shrinkage priors with stochastic volatility.
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The two important issues that require investigation when using VB methods are computational e�ciency

and accuracy. In our empirical work, we have established that VB methods are very computationally e�cient

and scaleable. Estimation is very quick, even in VARs with hundreds of variables.

Our �ndings in terms of accuracy are more nuanced. In terms of point estimates and point forecasts, we

have established that VB methods are very accurate. In terms of higher moments, it is well-known that VB

methods tend to under-estimate posterior variances. In our empirical work, we have investigated the impact

this has on predictive variances and log-scores and �nd it to be small but non-negligible. Overall, we establish

that it is possible to successfully forecast in large VARs using VB methods in a manner that is impossible

using MCMC.

This paper is directed at the reader interested in forecasting with large VARs with global-local shrinkage

priors, possibly with stochastic volatility. Of course, with large data sets involving hundreds of variables there

are other models that have been used in the past. The main competitors to large VARs are factor models

(i.e. the dynamic factor model or the factor-augmented VAR). With factor models, there is less need for prior

shrinkage and computationally e�cient methods such as VB since the parameter vector is low-dimensional and

conventional MCMC methods can be used. The question as to whether a factor model or a large VAR is to be

preferred is an application-speci�c one. For some data sets the large VAR might be preferred and for others

a factor model might be preferred. However, for large US macroeconomic data sets, papers such Banbura et

al. (2010) have found the large VAR to forecast better than the factor model. This suggests that large VARs

should remain a popular tool in the macroeconomic forecaster's toolbox. This paper has established that VB

is a fast and e�ective way of producing forecasts using them.
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