
This is a peer-reviewed, accepted author manuscript of the following research article: Celorrio, L., & Patelli, 
E. (2021). Reliability-based design optimization under mixed aleatory/epistemic uncertainties: theory and 
applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part A. Civil Engineering, 7(3), 
[04021026]. https://doi.org/10.1061/AJRUA6.0001147 
Reliability Based Design Optimization under Mixed Aleatory/Epistemic Uncertainties: 

Theory and Applications  
 

Luis Celorrio*1   
Edoardo Patelli2  
 
1Ph.D. Department of Mechanical Engineering, University of La Rioja.  
Edificio Departamental, C/ San José de Calasanz, 31, 26004 Logroño – La Rioja – Spain. 
e-mail: luis.celorrio@unirioja.es 
 
2Ph.D. Department of Civil and Environmental Engineering, University of Strathclyde. 
James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ, Scotland, UK.  
e-mail: edoardo.patelli@strath.ac.uk 
 
 
ABSTRACT 
Reliability-Based Design Optimization (RBDO) is a well-known design strategy in engineering. However, 

RBDO usually requires uncertainties to be modelled by statistical distributions. This requires the 

availability of sufficient sample size so that these variables can be represented accurately by probabilistic 

distributions.  In the design of new systems and structures, usually there is a lack of information about 

some uncertain variables or parameters and only a reduced set of samples might be available. This 

prevents their treatment as probability distributions. This type of uncertain is called epistemic 

uncertainty. This paper proposes two effective multi-objective evolutionary algorithms to solve design 

problems under both types of uncertainty: aleatory and epistemic. Two objective functions, i.e., the cost 

of the structures and the probability of failure are considered. The results are Pareto fronts with a trade-

off between cost and reliability associated with a specified level of confidence. Pareto fronts show 

minimum achievable values for the probability of failure for a given cost. The effect of the epistemic 

uncertainty on the solution is also investigated. An analytical example and two structural examples are 

solved to show the applicability of the approach and how epistemic uncertainty may affect the results. 
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Engineering structures are usually designed following the regulations of 

construction codes (e.g., Eurocodes 2014; International Building Code 2018). The 

designer looks for the optimal structure that verifies the constraints imposed by the 

code. These constraints, usually named limit states, are related with stresses and 

displacements caused by various loading combinations. Structures are projected to 

support loads for a specified life cycle. Applied loads, especially loads caused by 

climatic conditions like wind, snow, ice, etc. are characterized by large variability. In 

addition, material properties and geometric parameters of structural members are 

also affected by uncertainties caused by imperfections in manufacture and 

construction processes. Additional uncertainty comes from the simplifications made in 

obtaining the mathematical model that represents the behaviour of the structure. This 

type of uncertainty leads to model uncertainty. These variabilities or uncertainties are 

unavoidable and must be taken into account in the structural design practice. 

Structural codes use a semi-probabilistic approach, in which uncertainties regarding 

materials, loading, and model are considered implicitly using safety factors and 

characteristic values for loads and strength.  

On the other end, the effect of the uncertainty is part of the design in modern 

structural design methods. Depending on the type of uncertainty, different methods 

could be applied to determine optimal designs. Researchers have proposed several 

classifications of uncertainty.  The most popular considers two types of uncertainties: 

aleatory uncertainty and epistemic uncertainty (Der Kiureghian and Ditlevsen 2009). 

Aleatory uncertainty, also known as variability or statistical uncertainty, is 

inherent in any physical variable. It is irreducible and commonly modelled with 

probability distributions with parameters identified from a relatively large set of 
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samples. It is assumed that the information about aleatory uncertainties is complete 

and sufficient to characterise their effect on the systems performance in the design 

optimization process. 

On the other hand, epistemic uncertainty represents incomplete or partial 

information about the uncertainty due to limited or no samples available. Samples are 

obtained experimentally through tests. For practical or budgetary reasons, it is only 

possible to carry out a small number of tests. Therefore, there is not enough data 

available to determine the probabilistic distribution of the uncertain variables and 

parameters (Der Kiureghian and Ditlevsen 2009; Roccheta et al. 2018). Recently, 

researchers have made great efforts in the field of quantification of uncertainty, 

reliability analysis and optimal design under uncertainty to deal with problems in 

which there is not enough information on uncertainties and, therefore, exact 

probability distributions cannot be assumed to model these uncertainties (Beer and 

Patelli, 2015). Probabilistic distributions adjusted with such limited data would cause 

erroneous and unsafe design if they were propagated in design under uncertainty 

algorithms (Patelli et al. 2015). Toft-Christensen and Murotsu (1996) suggested three 

types of uncertainties in the field of structural reliability analysis: physical uncertainty, 

statistical uncertainty, and simulation model uncertainty.  Physical uncertainty is the 

randomness inherent to physical observations, which can be described in terms of 

probability distributions. Statistical uncertainty corresponds to the uncertainty caused 

by lack of statistical information or limited sample size and is considered as epistemic 

uncertainty. The uncertainty of the simulation model occurs because of errors and 

idealizations done in the mathematical model. The uncertainty of the model can also 

be considered as an epistemic uncertainty. In this work, the uncertainty of the 
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simulation model is not considered, and only statistical uncertainty is taken account as 

epistemic uncertainty. Figure 1 represents different types of uncertainty according to 

the available information.  

The most adopted methods in the field of engineering design under uncertainty 

consider random variables represented by probability distributions with known 

parameters. Two of these design methods that tackle with complete information of 

uncertainties are well known: Reliability Based Design Optimization (RBDO) (Tu and 

Choi 1999; Aoues and Chateauneuf 2010; Valdebenito and Schuëller 2010; Celorrio 

2010; Celorrio 2012; Hao et al. 2019;  Zhou et al. 2018, Yi et al. 2008; Okasha 2016) 

and Robust Design Optimization (RDO) (Patelli et al. 2014; Schuëller and Jensen 2008; 

Capiez-Lernout and Soize 2008).  

RBDO methods consist of finding an optimal design simultaneously with 

prescribed level of reliability or probability of failure. Generally, a single objective 

function encoding the cost of the structure is optimized subject to reliability 

(inequality) constraints. Instead, RDO aims to obtain a design that is insensitive to 

input variations. This is generally obtained by including the contribution of the variance 

of the quantity of interest into the objective function.  RBDO and RDO approaches can 

be combined to develop the Reliability-Based Robust Design Optimization (RBRDO) 

approach. This approach ensures both reliability and robustness during the life cycle of 

structures. The RBRDO formulation consists of incorporating probabilistic constraints 

into the RDO formulation. That is, the mean and variation of the system performance 

function are minimized subjected to probabilistic constraints. This formulation is 

generally solved by multi-objective optimization algorithms, see e.g., (Lagaros et al. 

2007; Yadav et al. 2010). RBDO methods are classified in three groups: double loop 
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methods, single loop methods and decoupled methods. With respect to reliability 

analysis, two kinds of methods can be used: approximated methods (e.g., FORM, 

SORM) and Monte Carlo simulation methods (Angelis et al. 2015; Patelli et al. 2011). 

Simulation methods often request prohibitive computational effort while approximate 

methods, like FORM and SORM, demand less computing resources. However, it is well 

known that approximate methods experiment convergence difficulties, especially 

when performance functions are highly nonlinear and random variables are not 

normally distributed (Valdebenito et al. 2010).  

Usually, the designer or decision maker is interested in the trade-off between 

cost and reliability. In other cases, two or more objectives are optimised subject to 

reliability constraints. The method to solve them is named Multi-Objective Reliability 

Based Design Optimization (MORBDO) (Sinha 2007). Multi-objective Optimization 

Evolutionary Algorithms (MOEAs) such as Non-dominated Sorting Genetic Algorithm 

(NSGA-II) (Deb et al. 2002) and Multi-Objective Particle Swarm Optimization (MOPSO) 

(Coello et al. 2004) are the most considered methods to solve MORBDO problems 

since these methods can handle constraints efficiently. A special MORBDO formulation 

consists of considering the reliability of the system as additional objective function to 

maximize. The result of the multi-objective optimisation is therefore a Pareto front 

that establishes a trade-off between cost and reliability (Celorrio and Patelli 2018). 

Recently, new methods have been developed to consider epistemic uncertainty 

in design optimization under uncertainty. These methods are only applicable with very 

specific representation of epistemic uncertainty. For example, fuzzy sets are adopted 

by Du et al. (2005) to quantify uncertainties in the proposed Possibility Based Design 

Optimization (PBDO). Epistemic variables are modelled as membership functions. The 
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sample size is not considered in uncertainty quantification and as consequence the 

approach usually produces very conservative results.  Interval variables are adopted in 

optimal design by e.g., Rao and Cao (2002) and Penmetsa and Grandhi (2002). The 

disadvantage of such approach is that the information contained in the available 

samples is generally not used. Mourelatos and Zhou (2005) apply Evidence Theory in 

design optimization and propose a method named Evidence Based Design 

Optimization. Su et al. (2016) consider an evidence-based plausibility measure of 

failure in a multi-objective optimization problem. They applied a differential evolution-

based multi-objective optimization algorithm to search for the robust Pareto front. 

Researchers have proposed methods applying Bayesian inference to solve optimal 

design problems under epistemic uncertainty (Gunawan and Papalambros 2005, Youn 

and Wang 2006, Srivastava and Deb 2013, Li and Wang 2020). Bayesian inference 

based method is able to deal with three different type of uncertainties: 1) model form 

uncertainty or epistemic uncertainty (model bias and unknown model parameters), 2) 

data uncertainty due to the lack of training data, and 3) input variation of random 

variables or aleatory uncertainty. Gaussian calibration (or stochastic model updating) is 

used to determine model from uncertainty and a hybrid Gaussian process as 

metamodel (Patelli et al. 2017).   

This paper proposes the use of two multi-objective evolutionary algorithms to 

solve a multi-objective reliability-based design optimization of trusses under aleatory 

and epistemic uncertainty. Epistemic uncertainties are represented by a set of samples 

with limited size. Bayesian inference provides an efficient method to perform the 

reliability analysis and compute the probability of failure corresponding to the 

reliability constraints.   
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The paper is organised as follows. A short review of Bayesian Inference theory 

in presented in section 2. Section 3 describes the Bayesian RBDO method, and section 

4 studies the Bayesian Multi-objective Reliability-Based Design Optimization (Bayesian 

MORBDO) problem, where two objective functions are optimised: cost and reliability. 

Two state of the art Multi-objective Evolutionary Algorithms (MOEAS) are applied to 

solve Bayesian MORBDO problems: Non-dominated Sorting Genetic Algorithms (NSGA-

II) and Multi-objective Particle Swarm Optimization (MOPSO). Although NSGA-II has 

already been applied to solve Bayesian Multi-objective Reliability-Based Design 

Optimization problem (Srivanstava and Deb 2013), the MOPSO algorithm is applied for 

the first time to solve this type of problem according to the authors’ knowledge. 

Finally, section 5 includes the conclusions. 

 

BAYESIAN INFERENCE METHODS 

 

This section describes how to compute the reliability for a probabilistic 

constraint when there exist aleatory and epistemic random variables.  

We can partition the vectors of uncertain variables 𝐗𝐗 and parameters 𝐏𝐏 in two 

sub vectors:  𝐗𝐗 = [𝐗𝐗𝑡𝑡 ,𝐗𝐗𝑠𝑠]  and 𝐏𝐏 = [𝐏𝐏𝑡𝑡 ,𝐏𝐏𝑠𝑠]. The vectors 𝐗𝐗𝑡𝑡 and 𝐏𝐏𝑡𝑡 are aleatory 

variables and parameters whose probability density functions (PDFs) are known. In 

addition, the vectors 𝐗𝐗𝑠𝑠 and 𝐏𝐏𝑠𝑠 are epistemic random variables. It is assumed that only 

a reduced set of samples are known for these variables.  

Suppose that we want to compute the reliability for the 𝑗𝑗𝑡𝑡ℎ  reliability 

constraint, that is, 

𝑅𝑅𝑗𝑗 = 𝑃𝑃𝑃𝑃�𝑔𝑔𝑗𝑗(𝐗𝐗,𝐏𝐏) > 0�      (1) 
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Due to insufficient data for the epistemic random variables, 𝑅𝑅𝑗𝑗  must be uncertain and 

subjective (Youn and Wang, 2006). A solution is then by modelling reliability using 

Bayesian inference.  

Reliability, as many other outcomes in engineering applications, can be interpreted as 

the result of a series of trials that can be separated binary into two events: occurrence 

or non-occurrence, falling in the safe region or falling in the failure region. If, in 

addition, these events meet the requirements of being statistically independent and 

the probability of safe event or failure event remains constant, the probability that 𝑥𝑥 

reliable or safe results will occur in a total of 𝑁𝑁 trials can be described by a Binomial 

distribution. Then, if the probability of a safe event is 𝑃𝑃 and the probability of a failure 

event is (1 − 𝑃𝑃), the probability of 𝑥𝑥 safe events out of a total of N trials can be 

expressed as:  

𝑃𝑃𝑃𝑃(𝑋𝑋 = 𝑥𝑥,𝑁𝑁|𝑃𝑃) = �𝑁𝑁𝑥𝑥� 𝑃𝑃
𝑥𝑥(1 − 𝑃𝑃)𝑁𝑁−𝑥𝑥.    𝑥𝑥 = 0,1,2, … ,𝑁𝑁    (2) 

This is the probability mass function of a Binomial distribution and 𝑃𝑃 is the parameter 

of this distribution. Considering 𝑃𝑃 as an uncertain parameter and assigning a prior 

distribution for 𝑃𝑃, our knowledge of the distribution of 𝑃𝑃 is updated based on the 

outcomes of the trials (samples), using Bayes’ Rule for continuous distributions: 

 𝑓𝑓(𝑃𝑃|𝑥𝑥) = 𝑓𝑓(𝑥𝑥|𝑟𝑟)𝑓𝑓(𝑟𝑟)

∫ 𝑓𝑓(𝑥𝑥|𝑟𝑟)𝑓𝑓(𝑟𝑟)𝑑𝑑𝑟𝑟1
0

      (3) 

where 𝑓𝑓(𝑃𝑃) is the priori distribution of 𝑃𝑃, 𝑓𝑓(𝑥𝑥|𝑃𝑃) is the likelihood of 𝑥𝑥 for a given 𝑃𝑃 and 

𝑓𝑓(𝑃𝑃|𝑥𝑥) is the posteriori distribution of 𝑃𝑃. In this paper, the role of 𝑃𝑃 is the reliability of 

the 𝑗𝑗𝑡𝑡ℎ constraint, called 𝑅𝑅𝑗𝑗. A priori distribution for the reliability of this performance 

function is required. If no previous information is available about this reliability, non-

informative priori can be considered. We assume that reliability 𝑅𝑅𝑗𝑗 follows a uniform 
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distribution,𝑈𝑈(0,1). It is well known that  𝑈𝑈(0,1) distribution can be viewed as a 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1,1) distribution, one of the possible forms of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 distribution. We compute 

the reliability for each sample of epistemic variables and parameters as follows:  

𝑃𝑃𝑃𝑃�𝑔𝑔𝑗𝑗(𝐗𝐗𝑡𝑡,𝐏𝐏𝑡𝑡) > 0|(𝐗𝐗𝑠𝑠,𝐏𝐏𝑠𝑠 )𝑘𝑘�  with 𝑘𝑘 = 1, . . ,𝑁𝑁,    (4) 

where 𝑁𝑁 is the sample size and 𝑔𝑔𝑗𝑗(𝐗𝐗,𝐏𝐏) ≤ 0 is the failure region. Repeating this 

computation for the 𝑁𝑁 samples, we can compute the expected value of the reliability 

for the 𝑗𝑗𝑡𝑡ℎ constraint, 𝐸𝐸𝑗𝑗(𝑃𝑃). The values 𝐸𝐸𝑗𝑗(𝑃𝑃) and 𝑁𝑁 are the parameters of the 

Binomial likelihood. The expected value 𝐸𝐸𝑗𝑗(𝑃𝑃)  of safety realizations for the 𝑗𝑗𝑡𝑡ℎ 

reliability constraint is computed according Srivastava and Deb (2013) as: 

𝐸𝐸𝑗𝑗(𝑃𝑃) = ∑ 𝑃𝑃𝑃𝑃�𝑔𝑔𝑗𝑗(𝐗𝐗𝑡𝑡,𝐏𝐏𝑡𝑡) > 0|(𝑿𝑿𝑠𝑠,𝐏𝐏𝑠𝑠 )𝑘𝑘�𝑁𝑁
𝑘𝑘=1 .   (5) 

The priori distribution is updated with the information given by the likelihood to 

produce the posteriori distribution of 𝑅𝑅𝑗𝑗. In summary, the priori distribution is a 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1,1) and the likelihood is a Binomial, that is, the Beta-Binomial model. 

Therefore, the posteriori distribution is a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) distribution with parameters 𝛼𝛼 

and 𝛽𝛽, where 𝛼𝛼 = 𝐸𝐸𝑗𝑗(𝑃𝑃) + 1 and 𝛽𝛽 = 𝑁𝑁 − 𝐸𝐸𝑗𝑗(𝑃𝑃) + 1. That is:  

𝑅𝑅𝑗𝑗~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑃𝑃𝑗𝑗  ,𝐸𝐸𝑗𝑗(𝑃𝑃) + 1,𝑁𝑁 − 𝐸𝐸𝑗𝑗(𝑃𝑃) + 1  �    (6) 

This posteriori distribution can be updated every time new samples become available. 

In this Bayesian framework, 𝑅𝑅𝑗𝑗 is represented by a Beta distribution and not by a crisp 

value such as in reliability analysis with complete information. There is not enough 

information to make a precise statement about the reliability of a design. An additional 

measure, called confidence, is required to decide if a design 𝝁𝝁𝑿𝑿  can be considered to 

satisfy the reliability requirements. The confidence for a design 𝜇𝜇𝑿𝑿 with respect to 𝑗𝑗𝑡𝑡ℎ 
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reliability constraint is defined as the probability that the probabilistic distribution 𝑅𝑅𝑗𝑗, 

will exceed the target reliability, 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡. 

𝜁𝜁𝑗𝑗(𝝁𝝁𝑿𝑿) = 𝑃𝑃𝑃𝑃 �𝑔𝑔𝑗𝑗(𝐗𝐗𝑡𝑡,𝐏𝐏𝑡𝑡) > 0�
𝜇𝜇𝑿𝑿
≥ 𝑅𝑅𝑗𝑗

𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡�    with   𝑗𝑗 = 1, . . , 𝐽𝐽  (7) 

A 𝜁𝜁𝑗𝑗 = 0 means that the design is certainly not reliable, while a 𝜁𝜁𝑗𝑗 = 1 means that the 

design certainly meets or exceeds the target. Since 𝑅𝑅𝑗𝑗 follows a Beta distribution, the 

confidence can also be written as 𝜁𝜁𝑗𝑗(𝜇𝜇𝑿𝑿) = 1 −Φ𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗�𝑅𝑅𝑗𝑗�, where  Φ𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗(∙)  is the 

Cumulative Distribution Function (CDF) of the Beta distribution for the 𝑗𝑗𝑡𝑡ℎ constraint, 

with 𝑗𝑗 = 1, . . , 𝐽𝐽.  

In the case of complete information for uncertain variables and parameters, RBDO 

methods seek a single design with the best objective value and with reliability greater 

that o equal to 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡. In the case on incomplete information, the constraint 

satisfaction  𝑅𝑅𝑗𝑗 ≥ 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 is only known as a probability. 

 

BAYESIAN RELIBILITY BASED DESIGN OPTIMIZATION 
 

Conventional problem in Reliability-Based Design Optimization (RBDO) consists of 

computing a design that minimises a cost function subject to reliability constraints. 

These constraints are formulated as component level reliabilities or as a system-level 

reliability. Complete information for the uncertainties is considered in conventional 

RBDO.   

Gunawan and Papalambros (2006) proposed to apply Bayesian inference in design 

optimization under incomplete information. They defined a quantity called the overall 

confidence of a design, 𝜁𝜁𝑠𝑠(𝝁𝝁𝑿𝑿). For simplicity, they considered the minimum of all 𝜁𝜁𝑗𝑗 as 
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this overall confidence, 𝜁𝜁𝑠𝑠(𝝁𝝁𝑿𝑿), and proposed a multiobjective problem to solve the 

reliability-based optimization under incomplete information, given values of 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡, 

𝑗𝑗 = 1, . . , 𝐽𝐽: 

min
 𝝁𝝁𝑿𝑿

 𝑓𝑓(𝝁𝝁𝑿𝑿,𝝁𝝁𝑷𝑷)

max
𝝁𝝁𝑿𝑿

 𝜁𝜁𝑠𝑠(𝝁𝝁𝑿𝑿)

𝑠𝑠. 𝐵𝐵.  0 ≤ 𝜁𝜁𝑠𝑠(𝝁𝝁𝑿𝑿) ≤ 1

     (8) 

Solving this problem will in general result in a set of Pareto optima instead of a single 

value. We cannot find a single true optimal-reliable design, that is, the design that 

corresponds to complete information. Rather, we obtain a set of designs with different 

values of confidence for a given value of 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡.  

Gunawan and Papalambros (2006) have also shown that the relation between the 

maximum attainable confidence, 𝜁𝜁𝑠𝑠𝑚𝑚𝑡𝑡𝑥𝑥, of the Pareto front, the number of samples, 𝑁𝑁 

and target reliability, 𝑅𝑅, with 𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑅𝑅, for all 𝑗𝑗 = 1, … , 𝐽𝐽, is: 

𝜁𝜁𝑠𝑠𝑚𝑚𝑡𝑡𝑥𝑥 = 1 − 𝑅𝑅𝑁𝑁+1      (9) 

This relation is a valuable information for a decision maker and establishes a trade-off 

about how much confidence can be achieved increasing the sample size of epistemic 

random variables, which increases the tests cost, and by relaxing the reliability target, 

which could provide designs with less quality. 

To make the design optimization under incomplete information more pragmatic, the 

designer or decision maker is asked to fix a confidence level he or she desires in the 

design (for example, 0.90 or 0.80). Then, the value of the reliability corresponding to 

that confidence level can be computed from the reliability distribution estimated by 

Bayesian inference or other confidence-based reliability assessment method like 
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bootstrapping selection (Moon et al, 2018). Here, Bayesian inference has been applied 

and reliability can also be written in terms of the confidence: 

𝑅𝑅𝑗𝑗(𝝁𝝁𝑿𝑿) = Φ𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗
−1 �1 − 𝜁𝜁𝑗𝑗(𝝁𝝁𝑿𝑿)�    (10) 

and the probability of failure corresponding to a specified confidence level is: 

𝑃𝑃𝑓𝑓𝑗𝑗(𝝁𝝁𝑿𝑿) = 1 −Φ𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗
−1 �1 − 𝜁𝜁𝑗𝑗(𝝁𝝁𝑿𝑿)�   (11) 

𝑃𝑃𝑓𝑓𝑗𝑗(𝝁𝝁𝑿𝑿) is not the true probability of failure for the design, 𝝁𝝁𝑿𝑿. Rather it is the value of 

probability corresponding to the confidence-based reliability 𝑅𝑅𝑗𝑗(𝝁𝝁𝑿𝑿). 

A practical formulation of a confidence-RBDO problem consists of minimizing an 

objective function subject to constraints about the value 𝑃𝑃𝑓𝑓𝑗𝑗(𝝁𝝁𝑿𝑿) for 𝑗𝑗 = 1, … , 𝐽𝐽. This 

formulation is known as Bayesian RBDO and is:   

min
𝐝𝐝,𝝁𝝁𝑿𝑿

 𝐶𝐶𝐶𝐶𝑠𝑠𝐵𝐵(𝐝𝐝,𝝁𝝁𝑿𝑿,𝝁𝝁𝑷𝑷)

𝑠𝑠. 𝐵𝐵.  𝑃𝑃𝑓𝑓𝑗𝑗(𝝁𝝁𝑿𝑿) ≤ 𝑃𝑃𝑓𝑓𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡         𝑗𝑗 = 1. . 𝐽𝐽
ℎ𝑘𝑘(𝒅𝒅) ≥ 0, 𝑘𝑘 = 1,2, … ,𝐾𝐾

𝐝𝐝𝐿𝐿 ≤ 𝐝𝐝 ≤ 𝐝𝐝𝑈𝑈 ,𝝁𝝁𝑿𝑿𝐿𝐿 ≤ 𝝁𝝁𝑿𝑿 ≤ 𝝁𝝁𝑿𝑿𝑈𝑈

    (12) 

where 𝑃𝑃𝑓𝑓𝑗𝑗 = 𝑃𝑃�𝐺𝐺𝑗𝑗(𝐝𝐝,𝐗𝐗,𝐏𝐏 ) ≤ 0� and 𝐗𝐗 = [𝐗𝐗𝑡𝑡 ,𝐗𝐗𝑠𝑠]  and 𝐏𝐏 = [𝐏𝐏𝑡𝑡 ,𝐏𝐏𝑠𝑠] and  

𝐺𝐺𝑗𝑗(𝐝𝐝,𝐗𝐗,𝐏𝐏 ) ≤ 0 is defined as the failure region. 𝐽𝐽 represents the number of reliability 

constraints and 𝐾𝐾, the number of deterministic constraints. As stated in equation (11), 

𝑃𝑃𝑓𝑓𝑗𝑗(𝜇𝜇𝑿𝑿) is computed for each design and depends on the confidence level requested 

by the designer. Methods to solve this problem depend on the approaches used to 

solve the optimization and the reliability analysis. When the sample size increases, the 

optimum design tends to the “exact” optimum obtained by RBDO under complete 

information.  

 

BAYESIAN MULTI-OBJECTIVE RELIABILITY-BASED DESIGN OPTIMIZATION  



 
 

13 
 

 

In realistic practice, designers and decision makers prefer to know the various optimal 

designs for different values of probability of failure, for a determined confidence level 

established previously (Ben-Haim 2006). Therefore, after setting the level of 

confidence, a set of optimal solutions can be established, in which there is a 

compromise between cost and reliability. The set of optimal solutions form the so-

called Pareto front which helps the selection of a design in a more practical way. Thus, 

the designer can see how much the cost increases if more reliable design is required. 

Similarly to the Bayesian RBDO, an enormous sample size might be required to verify a 

very low value of probability of failure with a high value of confidence.   

The formulation of the MORBDO problem is:  

min
𝐝𝐝,𝝁𝝁𝑿𝑿

 �𝐶𝐶𝐶𝐶𝑠𝑠𝐵𝐵�𝐝𝐝,𝝁𝝁𝑿𝑿,𝝁𝝁𝑷𝑷�,  𝑃𝑃𝑓𝑓𝑆𝑆(𝐝𝐝,𝑿𝑿,𝑷𝑷) �

𝑠𝑠. 𝐵𝐵.  𝑃𝑃𝑓𝑓𝑠𝑠
𝑙𝑙 ≤ 𝑃𝑃𝑓𝑓𝑆𝑆 < 𝑃𝑃𝑓𝑓𝑠𝑠

𝑢𝑢

ℎ𝑘𝑘(𝒅𝒅) ≥ 0, 𝑘𝑘 = 1,2, … ,𝐾𝐾
𝐝𝐝𝐿𝐿 ≤ 𝐝𝐝 ≤ 𝐝𝐝𝑈𝑈,𝝁𝝁𝑿𝑿

𝐿𝐿 ≤ 𝝁𝝁𝑿𝑿 ≤ 𝝁𝝁𝑿𝑿
𝑈𝑈

    (13) 

where, 𝐝𝐝,  is the vector of deterministic design variables, 𝝁𝝁𝑿𝑿 is the vector of uncertain 

design variables. 𝑃𝑃𝑓𝑓𝑆𝑆 is the probability of system failure for the confidence level 

established by the designer. 𝝁𝝁𝑿𝑿𝐿𝐿  and 𝝁𝝁𝑿𝑿𝑈𝑈 are lower and upper bounds for the mean 

values of uncertain design variables. 𝑃𝑃𝑓𝑓𝑠𝑠𝑙𝑙  and 𝑃𝑃𝑓𝑓𝑠𝑠𝑢𝑢   are bounds for the probability of 

system failure. All reliability constraints are combined in a unique system reliability 

constraint to formulate a bi-objective optimization problem.  𝑃𝑃𝑓𝑓𝑆𝑆  is computed as: 𝑃𝑃𝑓𝑓𝑆𝑆 =

1 − 𝑅𝑅𝑆𝑆 ,  where 𝑅𝑅𝑆𝑆 is the reliability of the system. In this work, 𝑅𝑅𝑆𝑆  has been computed 

as the minimum of the values of the reliabilities of the constraints. That is,    

𝑅𝑅𝑠𝑠 = min
𝑗𝑗=1,..,𝑛𝑛𝑡𝑡

𝑅𝑅𝑗𝑗     (14) 
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where 𝑅𝑅𝑗𝑗, is the reliability of constraint 𝑗𝑗𝑡𝑡ℎ for the confidence level given by the 

designer and 𝐽𝐽 is the number of reliability constraints. However, more accurate values 

can be computed considering the configuration of the system (serial, parallel, mixed, 

etc) and taking into account the correlation between different failure modes (Patelli et 

al. 2011). 

The best methods to solve the optimization phase of MORBDO problems are 

based in multi-objective evolutionary algorithms. In this work, we propose the use of 

Multi-objective Particle Swarm Optimization (MOPSO) (Coello et al. 2004). The results 

are compared against the results obtained with Non-dominated Sorting Genetic 

Algorithm (NSGA-II) (Srivastava and Deb 2013). 

MOPSO is the multi-objective version of the approach called Pareto Swarm 

Optimization (PSO) (Kennedy and Eberhart 2001). PSO is a population-based 

metaheuristic algorithm inspired in the social behaviour of birds within a flock. In PSO 

each member of the population of potential solutions is named particle and the 

population of potential solutions is named swarm. The main goal of MOPSO, like other 

evolutionary algorithms, is to obtain a set of different solutions, called Pareto optimal 

set and a representation of the values of the objective functions for this optimal set of 

solutions, called Pareto front. In MOPSO each member of the population of potential 

solutions is named particle and the population of potential solutions is named swarm. 

Each particle is featured by a position vector and a velocity vector randomly generated 

in the first iteration. Each 𝑖𝑖𝑡𝑡ℎ particle updates its position at the generation 𝐵𝐵 + 1 through 

the formula  

𝐱𝐱𝑖𝑖𝑡𝑡+1 = 𝐱𝐱𝑖𝑖𝑡𝑡 + 𝐯𝐯𝑖𝑖𝑡𝑡+1     (15) 

where 𝐯𝐯𝑖𝑖𝑡𝑡+1 is known as velocity and it is given by: 
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𝐯𝐯𝑖𝑖𝑡𝑡+1 = 𝜔𝜔𝐯𝐯𝑖𝑖𝑡𝑡 + 𝑐𝑐1𝑠𝑠1�𝐱𝐱𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖
𝑡𝑡 − 𝐱𝐱𝑖𝑖𝑡𝑡� + 𝑐𝑐2𝑠𝑠2�𝐱𝐱𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖

𝑡𝑡 − 𝐱𝐱𝑖𝑖𝑡𝑡�   (16) 

In these formulas, 𝐯𝐯𝑖𝑖𝑡𝑡 and 𝐱𝐱𝑖𝑖𝑡𝑡 represent the current velocity and position of the 

𝑖𝑖𝑡𝑡ℎ particle in a 𝑑𝑑 −dimensional search space, respectively. 𝑠𝑠1 and 𝑠𝑠2 are two uniformly 

distributed random numbers in the range [0,1]. 𝐱𝐱𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖
𝑡𝑡  is the best position that 𝑖𝑖𝑡𝑡ℎ 

particle has been along its path and 𝐱𝐱𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖
𝑡𝑡  is the global best position that the entire 

swarm has viewed. The parameter 𝜔𝜔 is the inertia weight, and 𝑐𝑐1 and 𝑐𝑐2 are positive 

constants called acceleration constants, which control the effect of the personal and 

global best particles. 

MOPSO, unlike others evolutionary algorithms, has a secondary archive where 

the no dominated optima, that is, Pareto optima, are recorded. While this secondary 

archive is not full, all non-dominated solutions with respect to the archived solutions 

can be entered. After some generations, when the archive is full, if a solution 

dominates any solution in the archive then this solution can enter the archive and the 

dominated solution is deleted. The archive works as a grid with subdivisions that helps 

to redistribute the solutions and to obtain a more uniformly distributed front in the 

objective functions space. In addition, MOPSO implements a mutation operator and a 

simple scheme to handle constraints. Figure 2 shows a flowchart of MOPSO algorithm.  

A reliability analysis needs to be performed for each candidate solution 

proposed by the evolutionary optimisation tools. In practical applications 1000 - 10000 

reliability analyses are generally required. This makes the adoption of simulation 

approaches impractical although some recent advanced methods such as Line 

Sampling (de Angelis et al. 2015) requires only a very small number of samples. 

Therefore, the reliability analysis is carried out by the FORM (First Order Reliability 

Method), a gradient-based iterative method, to reduce the computational cost of the 
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analysis. A maximum number of allowed iterations equal to 100 was established. It is 

well known that FORM cannot converge to the most probable point or design point 

with highly non-linear performance functions or when random variables are non-

normally distributed. Therefore, the proposed approach needs to take this eventuality 

into account. 

In the case of non-convergence, the proposed design is discarded from the 

optimisation method. This is obtained by penalising the proposed solution by assigning 

a very large numerical values to the objective functions associated with the candidate 

solution (individual in NSGAII or particle in MOPSO).  This penalisation was not 

necessary to activate in the numerical examples described in the next section since all 

reliability analyses converged in a few iterations. However, this strategy could be 

useful for highly non-linear performance functions: for example, when mechanical and 

geometric non-linearities are considered in the structural analysis and gradients of 

performance functions are more difficult to compute.  

Figure 3 shows a flowchart of this algorithm where the reliability of each 

performance function, given by eq. (4), is computed by FORM for each combination of 

candidate solution and sample from the epistemic uncertainty. Then, when all 

reliabilities are computed for all the combinations based in a candidate solution the 

parameters of the beta distribution (i.e., posterior distribution) are updated using 

Bayesian rule. Finally, the probability of failure is computed using eq. (11).  

It is important to note that optimization algorithms could also be themselves a 

source of uncertainty (Su et al. 2016). The performance of the evolutionary algorithms 

NSGAII and MOPSO depends on several tuning parameters and settings of these 

algorithms: mutation, crossover, crowding, sorting, constraint handling, etc. In 
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addition, the evolution of the population is based on some stochastic process leading 

to an additional source of uncertainty in the solution process. Thus, the application of 

several MOEAs permits to compare the results and to detect the uncertainty caused by 

stochastic optimization algorithm. The Bayesian-MORBDO strategy has been 

implemented in algorithms using the MATLAB language. The multi-objective 

optimization part has been implemented enhancing available libraries such as the 

NSGA-II (Tamilselvi 2020) and the MOPSO algorithm (Martínez-Cagigal 2020). The 

deterministic analysis of the model has been carried out by the software OpenSees 

(Mazzoni et al. 2006). 

 

CASE STUDIES  

1.- ANALYTICAL EXAMPLE 
 

The first example, adapted from (Youn and Wang, 2006), considers two 

objective functions, two design variables and one epistemic variable. This simple 

problem permits a graphical representation of the Pareto front in the objective 

function space and the Pareto set in the space of design variables. 

The formulation of the Bayesian MORBDO problem is: 

min
𝝁𝝁𝑿𝑿

 𝒇𝒇(𝝁𝝁𝑿𝑿) = �𝑓𝑓1(𝝁𝝁𝑿𝑿) = 𝜇𝜇𝑋𝑋1 + 𝜇𝜇𝑋𝑋2 ,𝑓𝑓2(𝝁𝝁𝑿𝑿) = 𝑃𝑃𝑓𝑓𝑆𝑆(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3) �

𝑠𝑠. 𝐵𝐵.     0.0001 ≤ 𝑃𝑃𝑓𝑓𝑠𝑠 ≤ 0.1
                              0 ≤ 𝜇𝜇𝑋𝑋1 ≤ 10 ;  0 ≤ 𝜇𝜇𝑋𝑋2 ≤ 10

  (17) 

 

The first objective function is the cost function while the second objective function 

represents the probability of the system failure computed as 𝑃𝑃𝑓𝑓𝑆𝑆 = 1 − 𝑅𝑅𝑆𝑆. 𝑅𝑅𝑆𝑆 is the 

reliability of the system. Lower and upper bounds for 𝑃𝑃𝑓𝑓𝑆𝑆 are set as 0.0001 and 0.1, 
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respectively, to obtain the optimal design and the Pareto front in the range of interest 

for the designer. The performance functions of the system are defined as:  

 

𝑔𝑔1(𝑿𝑿) = 𝑋𝑋12𝑋𝑋2𝑋𝑋3 20⁄ − 1

𝑔𝑔2(𝑿𝑿) = (𝑋𝑋1+𝑋𝑋2+𝑋𝑋3−5)2

30
+ (𝑋𝑋1−𝑋𝑋2−𝑋𝑋3−12)2

120
− 1

𝑔𝑔3(𝑿𝑿) = 80 (𝑋𝑋12 + 8𝑋𝑋2𝑋𝑋3 + 5)⁄ − 1

  (18) 

 

In this example, there are two aleatory design variables: 𝑋𝑋1 and 𝑋𝑋2 distributed 

according a normal distribution, that is, 𝑋𝑋1~𝑁𝑁�𝜇𝜇𝑋𝑋1 ,𝐶𝐶𝐶𝐶𝐶𝐶 =  0.12� and 

𝑋𝑋2~𝑁𝑁�𝜇𝜇𝑋𝑋2 ,𝐶𝐶𝐶𝐶𝐶𝐶 =  0.12�.   The third variable, 𝑋𝑋3, is a parameter with epistemic 

uncertainty and it is assumed that only a small sample size is available. 𝑋𝑋3 is not 

considered a design variable since none of its statistical properties are known. The 

samples for 𝑋𝑋3 are randomly generated from a (unknown) normal distribution with 

𝑋𝑋3~𝑁𝑁�𝜇𝜇𝑋𝑋3 = 1.0,𝜎𝜎𝑋𝑋3 = 0.1� . That is, we have sampled a normal distribution as a way 

to easily obtain samples, however, these samples can come from databases or 

experimental test in realistic practice. Note that the information about the underlying 

distribution of the epistemic variable 𝑋𝑋3 is not known to the analysist. 

The problem is solved using the NSGA-II and MOPSO algorithms, respectively. 

The problem has been solved for different sample size of the available information 

about the epistemic uncertainty, i.e. (𝑁𝑁𝑆𝑆 = 50, 100, 200) and different confidence 

levels �𝜁𝜁𝑗𝑗 = 0.8, 0.9�. The population size in NSGA-II and the swarm size in MOPSO are 

set equal to 100. The number of generations (evolutions) is also set to 100 for both 

optimizers. As reference solution, the MORBDO problem is also solved considering the 

availability of a complete information. Figures 4 and 5 show the Pareto fronts in the 
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space of objective functions for different sample sizes, as well for the case of complete 

information.  The figures show how the Bayesian fronts are getting closer to the Pareto 

front obtained with complete information as the number of samples increases. Given 

specified confidence level and a limited sample size for the epistemic uncertainty,𝑋𝑋3, 

there is a minimum value of the probability of system failure that can be achieved. This 

is a consequence from the relation given in eq. (9).  

Table 1 shows the minimum values for the probability of system failure that can 

be found applying Bayesian MORBDO to the analytical example for various values of 

sample sizes and confidence levels. These minimum values decrease when sample size 

increases. Also, they decrease when confidence decreases. Pareto fronts computed 

with samples sizes equal to 50, 100 and 200 provide, for any cost value, probability of 

failure values greater than that given by the Pareto front determined with true 

probabilities of failure. The Bayesian MORBDO algorithm proposed would work 

improperly if a Pareto front contained a design with a value of probability of failure 

less than the true probability of failure given by the Pareto front with complete 

information. If this happened, it could lead to a dangerous design decision by 

overestimating true reliability.  However, this has not happened in any of the runs 

developed and the Bayesian MORBDO algorithm has provided appropriately 

conservative Pareto fronts. The true lower bound of probability of failure is attained 

when complete information is available, that is, when the probability distributions of 

all uncertain variables are known. Differences between NSGA-II and MOPSO results are 

practically negligible.  

 
2.- TEN BAR TRUSS EXAMPLE 
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The second case study considers the minimisation of the amount of steel used 

in a ten bars truss structure (shown in figure 6) and the minimisation of its probability 

of failure. The formulation of the Bayesian MORBDO is as follow: 

min
𝐝𝐝,𝝁𝝁𝑿𝑿

�𝐶𝐶𝐶𝐶𝑙𝑙𝑢𝑢𝑉𝑉𝐵𝐵(𝐝𝐝,𝝁𝝁𝑿𝑿,𝝁𝝁𝑷𝑷),𝑃𝑃𝑓𝑓𝑆𝑆(𝐝𝐝,𝐗𝐗,𝐏𝐏)  �

𝑠𝑠. 𝐵𝐵.     0.001 ≤ 𝑃𝑃𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 0.1
4 𝑐𝑐𝑉𝑉2 ≤ 𝜇𝜇X𝑗𝑗 ≤ 75 𝑐𝑐𝑉𝑉2,   𝑗𝑗 = 1,2,3

𝐺𝐺1(𝐝𝐝,𝐗𝐗,𝐏𝐏) = 1 − �𝑞𝑞2,𝑉𝑉(𝐝𝐝,𝐗𝐗,𝐏𝐏)� 𝑞𝑞𝑡𝑡⁄

    (19) 

 

The first objective function represents the volume of the steel required by the truss. As 

the steel density is a constant, the minimization of the steel volume is equivalent to 

the minimization of the steel mass. The second objective function represents the 

probability of system failure. Bounds are stated for the probability of system failure to 

find design solutions in the range of interest. Only one displacement constraint is 

imposed: the vertical displacement of the node 2 must be below 2 cm. That is, the 

value of the allowable displacement 𝑞𝑞𝑡𝑡 is equal to 2 𝑐𝑐𝑉𝑉. 

The bars of the truss structure are considered in three groups. Group 1 contains 

horizontal bars; group 2 contains vertical bars and group 3 contains diagonal bars. Bars 

in the same group have the same cross-sectional area. The mean values of the cross-

sectional areas are the design variables of the problem: 𝜇𝜇X1 ,𝜇𝜇X2 ,𝜇𝜇X3. Therefore, three 

normal aleatory design variables are assigned to these areas. Two loads are applied to 

the truss structure in nodes 1, 2 and 4: loads  𝑃𝑃1 and 𝑃𝑃2. Such loads are assumed to be 

normally distributed. The elastic modulus 𝐸𝐸 of the bars is an epistemic random 

parameter with only limited samples available. The samples have been obtained from 

a normal distribution, 𝑁𝑁(𝜇𝜇 = 21000 𝑘𝑘𝑁𝑁/𝑐𝑐𝑉𝑉2, 𝜎𝜎 = 210 𝑘𝑘𝑁𝑁/𝑐𝑐𝑉𝑉2), as a way to easily 

obtain samples, however, these samples can come from databases or experimental 
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tests, or simply generated sampling other probability distribution. Note that the 

information about the underlying distribution of the epistemic variable 𝐸𝐸  is not known 

to the analysist. The uncertain variables and parameters of the problem are shown in 

the Table 2. Similarly to the previous example, for small sample sizes and a large value 

of confidence (0.9), no matter how much the cross section increases, there is a limit of 

the value of failure probability for a given confidence level that can be reached. This 

fact is of great importance for the decision maker since it means that a higher cost 

does not imply greater reliability. Pareto fronts computed with two samples sizes for 

the epistemic uncertainty, 𝑁𝑁 = 200 and 𝑁𝑁 = 400 are shown in figure 7 and 8 for 

NSGA-II and MOPSO, respectively. These fronts become a horizontal line determining 

the minimum achievable failure probability values. Table 3 shows the minimum values 

for the probability of system failure that can be found applying Bayesian MORBDO to 

the ten bars truss example for various values of sample sizes and with a confidence of 

0.9. It can be verified that the greater the number of samples, the closer the Pareto 

front is to the front for the case of complete information for uncertain variables.  

From the point of view of computational efficiency, the average execution 

times of 5 optimisations has been obtained for the different cases considered. A 

computer with a processor Intel Core i7 – 7500U with 2.90 GHz has been used to 

perform the analysis. The average runtime for the case with 400 samples was of 153.6 

minutes for NSGA II and 102.7 minutes for MOPSO, respectively. Hence, the NSGA II 

took 50% more time than MOPSO. With 200 samples, the average runtime was 80 

minutes for NSGAII and around 60 minutes for MOPSO. Again, NSGA II took 33% more 

time than MOPSO. Therefore, MOPSO was significantly superior in computational 

efficiency than NSGA to solve the Bayesian MORBDO problem. However, in the case of 



 
 

22 
 

complete information available for the uncertain variables, NSGAII was more efficient 

than MOPSO, 1.9 minutes vs 2.7 minutes.  

 

3.- POWER TRANSMISSION TOWER 
 

The third case study considers a 3D model of a power transmission tower 

depicted in Figures 9 and 10. The tower height is 16.15 m and supports a power 

transmission line with single circuit of 66 kV and a ground wire at the top joint. The 

structure consists of 218 truss elements and 55 nodes. This structural example has 

been considered previously as a benchmark to apply RDO methods (Lagaros et al. 

2005, Plevris et al. 2005a, Plevris et al. 2005b). Loads on conductors and ground wire 

caused by self-weight, ice and wind are transmitted as nodal loads on joints at the 

ends of cross-arms and at the top joint, where these cables are attached.  

The formulation of the Bayesian MORBDO problem for this example is written 

below:  

min
𝐝𝐝,𝝁𝝁𝑿𝑿

 �𝐶𝐶𝐶𝐶𝑙𝑙𝑢𝑢𝑉𝑉𝐵𝐵(𝐝𝐝,𝝁𝝁𝑿𝑿,𝝁𝝁𝑷𝑷),  𝑃𝑃𝑓𝑓𝑆𝑆(𝐝𝐝,𝐗𝐗,𝐏𝐏) �

𝑠𝑠. 𝐵𝐵.     0.001 ≤ 𝑃𝑃𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 0.1
0.83 𝑐𝑐𝑉𝑉2 ≤ 𝜇𝜇X𝑗𝑗 ≤ 90.59 𝑐𝑐𝑉𝑉2,   𝑗𝑗 = 1, … ,10

𝐺𝐺1(𝐝𝐝,𝐗𝐗,𝐏𝐏) = 1 − �𝑞𝑞𝑇𝑇𝑇𝑇𝑝𝑝 𝐽𝐽𝑇𝑇𝑖𝑖𝑛𝑛𝑡𝑡,𝑋𝑋(𝐝𝐝,𝐗𝐗,𝐏𝐏)� 𝑞𝑞𝑡𝑡⁄
𝐺𝐺2(𝐝𝐝,𝐗𝐗,𝐏𝐏) = 1 − �𝑞𝑞𝑇𝑇𝑇𝑇𝑝𝑝 𝐽𝐽𝑇𝑇𝑖𝑖𝑛𝑛𝑡𝑡,𝑆𝑆(𝐝𝐝,𝐗𝐗,𝐏𝐏)� 𝑞𝑞𝑡𝑡⁄

   (20) 

The problem is a bi-objective optimization problem where the first objective is 

to minimize the steel volume of the structure equivalent to the minimization of the 

structure weight (because the weights of joint bolts are negligible). The second 

objective function to minimize represents the probability of system failure. Two 

displacements constraints are imposed identifying the failure criteria for the power 

transmission tower: Horizontal displacements of the top joint in two cartesian 
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orthogonal directions must be below the allowable displacement, 𝑞𝑞𝑡𝑡,  equal to 10 cm. 

As in the previous example, two multi-objective optimization evolutionary algorithms 

are considered: NSGA-II and MOPSO.  

This tower is modeled in OPENSEES software using truss elements, that is, all 

joints are pinned joints. Because that, elements are supporting axial forces.  Structural 

analysis is linear elastic.  The structure is considered as a serial system, where the 

probability of system failure is computed as the minimum value of the probability of 

failure of the constraints. The truss elements are grouped in ten groups and the bars in 

each group are designed with the same steel profile. Figure 9 shows these groups, 

representing elements of each group with different color. In addition, truss elements 

are labeled with the group number. Usually, power transmission towers are designed 

with equal angles. Mean values of the cross-sectional areas of these groups are the 

design variables. The range of cross-sectional areas is limited by minimum and 

maximum cross-sectional areas taken from the standards EN 10025-1 and EN 10025-2.  

Table 4 shows the values of the parameters used in this problem. Cross-

sectional areas follow normal distribution. Five random variables 𝑃𝑃1 a 𝑃𝑃5 are used to 

describe the joint loads applied at the end joints of the cross-arms. Figure 11 

represents a perspective view of the tower and shows the loads applied on the nodes 

A, B, C, D and E. These loads are caused by conductors, ground cable self-weight and 

wind and they are transmitted to the towers as nodal loads. As in the previous 

examples, a reduced set of samples is assumed to be available for the elastic modulus 

of steel. Therefore, it is considered an epistemic uncertainty. Since experimental 

tensile tests have not been done on specimens of the type of steel used in the tower 

due to budgetary reasons, a set of 50 numerical experimental samples has been 
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randomly generated by sampling a normal distribution 𝑁𝑁(𝜇𝜇 = 21000 𝑘𝑘𝑁𝑁/𝑐𝑐𝑉𝑉2, 𝜎𝜎 =

210 𝑘𝑘𝑁𝑁/𝑐𝑐𝑉𝑉2). However, these numerical samples could have been generated other 

probability distribution. The information about the underlying distribution of the 

epistemic variable 𝐸𝐸 is not known to the analysist. 

The Bayesian MORBDO problem is solved for a value of confidence equal to 0.9. 

Figures 12 and 13 show the Pareto fronts in the objective space computed using NSGA-

II and MOPSO, respectively. The two Pareto fronts represent the case with only 50 

samples available for the elastic modulus and the case with complete information. The 

results have been obtained using a population sizes and maximum number of 

generations of 50 and 100 for the cases of epistemic uncertainty and complete 

information, respectively. The minimum achievable probabilities of system failure are 

shown in Table 5. These values are practically the same in both MOEAs. With a set of 

50 samples for the epistemic uncertainty, the minimum value of estimated probability 

of system failure given a confidence of 0.9 is 0.048299, a very conservative value 

compared to the true probability of failure. However, this true probability of failure is 

unknown to the designer.  

The structural model of the 3D transmission tower is much more complex 

respect the previous examples. The model has 218 truss elements and 55 nodes and 

each call to the finite element analysis software requires significant more runtime.  The 

average runtime obtained repeating the analysis 5 time for the case of 50 is 18 hours 

and 15 minutes with NSGA-II and 18 hours using MOPSO. In the case of complete 

information, the average runtime is 2 hours with NSGA-II and 2 hours and 50 minutes 

with MOPSO. All runs were carried out in a computer with a processor Intel Core i7 – 

7500U with 2.90 GHz. 
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CONCLUSIONS 
 

A Bayesian Multi-objective Reliability Based Design Optimization (MORBDO) is 

proposed to optimize the structural design under mixed representation of 

uncertainties. The proposed approach allows to deal with the practical problem of 

limited sample size available to characterize the uncertainty. It provides a set of 

optimal designs for different values of estimated probabilities of failures given a 

confidence level specified by the designer.  Bayesian inference is proposed as an 

efficient approach for estimating the reliability of the system considering a non-

informative prior. More research will be carried out by the author about advanced 

methods to compute less conservative estimates of confidence-based probabilities of 

failure tackling mixed aleatory/epistemic uncertainties in order to obtain Pareto fronts 

closer to the Pareto front computed considering complete information.  

The proposed approach requires affordable computational costs that can be 

further reduced by replacing the structural model with surrogate model. However, the 

use of surrogate model would introduce another type of uncertainty, known as data 

uncertainty, caused by the lack of training data. 

Three examples have been presented to demonstrate the applicability of the 

proposed strategy for the identification of the Pareto fronts. Due to the epistemic 

uncertainty, the feasible design options are obtained with a minimum level of 

probability of failure that depends on the number of samples available to characterize 

the epistemic uncertainty. The results emphasize the importance of the use of an 

adequate quality control of the material and the necessary of having complete 



 
 

26 
 

probabilistic information of the properties of the material in order to obtain optimal 

reliable designs and avoid obtaining unealistic levels of probability of failure. Thus, 

increasing the confidence and trust of the design approach.  

 

NOMENCLATURE 

CDF  Cumulative Distribution Function 

CoV  coefficient of variation 

FORM  First Order Reliability Method 

MOEA  Multi-objective Evolutionary Algorithm 

MOPSO Multi-Objective Particle Swarm Optimization 

MORBDO Multi-objective Reliability-based Design Optimization 

NSGA  Non-dominated Sorting Genetic Algorithm 

PDF  Probability Density Function 

RBDO  Reliability-based Design Optimization 

RBRDO  Reliability-based Robust Design Optimization 

RDO  Robust Design Optimization 

SORM   Second Order Reliability Method 

 

NOTATION 

The following symbols are used in this paper: 

𝑐𝑐1, 𝑐𝑐2  acceleration constants 

𝐝𝐝  vector of deterministic design variables 

𝐝𝐝𝐿𝐿 ,𝐝𝐝𝑈𝑈   vector of lower and upper bounds for deterministic design variables 

𝐸𝐸𝑗𝑗(𝑃𝑃)  expected number of safety realizations 

𝑔𝑔𝑗𝑗(𝐗𝐗,𝐏𝐏) 𝑗𝑗𝑡𝑡ℎ performance function 

ℎ𝑘𝑘  𝑘𝑘𝑡𝑡ℎ deterministic constraint 

𝐽𝐽   number of reliability constraints 

𝐾𝐾  number of deterministic constraints 



 
 

27 
 

𝑁𝑁𝑠𝑠  number of samples  

𝐏𝐏 = [𝐏𝐏𝑡𝑡 ,𝐏𝐏𝑠𝑠] vector of random parameters 

𝐏𝐏𝑠𝑠  vector of epistemic random parameters 

𝐏𝐏𝑡𝑡   vector of aleatory random parameters 

𝑃𝑃𝑓𝑓𝑗𝑗   probability of failure for the 𝑗𝑗𝑡𝑡ℎ probabilistic constraint 

𝑃𝑃𝑓𝑓𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  target probability of failure for the 𝑗𝑗𝑡𝑡ℎ probabilistic constraint 

𝑃𝑃𝑓𝑓𝑠𝑠   probability of failure of the system 

𝑞𝑞𝑡𝑡  allowable displacement 

𝑃𝑃𝑗𝑗  number of safety realizations for the 𝑗𝑗𝑡𝑡ℎ probabilistic constraint 

𝑅𝑅𝑗𝑗  reliability of the 𝑗𝑗𝑡𝑡ℎ probabilistic constraint 

𝑅𝑅𝑗𝑗
𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 target reliability of the 𝑗𝑗𝑡𝑡ℎ probabilistic constraint 

𝑅𝑅𝑠𝑠  reliability of the system 

𝑠𝑠1, 𝑠𝑠2  uniformly distributed random numbers in the range [0, 1] 

𝐯𝐯𝑖𝑖𝑡𝑡  velocity vector for the 𝑖𝑖-th particle of the swarm 

𝐱𝐱𝑖𝑖𝑡𝑡  position vector for the 𝑖𝑖-th particle of the swarm 

𝐱𝐱𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖
𝑡𝑡   best position for the 𝑖𝑖-th particle along its path 

𝐱𝐱𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖
𝑡𝑡   global best position of all the particles of the swarm 

𝐗𝐗 = [𝐗𝐗𝑡𝑡,𝐗𝐗𝑠𝑠] vector or random variables 

𝐗𝐗𝑡𝑡   vector of aleatory uncertain variables 

𝐗𝐗𝑠𝑠   vector of epistemic uncertain variables 

𝛼𝛼   parameter of the Beta distribution 

𝛽𝛽   parameter of the Beta distribution 

𝜁𝜁𝑗𝑗(𝝁𝝁𝑿𝑿)  confidence for a design  

𝝁𝝁𝑷𝑷  vector of mean values of random parameters 

𝝁𝝁𝑿𝑿  vector of uncertain design variables 

𝝁𝝁𝑿𝑿𝐿𝐿 ,𝝁𝝁𝑿𝑿𝑈𝑈  vector of lower and upper bounds for uncertain design variables 

Φ𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗(∙)   cumulative distribution function (CDF) of the 𝑗𝑗𝑡𝑡ℎ Beta distribution 

𝜔𝜔  inertia weight to update position vector 
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Table 1. Values of minimal probability of system failure searchable for the analytical example. 
 

    Confidence = 0,9     Confidence = 0,8 
Sample Size NSGA-II MOPSO NSGA-II MOPSO 

Ns = 50 0.044394 0.044466 0.031446 0.031430 

Ns = 100 0.022820 0.022832 0.016024 0.016044 

Ns = 200 0.011707 0.011677 0.008210 0.008239 

COMPLETE INF. 0.000158 0.000170 0.000158 0.000170 
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Table 2. Uncertain variables in the ten bars truss example 
 

Random 
variable Distribution Mean Value CoV (%) or 𝝈𝝈𝟐𝟐 

𝑋𝑋1 ≡ 𝐴𝐴1 𝑁𝑁 𝜇𝜇𝑋𝑋1 5% 
𝑋𝑋2 ≡ 𝐴𝐴2 𝑁𝑁 𝜇𝜇𝑋𝑋2 5% 
𝑋𝑋3 ≡ 𝐴𝐴3 𝑁𝑁 𝜇𝜇𝑋𝑋3 5% 
𝑋𝑋4 ≡ 𝑃𝑃1 𝑁𝑁 100.0 kN 20 kN 
𝑋𝑋5 ≡ 𝑃𝑃2 𝑁𝑁 50.0 kN 2.5 kN 

𝐸𝐸 𝐸𝐸𝐸𝐸𝑖𝑖𝑠𝑠𝐵𝐵𝐵𝐵𝑉𝑉𝑖𝑖𝑐𝑐   
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Table 3. Values of minimum achievable probability of system failure for the ten bars truss example 
 

Sample Size NSGA-II MOPSO 
𝑁𝑁𝑠𝑠 = 200 (confidence 0.9) 0.011390 0.011390 
𝑁𝑁𝑠𝑠 = 400 (confidence 0.9) 0.005725 0.005765 
COMPLETE INF. 0.00100 0.00100 
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Table 4. Uncertain variables in the power transmission tower example 
 

Random variable Distribution Mean Value CoV (%) or 𝝈𝝈𝟐𝟐 
𝐴𝐴1, … ,𝐴𝐴10  𝑁𝑁𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 𝜇𝜇𝑋𝑋1 , … ,𝜇𝜇𝑋𝑋10 5 % 

𝑃𝑃1 𝐿𝐿𝐶𝐶𝑔𝑔𝐿𝐿𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 8.51 kN 10 % 
𝑃𝑃2 𝐿𝐿𝐶𝐶𝑔𝑔𝐿𝐿𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 9.77 kN 10 % 
𝑃𝑃3 𝐿𝐿𝐶𝐶𝑔𝑔𝐿𝐿𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 10.70 kN 10 % 
𝑃𝑃4 𝐿𝐿𝐶𝐶𝑔𝑔𝐿𝐿𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 4.82 kN 10 % 
𝑃𝑃5 𝐿𝐿𝐶𝐶𝑔𝑔𝐿𝐿𝐶𝐶𝑃𝑃𝑉𝑉𝐵𝐵𝑙𝑙 5.36 kN 10 % 
𝐸𝐸 𝐸𝐸𝐸𝐸𝑖𝑖𝑠𝑠𝐵𝐵𝐵𝐵𝑉𝑉𝑖𝑖𝑐𝑐   
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Table 5. Values of minimum achievable probability of system failure for the 3D power transmission tower   
 

Sample Size NSGA-II MOPSO 
Ns = 50 (confidence 0.9) 0.048635 0.048299 
COMPLETE INF. 0.002983  0.002631 
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