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Abstract: Cylindrical shell is a common structural design solution in many engineering fields, such 

as the foundation supporting structures and buoyant column of the offshore wind turbine in the 

maritime sector. Operating in an ocean environment, these cylindrical shell structures need to 

withstand a combination of axial compression, bending moment, torsion and external pressure. 

This study contributes a parametric investigation for unstiffened cylindrical shells subjected to 

axial compression. Emphasis is placed on the ultimate strength characteristics and their relation 

with the initial geometric imperfection. The nonlinear finite element method is adopted by 

considering geometric and material nonlinearities in conjunction with an arc-length 

incrementation to solve the governing equilibrium equation. The numerical prediction is compared 

with the prevailing code-based approach, i.e. DNV, ABS, API and Eurocode. This study shows that 

the ultimate strength of unstiffened cylindrical shells in axial compression is highly sensitive to 

initial geometric imperfection. The code-based formulae appear to be overly conservative for 

predicting the ultimate compressive strength of cylindrical shells. 

Highlights 

• Numerical collapse test of unstiffened cylindrical shell under axial compression. 

• A range of initial imperfection shapes with different deflection modes in longitudinal and 

circumferential directions are analysed. 

• Comparison is completed between the numerical prediction and code formulae. 
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Nomenclature 

𝐸𝐸 Elastic modulus of material 

𝜎𝜎𝑌𝑌 Yield strength of material 

𝜈𝜈 Poisson’s ratio 

𝑡𝑡 Shell thickness 

𝑙𝑙 Length of cylindrical shell 

𝑅𝑅 Radius of cylindrical shell 

𝐷𝐷 Diameter of cylindrical shell 

𝑥𝑥 Longitudinal coordinate 

𝑦𝑦 Transverse coordinate 

𝑧𝑧 Transverse coordinate 

𝜃𝜃 Polor coordinate 

𝑤𝑤 Initial geometric deflection 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 Maximum magnitude of initial geometric deflection 

𝑚𝑚 Half-wave number of longitudinal deflection 

𝑛𝑛 Full-wave number of circumferential deflection 

𝑄𝑄 Fabrication quality parameter in Eurocode 3 

 

1. Introduction 

Many countries have set out their commitments for net-zero emission in the light of addressing the 

detrimental impact caused by greenhouse gas and the consequent climate change. It is inevitable 



that the use of traditional fossil fuels has to be limited in the near future. However, this is often 

resisted by the demand for industrial development where sufficient energy supply is an important 

ingredient. Hence, to accelerate the ambitious net-zero target while ensuring a sufficient energy 

supply, the exploitation of wind energy is one of the sustainable and clean solutions. In fact, the 

benefits of wind energy are well recognised nowadays, and it is foreseen that the investment in the 

construction of wind farms will continue in the coming years [1]. 

Cylindrical shell is a typical solution in designing wind turbine towers and supporting foundations 

(e.g., monopile and buoyant). Therefore, a thorough integrity assessment using rational evaluation 

procedures for these structures is of great importance for the wind energy industry [2,3]. Limit 

state design has been a proven scientific approach for assessing the integrity of different kinds of 

engineering structures [4,5]. Four limit states are usually relevant, namely Serviceability Limit 

State (SLS) [6], Fatigue Limit State (FLS) [7,8], Accidental Limit State (ALS) [9] and Ultimate 

Limit State (ULS) [10,11]. SLS is determined by limiting values that are oriented towards the 

normally envisaged use of a structural system. FLS refers to the failure due to cumulative damage 

of repeated loading that leads to the initiation and propagation of cracks and eventually fractures. 

ALS examines the damage tolerance of structural systems in an accidental event, such as collision, 

grounding, fire, explosion etc. 

The present study focuses on the Ultimate Limit State (ULS), which concerns the maximum load-

carrying capacity of the structures and is a typical assessment criterion in the initial design [12-

14]. Operating in a marine environment, the cylindrical shell structures need to withstand the 

environmental loads in the form of axial loads (𝑁𝑁𝑚𝑚 ), overturning bending moment (𝑀𝑀𝑧𝑧  or 𝑀𝑀𝑦𝑦 ), 

torsion (𝑀𝑀𝑚𝑚) and external pressure (𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 or 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑦𝑦) (Figure 1).  



 

Figure 1. Typical loading profile on cylindrical shell structures 

A number of studies are available in the literature reporting the nonlinear structural response 

cylindrical shell structures. Kim and Kim [15] conducted a parametric numerical study for 

unstiffened cylindrical shells under axial compression. A design formula was proposed to evaluate 

the buckling stress of the perfect shell based on the numerical data, and the effects of the different 

foundations were investigated. Shiomitsu and Yanagihara [16-17] analysed the elastic buckling 

strength and ultimate capacity of the ring-stiffened shell under external pressure using nonlinear 

finite element methods. The collapse modes were categorised into shell buckling collapse, torsional 

buckling collapse, and combined buckling collapse. A new slenderness ratio was proposed, with 

which a formula to estimate the ultimate strength was developed. Cho et al. [18] proposed an 

ultimate strength formulation based on test data for the ring-stiffened shell under external 

pressure considering the interaction between different buckling modes. Graham [19] described a 

finite element study to predict the nonlinear elastoplastic collapse of ring-stiffened cylinders under 

hydrostatic loading. It was found that if sufficient detail of scantlings, initial deflection, residual 

stress and material properties are included in a FE model, the collapse pressure of a ring-framed 

shell structure can be predicted within 6% discrepancy with respect to experimental measurement. 

An experimental test was performed by Ghazijahani et al. [20] for externally pressurised 

cylindrical shells. Fully longitudinal stiffening, partially longitudinal stiffening and local 

thickening were investigated. Instead of the welded connection, a non-welding solution using 

structural epoxy adhesive for connecting stiffeners/thickeners with the plain shell was proposed. 



Cho et al. [21] reported the ultimate strength tests on intact and damaged ring-stiffened cylinders 

subjected to external hydrostatic pressure. Ghazijahani and Showkati [22] developed an 

interaction formula to evaluate the ultimate strength of cylindrical shells under combined bending 

moment and external pressure. Cerik [23] reported a numerical study on the residual ultimate 

strength of ring-stiffened and orthogonally stiffened damaged cylindrical shells under axial 

compression. Eigenvalue analysis was adopted to determine the initial imperfection shape, while 

the imperfection magnitude was determined based on measurements. It was indicated that the 

dent depth and the flattening around the circumference are the significant parameters in the 

residual capacity. In addition, it appears that the orthogonally stiffened shell is more damage 

tolerant than the ring-stiffened shell. Ghazijahani et al. [24] conducted an experimental 

investigation on cylindrical shells emphasising the effects of local dent imperfection. It was 

recommended that further research is still required to improve the understanding of various forms 

of imperfections, particularly localised large dents under different load and boundary conditions. 

Weaver [25] derived approximate expressions of the shape efficiency for tube sections made of 

composite material under axial compression. Bo et al. [26] carried out experimental and numerical 

studies on the buckling of the quasi-perfect shell under axial compression. An integrally 

manufactured cylindrical shell was adopted to isolate the fabricated-induced imperfection. It 

serves as a benchmark for investigating the effect of geometric imperfections on the buckling 

behaviour of the cylindrical shell. Schmidt and Winterstetter [27] carried out experimental and 

numerical investigations on the buckling behaviour of unstiffened cylindrical shells loaded by 

combined axial compression and torsion. Pal'chevskii [28] showed that the buckling mode of the 

cylindrical shell under axial compression (number of half-wave in the circumferential direction 𝑛𝑛) 

depends on the ratios 𝐿𝐿 𝑅𝑅⁄  and 𝑅𝑅 𝑡𝑡⁄  where 𝐿𝐿, 𝑅𝑅 and 𝑡𝑡 are the length, radius and thickness of the 

shell. Cho et al. [29] developed an empirical formula to predict the collapse strength of composite 

cylindrical-shell structures under external pressure loads. 

It can be suggested from the literature survey that, in the maritime sector, the research on 

cylindrical shells usually focuses on their response under external pressure. This is mainly driven 

by the design of submarines and deep water vehicles. More research efforts and insights are desired 

to investigate the structural response of cylindrical shells under other loading profiles. 



The scope of this paper confines the structural response of cylindrical shells under axial 

compression, in which case the ultimate failure may be caused by elastic buckling, elastoplastic 

buckling or gross yielding. In fact, this investigation would also have an impact on understanding 

the structural behaviour under global bending, where the ultimate collapse is triggered by buckling 

in the compressed side and the design of ring-stiffened cylindrical shell assuming an inter-frame 

failure. Different initial imperfection shapes will be analysed to examine the uncertainty 

propagated to the numerical prediction of ultimate strength. In terms of structural configuration, 

various combinations of length-to-radius ratios and radius-to-thickness ratios are investigated. 

The remainder of this paper is organised as follows. Section 2 reviews the prevailing guidance 

issued by standardisation authorities for cylindrical shells’ ultimate limit state analysis. Section 3 

provides the principal characteristics of a cylindrical shell and the modelling of initial geometric 

imperfection. Meanwhile, the test matrix of parametric study is defined. Section 4 introduces the 

finite element modelling techniques, and Section 5 details the analysis results and insights. Section 

6 compares the numerical prediction with prevailing code formulae. Conclusions drawn from this 

study and recommendations for future research are summarised in Section 7. 

2. Background 

This section reviews the prevailing code-based approach in the maritime sector for assessing the 

ultimate limit state of unstiffened cylindrical shell structures (i.e., DNV, ABS, API and Eurocode 

3). These formulae are usually employed for the initial assessment of the structural adequacy in 

terms of the ultimate limit state, with which the principal dimension of a cylindrical structure can 

be determined. As summarised in the following sections, all these formulae are an adaptation of 

the classical buckling strength formula of the cylindrical shell. Different knock-down factors are 

proposed to account for the discrepancy between the classical prediction and experimental 

measurements. Note that the experimental measurements utilised by different codes for 

calibration might be different and are not reported in the open literature. The notations of different 

parameters follow the convention of the each design codes, while some common variables shall 

refer to the nomenclature. 

 



2.1 DNV Guidance 

2.1.1 Limit State Definition (DNV) 

According to the recommended practice (DNVGL-RP-C202) issued by DNV (Det Norske Veritas) 

[30], the buckling strength criterion is given as follows: 

𝜎𝜎𝑗𝑗,𝑆𝑆𝑦𝑦 ≤ 𝑓𝑓𝑘𝑘𝑘𝑘𝑦𝑦 (1) 

where  

𝜎𝜎𝑗𝑗,𝑆𝑆𝑦𝑦 = Design equivalent von Mises stress 

𝑓𝑓𝑘𝑘𝑘𝑘𝑦𝑦 = Design buckling strength 

 

The design buckling strength (𝑓𝑓𝑘𝑘𝑘𝑘𝑦𝑦) is defined as: 

𝑓𝑓𝑘𝑘𝑘𝑘𝑦𝑦 = 𝑓𝑓𝑘𝑘𝑘𝑘 𝛾𝛾𝑀𝑀⁄  (2) 

  

where 𝛾𝛾𝑀𝑀 is the material factor and is given as: 

𝛾𝛾𝑀𝑀 = 1.15 for �̅�𝜆𝑆𝑆 < 0.5 

𝛾𝛾𝑀𝑀 = 0.85 + 0.60�̅�𝜆𝑆𝑆  for 0.5 ≤ �̅�𝜆𝑆𝑆 ≤ 1.0 

𝛾𝛾𝑀𝑀 = 1.45  for �̅�𝜆𝑆𝑆 > 1.0 

 

The characteristic buckling strength of shells is defined as: 

𝑓𝑓𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑦𝑦 �1 + �̅�𝜆𝑆𝑆4�  (3) 

where  

𝑓𝑓𝑦𝑦 = Material yield strength 

�̅�𝜆𝑆𝑆2 = 
𝑓𝑓𝑦𝑦
𝜎𝜎𝑗𝑗,𝑆𝑆𝑦𝑦

�
𝜎𝜎𝑚𝑚0,𝑆𝑆𝑦𝑦

𝑓𝑓𝐸𝐸𝑚𝑚
+
𝜎𝜎𝑚𝑚0,𝑆𝑆𝑦𝑦

𝑓𝑓𝐸𝐸𝑚𝑚
+
𝜎𝜎ℎ0,𝑆𝑆𝑦𝑦

𝑓𝑓𝐸𝐸ℎ
+
𝜏𝜏𝑆𝑆𝑦𝑦
𝑓𝑓𝐸𝐸𝐸𝐸

� 



𝜎𝜎𝑗𝑗,𝑆𝑆𝑦𝑦 = ��𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 + 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦�
2 − �𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 + 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦�𝜎𝜎ℎ,𝑆𝑆𝑦𝑦 + 𝜎𝜎ℎ,𝑆𝑆𝑦𝑦

2 + 3𝜏𝜏𝑆𝑆𝑦𝑦2  

𝜎𝜎𝑚𝑚0,𝑆𝑆𝑦𝑦 = �
0, 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 ≥ 0

−𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦, 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 < 0 

𝜎𝜎𝑚𝑚0,𝑆𝑆𝑦𝑦 = �
0, 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 ≥ 0

−𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 , 𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 < 0 

𝜎𝜎ℎ0,𝑆𝑆𝑦𝑦 = �
0, 𝜎𝜎ℎ,𝑆𝑆𝑦𝑦 ≥ 0

−𝜎𝜎ℎ,𝑆𝑆𝑦𝑦, 𝜎𝜎ℎ,𝑆𝑆𝑦𝑦 < 0 

𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 = Design longitudinal stress due to axial force (positive in tension) 

𝜎𝜎𝑚𝑚,𝑆𝑆𝑦𝑦 = Design longitudinal stress due to global bending moment (positive in tension) 

𝜎𝜎ℎ,𝑆𝑆𝑦𝑦 = Design membrane stress in a circumferential direction 

𝜏𝜏𝑆𝑆𝑦𝑦 = Design shear stress tangential to the shell surface 

 

𝑓𝑓𝐸𝐸𝑚𝑚 , 𝑓𝑓𝐸𝐸𝑚𝑚 , 𝑓𝑓𝐸𝐸ℎ  and 𝑓𝑓𝐸𝐸𝐸𝐸  are the elastic buckling strength of cylindrical shells subjected to axial 

compression, global bending moment, lateral pressure and torsional moments and/or shear force, 

respectively. 

 

2.1.2 Characteristic/Critical Buckling Strength (DNV) 

In DNV’s guidance, the critical buckling strength of axial compression and global bending moment 

is given as follows: 

𝑓𝑓𝐸𝐸 = 𝐶𝐶
𝜋𝜋2𝐸𝐸

12(1 − 𝜈𝜈2) �
𝑡𝑡
𝑙𝑙
�
2
 (4) 

 

The reduced buckling coefficient may be calculated as: 

𝐶𝐶 = 𝜓𝜓�1 + �
𝜌𝜌𝜌𝜌
𝜓𝜓
�
2

 (5) 

 



The values for 𝜓𝜓, 𝜌𝜌  and 𝜌𝜌 are summarised in Table 1, in which the curvature parameter 𝑍𝑍𝑙𝑙  is 

defined by Equation (6). It can be noted from Table 1 that the coefficient values vary between the 

axial compression and global bending moment. 

𝑍𝑍𝑙𝑙 =
𝑙𝑙2

𝑅𝑅𝑡𝑡
�1 − 𝜈𝜈2 (6) 

 

Table 1. Buckling coefficients for unstiffened cylindrical shells 

 𝜓𝜓 𝜌𝜌 𝜌𝜌 

Axial compression 1.0 0.702𝑍𝑍𝑙𝑙 0.5 �1 +
𝑅𝑅

150𝑡𝑡
�
−0.5

 

Global bending moment 1.0 0.702𝑍𝑍𝑙𝑙 0.5 �1 +
𝑅𝑅

300𝑡𝑡
�
−0.5

 
 

2.2 ABS Guidance 

2.2.1 Limit State Definition (ABS) 

According to the guidance for buckling and ultimate strength assessment for offshore structures 

(LRFD version) issued by ABS (American Bureau of Shipping) [31], the buckling limit state of 

unstiffened or ring-stiffened cylindrical shells between adjacent ring stiffeners subjected to axial 

compression, bending moment and external pressure is to be satisfied the following criterion: 

�
𝜎𝜎𝑚𝑚

𝛹𝛹 𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 𝛾𝛾𝐶𝐶⁄ �
2
− 𝜑𝜑𝐶𝐶 �

𝜎𝜎𝑚𝑚
𝛹𝛹 𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 𝛾𝛾𝐶𝐶⁄ � �

𝜎𝜎𝜃𝜃
𝛹𝛹 𝜎𝜎𝐶𝐶𝜃𝜃𝐶𝐶 𝛾𝛾𝐶𝐶⁄ � + �

𝜎𝜎𝜃𝜃
𝛹𝛹 𝜎𝜎𝐶𝐶𝜃𝜃𝐶𝐶 𝛾𝛾𝐶𝐶⁄ �

2
≤ 1 (7) 

where  

𝜎𝜎𝑚𝑚 = Compressive stress in the longitudinal direction due to factored loads 

𝜎𝜎𝜃𝜃 = Compressive hoop stress due to factored loads 

𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 = Critical buckling stress for axial compression or global bending moment 

𝜎𝜎𝐶𝐶𝜃𝜃𝐶𝐶 = Critical buckling stress for external pressure 

𝜑𝜑𝐶𝐶 = Coefficient to reflect the interaction between longitudinal and hoop stress 

 = 
𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 + 𝜎𝜎𝐶𝐶𝜃𝜃𝐶𝐶

𝜎𝜎𝑌𝑌
− 1.0 



𝜎𝜎𝑌𝑌 = Material yield stress 

𝛾𝛾𝐶𝐶 = Resistance factor, to be taken as 1.05 unless otherwise specified 

𝛹𝛹 = Maximum allowable strength adjustment factor of shell buckling 

 = 0.833 if 𝜎𝜎𝐶𝐶𝑤𝑤𝑗𝑗 ≤ 0.55𝜎𝜎𝑌𝑌 

 = 0.629 + 0.371𝜎𝜎𝐶𝐶𝑤𝑤𝑗𝑗 𝜎𝜎𝑌𝑌⁄  if 𝜎𝜎𝐶𝐶𝑤𝑤𝑗𝑗 > 0.55𝜎𝜎𝑌𝑌 

𝜎𝜎𝐶𝐶𝑤𝑤𝑗𝑗 = Critical buckling stress, e.g., 𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 and 𝜎𝜎𝐶𝐶𝜃𝜃𝐶𝐶 etc. 

 

2.2.2 Characteristic/Critical Buckling Strength (ABS) 

The critical buckling strength of unstiffened or ring-stiffened cylindrical shell subjected to axial 

compression or bending moment may be taken as (Note: there is no difference between the critical 

buckling strength under axial compression and bending moment in ABS code): 

𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 = 𝜎𝜎𝐸𝐸𝑚𝑚𝐶𝐶 for 𝜎𝜎𝐸𝐸𝑚𝑚𝐶𝐶 ≤ 𝑃𝑃𝑦𝑦𝜎𝜎𝑌𝑌 (8a) 

𝜎𝜎𝐶𝐶𝑚𝑚𝐶𝐶 = 𝜎𝜎0 �1 − 𝑃𝑃𝑦𝑦(1 − 𝑃𝑃𝑦𝑦) 𝜎𝜎𝑌𝑌
𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸

�  for 𝜎𝜎𝐸𝐸𝑚𝑚𝐶𝐶 > 𝑃𝑃𝑦𝑦𝜎𝜎𝑌𝑌 (8b) 

where 

𝑃𝑃𝑦𝑦 = Proportional linear elastic limit of the structure, to be taken as 0.6 for steel 

𝜎𝜎𝐸𝐸𝑚𝑚𝐶𝐶 = Elastic compressive buckling stress for an imperfect cylindrical shell 

 = 𝜌𝜌𝑚𝑚𝐶𝐶𝐶𝐶𝜎𝜎𝐶𝐶𝐸𝐸𝑚𝑚𝐶𝐶 

𝜎𝜎𝐶𝐶𝐸𝐸𝑚𝑚𝐶𝐶 = Classical compressive buckling stress for a perfect cylindrical shell 

 = 0.605
𝐸𝐸𝑡𝑡
𝑅𝑅

 

𝐶𝐶 = Length dependent coefficient 

 = 1.0 for 𝑍𝑍 ≥ 2.85 

 = 1.425 𝑍𝑍⁄ + 0.175𝑍𝑍 for 𝑍𝑍 < 2.85 

𝜌𝜌𝑚𝑚𝐶𝐶 = Nominal or lower-bound knock-down factor to allow for shape imperfections 

 = 0.75 + 0.003𝑧𝑧 �1 −
𝑅𝑅

300𝑡𝑡
� for 𝑍𝑍 < 1 



 = 0.75 − 0.142(𝑍𝑍 − 1)0.4 + 0.003𝑧𝑧 �1 −
𝑅𝑅

300𝑡𝑡
� for 1 ≤ 𝑍𝑍 < 20 

 = 0.35 − 0.0002
𝑟𝑟
𝑡𝑡
 for 𝑍𝑍 ≥ 20 

𝑍𝑍 = Batdorf parameter 

 = 𝑙𝑙2

𝑅𝑅𝑡𝑡
�1 − 𝜈𝜈2 

 

2.3 API Guidance 

2.3.1 Limit State Definition (API) 

The bulletin on stability design of cylindrical shells developed by API (American Petroleum 

Institute) defines the following buckling limit state (Note: 𝑗𝑗 = 𝑙𝑙 for unstiffened cylindrical shell) 

[32]: 

�
𝜎𝜎𝜙𝜙𝑚𝑚𝑗𝑗
𝜎𝜎𝑚𝑚𝑥𝑥𝑗𝑗

�
2

− 𝑐𝑐 �
𝜎𝜎𝜙𝜙𝑚𝑚𝑗𝑗
𝜎𝜎𝑚𝑚𝑥𝑥𝑗𝑗

� �
𝜎𝜎𝜃𝜃𝑚𝑚𝑗𝑗
𝜎𝜎𝑦𝑦𝑥𝑥𝑗𝑗

� + �
𝜎𝜎𝜃𝜃𝑚𝑚𝑗𝑗
𝜎𝜎𝑦𝑦𝑥𝑥𝑗𝑗

�
2

≤ 1 (9) 

where  

𝑐𝑐 = 
𝐹𝐹𝑚𝑚𝑥𝑥𝑗𝑗 + 𝐹𝐹𝑦𝑦𝑥𝑥𝑗𝑗

𝐹𝐹𝑦𝑦
− 1.0 

𝜎𝜎𝑚𝑚𝑥𝑥𝑗𝑗 = Buckling strength for unstiffened cylindrical shell under compression or bending 

𝜎𝜎𝑦𝑦𝑥𝑥𝑗𝑗 = Buckling strength for unstiffened cylindrical shell under external pressure 

 

It can be noted that no partial safety factor is applied in the limit state equation defined by API. 

But according to the API/section 7/stiffener requirement, a design buckling strength may be 

defined taking into account the safety factor, which equals 1.0 for local buckling and 1.2 for bay 

instability or general instability. In the present paper, the latter specification is assumed. 

 

 

 



2.3.2 Characteristic/Critical Buckling Strength (API) 

The buckling strength for cylinders subjected to axial compression or global bending moment are 

assumed to be the same and given as follows: 

𝜎𝜎𝑥𝑥𝑐𝑐 = 𝜂𝜂𝜎𝜎𝑒𝑒𝑐𝑐 for 𝜎𝜎𝑒𝑒𝑐𝑐 > 0.5𝜎𝜎𝑌𝑌 (9a) 

𝜎𝜎𝑥𝑥𝑐𝑐 = 𝜎𝜎𝑒𝑒𝑐𝑐  for 𝜎𝜎𝑒𝑒𝑐𝑐 ≤ 0.5𝜎𝜎𝑌𝑌 (9b) 

where  

𝜂𝜂 = 𝜎𝜎𝑌𝑌
𝜎𝜎𝑒𝑒𝑐𝑐

�
1.0

1.0 + 3.75(𝜎𝜎𝑌𝑌 𝜎𝜎𝑒𝑒𝑐𝑐⁄ )2�
0.25

  

𝜎𝜎𝑒𝑒𝑐𝑐 = 𝐶𝐶𝑚𝑚𝑐𝑐
𝜋𝜋2𝐸𝐸

12(1 − 𝜈𝜈2) �
𝑡𝑡
𝑙𝑙
�
2
  

𝐶𝐶𝑚𝑚𝑐𝑐 = Buckling coefficient  

 = �1 + �
150
𝐷𝐷 𝑡𝑡⁄

� (𝛼𝛼𝑚𝑚𝑐𝑐)2(𝑀𝑀𝑚𝑚
4)�

0.5

  

𝛼𝛼𝑚𝑚𝑐𝑐 = Imperfection factor  

 = 9.0 (300 + 𝐷𝐷 𝑡𝑡⁄ )0.4⁄   

𝑀𝑀𝑚𝑚 = 𝑙𝑙 (𝑅𝑅𝑡𝑡)0.5⁄   

 

2.4 Eurocode 3 

2.4.1 Limit State Definition (Eurocode 3) 

According to Eurocode 3 [33], the buckling limit state of a cylindrical shell is given as: 

�
𝜎𝜎𝑚𝑚,𝐸𝐸𝑦𝑦

𝜎𝜎𝑚𝑚,𝐶𝐶𝑦𝑦
�
𝑘𝑘𝐸𝐸

− 𝑘𝑘𝑤𝑤 �
𝜎𝜎𝑚𝑚,𝐸𝐸𝑦𝑦

𝜎𝜎𝑚𝑚,𝐶𝐶𝑦𝑦
��

𝜎𝜎𝜃𝜃,𝐸𝐸𝑦𝑦

𝜎𝜎𝜃𝜃,𝐶𝐶𝑦𝑦
�+ �

𝜎𝜎𝜃𝜃,𝐸𝐸𝑦𝑦

𝜎𝜎𝜃𝜃,𝐶𝐶𝑦𝑦
�
𝑘𝑘𝜃𝜃

+ �
𝜏𝜏𝑚𝑚𝜃𝜃,𝐸𝐸𝑦𝑦

𝜏𝜏𝑚𝑚𝜃𝜃,𝐶𝐶𝑦𝑦
�
𝑘𝑘𝜏𝜏

≤ 1 (10) 

where  

𝜎𝜎𝑚𝑚,𝐸𝐸𝑦𝑦 = Design longitudinal compressive stress 

𝜎𝜎𝜃𝜃,𝐸𝐸𝑦𝑦 = Design hoop compressive stress 

𝜏𝜏𝑚𝑚𝜃𝜃,𝐸𝐸𝑦𝑦 = Design shear membrane stress 



𝜎𝜎𝑚𝑚,𝐶𝐶𝑦𝑦 = Design compressive buckling strength 

𝜎𝜎𝜃𝜃,𝐶𝐶𝑦𝑦 = Design hoop compressive buckling strength 

𝜏𝜏𝑚𝑚𝜃𝜃,𝐶𝐶𝑦𝑦 = Design shear buckling strength 

 

The exponents 𝑘𝑘𝑚𝑚, 𝑘𝑘𝜃𝜃, 𝑘𝑘𝐸𝐸 and coefficient 𝑘𝑘𝑤𝑤 are given in terms of the buckling reduction factor (i.e., 

𝜒𝜒𝑚𝑚, 𝜒𝜒𝜃𝜃 and 𝜒𝜒𝐸𝐸) as follows: 

𝑘𝑘𝑚𝑚 = 1.0 + 𝜒𝜒𝑚𝑚2 (11a) 

𝑘𝑘𝜃𝜃 = 1.0 + 𝜒𝜒𝜃𝜃2 (11b) 

𝑘𝑘𝐸𝐸 = 1.0 + 𝜒𝜒𝐸𝐸2 (11c) 

𝑘𝑘𝑤𝑤 = (𝜒𝜒𝑚𝑚𝜒𝜒𝜃𝜃)2 (11d) 

 

The buckling reduction factors should be determined as a function of the relative slenderness of 

the shell (�̅�𝜆): 

𝜒𝜒 = 1.0 for �̅�𝜆 ≤ �̅�𝜆0 (12a) 

𝜒𝜒 = 1.0 − 𝛽𝛽 �
�̅�𝜆 − �̅�𝜆0
�̅�𝜆𝑝𝑝 − �̅�𝜆0

�
𝜂𝜂

 for �̅�𝜆0 < �̅�𝜆 < �̅�𝜆𝑝𝑝 (12b) 

𝜒𝜒 = 
𝛼𝛼
�̅�𝜆2

 for �̅�𝜆 ≥ �̅�𝜆𝑝𝑝 (12c) 

where  

𝛼𝛼 = Elastic imperfection reduction factor 

 = 
0.62

1 + 1.91(∆𝑤𝑤 𝑡𝑡⁄ )1.44 (Compressive elastic imperfection reduction factor) 

∆𝑤𝑤 = Characteristic imperfection magnitude 

 = 1
𝑄𝑄
�𝑅𝑅
𝑡𝑡
𝑡𝑡 

𝑄𝑄 = Fabrication quality parameter, to be taken from Table 2 



𝛽𝛽 = Plastic range factor 

 = 0.60 

𝜂𝜂 = Interaction exponent 

 = 1.0 

�̅�𝜆0 = Squash limit relative slenderness 

 = 0.2 (Compressive squash limit relative slenderness) 

�̅�𝜆𝑝𝑝 = Plastic limit relative slenderness 

 = �
𝛼𝛼

1 − 𝛽𝛽
 

�̅�𝜆𝑚𝑚 = Relative shell slenderness parameter for compressive stress 

 = �𝑓𝑓𝑦𝑦𝑘𝑘 𝜎𝜎𝑚𝑚,𝐶𝐶𝑥𝑥𝑦𝑦⁄  

𝜎𝜎𝑚𝑚,𝐸𝐸𝑦𝑦 = 𝜎𝜎𝑚𝑚,𝐶𝐶𝑘𝑘 𝛾𝛾𝑀𝑀1⁄  

𝜎𝜎𝑚𝑚,𝐶𝐶𝑘𝑘 = Characteristic buckling stress  

 = 𝜒𝜒𝑚𝑚𝑓𝑓𝑦𝑦𝑘𝑘 

𝛾𝛾𝑀𝑀1 = Not smaller than 1.1 

 

Table 2. Values of fabrication quality parameter 𝑄𝑄 

Fabrication tolerance quality class Description 𝑄𝑄 
Class A Excellent 40 
Class B High 25 
Class C Normal 16 

 

2.4.2 Characteristic/Critical Buckling Strength (Eurocode 3) 

In Eurocode 3, the elastic critical buckling strength of unstiffened cylindrical shell under axial 

compression is given as follows: 

𝜎𝜎𝑚𝑚,𝐶𝐶𝑥𝑥𝑦𝑦 = 0.605𝐸𝐸𝐶𝐶𝑚𝑚
𝑡𝑡
𝑅𝑅

 (13) 



where  

𝐶𝐶𝑚𝑚 = Reduction factor 

 = 1.0 for medium-length cylinders 1.7 ≤ 𝜔𝜔 ≤ 0.5 𝐶𝐶
𝑡𝑡
 

 = 1.36 −
1.83
𝜔𝜔

+
2.07
𝜔𝜔2  for short cylinders 𝜔𝜔 < 1.7 

 = 𝑚𝑚𝑚𝑚𝑥𝑥 �1 +
0.2
𝐶𝐶𝑚𝑚𝑥𝑥

�1 − 2𝜔𝜔
𝑡𝑡
𝑅𝑅
� , 0.60� for long cylinders 𝜔𝜔 > 0.5 𝐶𝐶

𝑡𝑡
 

𝐶𝐶𝑚𝑚𝑥𝑥 = Parameter dependent on the boundary conditions, to be taken from Table 3 

𝜔𝜔 = Dimensionless length parameter 

 = 
𝑙𝑙

√𝑅𝑅𝑡𝑡
 

 

Table 3. Parameter 𝐶𝐶𝑚𝑚𝑥𝑥 for the effect of boundary condition 

Case Cylinder end Boundary condition 𝐶𝐶𝑚𝑚𝑥𝑥 

1 End 1 BC 1 6 End 2 BC 1 

2 End 1 BC 1 3 End 2 BC 2 

3 End 1 BC 2 1 End 2 BC 2 
Note: BC1 = Clamped support; BC2 = Simple support 

3. Parametric Study 

3.1 Coordinate System 

It might be more convenient to adopt a hybrid Cartesian and Polar coordinate system to describe 

a cylindrical shell structure. As illustrated in Figure 2, any position within the cylindrical shell is 

expressed by combining longitudinal coordinate (𝑥𝑥) and angular coordinate (𝜃𝜃). Note that the shell 

thickness is ignored when defining the coordinate system since the radius is usually 

overwhelmingly larger than the shell thickness. 

For each section along the longitudinal direction, the Polar coordinate system can be transformed 

into the Cartesian system as follows: 

𝑦𝑦 = 𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅(𝜃𝜃) (14) 



𝑧𝑧 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛(𝜃𝜃) (15) 

This transformation is needed when implementing the geometric imperfection in a finite element 

model since the nodal coordinate is generally defined by the Cartesian system. 

 

Figure 2. Coordinate system 

3.2 Geometric Imperfection 

The initial geometric imperfection of a cylindrical shell (unstiffened or ring-stiffened) may be 

written as the following expression: 

𝑤𝑤(𝑥𝑥,𝜃𝜃) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑛𝑛 �
𝑚𝑚𝜋𝜋𝑥𝑥
𝑙𝑙 � 𝑅𝑅𝑅𝑅𝑛𝑛(𝑛𝑛𝜃𝜃) (16) 

where  

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = Maximum imperfection magnitude 

𝑙𝑙 = Length of the unstiffened shell or spacing between ring stiffeners 

𝑚𝑚 = Number of half-wave in the longitudinal direction 

𝑛𝑛 = Number of full-wave in the circumferential direction 

 

In the application of geometric imperfection to the finite element model, Equation (16) is utilised 

in combination with Equation (14) and (15). Examplar illustrations of the different number of half-



wave in the longitudinal direction and full-wave in the circumferential direction are shown in 

Figure 3 and Figure 4, respectively. 

 

 

Figure 3. Schematic illustration of geometric imperfection in circumferential direction with 

different full-wave numbers 



 

Figure 4. Schematic illustration of geometric imperfection in longitudinal direction with different 

half-wave numbers 

3.3 Test Matrix 

The overall test matrix is composed of one hundred (100) primary test cases and five (5) additional 

test cases. In the primary test matrix, the following features are systematically varied, giving a 

total of 2 × 2 = 4 cylindrical shell models and 4 × 5 × 5 = 100 test cases: 

• Length-to-radius ratio: 𝐿𝐿 𝑅𝑅⁄  = 1.0 & 0.4; 

• Radius-to-thickness ratio: 𝑅𝑅 𝑡𝑡⁄  = 50 & 400; 

• Maximum geometric imperfection magnitude: 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡⁄  = 0.025�−2.8 + �𝐶𝐶
𝑡𝑡
� [34];  

• Material property: the yield strength and elastic modulus in all calculations are 355 MPa 

and 207 GPa, respectively; 

• Number of half-wave in longitudinal direction: 𝑚𝑚 = 1, 2, 3, 4, 5; 

• Number of full-wave in circumferential direction: 𝑛𝑛 = 6, 7, 8, 9, 10; 

The objective of the primary test matrix is to investigate the influence of initial geometric 

imperfection shape on the ultimate strength characteristics of cylindrical shells under axial 



compression. The four models represent long & stocky cylindrical shells (𝐿𝐿 𝑅𝑅⁄  = 1.0 & 𝑅𝑅 𝑡𝑡⁄  = 50), 

long & slender cylindrical shell (𝐿𝐿 𝑅𝑅⁄  = 1.0 & 𝑅𝑅 𝑡𝑡⁄  = 400), short & stocky cylindrical shell (𝐿𝐿 𝑅𝑅⁄  = 0.4 

& 𝑅𝑅 𝑡𝑡⁄  = 50), and short & slender cylindrical shell (𝐿𝐿 𝑅𝑅⁄  = 0.4 & 𝑅𝑅 𝑡𝑡⁄  = 400). Note that the radius of 

the cylindrical shell (𝑅𝑅) remains constant as 5000 mm throughout the whole test matrix, while the 

other features are parametrically varied according to the above specification. A summary of the 

structural configuration and material property is given in Table 4.  

Table 4. Summary of cylindrical shell models 

No. 𝐿𝐿 [mm] 𝑅𝑅 [mm] 𝑡𝑡 [mm] 𝐿𝐿 𝑅𝑅⁄  𝑅𝑅 𝑡𝑡⁄  𝜎𝜎𝑌𝑌 [MPa] 𝐸𝐸 [GPa] 
1 5,000 5,000 100 1.0 50 355 207 
2 5,000 5,000 12.5 1.0 400 355 207 
3 2,000 5,000 100 0.4 50 355 207 
4 2,000 5,000 12.5 0.4 400 355 207 

 

The numbers of deflection half-wave in the longitudinal direction and deflection full-wave in the 

circumferential direction are parametrically varied in the range enclosing the first-order buckling 

mode shape based on linear eigenvalue analysis. As summarised in Table 5, the half-wave number 

of longitudinal deflection is generally in the range of 1 to 4 (Note: with one exception). The full-

wave number of circumferential deflection is typically in the range of 6 to 10 (Note: with one 

exception). Based on these preliminary results, the longitudinal half-wave and circumferential full-

wave variations are specified as 1 to 5 and 6 to 10, respectively. It may be noticed from Table 5 

that the long and slender cylindrical shell model (𝐿𝐿 𝑅𝑅⁄  = 1.0 & 𝑅𝑅 𝑡𝑡⁄  = 400) is an outlier with 11 

deflection half-waves in the longitudinal direction and 0 deflection full-wave in the circumferential 

direction, implying a so-called rotational-symmetric imperfection shape. For this reason, an 

additional test matrix consisting of 5 cases will be completed for this model to analyse the effect of 

symmetric-rotation imperfection shape. The half-wave number in longitudinal direction 𝑚𝑚 =

9, 10, 11, 12, 13. 

Table 5. First-order buckling mode shape based on linear eigenvalue analysis 

Model 𝑚𝑚 𝑛𝑛 
𝐿𝐿 𝑅𝑅⁄  = 1.0 & 𝑅𝑅 𝑡𝑡⁄  = 50 3 6 
𝐿𝐿 𝑅𝑅⁄  = 1.0 & 𝑅𝑅 𝑡𝑡⁄  = 400 11 0 
𝐿𝐿 𝑅𝑅⁄  = 0.4 & 𝑅𝑅 𝑡𝑡⁄  = 50 1 6 
𝐿𝐿 𝑅𝑅⁄  = 0.4 & 𝑅𝑅 𝑡𝑡⁄  = 400 4 10 



4. Finite Element Modelling 

The finite element model is developed using a four-node shell element with reduced integration, 

which is a proven element type suitable for buckling analysis of thin-walled structures. The initial 

geometric imperfection is applied to the finite element model via a direct-node translation approach. 

A few examples of the finite element model with imperfection are shown in Figure 5. 

 

 

Figure 5. Illustrations of finite element models with geometric imperfection (amplification factor = 

50) 

 

As shown in Figure 6, the three translational displacements (𝑈𝑈𝑚𝑚,𝑈𝑈𝑦𝑦,𝑈𝑈𝑧𝑧) are constrained at one end 

of the model, while the two translational displacements (𝑈𝑈𝑦𝑦,𝑈𝑈𝑧𝑧) are constrained at the opposite end. 

In the meantime, longitudinal displacement is applied to the model end where longitudinal 

displacement (𝑈𝑈𝑚𝑚) is free. All rotational displacements are set to be free, implying that simply 

supported boundary is assumed. Note that the axial load is applied through reference points that 

are coupled to the corresponding model ends. This keeps the loaded edge straight (i.e., uniform 

displacement) throughout the entire progressive collapse process and allows for more efficient data 

post-processing. 



 

Figure 6. Illustration of boundary condition and loading condition 

 

In terms of the element size, a mesh convergence study is performed. Two cases are selected from 

the overall test matrix for mesh convergence study: 

• 𝐿𝐿 𝑅𝑅⁄  = 1.0, 𝑅𝑅 𝑡𝑡⁄  = 50, wmax t⁄  = 0.025�-2.8 +�R
t
�, 𝑚𝑚 = 4, 𝑛𝑛 = 8; 

• 𝐿𝐿 𝑅𝑅⁄  = 0.4, 𝑅𝑅 𝑡𝑡⁄  = 400, wmax t⁄  = 0.025�-2.8 +�R
t
�, 𝑚𝑚 = 2, 𝑛𝑛 = 10; 

Different mesh densities are considered, with characteristic element sizes ranging from 50mm × 

50mm to 300mm × 300mm. As shown in Figure 7, the variation in characteristic mesh size does 

not result in a significant change in the predicted ultimate strength of stocky cylindrical shell with 

𝐿𝐿 𝑅𝑅⁄  = 1.0 and 𝑅𝑅 𝑡𝑡⁄  = 50. Conversely, a finer mesh leads to a smaller ultimate strength prediction 

of slender cylindrical shell with 𝐿𝐿 𝑅𝑅⁄  = 0.4 and 𝑅𝑅 𝑡𝑡⁄  = 400. It starts to converge when the 

characteristic mesh size is equal to 100mm × 100mm. In the light of achieving reliable numerical 

prediction and reducing the computational cost, the mesh size 100mm × 100mm will be adopted 

for the remaining analyses of this study. 



 

Figure 7. Results of the mesh convergence study 

 

5. Results and Discussions 

5.1 Progressive Collapse Behaviour 

The progressive collapse behaviour of cylindrical shells under axial compression may be 

represented by a load-shortening curve (LSC), as shown in Figure 8. Two LSCs are illustrated for 

each case study model, corresponding to the initial imperfection shape that leads to maximum and 

minimum ultimate strength, respectively. Additionally, the von Mises stress distributions and 

deflection modes of each model at the ultimate limit state are shown in Figure 9. 

Similar load-shortening responses are found between finite element models of stocky cylindrical 

shell models based on different initial imperfection patterns. High ultimate strength is 

accompanied by a stiff initial response, and the post-collapse unloading is fairly gentle. On the 

contrary, when it comes to slender cylindrical shell models, steeper post-collapse unloading is 

shown and in some cases accompanied with a significant snap-back response. 

The present study is confined to the unstiffened cylindrical shell structures. Generally, the primary 

collapse mode of stocky shells is material yielding, whereas the primary collapse mode of slender 

shells is buckling accompanied by yielding. Thus, the collapse modes are shell buckling and 

yielding. Nevertheless, this is also greatly affected by the initial geometric imperfection shape.  



For instance, if a lower-order longitudinal deflection is assumed in the stocky shells (e.g., 𝑚𝑚 = 1), 

while following the initial pattern, the out-of-circulation deflection hardly developed. Yielding 

initiates at two edges of the models and propagate toward the central shell, which appears to be 

the primary cause of the collapse.  

On the contrary, if a higher-order longitudinal deflection, e.g., 𝑚𝑚 = 5 for model with 𝐿𝐿 𝑅𝑅⁄ = 1.0 & 

𝑅𝑅 𝑡𝑡⁄ = 50, an appreciable out-of-circulation deflection will be developed consistent with the initial 

profile (Figure 10a). This is accompanied with yielding initiated in the outward-deflected wave, 

and the collapse in this case shall be considered as the combined resultant of buckling and yielding. 

In principle, the above behaviour can also be found in short cylindrical shells (both stocky and 

slender). The exception, however, is the collapse behaviour of long and slender shell model, i.e., 

𝐿𝐿 𝑅𝑅⁄ = 1.0 & 𝑅𝑅 𝑡𝑡⁄ = 400. In this scenario, the development of the wavy circumferential deflection 

seems to be affected by the rotational-symmetric pattern, which is the preferred buckling mode 

according to the linear buckling analysis. At the collapse state, it appears that all the crest and 

trough resume to the perfect position. In contrast, an outward-deflected wave is developed at the 

initially zero-crossing position (Figure 10b). In terms of the longitudinal deflection, when assuming 

lower-order initial deflection mode,  it develops in a similar way as the stocky counterpart, and 

localisation on two edges is observed. This localisation is accompanied by yielding initiation and 

propagation toward the central shell. If a higher-order longitudinal deflection is assumed, it follows 

the initial pattern in the initial phase of the loading application. A considerable localisation of 

deflection occurs at the central shell when approaching the limit state. Note that no yielding occurs 

in this case, and the collapse is entirely triggered by elastic buckling. 

 



 

Figure 8(a). The load-shortening curve of long stocky cylindrical shell 

 

 

Figure 8(b). The load-shortening curve of long slender cylindrical shell 



 

Figure 8(c). The load-shortening curve of short stocky cylindrical shell 

 

 

Figure 8(d). The load-shortening curve of short slender cylindrical shell 

 

 



 

Figure 9(a). Typical collapse modes of long stocky cylindrical shell 

 

 

Figure 9(b). Typical collapse modes of long slender cylindrical shell 

 

 

Figure 9(c). Typical collapse modes of short stocky cylindrical shell 



 

Figure 9(d). Typical collapse modes of short slender cylindrical shell 

 

 

Figure 10(a). Example comparison of the circumferential deflection (consistent pattern between 

initial and collapse states)  



 

Figure 10(b). Example comparison of the circumferential deflection (inconsistent pattern between 

initial and collapse states) 

 

5.2 Effects of Imperfection Shapes 

The computed ultimate strength of the unstiffened cylindrical shell is shown in Figures 11 and 12, 

as a function of the full-wave number in the circumferential direction (𝑛𝑛) and the half-wave number 

in the longitudinal direction (𝑚𝑚), respectively. 

It is clear that the stocky cylindrical shell structures are considerably less sensitive to the variation 

in imperfection shapes. Conversely, higher sensitivity to the imperfection shapes is found on 

slender cylindrical shell models. 

A larger half-wave number in the circumferential direction generally results in a strength 

reduction of the structures. Nevertheless, there is also an increase of the ultimate strength in some 

cases, i.e. stocky cylindrical shell and long slender cylindrical shell with 𝑚𝑚  = 4 and 5. This 

observation may be supported by the analytical finding in [35], where a wavy shape was exploited 

to give an optimal buckling strength of cylindrical shell under axial compression. However, this 

increase in the buckling and ultimate strength, at least for the present case study modes, appears 

to be relatively small. 



In terms of the influence of half-wave number in the longitudinal direction, a higher-order 

longitudinal deflection leads to a smaller ultimate strength of the unstiffened cylindrical shell, in 

particular the slender shell structures. This is generally in agreement with the insights developed 

in flat plates [36]. Comparing Figures 11 and 12, it may be noticed that the ultimate strength of 

cylindrical shell under axial compression is more sensitive to the longitudinal deflection shape. 

The ultimate strength of a long slender cylindrical shell combined with rotational-symmetric 

imperfection is shown in Figure 13. Consistent with the above observation, the ultimate strength 

of the shell structure reduces with the increase in longitudinal half-wave number. However, the 

reduction rate appears to be lower comparing with that in Figure 12(b). Moreover, the collapse 

modes at ULS in these scenarios preserve the initial imperfection pattern as presented in Figure 

14, which is of a distinct difference compared with the deformation localisation observed in the 

non-rotational-symmetric initial imperfection. 

 

 

Figure 11(a). The ultimate strength of long stocky cylindrical shell as a function of the full-wave 

number in the circumferential direction (𝑛𝑛) 

 



 

Figure 11(b). The ultimate strength of long slender cylindrical shell as a function of the full-wave 

number in the circumferential direction (𝑛𝑛) 

 

 

Figure 11(c). The ultimate strength of short stocky cylindrical shell as a function of the full-wave 

number in the circumferential direction (𝑛𝑛) 

 



 

Figure 11(d). The ultimate strength of short slender cylindrical shell as a function of the full-wave 

number in the circumferential direction (𝑛𝑛) 

 

 

Figure 12(a). The ultimate strength of unstiffened cylindrical shell as a function of the half-wave 

number in the longitudinal direction (𝑚𝑚) 

 



 

Figure 12(b). The ultimate strength of unstiffened cylindrical shell as a function of the half-wave 

number in the longitudinal direction (𝑚𝑚) 

 

 

Figure 12(c). The ultimate strength of unstiffened cylindrical shell as a function of the half-wave 

number in the longitudinal direction (𝑚𝑚) 

 



 

Figure 12(d). The ultimate strength of unstiffened cylindrical shell as a function of the half-wave 

number in the longitudinal direction (𝑚𝑚) 

 

 

Figure 13. The ultimate strength of long slender cylindrical shell with rotational-symmetric 

imperfection 



 

Figure 14. Collapse modes of long slender cylindrical shells with rotational-symmetric 

imperfections 

 

6. Comparison between Numerical Prediction and Code Formulae 

A comparison of the cylindrical shell’s ultimate strength predicted by finite element analysis and 

code-based formulae (i.e., DNV, ABS, API and Eurocode given in section 2) is completed for the 

cylindrical shell with 𝐿𝐿 𝑅𝑅⁄ = 0.4 and 𝑅𝑅 𝑡𝑡⁄ = 50, 100, 200, 400. Likewise, the radius of all models is 

fixed to be 5000mm. The length and thickness are parametrically varied according to the 

dimensionless ratio. In terms of the material property, the yield strength and elastic modulus in 

all calculations are 355 MPa and 207 GPa, respectively. Only one length-to-radius ratio is tested 

because of the insensitivity of the code formula to the length of cylindrical shells. Note that the 

first-order linear eigenmode is used for modelling the initial geometric imperfection shape for each 

cylindrical shell. The comparisons between the numerical results and code formula prediction are 



shown in Figure 15 and Figure 16. The former is a comparison on the characteristic/critical 

buckling strength, while the latter is the comparison of design buckling. In design codes, the 

characteristic/critical buckling strength is the theoretical capacity prediction. The design buckling 

strength is a factored value of the former, given in the limit state equation and usually taking into 

account of a partial safety factor. 

As shown in the comparison, there is a large deviation between different code formulae. The 

prediction by API is the most optimistic one (both characteristic/critical and design values). 

Eurocode 3 (𝑄𝑄 = 16) has the most conservative characteristic/critical buckling strength prediction, 

while DNV gives the most conservative design buckling strength. As compared with the present 

FE results, all of the code formulae appear to be overly conservative. In the case of characteristic 

or critical buckling strength, the API is close to the numerical prediction. However, when it comes 

to the design buckling strength, it is underestimated by all code formulae. The ratios between the 

characteristic/critical and design buckling strength in different codes are illustrated in Figure 17. 

It can be seen that the partial safety factor applied to the design buckling strength is up to 1.4 in 

some cases in the DNV formula. In future research, it might be useful to re-visit these partial 

safety factors, especially if one wants to apply these design codes to offshore wind structures. These 

design codes were initially developed for the oil and gas industry. The consequence of structural 

failure is probably much more severe due to the manned operation and hydrocarbon production. 

Conversely, the operation is usually remotely controlled in the offshore wind industry, and there 

is no risk associated with hydrocarbon production. Hence, the consequence of failure may 

substantially differ, which suggests some of these rather conservative safety factors can relieve to 

a certain extent. 

Nevertheless, it should be noted that the above discussion is based upon the assumption of first-

order eigenmode imperfection with maximum magnitude defined in Section 3.3. More concrete 

conclusions shall be developed, once sufficient full-scale measurement of the initial imperfection of 

cylindrical shells used in maritime sector is available. 

 

 



 

Figure 15. Comparison of numerical results and code formula prediction (characteristic/critical 

buckling strength) 

 

Figure 16. Comparison of numerical results and code formula prediction (design buckling strength) 

 



 

Figure 17. Ratios between characteristic/critical and design buckling strength in different code 

formulae 

 

7. Concluding Remarks and Recommendations 

This study performed a parametric investigation using the nonlinear finite element method on the 

ultimate strength characteristics of unstiffened cylindrical shell structures under axial 

compression. The emphasis is placed on the sensitivity of ultimate strength to initial geometric 

imperfection. Cylindrical shells with different length-to-radius ratios and radius-to-thickness 

ratios are analysed. From this study, the following conclusions may be drawn: 

• The ultimate collapse of stocky cylindrical shells structures is dominated by gross yielding 

and is, therefore, less sensitive to the initial geometric imperfection. 

• The ultimate collapse of slender cylindrical shell structures is triggered by elastic or 

elastoplastic buckling and is therefore highly sensitive to the initial geometric imperfection. 

• Different numbers of full-wave in the circumferential direction and half-wave in the 

longitudinal direction of the initial geometric imperfection have considerable effects on the 

ultimate strength of cylindrical shells. The longitudinal deflection shape is generally more 

influential than the deflection shape in the circumferential direction. 



• The ultimate capacity of cylindrical shell appears to be more sensitive to the non-

rotational-symmetric imperfection shape, whereas the sensitivity to rotational-symmetric 

imperfection pattern is lower. 

• There is a considerable deviation between DNV, ABS, API and Eurocode 3 on the prediction 

of cylindrical shell axial compressive strength. In comparison with the present numerical 

data, these formulae, some of which are originally developed for the oil and gas industry, 

appear to be conservative. 

The present study provides valuable insights for the ultimate limit state analysis of cylindrical 

shell structures under axial compression. This is a relevant topic for the safety design of 

offshore wind turbine structures. Nevertheless, understanding of the structural response of 

cylindrical shells operating in a marine environment is still insufficient. In order to improve 

the current state-of-the-art, the following should be addressed in future research: 

• A campaign of full-scale measurement of the initial imperfection of cylindrical shells 

used in wind turbine structures is recommended, as both geometric imperfection shape 

and magnitude are currently lack of precise guidance. 

• Based upon the measurement data, deterministic and probabilistic models of geometric 

imperfection shall be developed. Relevant study and insights developed from ship-type 

flat plates may refer to [37]. 

• The collapse behaviour of cylindrical shells under combined loads, such as combined 

compression, bending moment and hydrostatic pressure, should be thoroughly 

investigated.  

• Improved design formula to predict the ultimate capacity of cylindrical shell structures 

is needed. The procedure to develop these formulae may refer to [38-40]. 

• More physical testing will be helpful for benchmarking the analytical modelling and 

numerical simulation. 
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