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Abstract
A charged particle subject to strong external forces will accelerate, and so radiate energy, inducing
a self-force. This phenomenon remains contentious, but advances in laser technology mean we will
soon encounter regimes where a more complete understanding is essential. The terms ‘self-force’
and ‘radiation reaction’ are often used synonymously, but reflect different aspects of the recoil
force. For a particle accelerating in an electromagnetic field, radiation reaction is usually the
dominant self-force, but in a scalar field this is not the case, and the total effect of the self-force can
be anti-frictional. Aspects of this self-force can be recast in terms of spacetime geometry, and this
interpretation illuminates the long-standing enigma of a particle radiating while experiencing no
self-force.

1. Introduction

It is well known from classical electrodynamics that an accelerating point charge radiates, and this radiation
carries energy and momentum [1]. It follows that an additional recoil force (‘radiation reaction’ (RR)) must
act on the charge, to ensure conservation of the total energy and momentum. In addition, the
reconfiguration of the particle’s bound field exerts a further force on the charge (‘Schott force’). Together,
these constitute the particle’s self-force, which has led to considerable confusion over the decades. Until
recently, this has been a matter of purely theoretical concern, as under most experimental conditions the
self-force represented a negligible correction to any applied forces. Rapid advances in laser technology have
changed this situation [2], and the prospect of experimentally accessing regimes where the self-force is not
only non-negligible, but actually dominates the dynamics, has rejuvinated interest in understanding its
fundamental properties [3–12].

The foundations of the electromagnetic self-force were laid by Lorentz [13] and Abraham [14], and
made fully relativistic by Dirac [15], using considerations of energy–momentum conservation. The
resulting radiation reaction behaves exactly as one would expect, as a frictional force with magnitude
corresponding to the Larmor formula for power of emitted radiation. By contrast the Schott force, being
proportional to the derivative of acceleration, has no such clear physical interpretation, and notoriously
gives rise to unphysical behaviour [16].

The equation of motion exhibiting the above behaviour is called the Lorentz–Abraham–Dirac (LAD)
equation. That it has no physically acceptable solutions has led many to seek alternative descriptions of the
self-force. It has been noted that the need to regularise the infinite bare fields of a point charge leads to an
ambiguity in the coefficient of the Schott force [17, 18], and this has led some to speculate that it should not
feature in the self-force [19, 20]. For consistency, this requires the particle to lose mass, which is in conflict
with observations. Other approaches abandon the point particle assumption [21–23], modify Maxwell’s
equations [24–26], or introduce ad hoc descriptions of the self-force [27, 28]. None of these has been
universally accepted.

The most widely used description of the self-force is perhaps the most conservative. Introduced by
Landau and Lifshitz [29], it treats the self-force as a perturbation to the applied force that can be neglected
in determining the radiation reaction and Schott forces. This reduces LAD to a second order equation,
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known as the Landau–Lifshitz (LL) equation, that vanishes in the absence of applied forces, and hence
eliminates (most of) the unphysical effects associated with the former, and generally exhibits behaviour in
keeping with intuitive expectations, at least in the ultra-relativistic limit.

Although usually applied to situations in which the external forces are electromagnetic, the LAD
equation can be used with any external force. By contrast, the LL equation in its standard form requires the
applied force to be the Lorentz force due to an external electromagnetic field. There is good reason for this,
as in most practical cases of interest the dominant applied force on a charged particle will be
electromagnetic, for example from an intense laser pulse or the magnetic fields around astrophysical bodies.
But non-electromagnetic forces can also act on a particle. The simplest force one can consider is a scalar
interaction. As well as existing at a fundamental level (interactions with the Higgs field, for example, as well
as the many scalar fields that emerge in extensions of the standard model), these are often used to model
more complicated interactions, e.g. the ponderomotive approximation to the Lorentz force of a rapidly
oscillating field, or the Yukawa force binding nucleons together in the atomic nucleus. In this paper we
explore the form and consequences of the LL equation in an applied scalar field (scalar LL (sLL) equation),
to determine the extent to which the positive features of LL are generic, rather than being limited to the case
of a charged particle accelerating under the Lorentz force.

The remainder of the paper is organised as follows. In section 2 we introduce the mathematical
formulation of the LAD and (standard) LL equations, emphasising the roles of the Schott and radiation
reaction contributions. In section 3 we describe a scalar force acting on a charged particle, and determine
the form of the sLL equation, before in section 4 recasting it in terms of a particle radiating in a curved
spacetime. In section 5 we explore how constants of the motion are modified by the self-force, and in
section 6 we analyse the controversial situation of a particle undergoing uniform proper acceleration, in
which the self-force vanishes. Finally, we draw conclusions in section 7. Throughout the paper we work in
Lorentz–Heaviside units, with the speed of light c = 1. The Einstein summation convention is employed
throughout, and indices are raised and lowered with the metric tensor [ημν] = diag(1,−1,−1,−1).

2. Electromagnetic self-force

Before addressing the self-force on a particle in a scalar field, we recall the basic features of the self-force in
general, and in particular its effects on a particle being accelerated by electromagnetic fields.

The story of the self-force on a point charge begins with the LAD equation [15],

ṗμ = Fμ︸︷︷︸
Applied force

+
q2

6π
...
xμ

︸ ︷︷ ︸
Schott force

+
q2

6π
ẍ2ẋμ︸ ︷︷ ︸

Radiation reaction

, (1)

where xμ and pμ are the worldline and momentum of the particle with charge q, Fμ is an (arbitrary)
applied four-force, and an overdot represents differentiation with respect to proper time s.

The self-force terms in (1) comprise two parts, with contrasting behaviours. The RR contribution3

behaves exactly as we would expect for radiation friction: it is proportional to the rate of energy emission as
given by the Larmor formula, and is oriented antiparallel to the particle’s four-velocity (note ẍ2 � 0 as
acceleration is spacelike). By contrast, the Schott term (which is all that survives in the nonrelativistic limit)
is far less intuitive, and leads to some highly unphysical behaviour. The third derivative generically gives rise
to exponentially growing proper acceleration (‘runaway solutions’), which can be eliminated only at the cost
of having the particle respond to forces that have not yet been applied (‘preacceleration’). A further
peculiarity of (1) is that for uniform proper acceleration, ẍ2 = const., the Schott term precisely cancels the
radiation reaction, allowing a situation where a particle radiates without experiencing any consequent recoil
force.

Such behaviour is clearly not what one should expect, and a number of suggestions have been made how
to resolve these issues. Of the many proposed alternatives [21, 23, 27, 28, 30], none has met with universal
support. Recent experiments have found broad agreement with the predictions of the self-force [31–33],
albeit in a regime that cannot readily distinguish the different models.

To circumvent these issues, Landau and Lifshitz [29] introduced an order reduction procedure on (1),
replacing ẍμ and

...
xμ, respectively, with m−1Fμ and m−1Ḟμ, where m is the mass of the particle, taking the

applied force to be the Lorentz force,
m−1Fμ = Fμ

ν ẋν , (2)

3 The term ‘radiation reaction’ is often used to refer to the whole self-force. For our purposes the distinction is important, so we do not
here adopt this nomenclature.
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where Fμ
ν is the electromagnetic field scaled by the particle’s charge to mass ratio q/m. With the standard

relation pμ = mẋμ, this yields the LL equation,

ẍμ = Fμ
ν ẋν︸ ︷︷ ︸

Lorentz force

+ τ ẋλ∂λFμ
ν ẋν + τFμ

νFν
ρẋρ︸ ︷︷ ︸

Schott force

− τFλ
νFν

ρẋρẋλẋμ︸ ︷︷ ︸
Radiation reaction

, (3)

where τ = q2/(6πm) is the ‘characteristic time’ of the particle4 and terms of order O(τ 2) are neglected. In
contrast to (1), the LL equation (3) is second order, and yields vanishing self-force in regions where
Fμ

ν = 0, immediately eliminating the runaway and preacceleration problems. Further questions about the
reasonableness of LL can be addressed by considering its various contributions to the self-force.

The relative significance of the Schott and RR terms can be seen by denoting the typical field strength
(again, scaled by q/m) as Ω, its typical frequency as ω, and the particle’s relativistic Lorentz factor as γ.
Then the contributions to (3) scale relative to the applied force as

Schott (derivative):
τ ẋ · ∂F · ẋ

F · ẋ
∼ τωγ,

Schott (quadratic):
τF · F · ẋ

F · ẋ
∼ τΩ,

Radiation reaction:
τ(ẋ · F · F · ẋ)ẋ

F · ẋ
∼ τΩγ2.

Thus the smallness of τ can be offset by going to high frequencies and energies (in the derivative term) or
high field strengths and energies (in the radiation reaction term). It is important to recognise that these are
‘typical’ scalings: particular field configurations can eliminate the enhancement gained by higher energies.

For high energy particles in strong fields (the conditions under which the self-force is important), the
radiation reaction term will dominate over the more elusive Schott force, and we can treat the self-force as
pure RR. For sufficiently high field strengths and particle energies, it is even possible for the RR force to
exceed the applied force. This may appear to violate the assumptions that went into the derivation of (3),
but so long as these assumptions are met in the particle’s rest frame, the equation remains valid [4, 6].

3. Self-force on a particle interacting with a scalar field

The LL equation in the form (3) relies on the applied force being the Lorentz force (2). While this is the
most obvious force acting on charged particles, it is important to recognise it is not the only possibility.
Among the possible types of force that could act on a particle, a scalar force is significant both for its
simplicity, and because it can approximate many other interactions (including some cases of the Lorentz
force).

Neglecting self-forces, a particle of ‘scalar charge’ g, interacting with a scalar field Φ(x), is described by
the action

S[x(s)] = −
∫

ds
(
m + gΦ

)√
ημν ẋμẋν . (4)

If s is proper time, the square root in (4) is unity, but we retain it as this parametrisation will not be
preserved under variations of the worldline. This action is equivalent to that of a free particle, with
position-dependent mass

M = m + gΦ. (5)

This is related to the mechanism by which the Higgs field generates fermion masses [34].
Minimising the action (4) leads to the equation of motion

ṗμ = ∂μM, (6)

where the momentum pμ is now given by
pμ = Mẋμ, (7)

and we have adopted proper time parametrisation. Expressed in terms of acceleration, this corresponds to

ẍμ = Δμ
ν f ν , fμ = M−1∂μM, (8)

4 τ = 6.2 × 10−24 s for an electron or positron, the largest value for any elementary particle.
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where the ẋ-orthogonal projection Δμ
ν = δμν − ẋμẋν ensures the proper time condition ẋ2 = 1 is

preserved. The field strength fμ is analogous to Fμν and the potential ψ = ln(M/m) to Aμ in the
electromagnetic case.

Using (6) as the applied force, and incorporating the LAD self-force, leads to the equation of motion

ṗμ = ∂μM+
q2

6π

(...
xμ + ẍ2ẋμ

)
. (9)

The appearance of the particle’s charge q in (9) reminds us that, although the external force is scalar, the last
two terms are the self-force due to the particle’s electromagnetic field. While there could be an additional
scalar self-force, its inclusion would merely modify the coefficient in these terms [35, 36].

Following the LL order reduction procedure, we replace ẍ and
...
x in (9) with (8) and its derivative,

yielding
ẍμ = Δμ

ν f ν︸ ︷︷ ︸
Scalar force

+ τM
[
Δμ

ν

(
ẋλ∂λf ν − ẋλfλf ν

)
− fλΔ

λν fν ẋμ
]

︸ ︷︷ ︸
Schott force

+ τMfλΔ
λν fν ẋμ︸ ︷︷ ︸

Radiation reaction

, (10)

where τM = q2/(6πM) and terms of order O(τ 2
M) are neglected.

The first remark to make about (10) is that the acceleration caused by the self-force is now scaled by the
function τM rather than the constant τ . This could either enhance or suppress self-force effects, depending
on the coupling between the particle and the scalar field. The second, and most crucial, observation
regarding this equation is that the last term in the Schott force exactly cancels the radiation reaction, so that
the equation of motion reduces to

ẍμ = Δμ
ν

[
f ν + τM

(
ẋλ∂λf ν − ẋλfλf ν

)]
, (11)

with no contribution corresponding directly to RR. This does not mean that the particle does not radiate
(which any accelerating point charge must, according to the Larmor formula), but rather that the radiation
is compensated for by changes to the particle’s bound field, rather than by any explicit damping force.

The structure of this sLL equation mirrors that of its electromagnetic counterpart (3), with high
energies, strong fields, and rapidly varying fields all enhancing the self-force relative to the applied force. As
with the electromagnetic case, it is useful to explore the different scalings of the contributions within the
square brackets in (11):

Derivative term:
τM(ẋ · ∂)f

f
∼ τMωγ,

Quadratic term:
τM(ẋ · f )f

f
∼ τMΩγ,

where ω and Ω are again typical frequencies and magnitudes, respectively, of the field strength fμ. In this
case the stronger energy dependence of (8) compared to the Lorentz force means that the self-force scales
with only a single factor of γ relative to the applied force, not γ2. This also reduces the dominance of the
quadratic term (ẋλfλf μ) over the derivative term (ẋλ∂λf μ).

In the ultra-relativistic limit, retaining only the dominant O(γ3) terms, and assuming the field varies
slowly so the derivative term can be neglected, (11) becomes

ẍμ ∼ τM
(
ẋν fν

)2
ẋμ. (12)

This has exactly the same form as the ultra-relativistic limit of the radiation reaction term in (10), but the
opposite sign. In this limit, the total self-force acts as radiation anti-damping.

As a final remark, we note that the self-force can be elegantly recast in terms of the effective mass M
and momentum pμ in (5) and (7):

ṗμ = ∂μM− q2

6π
MΔν

μẋλ∂λ∂νM−1. (13)

This form of (11) will prove convenient in analysing the physical consequences of the self-force in a scalar
field, to which we will turn in section 5. Before doing so, we explore how a scalar force can be reinterpreted
geometrically, and how the self-force appears in this interpretation.

4. Radiating particle in a conformally flat spacetime

The interaction of a particle with a scalar field admits an alternative interpretation in terms of a curved
spacetime. Absorbing the dynamical mass M = m + gΦ into the metric inside the square root, the

4
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action (4) is seen to be equivalent to that for a free particle in a conformally flat spacetime,

S[x(s)] = −m

∫
ds
√

gμν ẋμẋν , gμν = e2ψημν , (14)

where the conformal factor ψ = ln(M/m) is the scalar potential, as above.5 Variation of the action (14)
yields the geodesic equation

aμ =
duμ

dλ
+ Γμ

νρuνuρ = 0, (15)

where the connection coefficients are given by

Γμ
νρ = fνδ

μ
ρ + fρδ

μ
ν − ημαfαηνρ, (16)

with fμ = ∂μψ. λ is proper time with respect to the metric gμν , and the four-velocity uμ satisfies the
normalisation gμνuμuν = 1.

The equation of motion (8) can be recovered from (15) by substituting ẋμ = eψuμ and changing
parametrisation to s, proper time with respect to the flat metric ημν , using ds = e−ψdλ. This demonstrates
the equivalence of the action of a scalar force in flat spacetime and geodesic motion in a curved spacetime
for a free particle.

This interpretation can be extended to include the self-forces, thanks to the conformal invariance of
Maxwell’s equations. In a curved spacetime, the LAD equation (1) generalises to6 [37, 38]

aμ = τΔμ
ν

(
Daν

dλ
− 1

2
Rν

λuλ

)
+ 3τuν

∫
(∇μGν

λ −∇νGμ
λ) uλds′, (17)

where ∇μ is the covariant derivative and D/dλ = uμ∇μ the absolute derivative, and Gμ
ν is the retarded

Green’s function for Maxwell’s equations, all in the spacetime with metric gμν . For convenience, in (17) we
raise and lower indices with gμν and its inverse (in all other equations in this article, index raising and
lowering is performed with the flat metric ημν).

The final term in (17) is nonlocal, depending on the past history of the particle’s worldline. However, in
conformally flat spacetime this tail vanishes [39, 40], leaving a local equation. With the conformally flat
metric, the Ricci tensor takes the form

Rμν = −2
(
∂μfν − fμfν

)
− ηαβ

(
∂αfβ + 2fαfβ

)
ημν. (18)

Substituting (18) into (17), and again converting from gμν , uμ and λ to ημν , ẋμ and s, yields

ẍμ = Δμν

[
fν + τM

(
ẋλ∂λfν − ẋλfλfν +

Daν
ds

)]
. (19)

This equation is almost identical to (11), differing only in the final term involving the derivative of the
acceleration. This distinction serves to remind us that (19) is the curved spacetime equivalent to the LAD
equation (1), and has not yet been subjected to the LL order reduction procedure. As such, the similarity
between the two equations is quite remarkable. The equivalence can be made complete by recognising that
the acceleration aμ vanishes in the absence of self-forces (recall from (15) that the effects of the scalar field
are here encoded in the connection coefficients Γμ

νρ), so the order reduction merely eliminates the final
term in (19).

We conclude this section by remarking that this identification of self-forces on a particle accelerated by a
scalar force, with those on an otherwise free particle in curved spacetimes, goes both ways. Thus the results
of the current work may apply more generally than to particles under the influence of scalar forces, finding
use for example in the early Universe, with the scalar force mimicking the effects of the cosmological scale
factor.

5. Evolution of Noether charges

Noether’s theorem tells us that to every symmetry of the action (in the present context, every symmetry of
M) there corresponds a conserved quantity [41]. However, inclusion of the self-force violates the

5 The scalar potential depends on the particle’s scalar charge to mass ratio g/m, so different particle species will experience different
effective metrics.
6 We could add an external force to the rhs of (17). Since the scalar force of interest has been absorbed into the spacetime geometry, we
omit this term.
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conditions of Noether’s theorem, giving rise to the possibility that these ‘conserved quantities’ can change
in time. Noether charges are important for determining the integrability of dynamics in a scalar field [42],
and understanding the rate at which they evolve is an important starting point to verifying theories of the
self-force.

In this section we consider fields exhibiting symmetries, and determine the evolution of their
corresponding Noether charges. We focus on the two examples of M that are invariant under time
translation, and under spatial translations, both because these are in a sense the most fundamental cases,
and also because they give the clearest insight into the effects of self-force. The extension to other Poincaré
symmetries is straightforward.

5.1. M(�r) and the variation of energy
An action that is invariant in time yields the total energy E as a conserved quantity. From (4), this energy
has the form

E = p0 = Mγ. (20)

This could be separated into kinetic (mγ) and potential (gΦγ) energies, though since M is the measurable
mass, such a distinction is not particularly useful.

As expected, (8) yields E = const. By contrast, the self-force equation (11) or (13) yields a change of
energy at the rate

dE
dt

=
q2

6π
M(�u · �∇)2M−1. (21)

Note that we treat position�r and velocity �u = d�r/ds as independent variables, so �∇ acts only on M−1, and
not on �u.

It is clear that E may increase or decrease, depending on how M varies in the direction of the particle’s
motion. This emphasises that the self-force cannot be interpreted as purely a radiation reaction force, as the
radiation can only reduce the total particle energy. This is in contrast to the analogous case of LL in an
applied electrostatic field, where an ultra-relativistic particle will typically lose energy.7

5.2. M(t) and the variation of momentum
If M is a function of time only, the (spatial) momentum �p = M�u would be conserved, according to
Noether’s theorem. When the self-force is taken into account this is no longer the case, and instead (11)
yields

d�p

dt
=

q2

6π

d2M−1

dt2
γ�p. (22)

In this case, the self-force acts to change the magnitude of momentum, but not its direction. This is indeed
what we would expect of a frictional force, except that depending on how M is changing in time, the
momentum could increase rather than decrease.

As an illustration, consider a spatially flat radiation-dominated Friedmann–Lemaître–Robertson–
Walker spacetime, modelling the early Universe. In terms of conformal time the metric of such a spacetime is
written

gμν = α2t2ημν. (23)

The equivalence between scalar fields and conformally flat spacetime allows us to interpret this as a scalar
field, giving particles an effective mass

M = mαt, (24)

and hence (22) yields
d�p

dt
= 2τM

γ

t2
�p, (25)

implying that in the very early Universe, charged particles may obtain a greater momentum than would be
suggested from considerations neglecting the self-force.

6. Self-force–free motion

We end this exploration of the self-force in a scalar field by revisting a notorious apparent paradox of the
LAD equation, which unlike the problems of runaway solutions and preacceleration is inherited by LL. A

7 In the Sokolov model of the self-force [28], the particle can only lose energy in an electrostatic field, regardless of whether or not it is
ultra-relativistic [7].
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particle undergoing hyperbolic motion satisfies the relation
...
xμ = a2ẋμ, where a =

√
−ẍ2 is the (constant)

proper acceleration. Hence the Schott term in (1) exactly cancels the radiation reaction force, and the total
self-force vanishes.

This combination of nonzero acceleration and vanishing self-force has caused considerable confusion
over the years, and led to a long debate over whether or not a charge in hyperbolic motion would radiate
[43]. This apparent paradox has now largely been resolved, with the explanation that the radiated energy is
‘borrowed’ from the particle’s Coulomb field, and the balance is paid off with rapid changes in the latter in
the transitions into and out of the period of uniform acceleration [44].

While this explanation is generally accepted, it is not entirely satisfactory that it relies on the behaviour
outside the period of hyperbolic motion to fully account for energy–momentum conservation. As such,
uncovering new aspects of self-forces in hyperbolic motion remains an active field of research [45–49].

From (13) it is clear that the self-force vanishes for fields of the form

M =
m

1 − bμxμ
, (26)

where bμ is any constant vector, and such fields do indeed accelerate particles at a constant proper rate. The
first point to note is that this field diverges as the particle approaches the point bμxμ = 1, so that the period
of uniform acceleration cannot be continued indefinitely.

We can gain further insight by switching to the curved spacetime interpretation of the scalar field. From
(18) and the expression for fμ in (8), the field (26) corresponds to a Ricci tensor of the form

Rμν = −3
bαbα

(1 − bβxβ)2
ημν. (27)

Of particular interest is the case where bμ is a null vector, bμbμ = 0. In this case the Ricci tensor vanishes
which, together with conformal flatness, implies that gμν is identically flat (albeit expressed in non-inertial
coordinates). Thus the equivalence between the motion of a point particle due to a scalar field and the
geometrical description of the motion of a point particle in a conformally related spacetime shows that
hyperbolic motion can be interpreted as geodesic motion in an alternative flat spacetime, for which
self-forces would naturally be expected to vanish.

7. Conclusions

The behaviour of a particle under the influence of some external force is one of the most basic questions in
physics, and yet one that is greatly obscured by the presence of the self-force. A charged particle is immersed
not only in any external fields present, but also in the electromagnetic field it generates. The response to the
particle’s own field is the cause of considerable confusion, and for over a century has caused problems of
interpretation.

The most widely recognised contribution to a particle’s self-force is radiation reaction, to the extent that
this label is often applied to the entire self-force. In the ultra-relativistic limit, radiation is emitted in a
highly collimated beam in the direction of the particle’s motion [1]. As such, radiation reaction has a
frictional nature. Deviations from this behaviour arise from the other contribution to the self-force, the
Schott force, generated by changes to the particle’s bound fields.

When the external field is electromagnetic, the self-force is the well-known LL force [29]. As expected, in
the ultra-relativistic limit this self-force is typically frictional, with magnitude given by the Larmor formula.
The situation is very different when the external field is a scalar. Here, the radiation reaction is precisely
cancelled by part of the Schott force, so that the remaining self-force is not frictional, even in the
ultra-relativistic limit, and can even be anti-damping. This leads to behaviour that would not be expected
from radiation reaction alone, such as a particle in a time-independent field gaining energy.

The action of a scalar force on a test particle can be interpreted in terms of a free particle in a
conformally flat spacetime, and this equivalence can be extended to include the self-force. This expands the
applicability of the current work, for example to include certain cosmological models. It also allows for a
new interpretation of the old problem of hyperbolic motion without self-force, which can be regarded as
equivalent to inertial motion in a flat spacetime.
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