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Abstract
We use a simplified version of the framework of resource monoids, introduced by Dal Lago and Hofmann
to interpret simply typed λ-calculus with constants zero and successor. We then use this model to prove a
simple quantitative result about bounding the size of the normal form of λ-terms. While the bound itself is
already known, this is to our knowledge the first semantic proof of this fact. Our use of resource monoids
differs from the other instances found in the literature, in that it measures the size of λ-terms rather than
time complexity.
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1. Introduction
We start by formulating a simple problem about the computational power of simply typed
λ-calculus. The result itself is well known; the aim of this paper will be to provide a semantic
proof of it, using Dal Lago and Hofmann’s framework based on resource monoids.

A simply typed busy beaver. Consider simply typed λ-calculus, equipped with one base type
o, and two constants 0 : o and S : o→ o. Under the standard set-theoretic interpretation of λ-
terms (with [[o]]=N, [[0]]= 0 and [[S]]= n �→ n+ 1), closed terms of type o correspond to natural
numbers. A natural question to ask is how compactly we can write large natural numbers. More
precisely, given a closed term t : o of size |t|, can we find an upper bound on its denotation [[t]] ∈N?

As an example, compare the following three λ-terms of type o. They use (roughly) the same
number of characters, but their denotations are increasingly large natural numbers. We write 2̄
for the church encoding of the number two, 2̄ := λf . λx. f (fx).

(a) t = S(S(S( . . . (S0)))) with n occurrences of S.
(b) u= 2̄(2̄(2̄( . . . (2̄S))))0 with n occurrences of 2̄.
(c) v= (((2̄2̄)2̄) . . . 2̄)S0 with n occurrences of 2̄.

†Martin Hofmann died on January 23, 2018. This work was carried out in 2016, while the second author was doing aMasters
internship supervised by Martin at the Ludwig Maximilian University of Munich. While he could not take part in writing this
article, Martin is undoubtedly an author of the work presented here.
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Their denotations are, respectively, [[t]]= n, [[u]]= 2n, and [[v]]= 22···2 , a tower of exponentials
of height n. Our goal is to show that one cannot do better than such a tower of exponentials. More
precisely, we will prove the following upper bound due to Beckmann (2001):

Claim 1. For every closed term t : o, we have [[t]]≤ 22···
|t|
, where the height of the tower of

exponentials is one plus the maximal order of a nonlinear λ-abstraction occurring in t.

A related question is to ask which set-theoretic functions arise as the denotation of some closed
term of type o→ o. Intuitively, all these terms can do is add some fixed number of S’s to their
argument. Thus,

Claim 2. For every closed term f : o→ o, there exists a constant C ∈N such that its denotation
[[f ]] :N→N is bounded by n �→ n+ C.

A mild generalization of this result is the case of functions with several arguments. Intuitively,
only one of these arguments can be used, and the other ones are discarded:

Claim 3. For every closed term f : ok → o, there exists a constant C ∈N such that its denotation
[[f ]] :Nk →N is bounded by (n1, . . . , nk) �→max(n1, . . . , nk)+ C.

Claim 3, and consequently Claim 2 as a special case of it, appear, for example, in Simmons
(2005). Once again, we stress that these three results are well known, and not very difficult to prove
by syntactic means. The originality of our proofs reside in their semantic nature: we construct a
model for λ-calculus where fast-growing functions do not exist.

Resource monoids and length spaces. Resource monoids1 were introduced by Dal Lago and
Hofmann as part of a semantic framework to prove soundness theorems in the field of Implicit
Computational Complexity (Dal Lago and Hofmann, 2011). The main idea of this setting is to
consider a modification of realizability, where bounded-time algorithms are used as realizers. The
bounds are expressed abstractly as elements of an algebraic structure called a resource monoid.
This allows for more flexibility in the framework. Given a particular resource monoidM, one can
define the notion of length spaces on M, that is, sets of data that can be bounded by elements of
M in a coherent way. As it turns out, the category of length spaces on any resource monoid M
is symmetric monoidal closed, making it suitable to interpret second-order multiplicative affine
logic. This is the common base of this semantic framework, which is independent of the choice of
M. To be able to model logical systems with additional features, one must choose an appropriate
resource monoid M, so that the associated category of length spaces has the required additional
structure.

To our knowledge, all instances of resource monoids previously found in the literature were
used to measure the time complexity of programs. Moreover, they all deal with systems based
on linear logic, where duplication of data is forbidden or restricted. In this paper, we present a
new use-case of resource monoids. We define a particular resource monoid M whose elements
represent bounds the potential of a λ-term to produce large normal forms. The main difficulty
to interpret simply typed λ-calculus is then to prove that the category of length spaces over M
actually has duplication morphisms, allowing us to model the contraction rule.

Lastly, we use this model to prove Claims 1 to 3. The interpretation of a λ-term in our model
can be computed effectively, by induction on the structure of the term. By doing so, one can get
an upper bound on the size of the normal form of a term, without needing to actually β-reduce it.
A careful analysis of this process yields the tower of exponentials of Claim 1.

1The term “resource monoid” also appears in the context of bunched logics with a different definition and purpose; this is
unrelated and should not be confused with the resource monoids that we use here.
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Related work. The first upper bound on the number of reduction steps necessary to compute the
normal form of a simply typed λ-term was given by Schwichtenberg (1982), who proved that
it lies in the class E4 of the Grzegorczyk hierarchy. Later, Beckmann (2001) improved on the
result of Schwichtenberg and gave an upper bound akin to the one in Claim 1. Note that both
Schwichtenberg and Beckmann measure the length of a reduction sequence to reach a normal
form; while we measure the size of the normal form itself. That explains the additional level that
we get in our tower of exponentials. Moreover, our notion of size |t| of a term t (defined formally
in Section 5) slightly differs from the one used by Beckmann: we count the number of variables
and successors in the term t; while Beckmann’s formula counts the variables and λ-abstractions.

The two Claim 2 and Claim 3 should not be confused with other similar results about the
so-called λ-definability of functions N→N. This notion of definability refers to terms of type
Nato →Nato, where Nato := (o→ o)→ (o→ o) is the type of Church numerals over some base
type o. More precisely, let n ∈ Nato denote the Church encoding of n ∈N. Then a function f :
N→N is λ-definable if there is a λ-term t : Nato → Nato such that for all n ∈N, tn=β f (n). The
famous theorem of Schwichtenberg says that those functions are exactly the extended polynomials
(Schwichtenberg, 1975).

This is not the end of the story, however. One can greatly augment the class of λ-definable
functions by considering terms t : Natτ → Nato, where τ can be any arbitrary type. In this
case, fast-growing functions up to towers of exponentials can be defined, but other very sim-
ple functions such as subtraction cannot be expressed (Fortune et al., 1983). For this notion of
λ-definability, some partial descriptions of the class of definable functions can be found in the
literature (Joly, 2001), but no exact characterization is currently known (Nguyên, 2019). Recently,
new interest in the notion of λ-definability was sparked by the discovery of links between lin-
ear logic and automata theory. Indeed, the class of regular languages can be characterized as the
class of functions definable by λ-terms of type Strτ → Boolo (Hillebrand and Kanellakis, 1996).
By imposing additional constraints on the λ-terms (e.g. using non-commutative affine types), one
can characterize subclasses of regular languages, such as star-free languages (Nguyên and Pradic,
2020; Nguyên et al., 2020).

Dal Lago and Hofmann’s work on resource monoids originated in the field of implicit com-
plexity. In this context, the aim is usually to prove soundness results of the form: “every definable
function lies in a given complexity class.” In this way, various complexity classes can be charac-
terized as the classes of all functions definable in a certain logical system. By instantiating their
general framework in different ways, Dal Lago and Hofmann proved such soundness results for
various programming languages: Elementary Affine Logic, LFPL and Soft Affine Logic (Dal Lago
and Hofmann, 2011); Light Affine Logic (Dal Lago and Hofmann, 2010b); and Bounded Affine
Logic (Dal Lago and Hofmann, 2010a). The same technique was used by Brunel and Terui (2010)
to prove the polytime soundness of the system DIALlin. A modification of the resource monoid
framework dubbed quantitative realizability was introduced by Brunel (2015).

Plan of the paper. The preliminary Section 2 defines the notions of resource monoids and length
spaces, and shows how they give rise to a model of multiplicative affine logic. This is the common
base given by the framework developed by Dal Lago and Hofmann.

Then, in Section 3, we define our resource monoid M of interest, whose elements are finite
sequences of natural numbers. Such sequences will be used to bound the growth potential of a
λ-term. For instance, a term bounded by the sequence [a,b,c,d] can have a normal form of size
at most a+ b · 2c·2d . Section 3.2 introduces this conversion between sequences of numbers and
towers of exponents, that we call “collapsing” a sequence.

In Section 4, we define our interpretation of simply typed λ-calculus in the category of length
spaces overM. The main technical difficulty is to model the contraction rule, where a variable in
the typing context of a term gets duplicated. This is where the notion of order of a type becomes
crucial: the element of M bounding the duplication morphism will depend on the order of the
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type of the variable being duplicated. At the end of Section 4, we can already prove Claim 2 and 3,
simply by considering the denotation of a term in our model.

Finally, in Section 5, we prove the remaining Claim 1. To achieve this, we need to analyze more
carefully how the length of the bounding sequence grows when we compute the interpretation of
a term in our model.

2. Preliminaries
2.1. Simply typed λ-calculus with constants
We briefly recall syntax and typing rules of simply typed λ-calculus, equipped with one base type
o, and two constants 0 : o and S : o→ o. The types are given by the following grammar:

σ , τ ::= o | σ → τ | σ × τ

The terms are given by the grammar below, where x belongs to some infinite set of variables.
t, u ::= 0 | S | x | tu | λx. t

Finally, we give the typing rules with explicit contraction and weakening. This presentation high-
lights the contraction rule (CONTR), where a variable in the context gets duplicated. The main
technical difficulty of the paper will be to deal with this duplication operation.

2.2. Resource monoids and length spaces
In this paper, we use a simplified version of the notion of resource monoid, introduced by Dal
Lago and Hofmann (2011). The elements of a resource monoid can be used to bound various
quantitative properties of programs, such as runtimes or the size of data. To allowmore flexibility,
these bounds need not be numbers: they can be elements of any commutative monoid, equipped
with a suitable pre-order.

Definition 1. A resource monoid2 is a tripleM= (|M|,+,≤ ) such that:

• (|M|,+) is a commutative monoid, and
• ≤ is a pre-order on |M| compatible with +, that is, α ≤ β implies α + γ ≤ β + γ .

As shown in Dal Lago and Hofmann (2011), any resource monoidM gives rise to a notion of
length spaces onM, which form a symmetric monoidal closed category. Thus, this yields a model
of multiplicative linear logic. In order to interpret programming languages with more features,
one needs to choose a particular resource monoid of interest, whose associated category of length
spaces has the desired additional structure. This is the approach taken in Dal Lago and Hofmann
(2011, 2010b,a) to provide models of various programming languages: Elementary Affine Logic,
Light Affine Logic, Soft Affine Logic, Bounded Affine Logic, and LFPL. In the remainder of the
section, we assume given an arbitrary resource monoidM.

2In Dal Lago and Hofmann (2011), resource monoids also contain a fourth component D that can be interpreted as the
difference D(α, β) between two elements α ≤ β of the monoid. This allows to measure the cost of a computation (e.g., time
complexity) as a trade-off between the size of the data and the time taken to process it. For the application in this paper, this
component is not required.
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Definition 2. A length space3 on a resource monoid M is a pair A= (|A|,� ) where |A| is a set,
and � ⊆ |M| × |A| satisfies the following properties:

• for all a, there exists α such that α � a, and
• if α � a and α ≤ β, then β � a.

When α � a, we say that α is amajorizer of a, or that α majorizes a. Intuitively, a is the denotation
of a program, and α represents an upper bound on some quantitative property of a. When we
need to distinguish between several length spaces, we will write the majorizer relation �A, with
the name of the length space as a subscript.

Definition 3. Fix a resource monoid M. A morphism of length spaces from A to B is a function
f : |A| → |B| satisfying the following property:

• there exists ϕ ∈ |M|, such that α �A a implies ϕ + α �B f (a).
When this property holds, we call ϕ a majorizer of f , and we denote it by ϕ �A�B f .

As the above notation suggests, given two length spaces A and B, we can define a new length
space A� B := (Hom(A, B),�A�B ), where Hom(A, B) is the set of morphisms from A to B.
It is easily checked thatA� B is indeed a length space. Similarly, we can define the tensor prod-
uct of two length spaces, A⊗ B := (|A| × |B|,�A⊗B ), where the relation �A⊗B is defined by
γ �A⊗B (a, b) iff there exist α, β ∈ |M| such that:

α �A a and β �B b and γ ≥ α + β .

Again, we can check that this is a well-defined length space onM.
As mentioned earlier, length spaces together with the two operators � and ⊗ assemble into

a symmetric monoidal closed category. The next Theorem was first proved by Dal Lago and
Hofmann (2011). We reproduce the proof in details below; first because we slightly modified the
definitions of resource monoids and length spaces, and second because we will need to know how
the various maps are defined in order to compute the interpretation of a λ-term in this category.

Theorem. (Dal Lago and Hofmann, 2011). Given any resource monoid M, the category of length
spaces onM is symmetric monoidal closed with respect to the tensor product and linear map defined
above.

Proof. Recall that morphisms of length spaces simply consist of set-theoretic functions which can
be majorized by some element of M. Thus, the symmetric monoidal closed structure is derived
from the one in Set, and all we need to do is find appropriate majorizers.

For example, to define composition of two morphisms f :A→ B and g : B → C, majorized,
respectively, by ϕ and ψ , we check that the function g ◦ f := x �→ g(f (x)) : |A| → |C| is majorized
by ϕ + ψ . Assume α �A a, we want to show that ϕ + ψ + α �C g(f (a)). Since ϕ majorizes f , we
know that ϕ + α �B f (a), and therefore since ψ majorizes g, ψ + ϕ + α �C g(f (a)). The identity
function id :A→A is majorized by 0M, the neutral element ofM.

The unit object is defined as I = ({
},�I ) where α �I 
 for all α. This is trivially a length
space. The unitors, associator and braiding are all majorized by 0M. Let us check that this is
the case for the associator assocA,B,C : (A⊗ B)⊗ C →A⊗ (B ⊗ C), whose underlying function
is ((a, b), c) �→ (a, (b, c)). We assume that μ�(A⊗B)⊗C ((a, b), c), i.e., that μ ≥ ν + γ with ν �A
⊗B(a, b) and γ �C c. Unfolding the definition of �A⊗B , we get that ν ≥ α + β , with α �A a and
β �B b. Then we can show 0M + μ�A⊗(B⊗C) (a, (b, c)), using the fact that μ ≥ α + (β + γ ).

3In Dal Lago and Hofmann (2011), the relation � also contains a third component e, called a realizer of a. It plays a
role to measure the computation time of programs, and for cardinality issues when interpreting the second order universal
quantification. We do not need these features, hence we also drop these realizers from our definitions.
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Given two parallel morphisms f :A→A′ and g : B → B′, majorized by ϕ and ψ , respectively,
the functorial action of⊗ yields the morphism f ⊗ g :A⊗ B →A′ ⊗ B′. The underlying function
(a, b) �→ (f (a), g(b)) can be majorized by ϕ + ψ . Indeed, given γ �A⊗B (a, b), we need to prove
that ϕ + ψ + γ �A′⊗B′ (f (a), g(b)). By definition of �A⊗B , there are α, β such that γ ≥ α + β ,
α �A a and β �B b. Then we know that ϕ + α �A′ f (a) and ψ + β �B′ g(b) because f and g
are morphisms. Hence, ϕ + ψ + α + β �A′⊗B′ (f (a), g(b)), and we can conclude by the second
property of length spaces.

The evaluation morphism eval :A⊗ (A� B)→ B, defined by eval(a, f )= f (a), can be
majorized by 0M. Indeed, assume ε �A⊗(A�B) (a, f ). By definition, there are α, ϕ such that α �A
a, ϕ �A�B f and ε ≥ α + ϕ. Since ϕ majorizes f we have α + ϕ �B f (a), and since ε ≥ α + ϕ, we
conclude that ε �B f (a) as required.

Finally to define currying, given any morphism f :A⊗ B → C majorized by ϕ, the morphism
curry(f ) :A→ (B� C) whose underlying function is a �→ b �→ f (a, b) can also be majorized by
ϕ. Indeed, assuming α �A a, we want to show that ϕ + α �B� C]b �→ f (a, b). So suppose β �B b,
we need to prove that ϕ + α + β �C f (a, b). But this is the case because α + β �A⊗B (a, b) and f
is a morphism.

Remark 4. We actually have a little bit more than stated in Section 2.2: for allA, there is a unique
weakening map fromA to I majorized by 0M. Thus, length spaces over a resource monoid actu-
ally provide a model of multiplicative affine logic. The missing ingredient to interpret λ-calculus
is the duplication morphism  :A→A⊗A. Such a morphism might not exist in general, so we
need to choose a suitable resource monoid.

3. A Resource Monoid Measuring the Size of Terms
Wenow define our resourcemonoid of interest,M, that we will use later to prove the three Claims
1 to 3 of the introduction.

Intuition. The elements ofM are finite lists of numbers, e.g. [3, 4, 5, 6]. Such a list can be thought
of as representing a (large) natural number, obtained by computing a tower of exponents of 2.
For instance, the list [3, 4, 5, 6] represents the number 3+ 4 · 25·26 . Usually, longer lists tend to
produce very large numbers. Indeed, the size of the list corresponds to the height of the tower of
exponentials. The ordering relation ≤M on these lists of numbers almost amounts to comparing
the associated numbers, but it also takes into account the size of the lists.

In Section 4, we will interpret λ-terms in the category of length spaces over M. Thus, every
λ-term can be associated with an element of M, which should be thought of as an upper bound
on the “potential” of this term for producing large natural numbers. Alternatively, one can think
of it as measuring the size of the normal form of the associated λ-term. Indeed, for a closed term
t of type o, the denotation [[t]] ∈N is equal to the size of its normal form. Crucially, the size of
the list associated with a λ-term t is equal to the maximal order of a nonlinear λ-abstraction that
occurs in t. This key observation will allow us to prove Claim 1 in Section 5.

3.1. The resource monoid
The elements of M are sequences of natural numbers with finite support, that is, ending with
infinitely many 0’s. For ease of notation, we write them as finite lists of natural numbers: an ele-
ment α = (an)n∈N of |M| such that ak = 0 and ∀n> k, an = 0 is denoted by α = [a0, . . . , ak]. We
write |α| the length of that list (in this case, k+ 1). Note that we always assume that the last
element of a list is non-zero, to avoid having several lists representing the same sequence. The
constant zero sequence (corresponding to the empty list) is written 0M.
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Definition 5. LetM= (|M|,+M,≤M) be the following structure:

• |M| is the set of sequences of natural numbers with finite support.
• +M is defined componentwise: we take the max on the first component, and the sum on the
others. For ease of notation, we denote max(a, b) by a∨b.

(an)+M (bn)= (cn) where

⎧⎨
⎩
c0 = a0 ∨ b0
cn = an + bn for n> 0

• (an)≤M(bn) iff there exists (dn) ∈M such that:
⎧⎨
⎩
a0 ≤ b0 + d0
an + dn−1 ≤ bn · 2dn for all n> 0

The intuition behind this ordering is the following. First, notice that if we take (dn) to be the
constant zero sequence 0M, then the condition above reduces to the componentwise ordering,
an ≤ bn for all n. However, if a0 happens to be greater than b0, we can accommodate for it by
taking a “debt” d0. This debt must be paid back in the next step, where we compare a1 and b1:
if it is not the case that a1 + d0 ≤ b1, then we must accumulate some more debt d1, and so on.
However, notice that the debt must eventually be paid back: since the sequence (bn) ultimately
becomes null, so must (dn). Also note that the debt decreases exponentially at each step (but never
reaches 0 unless ai < bi at some point).

Example 1.
(a) To check that [7, 12, 1]≤M[0, 2, 5], first we take a debt d0 = 7 so that 7≤ 0+ d0. Then

the condition on the second component is 12+ 7≤ 2 · 2d1 ; take d1 = 4. Finally, the last
condition is 1+ 4≤ 5 · 2d2 ; we can take d2 = 0 and the debt is paid off.

(b) Similarly, one can check that [65537]≤M [1, 1, 1, 1, 1, 1].
(c) However, [65538]�M [1, 1, 1, 1, 1, 1].

Lemma 1. If α≤Mβ, then |α| ≤ |β|.
Proof. Let β = [b0, . . . , bk] (the case β = 0M is trivial). Assuming α≤Mβ , for every index n> k,
the condition an + dn−1 ≤ 0 is verified because bn = 0. Since both an and dn−1 are natural
numbers, we must have an = dn−1 = 0.

In the rest of the paper, we often use Lemma 1 implicitly: whenever there is an assumption
of the form α≤M[b0, . . . , bk], only the first (k+ 1) inequalities matter. In particular, the last
inequality is just ak + dk−1 ≤ bk, since we must have dk = 0.

Proposition 6. M is a resource monoid.

Proof. First, we check that (|M|,+M) is a commutative monoid. The neutral element is 0M.
Associativity and commutativity are clear since +M is defined componentwise, and + and ∨ on
natural number are both associative and commutative.

Next, we check that≤M is a pre-order. Reflexivity is clear by taking (dn)= 0M. For transitivity,
assume (an)≤M(bn) with debt (dn), and (bn)≤M(cn) with debt (d′

n). We show that (an)≤M(cn)
with debt (dn + d′

n).

• a0 ≤ b0 + d0 and b0 ≤ c0 + d′
0, thus a0 ≤ c0 + d0 + d′

0.
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• For all n> 0, we have an + dn−1 ≤ bn · 2dn and bn + d′
n−1 ≤ cn · 2dn . Then,

an + dn−1 + d′
n−1 ≤ bn · 2dn + d′

n−1

≤ (bn + d′
n−1) · 2dn

≤ cn · 2d′
n · 2dn

≤ cn · 2dn+d′
n

Finally, ≤M is compatible with +M. Assume that (an)≤M(bn) with debt (dn). We show that
(an)+M (cn)≤M(bn)+M (cn) with debt (dn).

• a0∨c0 ≤ (b0 + d0)∨c0 ≤ (b0∨c0)+ d0.
• For all n> 0, (an + cn)+ dn−1 ≤ bn · 2dn + cn ≤ (bn + cn) · 2dn .

Remark 7. The relation ≤M is actually an order. Indeed, if α≤Mβ and β≤Mα, then |α| = |β|
and we can then prove by induction on their size that α = β . However, this property is not
required to be able to use the framework of resource monoids.

3.2. The collapse functions

An element α = [a0, . . . , ak] ofM can be associated with a natural number a0 + a1 · 2a2·2···ak . We
call this operation “collapsing” the sequence α. The order relation ≤M on these sequences almost
amounts to comparing these associated numbers, but not exactly. In this section, we make precise
the relationship between the two. To this end, we define a function collapsen : |M| → |M| for
every n ∈N. The idea is that, given an element α = [a0, . . . , ak] of M, we decrease its length by
one by plugging the last component into the penultimate one (either by addition or bymultiplying
by a power of 2, depending on the case). We then repeat this process until the size of the list
becomes n+ 1 or smaller. Formally:

collapse0([a0, a1]) = [a0 + a1]

collapsen(α) = α if |α| ≤ n+ 1

collapsen([a0, . . . , ak]) = collapsen([a0, . . . , ak−2, ak−1 · 2ak]) otherwise

Example 2. For instance, collapse3([0, 1, 2, 3, 4, 5, 6])= [0, 1, 2, 3 · 24·25·26 ] is a list of size 4, while
collapse0([6, 3, 11, 4])= [6+ 3 · 211·24] is a list of size 1.
Proposition 8. The collapse functions have the following properties:

(i) For all n,
∣∣collapsen(α)

∣∣ ≤ n+ 1.
(ii) For all n, collapsen(α)≤Mα.
(iii) If α≤Mβ and |α| ≤ n+ 1, then α≤Mcollapsen(β).
(iv) For all n, if α≤Mβ, then collapsen(α)≤Mcollapsen(β).
(v) If n≤m, then collapsen(α)≤Mcollapsem(α).
(vi) If |α| ≤ n, then collapsen(α + β)= α + collapsen(β).

Proof.

(i) The first property is straightforward by induction on the size of the list.
(ii) Proceed by induction on the size of α. We distinguish the three cases of the definition.
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• If |α| ≤ n+ 1, then collapsen(α)= α≤Mα.
• If α = [a0, a1] and n= 0, then [a0 + a1]≤M[a0, a1] by taking the debt d0 = a1.
• Otherwise α = [a0, . . . , ak] with k> n, and the induction hypothesis gives us:

collapsen([a0, . . . , ak−2, ak−1 · 2ak])≤M[a0, . . . , ak−2, ak−1 · 2ak]
Moreover,

[a0, . . . , ak−2, ak−1 · 2ak]≤M[a0, . . . , ak]

by taking the debt dk−1 = ak and di = 0 otherwise. By transitivity,

collapsen([a0, . . . , ak])≤M[a0, . . . , ak].

(iii) By induction on the size of β . Let (di) be the debt that proves α≤Mβ .

• Case |β| ≤ n+ 1: trivial since collapsen(β)= β .
• Case β = [b0, b1] and n= 0: we have a0 ≤ b0 + d0 and a1 + d0 ≤ b1. Since |α| ≤ 1, we
have a1 = 0 and therefore d0 ≤ b1. So a0 ≤ b0 + b1, from which we can deduce that
α≤M[b0 + b1]= collapse0(β) without debt.

• Case β = [b0, . . . , bk] for k> n. By induction hypothesis, we just need to prove:

α≤M[b0, . . . , bk−2, bk−1 · 2bk].
We use the debt (d′

i) defined by d′
k = 0 and d′

i = di otherwise. The conditions at ranks
0 to k− 2 stay the same. We need to check the condition at rank k− 1, which is
ak−1 + dk−1 ≤ bk−1 · 2bk . From the hypothesis α≤Mβ , we get ak−1 + dk−1 ≤ bk−1 · 2dk
and ak + dk ≤ bk. But we assumed |α| ≤ n+ 1 and k> n, so ak = 0. Hence, dk ≤ bk and
we are done.

(iv) By property (ii), collapsen(α)≤Mα≤Mβ . But
∣∣collapsen(α)

∣∣ ≤ n+ 1, so by property (iii)
we conclude that collapsen(α)≤Mcollapsen(β).

(v) By (ii), we have collapsen(α)≤Mα. Moreover, since
∣∣collapsen(α)

∣∣ ≤ n+ 1≤m+ 1, we
can apply (iii) to get collapsen(α)≤Mcollapsem(α).

(vi) This is obvious since the collapsen function does not alter the first n components of a list.
Formally, a proof by induction on the size of β is straightforward.

4. A Quantitative Model for λ-Calculus
We can now interpret the λ-calculus with constants of Section 2.1 in the category of length spaces
overM. To do this, we need to define the interpretation of the constants; and most importantly,
define a duplication morphism to interpret the contraction rule.

4.1. Interpretations of o, 0, S
In our model, we would like the underlying sets of the length spaces, and the underlying functions
of the morphisms, to be the usual set-theoretic semantics. Thus, we need a length space whose
underlying set is N in order to interpret the type o.

Definition 9. Define N= (N,�N ), where α �N n iff [n]≤Mα.
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This is easily seen to be a length space onM. Indeed, for all n ∈N we have [n]�N n. Moreover,
if α �N n and α≤Mβ , by transitivity [n]≤Mβ so β �N n.

Lemma 2. We have another characterization of �N: α �N n iff [n]≤Mcollapse0(α). If we write
collapse0(α)= [a0], then α �N n iff n≤ a0.

Proof. If [n]≤Mα, then by Proposition 8 (iii), [n]≤Mcollapse0(α). Conversely, if
[n]≤Mcollapse0(α), then [n]≤Mα by Proposition 8 (ii) and transitivity.

Next, we want to interpret the function symbols 0 and S. Recall that the unit of the category of
length spaces is I = ({
},�I ) where α �I 
 for all α.

• We interpret 0 : o as the morphism in I �N that sends 
 to 0 ∈N. It is easy to check that
this morphism is majorized by 0M.

• S : o→ o is a little bit less trivial: we want to interpret it as the successor function n �→ n+ 1 :
N→N. To prove that it is indeed a morphism inN�N, we need to find a majorizer. Let us
check that [0, 1]�N�N n �→ n+ 1.

Suppose that α �N n, we want to prove that α + [0, 1]�N n+ 1. By assumption, we have
[n]≤Mα, so [n]+ [0, 1]≤Mα + [0, 1]. And by Proposition 8 (ii), we get [n+ 1]≤Mα + [0, 1].

4.2. The duplicationmorphism
In Section 2.2, we have seen that we can interpret multiplicative linear logic with full weakening in
the category of length spaces onM. What remains to be done is to define a duplicationmorphism
of type A→A⊗A whose underlying function is a �→ (a, a). Unfortunately, this is not possible
in general: we would have to find an element ϕ ∈M such that α + α≤Mϕ + α for all α, and no
such element exists (take |α| > |ϕ|).

However, finding such a ϕ becomes possible if we know in advance that the size of α is bounded
(see Lemma 4). To obtain such a bound on the size of majorizers, we need to have a notion of
order of a length space, akin to the order of a type in λ-calculus. Thus, let us restrict ourselves to
the full subcategory S of the category of length spaces onM, whose objects are the length spaces
built inductively from N, I , � and ⊗. The objects of S are the length spaces generated by the
following grammar:

A, B ::= I |N |A� B |A⊗ B
Definition 10. The order Ord(τ ) of a type τ is defined inductively as follows:

Ord(o) = 0

Ord(τ1 → τ2) = max(Ord(τ1)+ 1,Ord(τ2))

Ord(τ1 × τ2) = max(Ord(τ1),Ord(τ2))

For a length spaceA in S , we also define Ord(A) in a similar way (with Ord(I)= 0).

The next Lemma is the main motivation for the definition of the collapse functions. Intuitively,
it says that the function denoted by a term t : τ can always be majorized by an element of M of
size at most Ord(τ )+ 1. Such a majorizer is obtained from any other majorizer by applying the
function collapse[Ord(τ )].

Lemma 3. LetA ∈ S , and let n=Ord(A). If α �A a, then collapsen(α)�A a.

Proof. By induction on the structure ofA.

• The caseA= I is trivial.
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• The caseA=N follows from Lemma 2.
• Case A= B� C: assume ϕ �B�C f . By definition of the order of B� C, we must have
Ord(B)≤ n− 1 and Ord(C)≤ n.
Assume β �B b. By induction hypothesis, collapseOrd(B)(β)�B b, and by Proposition 8 (v)
and upward-closure of �, collapsen−1(β)�B b.
Since ϕ majorizes f , we have ϕ + collapsen−1(β)�C f (b). By the second induction hypothesis
(and upward-closure), collapsen(ϕ + collapsen−1(β))�C f (b). Then:

collapsen(ϕ + collapsen−1(β))
≤M collapsen(ϕ)+ collapsen−1(β) by Proposition 8 (vi)
≤M collapsen(ϕ)+ β by Proposition 8 (ii)

Hence collapsen(ϕ)+ β �C f (b), so collapsen(ϕ)�B�C f .
• Case A= B ⊗ C: assume α �B⊗C (b, c). There are β and γ such that β �B b, γ �C c, and

β + γ≤Mα. Since Ord(B)≤ n and Ord(C)≤ n, we can use the induction hypothesis (and
upward-closure of �) to obtain collapsen(β)�B b and collapsen(γ )�C c.
Moreover, collapsen(β)+ collapsen(γ )≤Mβ + γ≤Mα. By Proposition 8 (iii),
collapsen(β)+ collapsen(γ )≤Mcollapsen(α). Therefore, collapsen(α)�B⊗C (b, c).

Lemma 4 Let ϕ = [0, 0, 1, . . . , 1] where |ϕ| = n+ 1. Then, for all α such that |α| ≤ n, α +
α≤Mϕ + α.

Proof. Write α = (ai) and take the debt di = 1 when 1≤ i≤ n− 1, and di = 0 otherwise. On the
first component, a0∨a0 ≤ (a0∨0)+ 0 is verified. On the second component, a1 + a1 ≤ (a1 + 0) ·
21 is verified. Then for 2≤ i≤ n− 1, ai + ai + 1≤ (ai + 1) · 21 is verified. The last condition is
just 1≤ 1 since an = 0.

We can now define the duplication in S :
Proposition 11. Let A ∈ S with Ord(A)= n, the duplication function a �→ (a, a) is majorized by
ϕn = [0, 0, 1, . . . , 1] where |ϕn| = n+ 2.

Proof. Assume α �A a, we must prove that ϕn + α �A⊗A (a, a). By Lemma 3, we know that
collapsen(α)�A a, and since

∣∣collapsen(α)
∣∣ ≤ n+ 1, we can apply Lemma 4 to get collapsen(α)+

collapsen(α)≤Mϕn + collapsen(α). Then by Proposition 8 (ii), we obtain collapsen(α)+
collapsen(α)≤Mϕn + α, which concludes the proof.

4.3. Interpreting λ-calculus
Putting together the results of Sections 2.2, 4.1 and 4.2, we get the next Theorem, allowing us to
interpret our simply typed λ-calculus in the category of length spaces onM.

Theorem. The category S is cartesian closed.

We denote by [[− ]]S the interpretation of types and terms in S , and by [[− ]] the standard
set-theoretic interpretation. Thus,

Recall that [[0]]S : I →N is majorized by 0M; [[S]]S :N→N is majorized by [0,1]; and the dupli-
cation morphism A :A→A⊗A with Ord(A)= n is majorized by [0, 0, 1, . . . , 1] of size n+ 2.
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Moreover, recall from the proof of Section 2.2 that if f and g are majorized by ϕ and ψ , then both
f ◦ g and f × g are majorized by ϕ + ψ . All the other structure maps of S are majorized by 0M .

Thus, given a term t : τ , we can effectively compute a majorizer of the element [[t]]S of the
length space [[τ ]]S . It is straightforward to check that the underlying set of [[τ ]]S is [[τ ]], and the
underlying function of [[t]]S is [[t]].

Example 3. Let us compute the majorizers of a few λ-terms.

(a) Let t = S(S( . . . (S0))), with k occurrences of S. Then [[t]]S : I →N is majorized by [0,k]. By
Lemma 2, this yields the upper bound [[t]]≤ k, which is a tight bound since the denotation
of t is [[t]]= k.

(b) The Church encoding 2̄= λf . λx. f (fx) : (o→ o)→ o→ o has a contraction on the variable
f of order 1. Thus, its denotation [[2̄]]S is majorized by [0,0,1].

(c) Let u= 2̄(2̄( . . . (2̄S)))0, with k occurrences of 2̄. Its denotation [[u]]S : I →N is majorized
by [0,1,k]. By Lemma 2, we can collapse it to get the bound [[u]]≤ 2k, which is once again a
tight bound.

(d) Let v= (((2̄2̄)2̄) . . . 2̄)S0, with k occurrences of 2̄. Here, each occurrence of 2̄ has a dif-
ferent type, 2̄ : (τ → τ )→ τ → τ , where the order of τ increases by 1 at each occurrence.
Therefore, [[v]]S is majorized by [0, 1, k, k− 1, . . . , 2, 1] of size k+ 2. By collapsing it using

Lemma 2, we get the upper bound [[v]]≤ 1 · 2k·2···
2·21

. This time the bound is not tight: the
actual value of [[v]] is a tower of exponentials of 2 with the same height, but without the
multiplicative constants k, k− 1, etc. For example, with k= 3, [[v]]= 222 = 16, while the
majorizer [0, 1, 3, 2, 1] collapses to [248].

We can already prove Claims 2 and 3 of the introduction:

Claim 2. For every closed term f : o→ o, there exists a constant C ∈N such that its denotation
[[f ]] :N→N is bounded by n �→ n+ C.

Proof. Let f : o→ o, and [[f ]] :N→N its set-theoretic denotation. Thus, there is a morphism
[[f ]]S :N�N in S whose underlying function is [[f ]]. Let ϕ be a majorizer of [[f ]]. By Lemma 3,
collapse1(ϕ)= [f0, f1] is also a majorizer. Then, for any n ∈N, since [n]�N n, we have [n]+
[f0, f1]�N f (n). By Lemma 2, f (n)≤ (n∨f0)+ f1 ≤ n+ (f0 + f1)= n+ Cf .

Claim 3. For every closed term f : ok → o, there exists a constant C ∈N such that its denotation
[[f ]] :Nk →N is bounded by (n1, . . . , nk) �→max(n1, . . . , nk)+ C.

Proof. Let f : ok → o, and [[f ]]S :Nk �N in S whose underlying function is [[f ]]. By the same rea-
soning, [[f ]]S has a majorizer of size 2, say ϕ = [f0, f1]. Given k arguments n1, . . . , nk majorized
by [n1], . . . , [nk], respectively, the tuple (n1, . . . , nk) is majorized by [n1]+M . . . +M [nk]=
[max(n1, . . . , nk)]. Then the same reasoning as before yields f (n1, . . . , nk)≤max(n1, . . . , nk)+
Cf .

5. Bounding the Majorizers
As demonstrated in Example 3, our model associates every λ-term t with a majorizer α � [[t]]. For
a closed term of type o, this majorizer can be collapsed to give an upper bound on the denotation
of the term. To prove the remaining Claim 1, we want to express this majorizer in terms of two
parameters: (i) the size |t| of the term t and (ii) the maximal order of a nonlinear λ-abstraction
that occurs in t, rank(t). This is done in Lemma 6, which says that the size of the majorizer (which
determines the height of the tower of exponentials) is rank(t)+ 2, and each coefficient of the
majorizer is smaller than |t|.
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Definition 12. First we introduce notations to write towers of exponentials more compactly:

• 2an = 22···
a

with n occurrences of 2, i.e.,

⎧⎨
⎩
2a0 = a

2an+1 = 22
a
n

• C([a1, . . . , an])= a1 · 2a2·2···
an

, i.e.,

⎧⎨
⎩
C([])= 0

C([a1, . . . , an])= a1 · 2C([a2,...,an])

With this notation, we have collapse0([a0, . . . , an])= [a0 +C([a1, . . . , an])].

Lemma 5. Let α = [a0, . . . , an] ∈M, and let a=max(a0, . . . , an). Then collapse0(α)≤ 2an.

Proof. Since ai ≤ a for all i, [a0, . . . , an]≤ [a, . . . , a] with (n+ 1)-many a’s, and by
Proposition 8(iv), it is enough to prove that collapse0([a, . . . , a])≤ 2an. To keep track of the num-
ber of a’s, we write Ca

n =C([a, . . . , a]) with n-many a’s. Let us show that a+Ca
n ≤ 2an. We proceed

by induction on n.

• n= 0 is trivial: Ca
0 = 0 and 2a0 = a.

• 2an+1 = 22
a
n ≥ 2a+Ca

n = 2a · 2Ca
n by induction hypothesis. Moreover, since a is a natural num-

ber, we have 2a ≥ a+ a. So 2a · 2Ca
n ≥ (a+ a) · 2Ca

n ≥ a+ a · 2Ca
n = a+Ca

n+1.

With Lemma 5 in mind, we are going to bound the size of collapse0(ϕ) by relying on two param-
eters: the size of ϕ and its maximal coefficient. When ϕ is the majorizer of some λ-term f , these
two parameters correspond respectively to the rank and the size of f . Proving this fact will be the
aim of Lemma 6.

Definition 13. We define the rank of a well-typed term t. The idea is that rank(t) is the maximal
order of a contraction that occurs in the typing derivation of t. When t is closed, the rank is defined
as follows:

rank(x) = 0

rank(0) = 0

rank(S) = 0

rank(tu) = max(rank(t), rank(u))

rank(λxτ . t) =
⎧⎨
⎩
rank(t) if x appears at most once in t

max(Ord(τ ), rank(t)) otherwise

When t has free variables x1, . . . , xn and is typed in context � = x1 : τ1, . . . , xn : τn,

rank(� � t : τ )=max({Ord(τi) | xi appears at least twice in t} ∪ {rank(t)})
For � = x1 : τ1, . . . , xn : τn, we write |�| = n and var(�)= {x1, . . . , xn}. For a λ-term t, we

denote by FV(t) the set of free variables of t, and its size |t| is defined inductively by
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For α = [a0, . . . , an] ∈M, we write max(α)=max(a0, . . . , an). The key result of this section
is the following Lemma.

Lemma 6. If � � t : τ and var(�)⊆ FV(t),4 then there is a majorizer α of [[t]]S such that |α| ≤
rank(� � t : τ )+ 2 andmax(α)+ |�| ≤ |t|.

Before we can prove Lemma 6, we need to make sure that the derivation of � � t : τ does not
contain unnecessary contractions, i.e., contractions that introduce a new variable which is later
weakened. This is the aim of two Facts below.

Fact 1. For every derivation of �, x : σ � t : τ with x /∈ FV(t), there is a derivation of � � t : τ
whose height is smaller or equal.

Proof. This is a straightforward induction on the derivation of �, x : σ � t : τ .
Fact 2. If � � t : τ with var(�)⊆ FV(t), then there is a derivation of � � t : τ where every occur-
rence of a weakening rule is immediately above the lambda rule introducing the weakened
variable, as shown below �

Proof. By induction on the height of the derivation.

• VAR, ZERO, SUCC: these derivations already satisfy the property.
• APP: �, � tu : τ comes from � � t : σ → τ and  � u : σ .
Since var(�,)⊆ FV(tu) by assumption and � ∩  =∅, we have var(�)⊆ FV(t) and
var()⊆ FV(u), so we can use the induction hypothesis on both premises. Then by applying
the APP rule, we get a derivation that satisfies the property.

• LAM: � � λx. t : σ → τ comes from �, x : σ � t : τ .
Either x ∈ FV(t) or x /∈ FV(t). In the first case, we can use our induction hypothesis and we
are done. In the second case, Fact 1 gives us a derivation of � � t : τ whose height is smaller,
so we can use the induction hypothesis to get a derivation of � � t : τ satisfying the desired
property. Using weakening on x and the LAM rule, we get a derivation of � � λx. t : σ → τ

that satisfies the property.
• CONTR: �, z : σ � t[x, y← z] : τ comes from �, x : σ , y : σ � t : τ .
At least one of the variables x and y is in FV(t), otherwise zwould not be either. If they both are
in FV(t), we use the induction hypothesis and we are done. Otherwise, if x /∈ FV(t), then Fact 1
gives us a smaller derivation of �, y : σ � t : τ . We can then use the induction hypothesis on
this derivation, and by renaming y into z, we are done. Same reasoning if y /∈ FV(t) instead.

• WEAK: �, x : σ � t : τ comes from � � t : τ .
This case is not possible since by assumption x ∈ FV(t).

We can now prove Lemma 6, with the extra assumption that the derivation does not contain
weakening rules, except right above the corresponding lambda rule.

Proof of Lemma 6. By induction on the typing derivation of � � t : τ .
• VAR, ZERO, SUCC: the morphisms id : [[τ ]]S → [[τ ]]S , [[0]]S : I →N and [[S]]S :N→N are
majorized by 0M, 0M and [0,1] respectively, which satisfy the two conditions.

4Note that FV(t)⊆ var(�) is always true for a well-typed term, so in fact FV(t)= var(�).
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• APP: �, � tu : τ comes from � � t : σ → τ and  � u : σ .
Since � ∩  =∅, we have var(�)⊆ FV(t) and var()⊆ FV(u), so we can use the induction
hypothesis on both premises to get two majorizers α and β of [[t]]S and [[u]]S which satisfy
the property. Then, the morphism [[tu]]S is obtained by composing [[t]]S ⊗ [[u]]S with the
evaluation morphism. Since eval is majorized by 0M, [[tu]]S is majorized by α + β . Then,

|α + β| ≤max(|α|, |β|)
≤max(rank(� � t : σ → τ )+ 2, rank( � u : σ )+ 2)
=max(rank(� � t : σ → τ ), rank( � u : σ ))+ 2
= rank(�, � tu : τ )+ 2

and

max(α + β)+ |�,| ≤max(α)+ |�| +max(β)+ ||
≤ |t| + |u|
≤ |tu|

• LAM: � � λx. t : σ → τ comes from �, x : σ � t : τ .
If x ∈ FV(t), the induction hypothesis gives a majorizer α for [[t]]S : [[�]]S ⊗ [[σ ]]S → [[τ ]]S .
By currying, we obtain a morphism [[λx. τ ]]S : [[�]]S → [[σ ]]S � [[τ ]]S which is also
majorized by α. Then |α| ≤ rank(�, x : σ � t : τ )+ 2= rank(� � λx. t : σ → τ )+ 2, and
max(α)+ |�| ≤max(α)+ |�, x : σ | − 1≤ |t| − 1≤ |λx. t|, as required.
If x /∈ FV(t), the rule is immediately followed by a weakening rule whose premise is � � t : τ .
The induction hypothesis on this premise gives us a majorizer α for [[t]]S : [[�]]S → [[τ ]]S .
By weakening and currying, we get a morphism [[λx. τ ]]S : [[�]]S → [[σ ]]S � [[τ ]]S which is
also majorized by α. The two conditions on the size and the max still hold: |α| ≤ rank(� � t :
τ )+ 2= rank(� � λx. t : σ → τ )+ 2 and max(α)+ |�| ≤ |t| ≤ |λx. t|.

• CONTR: �, z : σ � t[x, y← z] : τ comes from �, x : σ , y : σ � t : τ .
Both x and y are necessarily in FV(t): otherwise, it would need to be weakened later, and we
assumed this does not happen. So we can use the induction hypothesis to get a majorizer α

of [[t]]S : [[�]]S ⊗ [[σ ]]S ⊗ [[σ ]]S → [[τ ]]S . To obtain [[t[x, y← z]]]S , we compose [[t]]S with
the duplication morphism [[σ ]]S → [[σ ]]S ⊗ [[σ ]]S . Thus, it is majorized by α + ϕn, where
n=Ord(σ ) and z ϕn = [0, 0, 1, . . . , 1] of size n+ 2.
Then,

|α + ϕn| ≤max(|α|, |ϕn|)
≤max(rank(�, x : σ , y : σ � t : τ )+ 2, n+ 2)
=max(rank(�, x : σ , y : σ � t : τ ), Ord(σ ))+ 2
= rank(�, x : σ � t[x, y← z] : τ )+ 2

and

max(α + ϕn)+ |�, z : σ | ≤max(α)+ 1+ ∣∣�, x : σ , y : σ ∣∣ − 1≤ |t|

• WEAK: this case is not possible since weakenings only occur after a lambda rule: it cannot be
at the root.
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We can finally apply Lemma 6 to prove Claim 1:

Claim 1. For every closed term t : o, we have [[t]]≤ 2
|t|
rank(t)+1.

Proof. Applying Lemma 6 to a closed term t : o gives a majorizer α of [[t]]S with max(α)≤ |t|
and |α| ≤ rank(t)+ 2. By Lemma 2, this means that [[t]]≤ a0, where collapse0(α)= [a0]. And by
Lemma 5, we deduce the desired upper bound, [[t]]≤ 2

|t|
rank(t)+1.

Note that with the same reasoning, this bound also applies to the constants that appear in
Claims 1 and 2. As can be seen in the Examples below, this bound is far from being tight: there is
roughly one spare level in the tower of exponents of 2. This is because powers of 2 are hardwired
into our model, while λ-terms using the church encoding 3̄ might compute a tower of 3’s instead.

Example 4.

(a) t = S(S( . . . (S0))), with k occurrences of S. The size of t is |t| = k and its rank is rank(t)= 0,
so our bound gives [[t]]≤ 2k+1, while its real denotation is [[t]]= k.

(b) u= 2̄(2̄( . . . (2̄S)))0, with k occurrences of 2̄. The size of u is |u| = 3k+ 1 and its rank is
rank(u)= 1, so our bound gives [[u]]≤ 223k+1 , while the denotation is [[u]]= 2k.

(c) v= 2̄2̄ . . . 2̄S0, with k occurrences of 2̄. The size of v is |v| = 3k+ 1 and its rank is rank(v)=
k, so our bound gives [[v]]≤ 23k+1

k+1 , while the denotation is [[v]]= 21k.

(d) w= 3̄3̄ . . . 3̄S0, with k occurrences of 3̄. The size of w is |w| = 4k+ 1 and its rank is
rank(w)= k, so our bound gives [[w]]≤ 24k+1

k+1 , while the denotation is [[w]]= 31k.

6. Conclusion
We have shown a new use-case of Dal Lago and Hofmann’s semantic framework based on
resource monoids. Our resource monoid is new in two aspects: unlike other resource monoids
found in the literature, which are concerned with time complexity bounds, our model measures
the potential of a λ-terms for producing large natural numbers. The second difference with previ-
ous instances of resource monoids is that it is able to model the contraction rule of λ-calculus, by
bounding the combinatorial explosion caused by duplication of variables.

It would be interesting to try to extend this model to tackle programming languages with more
computational power such as Gödel’s System T. Another motivating research direction would be
to find other use-cases of resource monoids, measuring yet another kind of quantitative property
of programs, such as space complexity or probability.
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for helpful discussions and comments. We also thank the anonymous referees for their valuable comments and pointers to
the literature.

Financial support. This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Competing interests. The authors declare none.

References
Beckmann, A. (2001). Exact bounds for lengths of reductions in typed λ-calculus. Journal of Symbolic Logic 66 (3) 1277–1285.
Brunel, A. (2015). Quantitative classical realizability. Information and Computation 241 62–95.
Brunel, A. and Terui, K. (2010). Church => scott = ptime: An application of resource sensitive realizability. In: Proceedings

International Workshop on Developments in Implicit Computational complExity, DICE 2010, 31–46.

https://doi.org/10.1017/S0960129521000256 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000256


Mathematical Structures in Computer Science 793

Dal Lago, U. and Hofmann, M. (2005). Quantitative models and implicit complexity. In: Proceedings of Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2005, 189–200.

Dal Lago, U. and Hofmann, M. (2010a). Bounded linear logic, revisited. Logical Methods in Computer Science 6 (4).
Dal Lago, U. and Hofmann, M. (2010b). A semantic proof of polytime soundness of light affine logic. Theory of Computing

Systems 46 (4) 673–689.
Dal Lago, U. and Hofmann, M. (2011). Realizability models and implicit complexity. Theoretical Computer Science 412 (20)

2029–2047.
Fortune, S., Leivant, D. and O’Donnell, M. (1983). The expressiveness of simple and second-order type structures. Journal of

ACM 30 (1) 151–185.
Hillebrand, G. G. and Kanellakis, P. C. (1996). On the expressive power of simply typed and let-polymorphic lambda calculi.

In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,
1996, IEEE Computer Society, 253–263.

Joly, T. (2001). Constant time parallel computations in lambda-calculus. Theoretical Computer Science 266 (1–2) 975–985.
Nguyên, L. T. D. 2019. Typed lambda-calculi and superclasses of regular functions.
Nguyên, L. T. D., NoÛs, C. and Pradic, P. (2020). Implicit automata in typed λ-calculi II: Streaming transducers vs categorical

semantics.
Nguyên, L. T. D. and Pradic, P. (2020). Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative logic. In:

47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 135:1–135:20.
Schwichtenberg, H. (1975). Definierbare funktionen im λ-kalkÜl mit typen.Archive forMathematical Logic 17 (3–4) 113–114.
Schwichtenberg, H. (1982). Complexity of normalization in the pure typed lambda-calculus. In: Troelstra, A. and van Dalen,

D. (eds.) The L. E. J. Brouwer Centenary Symposium, vol. 110, Studies in Logic and the Foundations of Mathematics,
Elsevier, 453–457.

Simmons, H. (2005). Tiering as a recursion technique. The Bulletin of Symbolic Logic 11 (3) 321–350.

Cite this article:HofmannM and Ledent J (2022). A quantitative model for simply typed λ-calculus.Mathematical Structures
in Computer Science 32, 777–793. https://doi.org/10.1017/S0960129521000256

https://doi.org/10.1017/S0960129521000256 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000256
https://doi.org/10.1017/S0960129521000256

	
	Introduction
	Preliminaries
	Simply typed "026E30F lambda-calculus with constants

	Resource monoids and length spaces
	A Resource Monoid Measuring the Size of Terms
	The resource monoid
	The collapse functions
	A Quantitative Model for "026E30F lambda-Calculus
	Interpretations of o, 0, S


	The duplication morphism
	Interpreting "026E30F lambda-calculus

	Bounding the Majorizers
	Conclusion

