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We experimentally study the dynamics of weakly interacting Bose-Einstein condensates of cesium
atoms in a 1D optical lattice with a periodic driving force. After a sudden start of the driving, we observe the
formation of stable wave packets at the center of the first Brillouin zone (BZ) in momentum space, and we
interpret these as Floquet solitons in periodically driven systems. The wave packets become unstable when
we add a trapping potential along the lattice direction, leading to a redistribution of atoms within the BZ.
The concept of a negative effective mass and the resulting changes to the interaction strength and effective
trapping potential are used to explain the stability and the time evolution of the wave packets. We expect
that similar states of matter waves exist for discrete breathers and other types of lattice solitons in
periodically driven systems.
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Ultracold quantum gases in optical lattices have proven
to be excellent tools for the experimental study of novel
quantum systems [1,2]. In particular, optical lattices with
periodic driving forces provide detailed control of tunnel-
ing between lattice sites and band structures with new,
intriguing features [3]. Examples are the demonstration of a
dynamically driven quantum phase transition between a
bosonic Mott insulator and a superfluid [4], kinetic frus-
tration on a triangular lattice [5], artificial magnetic fields
[6–9], and topological band structures [10–12]. The sys-
tems are commonly described by the Floquet formalism,
which maps the periodic driving to a time-independent
Hamiltonian [3,13].
Essential for many experiments is the control of the

dispersion relation between quasimomentum and energy in
the energetically lowest lattice band [14,15]. In particular,
increasing the amplitude of the driving force can invert the
dispersion curve, turning the energetically highest states at
the edge of the first Brillouin zone (BZ) into the energeti-
cally lowest states [16–18]. The resulting evolution of
atoms from the center of the BZ toward its edge [19] is
surprising because the two states in the BZ are not
connected by a continuous change of driving strength.
Other mechanisms such as interactions, external forces, or
cooling mechanisms are required as an explanation.
Understanding this time evolution is instrumental, e.g.,
for quantum simulation using ultracold atoms in driven
systems and the creation of Floquet condensates [19–21].
In this Letter, we experimentally study the evolution of a

weakly interacting Bose-Einstein condensate (BEC) of
cesium atoms in a periodically driven 1D lattice potential

after a sudden start of the driving. We demonstrate that
matter waves in periodically driven systems can be stable at
the center of the BZ despite an inverted dispersion curve,
forming time-averaged gap solitons [22,23] with a negative
effective mass. Those Floquet solitons have recently been
demonstrated in optics using photonic waveguide arrays
[24], and they have been predicted to exist also for matter
waves [24–28]. We demonstrate the formation and stability
of those states in momentum and position space over a
duration of 1 s.
We first provide a systematic study of the dynamics of

matter waves for various driving strengths, demonstrating
the stability of ground states and the decay of excited states
in the BZ. We observe the typical instability of atoms at the
center of the BZ for an inverted dispersion curve; however,
in our weakly interacting system, this evolution toward the
edge of the BZ is caused by an external trapping potential.
We provide an intuitive explanation for this effect by
extending the concepts of group velocity and effective
mass to periodically driven systems [29]. Atoms in states
with a negative effective mass are unstable due to an
effectively expulsive trapping potential along the lattice
direction [30] that pushes them toward the edge of the BZ.
Removing this trapping potential allows us to create and
study Floquet solitons.
Our experimental starting point is a magnetically

levitated BEC in a crossed-beam optical dipole trap
and a vertical optical lattice potential at a wavelength
λ ¼ 1064 nm and lattice spacing dL ¼ λ=2 [Fig. 1(a)].
Depending on the required driving frequency, we apply the
driving force FðtÞ by either modulating a vertical magnetic
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field gradient or by periodically shaking the position
of the lattice sites with detuned laser beam frequencies
[19]. For fast driving, we avoid parametric and interband
excitations [31–35] by using shaking frequencies with
excitation energies in the first band gap of the lattice.
Further details about our setup and the parameters of
our measurements are presented in the Supplemental
Material [36].
We use a semiclassical description of a wave packet in

the lowest lattice band to interpret our results. A driven
wave packet that is initially localized at a Bloch state with
quasimomentum q0 moves through the BZ according to the
acceleration theorem qðtÞ ¼ q0 þ

R
t
0 Fðt0Þdt0 [29], with

FðtÞ ¼ F0 cosðωtÞ, where F0 is the amplitude of the force
and ω is the driving frequency. In the lowest band, this so-
called micromotion is well defined by the parameters q0
and the dimensionless driving strength K ¼ F0dL=ðℏωÞ
[29]. We show examples of this motion in Fig. 1(d) for
q0 ¼ 0 and q0 ¼ qL ¼ ℏπ=dL.
Time averaging the energy over one period of the micro-

motion provides an effective dispersion relation [3,13]

ϵeffðK; q0Þ ¼ −2JeffðKÞ cos
�
π

qL
q0

�

; ð1Þ

with an effective tunneling matrix element JeffðKÞ ¼
JJ 0ðKÞ, where J is the tunneling matrix element and
J 0ðKÞ is the zeroth order Bessel function. We label the
regions with positive and negative Jeff with I and II
(0 ≤ KI < 2.4 ≤ KII ≤ 5.5) in Fig. 1(b), and the regions
with quasimomenta close to the center (jq0j < 0.5qL) and
close to the edge (jq0j ≥ 0.5qL) of the BZ with A and B in
Fig. 1(c). The inversion of ϵeffðK; q0Þ appears when states
with q0 in region A spend a large fraction of their micro-
motion in region B, gaining a larger average energy than
states with q0 in region B [e.g., top of Fig. 1(d)]. The
argument of ϵeff is the initial quasimomentum q0 at the start
of a driving period T ¼ 2π=ω, and experimental measure-
ments need to probe the system stroboscopically at integer
multiples of T.
In analogy to nondriven lattice systems, we use the

effective dispersion relation to define the effective inertial
mass meff of a wave packet

meffðK; q0Þ ¼ ½∂2
q0ϵeffðK; q0Þ�−1

¼
�

2JeffðKÞ
�
dL
ℏ

�
2

cos

�
π

qL
q0

��
−1
: ð2Þ

The effective mass determines the spreading of the wave
packet [42,43] and its response to an external force [30].
Periodic driving always increases jmeff j and it inverts the
signs of meff in region II [Fig. 1(e)].
We first demonstrate the stability of the ground states for

K in regions I and II. The momentum distribution of the
ground state in region I is centered at q0 ¼ 0, and we use a
stationary wave packet to study the ground state for
K ¼ 1.96. In region II, the ground state is centered at
q0 ¼ qL, and we accelerate the wave packet with a
magnetic field gradient to the edge of the BZ before
driving with K ¼ 2.97 [36]. The driving force is applied
by shaking the lattice [V ¼ 12.0ð5ÞEr, ω ¼ 2π × 1 kHz],
while keeping the vertical trapping frequency ωz ¼
2π × 8.2ð1Þ Hz unchanged. We measure the real momen-
tum distribution instead of the quasimomentum to avoid
difficulties when band mapping in a shaking lattice (see
Supplemental Material, Sec. A [36]). No significant change
of the momentum distribution is observed over 600 ms,
except for a loss of 25% of the atoms, indicating low
heating rates in the ground state [Figs. 2(a) and 2(b)].
The time evolution of the state with q0 ¼ 0 changes

drastically when we increase K to cross into region II. For
Jeff ≈ 0, the strong suppression of tunneling leads to
dynamic localization in position space [16–18]. In addition,
we observe the formation and spreading of a pattern of
density peaks in the momentum distribution [Fig. 2(c)].
Without tunneling, the system consists of an array of
independent BECs, each experiencing a different time
evolution of its phase. The interference pattern that forms
after releasing those BECs from the lattice creates the
momentum distribution, which can show revivals and

FIG. 1. Experimental setup, micromotion, and effective mass.
(a) Experimental setup. (b) Effective tunnel coupling Jeff as a
function of driving strength K with circles at K ¼ 0 and
K ¼ 2.97. (c) Dispersion relation for K ¼ 0 (gray) and K ¼
2.97 (red). Dashed lines indicate the effective trapping potential
in regions A and B. (d) Absorption images showing the micro-
motion of atoms for q0 ¼ 0 (top) and q0 ¼ qL (middle) with
driving force K ¼ 2.97 and driving period T. Red arrows indicate
time intervals with the wave packet in region B. (e) Ratio of
effective mass meffðK; q0Þ to real mass m (V ¼ 12Er).
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temporal Talbot effects, depending on the time evolution of
the phases [44]. Such interference patterns have been
demonstrated for matter waves without driving [45,46],
and we believe that the density peaks in our measurement
are formed by a similar mechanism in a driven system. The
patterns are fluctuating for experimental runs with identical
control parameters, likely from increased technical noise
due to the driving force; hence we show averaged images in
Fig. 2 (see Supplemental Material, Sec. C [36] for images
without averaging).
For stronger tunneling, Jeff ¼ −0.34J (K ¼ 3.26), we

observe that atoms move from region A to region B at the
edge of the BZ [Fig. 2(d)], indicating a change of the micro-
motion from q0 ¼ 0 toward the state q0 ¼ qL [Fig. 1(d)].
While it is experimentally straightforward to enforce this
change with external forces, the mechanism is more
intricate for periodic driving without net momentum trans-
fer. We exclude instabilities, relaxation, and energy min-
imization in the band as explanations by demonstrating
the stability of wave packets without driving for weak

interactions ([36], Sec. B). For a quantitative analysis of
the time evolution, we measure the ratio between the
number of atoms in region A and the total atom number,
RðtÞ ¼ NAðtÞ=NtotðtÞ. The ratio RðtÞ decreases from close
to 1 (all atoms in region A) to values between 0.5 (uniform
distribution) and 0.2 (localization in region B) [Fig. 2(f)].
The concept of an effective mass provides an intuitive

explanation for the observed dynamics. Quenching the
driving strength from K ¼ 0 to region II switches meff for
the q0 ¼ 0 state from positive to negative, with important
consequences for the time evolution. The evolution of a
wave packet with meff < 0 is identical to a wave packet
with positive effective mass but with sign changes of the
external potential and the interactions [30,47]. Driving with
K in region II effectively inverts the trapping potential for
states with q0 in region A. Atoms in those states are no
longer trapped by the external potential but accelerated
away from the trap center. Atoms in states in region B,
however, are trapped due to their positive effective mass.
To simulate the complete dynamics, we numerically

integrate the discrete nonlinear Schrödinger equation for
renormalized lattice parameters

iℏ∂tψ ¼ ð1 − iΛÞHeffψ ; ð3Þ

with an effective Hamiltonian Heff in the tight-binding
approximation ([36], Sec. D), a wave function ψ , and a
phenomenological damping coefficient Λ [48,49]. The
simulation shows two stages in the time evolution
[Fig. 2(e)], i.e., the initial spreading and fragmentation
of the wave packet, and the subsequent slow localization of
the wave packet in region B. For weak interactions, the
initial spreading is dominated by the trapping potential,
which accelerates the atoms and causes a rapid reduction of
RðtÞ. The duration t1 for RðtÞ to drop to 0.7 increases with
the trap period 2π=ωz [Fig. 2(g)]. We find good agreement
between simulation and experiment when we add small
atom number fluctuations to the initial state to simulate
finite temperature and residual nonadiabaticity during
lattice loading ([36], Sec. D).
The second stage in the time evolution is controlled by

the damping parameter Λ, which simulates energy and
atom loss. Without damping, the matter waves continue to
oscillate in momentum space, while damping leads to the
localization in region B (see Supplemental Material,
Fig. S4 [36]). We determine the 1=e-decay time of R
during the second stage with an exponential fit and find
good agreement between experiment and simulation for
Λ ¼ 0.0225 ([36], Fig. S5). We believe that the energy
removal in the experiment is caused by momentum-depen-
dent atom loss. Without periodic driving, we observe an
increased loss for atoms in regions with a negative effective
mass and dynamical instabilities, which can cause the local
collapse of the wave packet and the loss of the atoms
(see [36], Fig. S1(c)). However, with periodic driving we

FIG. 2. Time evolution of the wave packet. (a) Momentum
distributions of ground states for t ¼ 0 (dashed lines) and t ¼
600 ms (solid lines) for K ¼ 1.96, q0 ¼ 0 and (b) for K ¼ 2.97,
q0 ¼ qL. (c) Time evolution in momentum space with meff < 0
for suppressed tunneling Jeff ¼ −0.01J (K ¼ 2.43) and (d) for
Jeff ¼ −0.34J (K ¼ 3.26). Red patches indicated the regions A.
(e) Numerical simulation with experimental parameters of (d).
(f) Evolution of Ntot and ratio R for the measurement in (d). Solid
lines are parabolic and exponential fits ([36], Sec. C). (g) Decay
time t1 for increasing trap periods in experiment (red circles) and
simulation (blue squares).
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observe a continuous loss, which is independent of the
initial state of the atoms ([36], Fig. S5). This loss might
mask other momentum-dependent loss features that cause
the damping ([36], Sec. D), and further studies will be
necessary.
Removing the trapping potential during the time evolu-

tion allows us to study the effects of weak interactions on
the wave packet. A negative effective mass causes an
effective sign change of the interaction strength [30,47,50].
For example, a repulsively interacting wave packet with q0
in region A and K in region II shows the same time
evolution as a wave packet with attractive interaction and
effective mass jmeff j. As a result, large interactions lead to
dynamical instabilities [33,47,51,52], while weak inter-
actions allow us to observe stable states that show similar
properties as bright matter-wave solitons with attractive
interaction.
We prepare a wave packet with approximately 11

000 atoms at as ¼ 5.6a0, remove the vertical trapping
potential in 1 ms, and study the dispersion of the wave
packet for driving strength K ¼ 4.2 in momentum and
position space [Figs. 3(a) and 3(b)]. The wave packet is
initially unstable and spreads over the BZ within the first
200 ms while shedding atoms along the lattice direction.
After 400 ms, a localized wave packet forms at q0 ¼ 0 that
is stable for the remaining observation time. The initial

spread is reduced when we lower the atom number to 1600
[Figs. 3(c) and 3(d)], creating a wave packet that is stable
both in momentum and position space for the observation
time of 1 s.
We interpret those Floquet solitons as matter-wave gap

solitons that quickly cycle through the BZ. Gap solitons are
bright, nondispersive wave packets with a total energy
within the band gap [22,53,54]. They have been exper-
imentally demonstrated for ultracold atoms in nondriven
systems close to the edge of the band in region B where the
wave packet has a negative effective mass [23]. For
periodic driving, the wave packets evolve due to the
time-averaged band energy and the resulting effective
mass. Controlling meff through time averaging provides
another degree of experimental control, and it allows us to
create Floquet solitons in other momentum states, e.g., at
q0 ¼ 0 for a driving strength in region II.
The density profile nðzÞ of matter-wave Floquet solitons

is given by nðzÞ ¼ n0sech2ðz=σÞ, where n0 is the peak 1D
density and σ is the renormalized width of the soliton that
depends on the Jeff and on the interaction strength [28].
Using nðzÞ as a fit function, we demonstrate that the wave
packet with 1600 atoms is almost dispersionless with a
width of σ ¼ 10ð3Þ μm at t ¼ 1 s and a dispersion of
2.8ð7Þ μm=s [Fig. 4(a)]. The observed solitons are larger
than expected ([36], Sec. E), which might be due to our
limited imaging resolution, a small thermal background, or
residual excitations of the soliton [55].
Finally,wedemonstrate thedependence of thewave packet

stability on the driving strengthK bymeasuring the spread of
the wave packet in momentum space after a driving duration
of 500 ms [Fig. 4(b)]. The wave packet disperses in region I
(K < 2.4) and remains stable in region II,which indicates that
it is indeed the change of signs of effective mass and effective
interactions that provide stability.
In summary, we study the dynamics of wave

packets with negative effective mass and observe

FIG. 3. Matter-wave Floquet solitons. (a) Evolution of wave
packet in momentum space (top) and position space (bottom)
for a total initial atom number of 11 000 and (b) of 1600
[V ¼ 12.0ð5ÞEr, as ¼ 5a0, K ¼ 4.2]. (c) Atom number in region
A for 11 000 (red circles) and 1600 (blue triangles) initial atoms.
Gray squares provide Ntot for Ntotð0Þ ¼ 11 000. All measure-
ments are performed without vertical trapping potential.

FIG. 4. Matter-wave dispersion. (a) Width of the wave packet in
position space in Figs. 3(a) and 3(b) for Ntotð0Þ ¼ 11 000 (red
circles) and 1600 (blue triangles) [V ¼ 12.0ð5ÞEr, as ¼ 5.6a0,
K ¼ 4.2]. Lines are linear fits with gradients of 12.7(6) (red line)
and 2.8ð7Þ μm=s (blue line). (b) Momentum distribution after
500 ms of driving with for variable driving strength, Ntotð0Þ ¼
2000 [V ¼ 12.0ð5ÞEr, as ¼ 3a0].
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three characteristic patterns in the time evolution. First, for
a strong suppression of tunneling with Jeff ≈ 0, the
momentum profile shows a multitude of transient patterns,
which result from the phase evolution of decoupled wave
packets. Second, for sufficiently strong tunneling, the wave
packets accumulate at the edge of the BZ on a timescale
that is set by the trapping potential along the lattice
direction. We explain this effect by an inversion of the
trapping potential due to the negative effective mass and by
energy removal due to atom loss. Third, removing the
trapping potential allows us to create Floquet solitons that
are localized in position and momentum space. Their
properties arise from time averaging over the fast periodic
micromotion in the first BZ, resulting in an increased
stability and experimental control with new opportunities
for metrology and matter-wave quantum optics [56]. We
expect that other types of lattice solitons [57], e.g., such as
discrete breathers, have similar Floquet counterparts in
periodically driven systems.

The data used in this publication are openly available at
the University of Strathclyde KnowledgeBase [58].
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