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Abstract

Bayesian inference is a popular approach towards parameter identification in

engineering problems. Such technique would involve iterative sampling meth-

ods which are often robust. However, these sampling methods often require

significant computational resources and also the tuning of a large number of pa-

rameters. This motivates the development of a sampler called the Transitional

Ensemble Markov Chain Monte Carlo.

The proposed approach implements the Affine-invariant Ensemble sampler

in place of the classical Metropolis-Hastings sampler as the Markov chain Monte

Carlo move kernel. In doing so, it allows for the sampling of badly-scaled and

highly-anisotropic distributions without requiring extra computational costs.

This makes the proposed sampler computationally efficient as a result of having

less auxiliary parameters to compute per iteration compared to the standard

single particle Transitional Markov Chain Monte Carlo. In addition to such

change, an adaptive tuning algorithm is also proposed within the new sam-

pler. This algorithm allows for automatic tuning of the step-size of the Affine-

invariant Ensemble sampler. Hence, such proposals not only ensure that the

new sampler is “tune-free” for the users, but also improves its robustness by

ensuring that the acceptance rate of samples is well-controlled within accept-
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able bounds. As a result, this approach could be significantly faster compared

to standard Transitional Markov Chain Monte Carlo methods on badly scaled

and highly skewed distributions, which can be encountered when dealing with

complex engineering problems.

The proposed sampler will be implemented on 2 benchmark numerical ex-

amples of varying complexities to demonstrate its strengths and advantages. In

addition, the sampler is validated by investigating its parameter identification

capability on an Aluminium Frame using experimental data.

Keywords: Bayesian inference, Model updating, Affine-invariant, Ensemble

sampler, Transitional Markov Chain Monte Carlo, Structural health

monitoring

1. Introduction

In recent years, Bayesian model updating has been increasingly employed to

address numerous inverse problems in engineering due to its ability to combine

prior knowledge with the observed data to yield a probabilistic description of

the inferred parameter [1, 2]. For this reason, such approach has been adopted

for parameter identification in numerous engineering structures including: 1)

footbridges [3, 4, 5, 6], 2) buildings [7, 8, 9, 10, 11], and 3) aerospace designs

[12, 13, 14]. Often, the Bayesian approach does not yield an analytical so-

lution to the estimates of the inferred parameter(s) [15]. Hence, numerical

techniques have been adopted in the form of sampling methods [16] such as

Markov Chain Monte Carlo (MCMC) methods [15]. One such MCMC method

is the Transitional Markov Chain Monte Carlo (TMCMC) sampler proposed by

[17]. Recently, it has been applied in numerous engineering problems including:

1) characterizing the statistical uncertainties of the spatial variability parame-

ters based on the Cone Penetration Test [18]; 2) analysing the multi-modality

feature of the Bouc–Wen–Baber–Noori model of hysteresis [19]; 3) analysis of

the creep behavior of soft soil and its associated uncertainty [20]; 4) executing

reliability-based optimisation in linear structure designs subjected to random
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excitations [21]; and 5) in estimating epistemic parameters within the DLR-

AIRMOD structure [22]. Such vast application of the TMCMC highlights its

popularity in engineering [23, 24]. This is attributed to its capability in esti-

mating large number of parameters at one time (i.e. as many as 18 [15, 22]),

sample from complex-shaped distributions [17, 19], and its ability to quantify

the suitability of a model in describing the observed data under uncertainty

[25, 26, 27, 28, 29].

Despite its strengths, the TMCMC algorithm presents numerous short-comings

including: 1) having large number of auxiliary parameters to tune due to the

choice of proposal distribution [30]; 2) computationally expensive due to the

need to re-compute the auxiliary parameters at every iteration [15, 30]; 3) does

not provide a mechanism to control the acceptance rates of the samples within

the acceptable bounds of [0.15, 0.50] [31]. To address those short-comings, an

improved TMCMC approach, called the Transitional Ensemble Markov Chain

Monte Carlo (TEMCMC) sampler, is presented. This approach employs the

Affine-invariant Ensemble sampler (AIES) proposed by Goodman and Weare

(2009) [32] in place of the Metropolis-Hastings (MH) sampler for the MCMC

step. By using a sampler that satisfies the affine-invariance property, the perfor-

mance of the method becomes independent from the complexity of the distribu-

tion [32]. To the best of the authors’ knowledge, the proposed sampler has not

been investigated yet in the literature. The motivations behind the proposed

approach are: 1) the AIES can sample efficiently from highly-skewed distribu-

tion functions [32]; 2) it can be parallelised [33]; and 3) it removes the need of a

proposal distribution, thereby reducing the number of auxiliary parameters to

tune and the computational cost [32]. Moreover, an adaptive tuning algorithm

is also proposed to automatically tune the step-size parameter of the AIES for

every iteration. Thus, the objectives of the proposed TEMCMC sampler are

to provide: 1) a sampler which is “tune-free” to the users; 2) a computation-

ally less-expensive sampler than the existing TMCMC sampler, and 3) a robust

method to effectively moderate acceptance rates within the acceptable bounds

across the iterations.
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The performance and the results obtained from the proposed algorithm will

be compared and verified against the TMCMC. This will be done through the

following numerical examples: 1) a Coupled Oscillator system where the ob-

jective is to infer 4 epistemic parameters (see Section 4.1); and 2) a 4-peaked

Himmelblau’s function where the objective is to observe the performance of

each sampler in sampling from a multi-peaked posterior (see Section 4.2). Such

comparisons will be done on the basis of the estimation of the inferred pa-

rameters, computational time elapsed in generating the posterior samples, and

acceptance rates across the iterations j by the respective samplers. To validate

the performance of the proposed algorithm under realistic settings, an appli-

cation example in the form of the Aluminium Frame problem [34] is presented

where the objective is to perform Bayesian model updating and infer the mass

positions using actual experimental data (see Section 5).

2. Bayesian Model Updating

Bayesian model updating is based on the well-known concept of Bayesian in-

ference [1, 2, 35] where prior assumptions or belief and the information available

and/or measurements, are represented in terms of probability density functions.

The posterior distribution on a set of parameters of interest is obtained accord-

ing to [36]:

P (θ|D,M) =
P (D|θ,M) · P (θ|M)

P (D|M)
(1)

where θ represents the vector of uncertain parameters that is to be estimated,

D represents the vector of the measurements (or observations) used in updating

our knowledge of θ, and M represents the model (usually a function of θ) which

is believed to best represent the available observations D. The terms expressed

in Eq. (1) are as such:

• P (θ|M) is the prior distribution which describes our prior knowledge of θ

before any observation(s) is/are made,
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• P (D|θ,M) is the likelihood function which reflects the degree of agree-

ment and the error between D and the model output from M ,

• P (θ|D,M) is the posterior distribution which describes our updated knowl-

edge of θ after observing the data D,

• P (D|M) is the evidence which serves as the normalising constant of the

posterior.

Due to P (D|M) being a numerical constant which is independent of θ, it can

be neglected and the posterior is re-expressed up to a normalising constant:

P (θ|D,M) ∝ P (D|θ,M) · P (θ|M) (2)

Details to the above terms can be found in [15].

Due to the nature of P (θ|D,M) in Eq. (2), standard Monte Carlo ap-

proaches become inapplicable as they require that the analytical function of the

distribution to be normalised and that they have a defined Cumulative Distribu-

tion Function (CDF) [37, 38]. For these reasons, advanced sampling techniques

have been developed to sample from unnormalised distributions including: 1)

Markov Chain Monte Carlo (MCMC) [39], 2) Sequential Monte Carlo (SMC),

and 3) Transitional Markov Chain Monte Carlo (TMCMC) samplers [40]. De-

tailed explanations to each of these techniques are provided in [15].

2.1. Review of the Transitional Markov Chain Monte Carlo

TMCMC is one of the most successfully applied sampling techniques in en-

gineering applications [23, 24]. It is based on the Adaptive Metropolis-Hastings

(AMH) technique [41] whereby samples are obtained from a series of interme-

diate “transitional” distributions P j defined as [17]:

P j ∝ P (D|θ,M)βj · P (θ|M) (3)

Here, j denotes the transition step number taking values between 0 to m,

where m indicates the last iteration number, βj is the tempering parameter

which takes values such that β0 = 0 < β1 < · · · < βm−1 < βm = 1. In
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doing so, this allows for the transitional distribution to transit from the prior

to the posterior distribution (i.e. P 0 = P (θ|M) to Pm = P (θ|D,M)) in an

iterative manner. A critical aspect of TMCMC is the choice of the step-size

∆βj = βj − βj−1 to ensure a smooth and gradual transition from P (θ|M) to

P (θ|D,M) [17]. In addition, the magnitude of ∆βj itself has a direct impact on

the acceptance-rates of the samples [15]. A large step-size leads to large number

of rejected proposed samples due to an increased likelihood of these samples

lying outside the support of the posterior (whilst still within the support of the

prior). A small ∆βj leads to an increase in the number of iterations required.

The optimal value of ∆βj is such that the Coefficient Of Variation (COV) of

the nominal weights of the samples θi, defined as [17]:

wji = P (D|θi,M)∆βj (4)

is close to 1 for any given iteration j. As such, the optimal tempering factor

βj for each iteration can then be determined as [17, 30]:

arg max
βj

{|σ(wj)/µ(wj)− 1|} (5)

.

At iteration j = 0, the TMCMC algorithm is initialized by generating N

samples from the prior P (θ|M) via direct Monte Carlo sampling. Next, at iter-

ation j = 1 (i.e. while βj < 1), the nominal weight of the samples is computed

according Eq. (4) and normalised by dividing the weights by its summation (i.e.∑N
i=1 w

j
i ). Let the normalised weights be denoted as ŵji . Following which, N

single-step Markov Chains are initiated. To determine the starting samples for

each of the Markov Chains, N samples of θi are resampled (with replacement)

via weighted resampling. This is done such that θi is sampled with probability

ŵji [42]. The MH approach is then used to generate 1 sample from each of

those Markov Chains [39]: candidate samples θ∗ are sampled from a proposal

distribution q(θ∗|θ) with mean θ̄
j

and covariance matrix Σj defined as:

θ̄
j

=

N∑
i=1

θi · ŵji (6)
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and

Σj = γ2 ·
N∑
i=1

ŵji ·
[
{θi − θ̄} × {θi − θ̄}T

]
. (7)

γ is the scaling parameter of Σj . The ith candidate sample is accepted with

probability αi:

αi = min

[
1,
P j(θ∗i )

P j(θi)

]
(8)

where P j(θ∗i ) is the density value of P j computed at θ∗i while P j(θi) is the

density value of P j computed at θi. The values of the new tempering parameter

is updated and the algorithm repeats the described procedure for subsequent

iterations j = j + 1 till βj = 1.

The TMCMC sampler computes the evidence term P (D|M) of the posterior

distribution [17, 30]. The metric P (D|M) quantifies how well a given model

M describes the available observations D. The P (D|M) is estimated as the

product of the mean of the nominal weights wji at any given iteration j:

P (D|M) ≈
m∏
j=1

1

N
·
N∑
i=1

wji (9)

2.2. Limitations of the approach

One key problem in the TMCMC technique is that there is no fixed universal

value for the scaling parameter γ although it was stated in [17] that the “

optimal” value would be 0.2. This was highlighted in [30] where it was argued

that this “ optimal” value is not applicable for all cases. In fact, different values

for γ have been utilised in different research such as 0.5 in [21] and 1.0 in [18].

Hence, [30] proposed a tuning algorithm to adaptively adjust γ. Starting from

an initial value of γj=1 = 2.4√
Nd

[38, 43] where Nd is the dimension of θ. Upon

the conclusion of the MCMC step in updating the samples, the mean acceptance

rate for the current iteration αj is obtained. This mean acceptance rate is then

compared against the target acceptance rate αtr which is defined as [31]:

αtr =
0.21

Nd
+ 0.23 (10)
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Once this is done, the scale parameter is then tuned and updated according to:

γj+1 = γj · exp
[
αj − αtr

j

]
(11)

Such approach should also help to moderate the overall acceptance rate of the

samples such that αj falls between 0.2 and 0.5 as much as possible [31]. However,

to the best of the authors’ knowledge, investigations into the acceptance rates

of the TMCMC sampler across iterations have not been done. The TMCMC

sampling procedure is summarized in Algorithm 1.

Algorithm 1 TMCMC sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))

2: Set j = 0 and βj = 0 . Initialise iteration counters

3: Set γj+1 = 2.4√
Nd

. Initialise scale parameter

4: Draw initial N sample set: θi ∼ P (θ|M) . Generate samples from the

prior

5: while βj < 1 do . Main sampling loop

6: Set j = j + 1

7: Compute ∆βj using Eq. (5)

8: Compute P j using Eq. (3)

9: for i = 1 : N do . For each ith chain (MCMC step)

10: Resample: θi ∼ ŵji
11: Draw candidate sample: θ∗ ∼ q(θ∗i |θi)

12: Accept/Reject θ∗ with probability αi using Eq. (8)

13: end for

14: Compute γj+1 using Eq. (11)

15: end while

16: Compute P (D|M) using Eq. (9)

17: end procedure

Current TMCMC sampler is also computational inefficient since the mean θ̄
j

and covariance matrix Σj need to be calculated at each iteration j. This adds
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additional parameters that need to be adaptively tuned, on top of βj and γj , as

a result of the choice of proposal distribution q(θ∗|θi) used. Furthermore, there

is a loose assumption that it is optimal to set q(θ∗|θi) as a Normal distribution

[39]. Strictly speaking, such choice only provides convenience in simplifying the

sampling process of θ∗ from P (θ|D,M) and the computation of the acceptance

ratio α. Such convenience is attributed to the symmetrical nature of the Normal

distribution [39, 44]. In fact, there are specific cases whereby asymmetric pro-

posal distributions are required. For instance, if one is to estimate the posterior

of a variance parameter, to ensure that the proposed candidate samples θ∗ are

never less than 0, the proposal distribution should be such that it is skewed

towards positive values (i.e. θ∗ > 0) such as the Log-normal distribution [45].

This would ensure that the overall acceptance rates α would not be too low (i.e.

α < 0.15) [46]. Optimally, the proposal distribution should follow that of the

posterior [44] but such approach is not feasible due to the lack of apriori knowl-

edge over the analytical form of the actual posterior itself. Thus, the choice of

q(θ∗|θi) adds some degree of uncertainty.

3. Transitional Ensemble Markov Chain Monte Carlo

Numerous alternative MCMC kernels in TMCMC have been considered in

previous studies including: 1) Slice sampler (i.e. TMCMC-Slice) [47, 48], 2)

Metropolis-Adjusted-Langevin (MAL) sampler (i.e. L-TMCMC) [49], and 3)

Differential evolution MCMC kernel (i.e. DE-TMCMC) [50]. A summary to

each of the above TMCMC variants is provided.

The TMCMC-Slice is able to produce estimates with significantly lower COV

than that of TMCMC. This is because the Slice sampler algorithm [51] draws

samples more efficiently than MH from P j such that candidate samples θ∗i are

now drawn closer to regions of higher probability in P (θ|D,M). This leads to

a higher convergence of θi and a smaller spread about the sample space defined

by P (θ|D,M) [47]. In addition, the use of the Slice sampler algorithm removes

the need for q(θ∗|θi) thereby removing the need to compute θ̄
j

and Σj [51, 48].
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A significant drawback of the TMCMC-Slice is its relatively long computational

time compared to the TMCMC due to the computation cost involved in tuning

the auxiliary variables and step-size of the Slice sampler [48].

The L-TMCMC demonstrated high parallel efficiency by adopting an adap-

tive kriging metamodel, in place of the true model, to perform the model evalu-

ations when computing the likelihood function [49]. This reduces computation

time, thereby making the algorithm computationally less-expensive compared to

the TMCMC [49]. In addition, due to the use of the MAL move kernel, it allows

for the L-TMCMC to sample more efficiently from multi-modal P (θ|D,M) as

well as a better identification of parameters, especially those which were uniden-

tifiable by TMCMC [49]. However, its performance suffers when P (θ|D,M) is

highly-dimensional due to the computation of the gradient information by the

MAL algorithm which is computationally ineffective and inefficient under such

settings [49].

The DE-TMCMC demonstrated high parallel efficiency due to the use of the

Differential evolution kernel, thereby making it computationally more efficient

compared to the TMCMC [50]. In addition, the sampler is able to produce

estimates with higher degree of accuracy due to its maximum a posteri estimates

being closer to the true values of the inferred parameter(s) compared to the

TMCMC [50]. However, the sampler still has significant number of auxiliary

parameters to tune for the differential evolution MCMC kernel. This could add

significant computational costs [50].

In this work, we implement the AIES as the alternative MCMC kernel to

the MH. The reasons for this are the following: 1) to exploit the efficiency of the

AIES in its ability to sample from highly-skewed and anisotropic distributions;

2) the AIES can be parallelised; and 3) no proposal distribution is required

which, in turn, reduces the number of auxiliary parameters to tune. This gives

rise to the TEMCMC to which an additional feature proposed is the adaptive

tuning algorithm which automatically tunes its step-size parameter and moder-

ate the sampler’s acceptance rates.
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3.1. Review of the Affine-invariant Ensemble Sampler

The AIES is a MCMC sampling technique recently developed which pos-

sesses the affine-invariance property [32]. Currently, it has been applied across

numerous research fields such as Cosmology [33, 52, 53, 54, 55, 20], Physics

[56, 57, 58], and Engineering [59, 60, 61, 62, 63]. To provide an understand-

ing of the AIES sampler, this section will first present the concept of affine-

transformation, followed by a definition and description of an ensemble before

finally, explaining the sampler.

An affine-transformation operation ψ is an invertible linear mapping from a

RNd to RNd space [64]:

ψ(θ) : Θ = Â θ + b (12)

where Θ represents θ in the affine-transformed space, Â is the Nd-by-Nd non-

singular transformation matrix and b is the Nd-by-1 translation vector. This

simple transformation transforms a difficult sampling problem into a tractable

one, in a similar way in which a deterministic optimization problem is trans-

formed to deal with a well-scaled function [32]. Let P ′(Θ|D,M) represents a

general class of densities describing the posterior distribution of Θ where P ′ de-

notes the distribution function in the Θ-space. If the following condition holds

[32]:

P ′(Θ|D,M) = P ′(ψ(θ)|D,M) ∝ P (θ|D,M) (13)

then, Θ-space and θ-space are said to be affine-invariant [65]. Therefore, the

Affine-invariant sampler can be constructed by using a proposal distribution q′

with the form [32]:

q′(Θ∗|Θi) = q′(ψ(θ∗)|ψ(θi)) ∝ q(θ∗|θi) (14)

This proposal distribution is also invariant under affine-transformation, i.e.

the probability of generating a sample Θ∗ given Θi in the transformed Θ-space
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is equal to the probability of generating a sample θ∗ given θi in the original

θ-space [32].

Within the AIES, a collection ofNc Markov chains: ~θi = {θ1,i,θ2,i, . . . ,θNc−1,i,θNc,i}

is first generated. The proposal sample θ∗k is then obtained by using a move

kernel that is invariant towards an affine-transformation and that uses the cur-

rent sample and that obtained from a complementary chain. In practice, it is

required that the number of chains Nc be at least twice the dimension of θ

(i.e. Nc ≥ 2 × Nd) [32]. Each chain generates 1 sample from the prior giv-

ing the first ensemble ~θi for i = 1. Once this is done, the samples in the

ensemble are then updated one chain at a time. To update the kth chain (for

k = 1, . . . , Nc), a sample from a complementary chain is randomly selected from

the set ~θ[k],i = {θ1,i+1, . . . ,θk−1,i+1,θk+1,i, . . . ,θNc,i}. Let this chosen sample

from the set ~θ[k],i be denoted as θ[k]. Following which, the candidate sample

for the kth chain θ∗k is generated. This can be expressed as [32, 33]:

θ∗k = θ[k] + λ · (θk,i − θ[k]) (15)

whereby λ is real-valued scalar proposal stretch factor of the stretch-move affine-

transformation [32, 33]. λ can be represented as a random variable following

a proposal distribution g(λ) [32]. Analogous to the MH algorithm where a

symmetric q(θ∗|θi) is used, g(λ) is chosen to satisfy the symmetry condition

such that [32]:

g

(
1

λ

)
= λ · g(λ) (16)

so that the stretch-move in Eq. (15) is symmetric [32]. For this reason, g(λ) is

proposed in [32] as:

g(λ) =


1

2·(
√
u− 1√

u
)
· 1√

λ
if λ ∈ [ 1

u , u]

0 otherwise

(17)

whereby u serves as the user-defined step-size of the AIES sampler which needs

to be strictly greater than 1. Once θ∗k is sampled following Eq. (15), it is then
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accepted with probability αk:

αk = min

[
1, λNd−1 · P (θ∗k|D,M)

P (θk,i|D,M)

]
(18)

Once the samples in all Nc chains have been updated, set i = i + 1 and the

updating procedure repeats itself until i = N . In summary, the entire sampling

procedure by AIES is summarized and illustrated in Algorithm 2. Interested

readers will find further theoretical and numerical investigations of ensemble

samplers with affine invariance properties in reference [32].

Figure 1 illustrates the stretch-move in a 2D sample space θ = {θ1, θ2}. In

the figure, the sample of the 3rd chain (in red) is being updated. The com-

plementary sample for this case is θ4,i. A straight line initiating from θ4,i is

drawn to include θ3,i. This straight line is the path along which the candidate

sample θ∗3 could possibly lie. By sampling λ from g(λ), and using Eq. (15), θ∗3

is defined and represented in blue.

Figure 1: Schematic diagram of the stretch-move that is used to update the sample of the

3rd chain in red. Here, the candidate sample for the 3rd chain is represented in blue while

the randomly chosen complementary sample in this case is that from the 4th chain. Image

adapted from [32].
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(19)

Algorithm 2 AIES sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))

2: Define Nc chains: ~θ1 = {θ1,1,θ2,1, ...,θNc−1,1,θNc,1}

3: for i = 1 : N − 1 do

4: for k = 1 : Nc do

5: Select randomly θ[k] from set ~θ[k],i

6: Sample: λ ∼ g(λ)

7: Generate θ∗k using Eq. (15)

8: Calculate acceptance probability αAIES using Eq. (19)

9: Sample: r ∼ U [0, 1]

10: if αk > r then

11: Set θk,i+1 = θ∗k

12: else

13: Set θk,i+1 = θk,i

14: end if

15: end for

16: end for

17: end procedure

The affine-invariant property of the stretch-move is explained as such. Sup-

posed 2 independent sampling procedures are conducted by the AIES: one to

sample θ from P (θ|D,M)), and the other to sample Θ from P ′(Θ|D,M)).

Given the same sequence of λi in both runs for i ≥ 2, and that the starting

samples Θ1 and θ1 are related according to Eq. (19), the AIES is able to gen-

erate sample sequences such that the relationship between Θi and θi is always

upheld for all iterations i. The mathematical illustration of the affine-invariant

stretch-move is provided by Eq. (15). By performing an affine-transformation
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Figure 2:

on both sides of the equation, we obtain [32]:

Θ∗k : ψ(θ∗k) = ψ(θ[k]) + λi · (ψ(θk,i)− ψ(θ[k])) (20)

Expanding and re-arranging the above equation, one will obtain the final ex-

pression [32]:

Θ[k] + λi · (Θk,i −Θ[k]) = Â
[
θ[k] + λi · (θk,i − θ[k])

]
+ b (21)

Eq. (21) implies 2 key things: 1) the generation of samples from the affine-

transformed Θ-space is no different from sampling from the original θ-space up

to an affine-transformation [32]; and 2) the probability of sampling Θ∗k starting

from Θk,i in the Θ-space is equal to the probability of sampling θ∗k starting from

θk,i in the original θ-space. The second point satisfies the condition defined by

Eq. (14) which endows the stretch-move its affine-invariant property.

Hence, one key advantage of the AIES sampler over the MH sampler is its

ability to sample from a poorly-scaled and highly-anisotropic distributions just

as effectively and efficiently as it would from a well-scaled affine-transformed

distribution [32, 66]. To illustrate this, a numerical example is presented in

Section 7 to which readers can refer to.
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Another advantage that the AIES sampler has over the MH sampler is the

absence of any user-defined q(θ∗|θi) to generate candidate samples. This reduces

the degree-of-freedom as well as the number of parameters to be adaptively

tuned by 2 given that the sample mean θ̄ and its covariance matrix Σj need

not be computed at every j. This leaves βj and u as the only parameters to

be adaptively tuned, thereby improving the computational efficiency for the

TEMCMC sampler.

As such, this motivates the implementation of the AIES algorithm in the

proposed TEMCMC sampler given that the “transitional” distributions P j (see

Eq. (3)) can be highly-skewed and anisotropic in general and its sampling

performance would be least affected by the scaling of P j across the transition

step j.

3.2. Adaptive-tuning algorithm

To adaptively tune the step-size parameter u, an algorithm is proposed based

on the work by [30]. The initial step-size value uj=1 is set at 2 given that this

is the “optimal” value for most problems [33, 52]. From this initial value, the

nominal step-size unom is computed after the MCMC step:

unom = uj · exp
[
αj − αtr

]
(22)

where αj is the acceptance rate for the current iteration and αtr is the target

acceptance rate (see Eq. (10)). The acceptance rate αj is treated as a random

variable. Consequently, the nominal step-size unom is also a random variable

which can be randomized and adapted through αj . Such implementation is

not limited to AIES, but is a generic property of MCMC samplers [30, 67]. If

unom > 1, then uj+1 = unom. Otherwise, the algorithm sets uj+1 = 1.01 to

ensure that the step-size would never fall below 1. This procedure is repeated

at the end of every iteration until the last transition step j = m.

In summary, the proposed TEMCMC sampler possesses 3 key benefits: 1)

it is practically “tune-free” for the users; 2) it is computationally less expensive

compared to TMCMC sampling; and 3) its acceptance rate is moderated such
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that it falls within the acceptance range between 0.15 and 0.50 [46] for the

majority of the transition steps j. Such benefits and strengths of the TEMCMC

sampler will be illustrated in the numerical examples as well as the Aluminium

Frame application problem in Sections 4 and 5 respectively. A pseudoalgorithm

of the TEMCMC sampler is provided in Algorithm 3.

Algorithm 3 Proposed TEMCMC sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))

2: Set j = 0 and βj = 0 . Initialise

3: Draw N initial sample set: θi ∼ P (θ|M)

4: Set aj+1 = 2 . Set initial value of step-size

5: while βj < 1 do . Main sampling loop

6: Set j = j + 1

7: Compute ∆βj using Eq. (5)

8: Compute P j using Eq. (3)

9: Resample N samples: θi ∼ ŵji
10: Set θi = θi,1 in ensemble ~θ1 . Initiate ensemble

11: Update ~θ1 with 1 iteration of AIES (see Algorithm 2) . MCMC step

12: Set samples in ensemble ~θ2 as samples of P j

13: Compute unom using Eq. (22) . Tuning the step-size

14: if anom > 1 then

15: Set uj+1 = unom

16: else

17: Set uj+1 = 1.01

18: end if

19: end while

20: Compute P (D|M) using Eq. (9)

21: end procedure
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4. Numerical Examples

4.1. 2-DOF Coupled Oscillator System

Figure 3: Schematic diagram of the 2-DOF Coupled Oscillator system based on the set-up in

[68].

The objective of this numerical example is to observe and compare the differ-

ences in the performance of the TMCMC sampler and the proposed TEMCMC

sampler in a 4-dimensional Bayesian model updating set-up. This comparison

will be done on the basis of the COV of the estimation of the epistemic param-

eters θ, the computation time elapsed in sampling from the posterior, and the

acceptance rates across the transition steps j.

Figure 3 illustrates a simple 2 Degrees-of-Freedom (DOF) coupled oscillator

set-up consisting of 2 equal-sized blocks with equal mass m attached to primary

springs with stiffness k and an inter-mass secondary spring with stiffness k12.

x1 and x2 denote the respective instantaneous displacement of the blocks. In

this problem, the mass of the blocks are fixed at m = 0.5 kg. In addition,

it is assumed that both k and k12 take on fixed values, {k, k12} = {0.6, 1.0}

N/m, but these values are not known (i.e. epistemic uncertainty). In order to

infer k and k12, measurements are obtained in the form of the eigenfrequencies

D = {ω1, ω2} whereby ω1 and ω2 are the 2 eigenfrequencies associated with the

in-phase and out-of-phase mode shapes of the symmetric system respectively

which can be easily computed as follows [68]:

ω̂1 =

√
k

m
(23)
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Figure 4: Scatterplot of the 15 different “measured” values ω1 and ω2.

ω̂2 =

√
(k + 2 · k12)

m
(24)

The above equations constitute the model class M = {ω̂1, ω̂2} to be updated.

The frequency measurements of ω1 and ω2 are however corrupted with “noise”

ε1 and ε2 respectively such that:

ω1 = ω̂1 + ε1 (25)

ω2 = ω̂2 + ε2 (26)

whereby ε1 and ε2 are the “noise” terms following a Normal distribution with

means 0 Hz and standard deviations σ1 and σ2 respectively. Here, σ1 and σ2

are fixed values set at 10 % of the nominal values of ω1 and ω2 respectively.

This yields {σ1, σ2} = {0.110, 0.228} Hz. For simplicity, it is assumed that the

measurement “noise” ε1 and ε2 are not correlated and that the “noise” between

individual measurements of ω1 and ω2 are also independent. In this problem,

15 independent realizations of ω1 and ω2 are obtained and these synthetic data

are presented in the form of a scatterplot shown in Figure 4 while the numerical

values are presented in Table 1.
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Measurement No. ω1 ω2 Measurement No. ω1 ω2

[Hz] [Hz] [Hz] [Hz]

1 1.172 2.351 9 1.055 2.202

2 1.097 2.463 10 1.253 2.265

3 1.157 2.005 11 0.952 2.322

4 1.091 2.464 12 1.130 1.952

5 1.021 2.654 13 1.174 2.085

6 1.373 2.325 14 1.066 2.192

7 1.174 2.113 15 1.014 2.060

8 1.128 2.439 − − −

Table 1: Numerical values of ω1 and ω2 shown in Figure 4.

4.1.1. Bayesian Model Updating set-up

For this problem, the priors for k and k12 are set to be Uniform priors taking

values between 0.01 N/m and 4.0 N/m. In addition, despite σ1 and σ2 being

predetermined values, in reality, these 2 parameters are unknown and are also

set as epistemic parameters to be inferred. The priors for σ1 and σ2 are also

set to be Uniform priors taking values between 1.0 × 10−5 Hz and 1.0 Hz.

Therefore, the total number of epistemic parameters to 4, thereby making this

a 4-dimensional Bayesian model updating problem: θ = {k, k12, σ1, σ2}. It is

assumed that the epistemic parameters are independent from one another. The

likelihood function is modelled to follow a Normal distribution and assuming

independence between individual observations, it is expressed as follows:

P (D|θ,M) =

15∏
n=1

1

2 · π · σ1 · σ2
· exp

[
− (ω1,n − ω̂1)2

2 · σ1
2

− (ω2,n − ω̂2)2

2 · σ2
2

]
(27)

4.1.2. Results

From the posterior P (θ|D,M), 1000 samples are generated using the TM-

CMC sampler and the proposed TEMCMC sampler and the sampling time

elapsed is of 48.60 s and 6.04 s respectively. Both samplers required 8 iterations

. Figure 5 shows the evolution of the statistics of βj and of the acceptance

rates across all iterations j for both TMCMC and TEMCMC samplers. From
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these plots, it can be seen that the evolution of βj across all j are identical for

both the TMCMC and TEMCMC samplers while the acceptance rates for the

TMCMC sampler shows a higher degree of variation compared to that of the

TEMCMC sampler. In addition, it can also be observed that out of 8 itera-

tions, only 3 lie within the optimal limits of acceptance rate for the case of the

TMCMC sampler and 7 for the case of the TEMCMC sampler. This highlights

the effectiveness of the proposed adaptive tuning algorithm in moderating the

step-size u in the TEMCMC sampler such that for majority of the iterations,

the acceptance rates of the sampler is kept within the optimal range.
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Figure 5: The statistics of βj and the acceptance rates across all iterations j. The target

acceptance rate is 0.283.

The resulting scatterplot matrix of the posterior samples is shown in Figure

6 and from there, the numerical results of the estimates of the epistemic pa-

rameters by the respective samplers are obtained. These results are presented

and summarized in Table 2. From these results, it is possible to conclude that

the TEMCMC sampler is generally able to perform as well as the TMCMC

sampler and does so with a relatively lower computational cost. This highlights

the relative computational efficiency of the TEMCMC sampler.

Finally, the resulting scatterplot of the model output is compared against

the scatterplot of the data for ω1 and ω2. The results of the model updating
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Figure 6: Scatterplot matrix illustrating the resulting posterior of the epistemic parameters.

Parameter, θ Reference value TMCMC TEMCMC

Mean, E[θ] COV Mean, E[θ] COV

[%] [%]

k 0.6 N/m 0.625 N/m 5.67 0.625 N/m 5.67

k12 1.0 N/m 0.962 N/m 6.48 1.013 N/m 6.80

σ1 0.110 Hz 0.114 Hz 28.29 0.121 Hz 17.25

σ2 0.228 Hz 0.236 Hz 20.86 0.229 Hz 26.15

Table 2: A summary of the statistics of the estimation of the epistemic parameters θ =

{k, k12, σ1, σ2} via the posterior samples obtained using the TMCMC and TEMCMC sam-

plers.

for the case of the TMCMC sampler and the TEMCMC sampler are illustrated

in Figure 7. As seen from the figure, the resulting model outputs from the

posterior samples obtained encompass the true solution of ω1 and ω2 for both

the TMCMC and TEMCMC samplers. This highlights that the TEMCMC

sampler works just as effectively as the TMCMC sampler as a tool in Bayesian

model updating.

4.2. 2-D Multi-modal Posterior

The following set-up is based on the problem presented in [70] and the ob-

jective of this numerical example is to observe and compare the differences in
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Figure 7: Scatterplot matrix illustrating the resulting posterior of the epistemic parameters.
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Figure 8: Contour plot illustration of the 4-peaked posterior based on the Himmelblau’s

function [69]. The numbers on the colour chart represent the height of the posterior computed

from Eq. (29).

the performance of the TMCMC sampler and the proposed TEMCMC sampler

in generating samples from a multi-modal posterior. This comparison will be

done on the basis of the sample distribution in relation to the analytical solution

of the posterior, the computation time elapsed in sampling from the posterior,

and the acceptance rates across the transition steps j.

In this study, a 2-dimensional posterior with 4 peaks, defined by the di-
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mensionless variables x1 and x2, is presented and illustrated in Figure 8. The

analytical function of this posterior is based upon the Himmelblau’s function

which is a test-function used in mathematical optimisation problems to test the

performance of optimisation algorithms. The Himmelblau’s function H(x1, x2)

is mathematically defined as [69]:

H(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 (28)

which yields 1 solution of local maximum at {x1, x2} = {−0.271,−0.923} and

4 distinct solutions of local minima at {x1, x2} = {3.0, 2.0}, {−2.805, 3.131},

{−3.779,−3.283}, and {3.584,−1.848}. From which, the posterior of interest is

then defined as follows [70]:

P (θ|D,M) ∝ exp [−H(x1, x2)] (29)

which ensures that the local minimia of H(x1, x2) now becomes the region of

high probability giving rise to the 4 peaks.

4.2.1. Bayesian Model Updating set-up

For this problem, the epistemic parameters are x1 and x2, thereby making

this a 2-dimensional Bayesian model updating problem: θ = {x1, x2}. The

priors for x1 and x2 are set to be Uniform priors taking values between −5

and 5 and it is assumed that the epistemic parameters are independent from

one another. The likelihood function is modelled as the exponential function of

−H(x1, x2) and thus takes on the same mathematical form as the posterior in

Eq. (29).

4.2.2. Results

From the posterior P (θ|D,M), 1000 samples are generated using the TM-

CMC sampler and the proposed TEMCMC sampler and the sampling time

elapsed is of 16.14 s and 4.96 s respectively. Both samplers required 5 iterations

. Figure 9 shows the evolution of the statistics of βj and of the acceptance rates

across all iterations j for both TMCMC and TEMCMC samplers. From these
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plots, it can be seen that the evolution of βj across all j are identical for both the

TMCMC and TEMCMC samplers while the acceptance rates for the TMCMC

sampler shows a higher rate of decrease compared to that of the TEMCMC

sampler, especially between j = 1 and j = 2. In addition, it can also be ob-

served that out of 5 iterations, only 2 lie within the optimal limits of acceptance

rate for the case of the TMCMC sampler and 3 for the case of the TEMCMC

sampler. Futhermore, it can be seen that the acceptance rates for TEMCMC

appears to tend towards the target acceptance rate value with increasing j while

this is not the case for the TMCMC sampler. This indicates the effectiveness

of the adaptive tuning algorithm for step-size u in the TEMCMC sampler in

ensuring the majority of the iterations have acceptance rates within the optimal

limits and that the tuning is done with reference to the target acceptance rate.
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Figure 9: The statistics of βj and the acceptance rates across all iterations j. The target

acceptance rate is 0.335.

For the purpose of illustration, the scatterplots obtained from the transition

distributions P j between j = 0 and j = 5 via the TMCMC and TEMCMC

samplers are presented in Figures 10 and 11 respectively. In both Figures 10 and

11, the scatterplots obtained by TMCMC and TEMCMC samplers are compared

against the contour plot profile of the analytical solutions and it can be observed

that in both figures, the scatterplot profiles match closely to the corresponding
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contour plot profile. This validates the effectiveness of both samplers in sampling

from all P j . Figure 12 presents the scatterplot profile of the samples of the

final posterior P (θ|D,M) in comparison with the contour plot profile of the

analytical solution. While both samplers are able to sample effectively from

the 4-peaked posterior, upon closer inspection, it can be observed that there is

significantly less exploration of the sample space by the samples obtained via

the TMCMC sampler compared to the TEMCMC sampler. This is due to the

TMCMC sampler having a very low rate of acceptance in the latter iterations

j = 4 and j = 5 where the acceptance rates are approximately 0.013 as seen

in Figure 9. This reduces the number of unique samples generated from the

MCMC step of the TMCMC algorithm leading to many repeated samples and

a poor exploration of the sample space.

Figure 10: Scatterplots obtained from the transitional distributions P j between j = 0 and

j = 5 via TMCMC sampler. Each scatterplot is presented along with the contour plot profile

of the analytical solution of P j as comparison.

5. Application: Aluminium Frame Problem

The following example is based on the Aluminium Frame problem presented

in [34]. As per illustrated in Figure 13, the structure consists of 7 beams (3

horizontals, 2 long verticals, and 2 short verticals) and 2 movable masses m1
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Figure 11: Scatterplots obtained from the transitional distributions P j between j = 0 and

j = 5 via TEMCMC sampler. Each scatterplot is presented along with the contour plot profile

of the analytical solution of P j as comparison.
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Figure 12: Resulting scatterplots of the samples from the final posterior P (θ|D,M) obtained

via TMCMC (left) and TEMCMC (right) samplers along with the analytical contour plot

profile as a comparison.

and m2 with positions pm1 and pm2 respectively. The mass positions pm1 and

pm2 are used to simulate structural damage.

Experimental data was collected and processed to determine for a given

combination of {pm1, pm2} the 6 natural frequencies corresponding to: ω1 (1st

in-plane bending mode); ω2 (1st out-of-plane bending mode); ω3 (1st torsional
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Figure 13: Schematic diagram of the Aluminium Frame with moveable masses m1 and m2

[34, 71, 72].

mode); ω4 (2nd in-plane bending mode); ω5 (2nd order out-of-plane bending

mode); and ω6 (2nd torsional modes). A total of 11 sets of experimental data

are generated from 11 distinct combinations of {pm1, pm2} and these are sum-

marised in Table 3:

5.1. Bayesian Model Updating set-up

For this problem, an Artificial Neural Network (ANN) is used as a surro-

gate model M in place of the computationally-expensive Finite Element Model

(FEM) of the structure to perform Bayesian model updating and infer {pm1, pm2}.

The architecture of the ANN comprises of 3 layers: 1 input-layer with 2 nodes,

1 hidden-layer with 10 nodes, and 1 output-layer with 6 nodes. For the purpose

of calibrating the ANN, 103 simulated values of {pm1, pm2} and {ω1, . . . , ω6}

are obtained from the simulation database in [71]. The resulting 103 sets of

simulated data are presented in the form of scatterplots as shown in Figures

14a and 14b.

The calibration of the ANN was performed via the Feed-Forward Back-
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Exp. {pm1, pm2} ω1 ω2 ω3 ω4 ω5 ω6

[cm] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 {5, 5} 20.11 22.79 47.52 63.96 183.82 283.51

2 {5, 20} 18.72 20.46 46.97 72.24 214.84 296.32

3 {5, 35} 17.715 18.29 46.42 63.45 196.38 278.70

4 {20, 5} 19.40 22.39 46.32 61.78 173.49 259.76

5 {20, 20} 17.91 20.28 45.67 64.73 190.84 284.09

6 {20, 35} 16.71 18.21 45.18 56.53 177.97 264.44

7 {35, 5} 17.71 21.76 44.00 59.48 164.05 254.48

8 {35, 20} 16.91 19.82 43.15 60.06 175.75 279.10

9 {35, 35} 15.95 17.89 42.44 50.66 163.55 257.82

10 {11, 11} 19.58 21.73 47.00 67.54 196.21 285.95

11 {29, 29} 16.65 18.85 43.93 55.43 174.35 284.84

Table 3: A summary of the experimental data obtained from the hammer impact test. Data

obtained from [71].

Propagation algorithm [73] with a sigmoidal activation function. Of the 103

sets of training data, 70 % was used to train the ANN, 15 % for validation, and

15 % for testing [34]. The calibration procedure took 0.513 s and yielded an

overall regression coefficient R2 of 0.9997 which indicates that the existing ANN

architecture is sufficiently robust. A regression plot of the calibrated ANN is

provided in Figure 15.

The Bayesian model updating set-up is as follows: The priors for pm1 and

pm2 are set to be Uniform priors taking values between 5.0 cm and 35.0 cm. In

addition, the measurement “noise” σv corresponding to the natural frequency

ωv (for v = 1, . . . , 6) are also set to as epistemic parameters to be inferred.

The prior for each σv is also set as a Uniform prior taking values between

0.001 Hz and 100.0 Hz. This brings the total number of epistemic parameters

to 8, thereby making this a 8-dimensional Bayesian model updating problem:

θ = {pm1, pm2, σ1, . . . , σ6}. It is assumed that the epistemic parameters are

independent from one another.
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(a) Scatterplot of the 103 simulated values of {pm1, pm2}.

(b) Resulting scatterplot matrix of the response frequencies obtained from the FEM.

In [34], 3 likelihood functions are presented and used to perform Bayesian

model updating. Defining Mv being the model output for ωv, details to each of

these likelihood functions are summarised in Table 4.

As shown in Table 4, likelihoods f2 and f3 are independent of σv. To ensure

that the uncertainty of σv is accounted for, and that the influence of all the

likelihood functions are also captured in the Bayesian model updating procedure,

an approach would be to combine all 3 likelihoods. There are 3 ways to do so,

under the assumption that likelihoods f1, f2, and f3 have all equal influence,

and the resulting combined likelihood functions with relevant references are
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Figure 15: Regression plot of the calibrated ANN.

provided in Table 5.

Due to the uncertainty associated with the appropriate choice of combined

likelihood function, the Robust Bayesian (RB) framework [80, 81] is adopted

here. Using this framework, 3 distinct posteriors are derived by combining the

prior with each of the combined likelihoods. Let the mth posterior Pm(θ|D,M)

be defined as the product of the prior and combined likelihood Lm (for m =

1, . . . , 3). From there, a P-box [82, 83] can be constructed from the Empirical

Cumulative Distribution Function (ECDF) of the posteriors where the 95 %

Credible Interval (CI) for pm1 and pm2 are obtained. Such analysis is performed

for all 11 sets of experiments from the data presented in Table 3.
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Symbol Type Likelihood function, P (D|θ,M)

f1 Normal Distribution

6∏
v=1

1

σv ·
√

2π
· exp

[
− (ωv −Mv)

2

2 · σv2

]

f2 Inverse Squared Error
6∏
v=1

1− exp

[
− 1

(ωv −Mv)
2

]

f3 Inverse Error

6∏
v=1

1− exp

[
−
√

1

(ωv −Mv)
2

]

Table 4: The likelihood functions employed in [34] for Bayesian inference of pm1 and pm2.

5.2. Results

From Pm(θ|D,M), 1000 samples are generated using the TEMCMC sam-

pler. The P-boxes obtained for each experiment are presented in Figure 16 for

the case of pm1, and Figure 17 for the case of pm2. The numerical results of

the 95 % CI obtained from the P-boxes for pm1 and pm2 for each experiment

are summarised in Table 6. As shown in Table 6, the 95 % CI obtained for pm1

generally encompasses the true value for most experiments with the exception

of experiments where the true values of pm1 are 5 cm and 35 cm. This is also

observed for the case of the 95 % CI obtained for pm2. A key reason for this is

the poor performance of the ANN in regions of the sample space close to these

values. To substantiate this, it can be observed from Figure 14a that most of

the input samples used to train the ANN are situated in the interval [15, 25]

cm in both pm1 and pm2 coordinates and are sparsely distributed outside this

region. In addition, it can also be seen from Figure 15 that the data is not

evenly distributed along the regression plot which implies that the ANN does

not mimic the general behaviour displayed by the FE model in regions where
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Symbol Type Combined Likelihood Function Reference(s)

L1 Weighted Addition
1

3

3∑
l=1

fl

[74, 75]

L2 Bayes’ Multiplication
3∏
l=1

fl

[74, 76, 77,

78]

L3 Aggregated Function √√√√1

3

3∑
l=1

f2
l

[74, 79]

Table 5: The different forms of combined likelihood functions.

training data is not obtained. This has been highlighted in [34].

The resulting sampling time elapsed, number of iterations, and range of ac-

ceptance rates across iterations are summarised in Table 7. As seen from the

table, the acceptance rate interval by the TEMCMC sampler generally encom-

passes the optimal range of values for all experiments and choice of combined

likelihood functions. This highlights the robustness of the proposed adaptive

tuning algorithm in moderating the acceptance rates of the sampler. In addition,

it can also be seen that the number of iterations required by the TEMCMC sam-

pler to generate samples from P2(θ|D,M) is the highest while a similar number

of iterations was required for P1(θ|D,M) and P3(θ|D,M).

To further investigate this, the influence of the individual likelihoods within

L1, L2, and L3. For each Lm, the samples θi from Pm(θ|D,M) in a given

experiment are used to compute the likelihood values of f1, f2, and f3. These

likelihood values are normalised to obtain the relative influence of fl, denoted

by Γfl :

Γfl =
fl∑3
l=1 fl

(30)
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Figure 16: P-boxes for pm1 for the respective experiments constructed from the ECDFs of

P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black dotted vertical

line denotes the true value.

From there, the mean and COV of Γfl is computed. This procedure is repeated

for all experiments. The statistics of Γfl for L1, L2, and L3 across all experi-

ments are presented in Tables 8, 9, and 10 respectively.

From Tables 8 to 10, it can be observed that the value of Γf2 is consistently

the highest across all experiments. Given that the analytical forms of L1 and

L3 involve taking the sum of the individual and the square of each likelihood
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Figure 17: P-boxes for pm2 for the respective experiments constructed from the ECDFs of

P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black dotted vertical

line denotes the true value.

respectively, the overall likelihood values for L1 and L3 would therefore be

dominated by the value of f2. On the other hand, Γf1 is consistently the smallest

(i.e. close to 0) across all experiments within all 3 combined likelihood functions.

Because the analytical form of L2 is essentially a direct product of all 3 likelihood

functions, the value of f1 would cause the value of L2 to be significantly smaller

compared to L1 and L3. As a result , the value of ∆βj computed by the
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Exp. True value pm1 95 % CI pm1 True value pm2 95 % CI pm2

[cm] [cm] [cm] [cm]

1 5 [7.56, 30.23] 5 [5.65, 32.04]

2 5 [5.07, 19.03] 20 [10.26, 31.22]

3 5 [9.83, 29.34] 35 [10.70, 32.45]

4 20 [9.13, 28.83] 5 [5.06, 30.59]

5 20 [14.68, 30.67] 20 [15.16, 29.58]

6 20 [19.38, 34.01] 35 [6.02, 34.51]

7 35 [12.86, 33.69] 5 [5.55, 34.14]

8 35 [18.53, 32.92] 20 [9.51, 32.35]

9 35 [22.71, 34.99] 35 [8.07, 34.97]

10 11 [6.54, 20.87] 11 [5.31, 27.97]

11 29 [18.28, 33.18] 29 [18.78, 33.66]

Table 6: Results of the 95 % CI obtained from the P-boxes for pm1 and pm2 for each

experiment.

TEMCMC algorithm will be smaller for the case of L2, therefore, requiring a

larger number of iterations for obtaining the posterior P2(θ|D,M). Similarly,

when L1 and L3 take higher values, the value of ∆βj computed by the TEMCMC

algorithm is larger, resulting in less iterations.

6. Conclusions

An efficient and robust sampler named Transitional Ensemble Markov Chain

Monte Carlo has been proposed for Bayesian inference. The proposed sampler

uses an affine-invariant ensemble sampler in place of the traditional Metropolis-

Hasting sampler and includes an adaptive tuning algorithm making the approach

“tune-free” for users. The proposed sampler out-performs the current samplers

available in sampling from highly-skewed, anisotropic distributions [32, 66] such

as the transition distributions by exploiting the advantages of the Transitional

Markov Chain Monte Carlo . The absence of a proposal distribution reduces the

number of parameters to tune adaptively, thereby reducing the computational
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Exp. P1(θ|D,M) P2(θ|D,M) P3(θ|D,M)

Time Iterations Acceptance Time Iterations Acceptance Time Iterations Acceptance

[s] [s] [s]

1 124.88 2 [0.452, 0.478] 687.63 11 [0.332, 0.474] 126.99 2 [0.438, 0.497]

2 178.40 3 [0.421, 0.503] 758.29 12 [0.342, 0.477] 172.20 3 [0.426, 0.488]

3 127.22 2 [0.441, 0.498] 634.53 10 [0.353, 0.491] 123.09 2 [0.450, 0.488]

4 177.76 3 [0.429, 0.490] 526.76 8 [0.374, 0.545] 169.55 3 [0.439, 0.494]

5 181.36 3 [0.425, 0.496] 641.87 10 [0.319, 0.476] 177.73 3 [0.424, 0.498]

6 123.92 2 [0.454, 0.500] 758.80 11 [0.344, 0.489] 119.62 2 [0.435, 0.490]

7 144.16 2 [0.456, 0.506] 757.30 10 [0.358, 0.473] 126.88 2 [0.452, 0.494]

8 129.26 2 [0.431, 0.500] 669.17 12 [0.376, 0.494] 121.28 2 [0.433, 0.511]

9 242.37 4 [0.414, 0.488] 665.24 9 [0.360, 0.476] 179.12 3 [0.419, 0.493]

10 206.06 3 [0.431, 0.497] 728.62 11 [0.352, 0.486] 169.32 3 [0.435, 0.494]

11 168.19 3 [0.436, 0.506] 650.88 11 [0.369, 0.494] 168.41 3 [0.429, 0.488]

Table 7: Summary of the sampling time elapsed, number of iterations, and range of accep-

tance rates across iterations by the TEMCMC sampler for the respective posteriors in each

experiment.

Exp. f1 f2 f3

Mean Γf1 COV Mean Γf2 COV Mean Γf3 COV

[%] [%] [%]

1 4.84× 10−53 3.13× 103 0.979 2.18 0.021 100.42

2 1.38× 10−51 2.92× 103 0.943 4.87 0.058 79.87

3 5.30× 10−52 2.75× 103 0.931 6.08 0.069 82.07

4 4.21× 10−53 1.88× 103 0.975 2.24 0.026 85.83

5 2.47× 10−46 2.12× 103 0.583 29.18 0.417 40.83

6 2.03× 10−51 2.47× 103 0.954 3.65 0.046 76.39

7 2.23× 10−52 2.19× 103 0.999 0.07 0.001 69.49

8 2.55× 10−52 1.66× 103 0.904 8.54 0.096 80.60

9 3.62× 10−48 2.81× 103 0.920 11.07 0.080 126.97

10 2.13× 10−52 2.81× 103 0.810 18.89 0.189 80.97

11 5.58× 10−54 2.20× 103 0.931 3.16 0.069 42.54

Table 8: Statistics of f1, f2, and f3 for combined likelihood L1.
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Exp. f1 f2 f3

Mean Γf1 COV Mean Γf2 COV Mean Γf3 COV

[%] [%] [%]

1 1.95× 10−23 3.15× 103 0.985 0.30 0.015 19.34

2 1.74× 10−22 9.26× 102 0.920 0.84 0.080 9.63

3 1.57× 10−30 3.33× 102 0.968 3.84 0.032 116.57

4 6.01× 10−37 1.53× 103 0.996 0.03 0.004 6.24

5 2.54× 10−25 6.35× 102 0.690 30.60 0.311 67.96

6 1.90× 10−13 3.11× 103 0.960 1.53 0.041 36.08

7 9.12× 10−30 3.04× 102 0.999 0.002 0.001 1.40

8 3.06× 10−24 1.20× 103 0.879 2.51 0.121 18.30

9 2.04× 10−28 7.93× 102 0.994 0.10 0.006 17.43

10 1.68× 10−10 1.99× 103 0.995 0.17 0.005 35.95

11 1.44× 10−20 2.93× 103 0.933 1.63 0.067 22.69

Table 9: Statistics of f1, f2, and f3 for combined likelihood L2.

Exp. f1 f2 f3

Mean Γf1 COV Mean Γf2 COV Mean Γf3 COV

[%] [%] [%]

1 5.51× 10−52 2.64× 103 0.978 2.34 0.022 102.67

2 6.91× 10−54 2.55× 103 0.945 5.09 0.055 87.13

3 4.60× 10−48 2.23× 103 0.944 5.45 0.056 91.15

4 5.41× 10−47 3.12× 103 0.973 1.98 0.027 72.24

5 1.24× 10−49 2.33× 103 0.638 28.78 0.362 50.77

6 2.97× 10−55 2.44× 103 0.954 3.56 0.046 73.20

7 2.37× 10−55 2.77× 103 0.999 0.07 0.001 65.54

8 7.54× 10−51 3.03× 103 0.914 8.19 0.086 87.34

9 1.05× 10−51 3.16× 103 0.952 7.41 0.048 146.69

10 1.46× 10−53 1.94× 103 0.802 18.77 0.198 76.19

11 4.42× 10−54 2.23× 103 0.932 3.33 0.068 45.83

Table 10: Statistics of f1, f2, and f3 for combined likelihood L3.

cost and eradicating the model uncertainty in considering the choice of the

distribution model.
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To illustrate the efficiency and effectiveness of the proposed Transitional

Ensemble Markov Chain Monte Carlo sampler, two numerical examples and

one experimental example have been presented showing the applicability of the

approach for performing Bayesian model updating also in the presence of a com-

plex a multi-modal posterior. In all the examples investigated, the Transitional

Ensemble Markov Chain Monte Carlo sampler outperforms the traditional sam-

pler by requiring a shorter time whilst ensuring that the acceptance rates are

well-moderated within optimal bounds. Furthermore, through the experimen-

tal example, we have also demonstrated the robustness of the proposed sampler

in performing Bayesian inference using measurements obtained under realistic

settings. This highlights the applicability of the Transitional Ensemble Markov

Chain Monte Carlo in addressing real-world engineering problems.

In summary, the results from the examples presented in this paper highlights

the following key strengths of the proposed Transitional Ensemble Markov Chain

Monte Carlo sampler: 1) it allows for the sampling of badly-scaled and highly-

anisotropic distributions without requiring extra computational costs; 2) it is

free from tuning by the user; and 3) it is more robust than the Transitional

Markov Chain Monte Carlo in controlling the acceptance rates automatically.

One significant drawback of this sampler, however, is the relative complexity in

coding the Transitional Ensemble Markov Chain Monte Carlo algorithm from

scratch compared to the standard Transitional Markov Chain Monte Carlo.

To address this issue, access to the MATLAB code is provided on GitHub:

https://github.com/Adolphus8/Transitional_Ensemble_MCMC.git
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7. Appendix
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Figure 18: Contour plots illustrating the skewed P j defined by Eq. (31) (left) and the scaled,

isotropic P j in the affine-transformed space defined by Eq. (33) (right).

In this illustrative example, a skewed “transition” distribution defined in

a 2D sample space θ = {θ1, θ2} is presented in Figure 18 with the following

mathematical expression:

P j(θ) ∝
{
exp

[
− (3 · θ1 + θ2)2

0.08
− (θ1 − θ2)2

2

]}βj

(31)

where βj = 0.2. To simplify the distribution such that it becomes easier to

generate samples from, one could re-scale the problem via the following affine-

transformation:

Θ1

Θ2

 =

15 ·
√
βj 5 ·

√
βj√

βj −
√
βj

θ1

θ2

 (32)

This yields a relatively simpler isotropic distribution P ′j(Θ):

P ′j(Θ) ∝ exp
[
− (Θ1)2

2
− (Θ2)2

2

]
(33)

From both P j(θ) and P ′j(Θ), 1000 samples are obtained across 4 chains (i.e.

250 samples per chain) using AIES and MH samplers. The tuning-parameter
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settings for the respective samplers are presented in Table 11 which ensures

that the acceptance rates for both samples are as close to 0.234 as possible

[46]. Following which, the samples in the Θ-space obtained by the respective

samplers would be re-scaled to the θ-space via the inverse of Eq. (32). This

yields the results illustrated in Figure 19 where it can be seen that the ECDF

obtained directly from P j(θ) and that re-scaled from P ′j(Θ) are in very good

agreement. This is quantified by the area enclosed by both ECDFs where it can

be seen from Table 12 that this area is small (i.e. close to 0) compared to that

for the case of the MH sampler. In addition, it can also be observed from Figure

19 that the profile of the ECDF obtained directly from P j(θ) by MH sampler

(i.e. in purple) deviates significantly from that of the analytical CDF of θ1 and

θ2. In the case of the AIES, such deviation is less significant in both dimensions.

These results highlight not only the capability of the AIES in sampling directly

from a skewed distribution without the need to re-scale such distribution under

an affine-transformation, but also its affine-invariant property which allows it to

sample from such distribution as effectively as it would from a scaled isotropic

distribution. These characteristics are not exhibited by the MH sampler.

Tuning-parameter Case: P j(θ) Case: P ′j(Θ)

Step-size, u 8.0 8.0

(AIES)

Covariance matrix, Σ 0.5 · I 5 · I

(MH)

Table 11: Parameter settings implemented for the respective samplers in sampling from P j(θ)

and P ′j(Θ) respectively. I denotes the identity matrix.

AIES MH

θ1 0.049 0.265

θ2 0.089 0.813

Table 12: Results of the area enclosed by the ECDF obtained directly from P j(θ) and that

re-scaled from P ′j(Θ) for the respective samplers.
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when using MH and AIES.
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