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ABSTRACT 

Singular spectrum analysis (SSA) and its 2-D variation (2D-
SSA) have been successfully applied for effective feature 
extraction in hyperspectral imaging (HSI). However, they 
both cannot effectively use the spectral-spatial information, 
leading to a limited accuracy in classification. To tackle this 
problem, a novel 2D-SSA based multiscale feature fusion 
method, combining with segmented principal component 
analysis (SPCA), is proposed in this paper. The SPCA 
method is used for dimension reduction and spectral feature 
extraction, while multiscale 2D-SSA can extract abundant 
spatial features at different scales. In addition, a post-
processing via SPCA is applied on fused features to enhance 
the spectral discriminability. Experiments on two widely 
used datasets show that the proposed method outperforms 
two conventional SSA methods and other spectral-spatial 
classification methods in terms of the classification accuracy 
and computational cost. 

Index Terms—segmented principal component analysis 
(SPCA), hyperspectral imagery (HSI), Multiscale 2D-SSA, 
feature extraction, data classification. 

1. INTRODUCTION

Hyperspectral imagery (HSI) provides detailed spectral and 
spatial information simultaneously [1]. With numerous 
contiguous spectral bands, HSI can potentially identify 
different objects by detecting minor changes, which enables 
HSI being successfully applied for many areas such as land-
cover analysis in remote sensing. However, the high 
dimensions of HSI lead to a dimensional curse, and the data 
redundancy and noise are also unavoidable, which bring 
obstacles to the classification. Therefore, effective spectral-
spatial feature extraction is essential for land cover analysis. 

Recently, a time-series analysis technique, singular 
spectrum analysis (SSA), has been introduced for feature 
extraction in HSI and demonstrated a good ability and 
effectiveness, being able to remove high-frequency noise in 
HSI pixels, leading to a smoothing effect [2]. Since SSA 
implements in the spectral domain, its improvement on 

classification performance is confined. While its 2-D 
version (2D-SSA), which is implemented in the spatial 
domain, can effectively utilize spatial information and 
explore global spatial correlation of HSI, achieving a great 
accuracy improvement in classification [3]. However, it 
cannot sufficiently use the abundant spectral content. In 
addition, for a given band image, its embedding window is 
usually fixed, which may lead to the under-smoothed or 
over-smoothed results of land cover.  

In recent years, spectral-spatial feature fusion methods 
are preferred for HSI classification. Some image fusion 
frameworks, such as edge-preserving filtering-based (EPF) 
[4] multiscale feature extraction and intrinsic image
decomposition (IID) [5] method, utilize and fuse abundant
spatial information to improve the classification accuracy
effectively. Besides, considering the deeper levels of
features for classification improvement, some deep learning-
based spatial-spectral methods are proposed, including
feature-learning convolutional neural network (FL-CNN)
[6] and GF-FSAE network [7], in which spatial-spectral
fused features are learned for HSI classification.

Inspired by the above methods, a novel feature fusion 
method with the SPCA and 2D-SSA framework is proposed 
for HSI classification in this paper, which can utilize 
abundant spectral and multiscale spatial features. 
Experiments on two datasets show that the proposed method 
achieves better classification performance than comparison 
methods and provides satisfactory results. 

2. METHODOLOGY

The flowchart of the proposed method is presented in Fig.1, 
which can be summarized into three steps: SPCA-based 
dimension reduction, multiscale 2D-SSA, feature fusion and 
SVM-based classification. The details are given as below. 

Step 1  Step 2  

Multiscale 
2DSSA  HSI  Dimension- 

reduced HSI  
SPCA  

2DSSA features 
at Scale 1  

2DSSA features 
at Scale n  

SPCA  Fusion 
Features  

SVM  Classification 
Map  

Step 3  

Figure 1. Workflow of the proposed method 
2.1. SPCA-based dimension reduction 
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PCA can preserve most spectral features of the HSI in a few 
principal components by a linear transformation, and this 
transformation is given as follows: 

( )PCAH PCA H= (1) 
where H is the hyperspectral imagery which consists of N 
pixels and B spectral bands, or a B-dimensional vector for 
each pixel, and HPCA is the feature data after dimension 
reduction, which only have several principal components.  

PCA can effectively achieve the dimension reduction 
but it is quite sensitive to spectral noise. Therefore, the 
segmented PCA [8] is employed to reduce the effect of 
noise and extracts local spectral information. Firstly, the 
spectral bands of a hyperspectral imagery H are divided into 
K subsets, each of which consists adjacent bands. The 
number of bands Bk for each subset Sk is as follow: 

[ / ]
  {1,2,..., 1}

( 1)
k

K k

B B K
k K

B B B K
=

 −
= −  −

 (2) 

where Bk represents the value of the largest integer that is 
not greater than B/K. Then, PCA is employed to each 
adjacent subset as follows: 

( )     {1, 2,.., }k kH PCA S k K= = (3) 
Finally, the first principal components of each band 

subsets are stacked together, whereas the dimension reduced 
HSI HSPCA is obtained by: 

1 2{ , ,..., }SPCA KH H H H= (4) 
The band subsets contain adjacent spectral bands, which 

have strong correlations and contain redundant information. 
Compared to PCA, SPCA concentrates several adjacent 
spectral content, not only retains the important spectral 
information but also eliminates spectral redundancy. 
2.2. Multiscale 2D-SSA 
In this section, we employ 2D-SSA with different 
embedding window scales to extract spatial information of 
each band image after SPCA. This method is implemented 
on a grayscale image as detailed below. 

Given a grayscale image I with a size hw, define the 
embedding window of size u×v (with 1≤ u ≤ h,1≤ v ≤ w and 
u=v for convenience), which moves from the top left to the 
bottom right of the image to construct the trajectory matrix 
X. The pixels in the window are expanded and joined as a
vector 1uvV R   that as a column in the trajectory matrix, 
which is shown below: 

( ) ( 1)( 1)
1,1 1,2 1, 1 2,1 1, 1X , , , , Ruv h u w v

w v h u w vV V V V V  − + − +

− + − + − += 

(5) 
Note that the trajectory matrix X has a structure called 

HbH, i.e. Hankel by Hankel. Then,  the Eigenvalues of XXT 
and their corresponding Eigenvectors are denoted as 
( )1 2 ... L     and ( )1 2U ,U ,...,UL

, respectively. The trajectory 
matrix can be written as follows: 

1 2         X X  + X  + + X

(X U V ,V X U / )
L

T T
i i i i i i i 

=

= =
(6) 

where Ui and Vi are the empirical orthogonal functions and 
the principal components of the trajectory matrix, 

respectively. Afterwards, we select X1 as an approximation 
to X, mainly because it contains the most important spatial 
information [3]. Finally, the matrix X1 is converted to a new 
image of size h×w again, as the reconstructed image, by a 
two-step diagonal averaging process in the matrix anti-
diagonals in both each block and between blocks. Note that 
the scale of 2D-SSA is determined by embedding window 
size. 

Let Fl be the output feature data at the lth scale of the 
2D-SSA, which is calculated by: 

1

F 2 ( , )  1,...,
F = {F ,...,F }

l SPCA l l

n

DSSA H u v l n=  =
(7) 

where n is the number of total scales for different 
embedding windows, and the size of Fl is exactly the same 
as HSPCA. The obtained features can capture the multiscale 
spatial information of the hyperspectral image effectively, 
where these spatial features of different scales can 
supplement the feature information of different land covers 
to achieve better recognition performance. 
2.3. Feature fusion and classification 
After the multiscale 2D-SSA, the dimension of stacked 
features from different scales will have a inevitable increase 
of the computational cost. Redundant information might 
exist in the staked data. In addition, the resulted images 
obtained by different 2D-SSA scales are continuous smooth 
and some texture information is removed, which have a 
negative effect on the classification performance because 
the differences of pixels belonging to different classes are 
reduced distinctly.  

Therefore, SPCA is applied for featured images at each 
scale again to solve the problem presented above, which is 
calculated by: 

(F , )     {1,..., }    l lZ PCA p l n= = (8) 

1{ ,..., }   nZ Z Z= (9) 
where p (p<K) represents the number of dimension after 
SPCA. Then, different scaled images after SPCA are 
stacked together according to (9) and used as the input of 
the SVM classifier. Based on margin criterion, SVM shows 
high robustness to dimensional problems such as the Hughes 
phenomenon. Moreover, SVM supports different types of 
kernel functions, following the suggestions from others, the 
RBF kernel is used in our SVM classifier [9]. 

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Experimental setup 
Two well-known HSI datasets with available ground truth, 
Indian Pines and Pavia University, are used in our 
experiments. The Indian Pines dataset has a spatial size of 
145×145 pixels and contains 220 contiguous spectral bands 
(normally reduced to 200) and including 16 land-cover 
classes in the ground truth. The second dataset, Pavia 
University, has a spatial size of 610×340 pixels and 115 
spectral bands (reduced to 103), with 9 land-cover classes. 
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In addition, the SVM classifier is implemented by the 
LIBSVM library [10] using a RBF kernel with a five-fold 
cross validation, and 4% and 0.4% randomly selected 
samples per class for two datasets are taken as training set, 
being the rest of samples used for testing, respectively. The 
overall accuracy (OA), average accuracy (AA), kappa 
coefficient and computation time (the time used for feature 
extraction) are utilized to evaluate the proposed method. 
3.2. Scales of 2D-SSA 
In order to analyze the effect of each 2D-SSA scale in our 
method, an experiment is performed on Indian Pines. 
According to [3], the embedding window scales for 2D-SSA 
are chosen within {5,10,20}. In this experiment, the raw 
data, the feature extraction data by single scale and 
multiscale 2D-SSA are combined with the SVM classifier, 
in which the parameter K=10 and p=7 in SPCA, and the 
classification results are given in Table I. 
 

Table I Classification results using the raw data and 
different 2D-SSA scales 

 Raw  Scale{5} Scale{10} Scale{20} Multiscale 

OA 71.99 91.50 92.55 92.76 96.25 
AA 60.68 91.01 93.07 90.28 96.86 

Kappa 0.68 0.90 0.92 0.92 0.96 

 
As shown in Table I, our classification framework can 

improve the accuracy compared to cases of raw data and 
three single scale. Moreover, the combination of different 
2D-SSA scales can further improve the classification 
accuracy. This demonstrates that spatial features fusion has 
a potential for improved classification of HSI. 
3.3. Comparision with other approaches 

To validate the efficacy of the proposed method, the 
original hyperspectral data plus SVM classifiers, as well as  
SSA [2], EPF [4], IID [5], FL-CNN [6], GF-FSAE [7] and 
our method are compared. For a fair comparison, the 
optimal parameters of different methods are utilized in our 
experiment as according to [2],[4]-[7]. The parameters of 
proposed method are the same as section 3.2, i.e.  K =10, 
p=7 and three scales {5,10,20} in multiscale 2D-SSA. 
Moreover, the related parameters γ and C of the RBF kernel 
are fixed at 0.125 and 1000, respectively. The classification 
results and maps of the comparison approaches are shown in 
Tables II-III and Figs. 2-3. 

As seen in Tables II-III, the classification accuracy of 
SSA is limited due to using only the spectral information. 
The EPF and IID achieve higher classification accuracy 
mainly because they utilize spatial features. For the other 
two deep learning-based methods,  although they 
simultaneously extract spectral and spatial features, their 
classification accuracy improvements are limited mainly due 
to the limited training samples. Our feature fusion method 
has helped to achieve high classification accuracy in almost 
all classes for the Indian Pines dataset, which validates the 
merit of our proposed method. For Pavia University, our 

method also performs well in most of classes compared with 
other methods, while the AA is lower than IID method.  

Table II Classification results of Indian Pines 
No. SVM SSA EPF IID FL-

CNN 
GF-

FSAE Our 

1 0.00 86.36 87.65 90.22 88.41 97.57 95.45 
2 74.23 82.48 92.17 92.57 89.82 85.68 94.38 
3 51.26 72.86 90.48 92.61 83.98 90.50 97.36 
4 22.47 41.41 58.26 82.96 87.93 68.22 94.71 
5 69.55 86.61 97.79 95.82 94.28 78.98 98.27 
6 89.43 88.29 96.37 98.42 97.25 95.11 98.71 
7 65.38 88.46 100 68.84 76.06 60.00 100 
8 91.48 97.82 99.47 100 99.56 100 100 
9 21.05 36.84 88.98 89.56 68.87 44.44 100 

10 66.24 73.63 70.71 88.77 87.35 83.43 89.17 
11 78.82 75.98 89.28 96.37 96.42 95.24 97.84 
12 44.11 60.28 81.07 89.04 90.58 91.17 86.12 
13 92.35 93.37 99.73 99.35 91.06 91.30 98.47 
14 90.12 91.02 98.28 99.32 99.17 97.01 99.59 
15 39.19 37.84 79.70 94.93 89.51 95.98 99.73 
16 75.28 77.53 81.14 98.73 93.59 86.75 100 

OA 71.99 77.88 87.37 94.31 92.35 85.09 96.25 
AA 60.68 74.42 88.19 92.32 89.62 90.89 96.86 

Kappa 0.68 0.75 0.86 0.94 91.07 0.90 0.96 

 
Table III Classification results of Pavia University 

No. SVM SSA EPF IID FL-
CNN 

GF-
FSAE Our 

1 80.75 79.21 96.10 91.40 96.77 81.90 97.40 
2 93.38 91.77 94.60 99.19 97.48 97.72 99.74 
3 75.60 77.37 84.08 94.11 77.03 75.96 81.82 
4 77.91 71.91 71.58 88.84 87.63 81.61 90.46 
5 99.10 98.95 95.29 99.24 97.79 99.49 100 
6 66.35 56.67 62.83 98.40 78.68 86.36 95.25 
7 68.81 62.46 78.88 97.28 66.69 78.90 90.41 
8 76.30 76.14 85.31 82.64 85.92 70.89 96.10 
9 99.68 99.68 96.90 92.02 99.89 62.03 69.99 

OA 84.35 81.71 84.05 94.67 90.79 86.60 96.05 
AA 81.99 79.35 85.06 93.68 87.54 81.65 91.24 

Kappa 0.79 0.76 0.80 0.93 0.88 0.83 0.95 

 

(c)  OA=77.88%  (b) OA=71.99%(a)  RGB image (d)  OA=87.37%  

(g)  OA=85.09%  (e)  OA=94.31%  (f)  OA=92.35%  (h)  OA=96.25%   
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Figure. 2. Indian Pines. (a) RGB image; Results obtained 
by: (b) SVM; (c) SSA; (d) EPF; (e) IID; (f) FL-CNN; (g) 

GF-FSAE; (h)  Our proposed method. 
 

(b) OA=84.35% (c) OA=81.71% (d) OA=84.05%

(e) OA=94.67% (h) OA=96.05%

(a)  RGB image

(f) OA=90.79% (g) OA=86.60%  
Figure. 3. Pavia University. (a) RGB image; Results 

obtained by: (b) SVM (c) SSA; (d) EPF; (e) IID; (f) FL-
CNN; (g) GF-FSAE; (h)  Our proposed method. 

 
Figs. 2 and 3 show a visual map of the classified pixels 

in two datasets by using different approaches. The raw SVM 
and SSA have many misclassified pixels within different 
land covers. EPF has reduced internal misclassification of 
land covers, yet there still exist misclassified objects 
between land covers. The IID method cannot distinguish 
well between meadows and trees. FL-CNN and GF-FSAE 
cannot classify the strip features well. Our proposed method, 
thanks to the fused multiscale spatial information, it can 
achieve the best performance. 

 
Table IV Computation time of different methods on the 

Indian Pines dataset (145145200) 
 SSA 2DSSA EPF IID FL-CNN GF-FSAE Proposed 

Time(s) 51 46 101 48 480 248 12 

 
In addition, the computation time of different methods 

by using MATLAB on a Computer with 3.5-GHz CPU and 
8-GB memory are also given in Table IV, taking Indian 
Pines as an example. As can be seen, our method is indeed 
computationally efficient, mainly because SPCA can 
effectively reduce the dimension and improve the 
computation efficiency. 

 

4. CONCLUSIONS 
 
In order to effectively utilize the spectral-spatial 
information, in this paper, a novel SPCA and 2D-SSA based 
multiscale feature fusion method is proposed for the 
hyperspectral image classification. The SPCA method can 
reduce the dimension and retain primary spectral feature of 
HSI. In spatial domain, the multiscale 2D-SSA is used for 
feature extraction, which can effectively balance the lack of 
extracted spatial features in a single scale. By applying 
SPCA again to the fused features, the spectral 
discriminability of pixels can be further enhanced. 
Experimental results on twodatasets have validated  the 
efficacy of the proposed method, which outperforms the 
comparison methods and results the best classification 
performance with a less computational cost. 
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