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Abstract—The hydromechanics analysis of floating offshore
wind turbines is a fundamental and time consuming part of the
design process, traditionally analysed with methods of computa-
tional fluid dynamics. In this work, an alternative computational
framework is suggested, able to significantly accelerate the design
process with minimal accuracy loss. Through the use of a state-of-
the-art potential-flow code, a surrogate model is developed with
the aim to approximate the Response Amplitude Operators of any
arbitrary floating offshore wind turbine of the spar buoy type.
The results, measured in terms of accuracy and computational
effort, demonstrate that this approach is able to approximate the
potential-flow solver with very high accuracy at a fraction of the
computational cost.

Index Terms—Surrogate models, Extreme Learning Machines,
Response Amplitude Operators, Floating Offshore Wind Turbine,
Hydromechanics Analysis

I. INTRODUCTION

Wind energy is expected to make significant contributions
in the achievement of energy policy commitments in the
global power sector. Currently, onshore wind farms are the
major contributor, however, recent trends in the renewable
energy industry indicate that offshore wind farms will soon
be at the forefront of the fight against climate change [1].
Therefore, far, offshore wind farms have been developed in
near-shore and shallow waters, utilising mostly fixed bottom
structures. Nonetheless, it has been identified that the best
wind resources exist beyond the reach of these structures, in
deeper locations where the wind speed is higher and more
consistent, larger areas are available, and the use of large
and costly installation vessels can be potentially avoided.
These locations can be accessed by Floating Offshore Wind
Turbines (FOWT), however, the harsh operating conditions
and the lower level of maturity pose significant engineering
challenges in the design and construction of FOWTs. Among
these challenges is the development of accurate modelling
tools with increased flexibility, to facilitate the complex and
iterative design process [2]–[4].

In order to shorten the lengthy design cycles, part of the re-
search community has focused on reducing the computational
time requirements of the necessary modelling tools. To this

end, several researches have proposed the use of surrogate
models in the design and optimisation of wind turbines.
Surrogate models have had several successful applications in
the field of Computational Fluid Dynamics (CFD), and are
known for their high computational efficiency and the ability
to represent functions of very high complexity [5]–[9]. In [10],
a surrogate optimisation framework was developed for the
aerodynamic design of wind-turbine rotors, using a three-
dimensional viscous-inviscid interaction code. The proposed
methodology was compared to the blade element-momentum
theory approach, with the final results showing remarkable
similarities at a fraction of the computational cost. A Response
Surface Model (RSM) was developed in [11] to reduce the
computational time of a complex two-step, multi-objective
optimisation of a wind turbine blade. RSMs were also utilised
in [12], [13], where expensive numerical computations of the
Navier-Stokes equations were originally used to design wind-
turbine airfoil profiles. Similarly, Kriging and Artificial Neural
Networks (ANNs) were also shown to be preferable in the
design of wind turbine airfoils than traditional CFD methods
in [14], [15], respectively.

Although these approaches clearly demonstrate that sur-
rogate models exhibit a favourable trade-off between com-
putational complexity and accuracy, the design process of
FOWT structures poses additional challenges that remain to
be addressed. One of these challenges, and a fundamental part
of the conceptual and preliminary design, is the assessment
of the hydromechanics characteristics of these structures, and
more precisely: the added mass matrix, the radiation damping
matrix, and the wave load transfer functions, as functions of
the frequency of oscillation.

In practice, several configurations are initially considered,
and their dynamic response to the environmental loads is
assessed. Based on these initial evaluations, one or more
new configurations are proposed and assessed once again.
The current state-of-the-art high accuracy approaches for this
analysis are based on CFD and Higher Order Boundary
Element Methods (HOBEM) [16]–[18]. However, their high
computational cost and the large number of load cases that



need to be considered restrict the full exploration of the design
space due to practical limitations: the standard resources
that are usually available to engineers involved in FOWT
analysis and design are not sufficient to sustain the necessary
iterations [19]. This severely limits the speed of the design
process, and as such, the quality of the final configuration.

Despite the increasing efforts to incorporate surrogate mod-
els in several areas of wind turbine design and analysis, their
application on hydrodynamic response estimation of FOWT
structures has yet to be addressed. For this reason, this work
demonstrates the feasibility and assesses the performance of
a surrogate model in this particular design aspect. Namely,
the hydrodynamic response of FOWT foundation structures of
the spar-buoy type. For the reasons that are discussed in the
sections that follow, a particular sub-family of ANNs has been
employed, known as Extreme Learning Machines (ELMs),
developed utilising a dataset of simulations from a state-of-the-
art, potential-flow-based computational code [20]. The dataset
will serve as input to the Model Selection (MS) and Error
Estimation (EE) phases, while the remaining part of the data
will be used for validation and verification. In particular, to
assess the ability of the ELM to approximate the results of the
computationally expensive potential-flow solver, we evaluated
two different scenarios: an interpolation scenario, in which
the design parameters lie within the design space sampled
to develop the ELM, and an extrapolation scenario, in which
the foundation parameters lie outside the boundaries of the
original design space.

This paper is organised as follows: Section II gives an
overview of the computational code employed to generate a
limited dataset of the hydrodynamic responses, in terms of
Response Amplitude Operators (RAOs), of FOWT structures
with different geometries. Section III describes the sampling
methodology used to select specific geometries from the
design space as input to the ELM, and Section IV discusses the
process of learning the RAOs. Finally, Section V discusses the
performance and time requirements of the proposed method,
and Section VI gives the conclusion and recommendations for
further work.

II. HYDROMECHANICS ANALYSIS

The system of equations of motion for a floating body in
regular waves is [21]:

6∑
j=1

ξj
[
−ω2 (Mkj + akj) + iωbkj + ckj

]
= ηXk, (1)

k = 1, ..., 6

where M is the total system matrix, akj is the hydrody-
namic added mass coefficient, bkj is the radiation damping
coefficient (no viscous forces have been considered), and ckj
is the sum of the hydrostatic and mooring system stiffness
coefficients. ξj is the j-th degrees of freedom displacement
(rigid platform global response), η is the wave amplitude, and
Xk is the first order wave load transfer function.

These are six simultaneous linear equations of motion,
which can be solved to obtain the body displacement in the
j-th DOF:

ξj = η

6∑
k=1

Xk

−ω2 (Mkj + akj) + iωbkj + ckj
(2)

The complex response transfer function between the ampli-
tude of the wave and the amplitude of the oscillation of the
system in the j-th DOF is therefore:

Hj =
ξj
η

=

6∑
k=1

Xk

−ω2 (Mkj + akj) + iωbkj + ckj
(3)

The RAO in the j-th DOF is defined as the complex
magnitude of the transfer function Hj :

RAOj = |Hj | (4)

A. Hydrodynamics analysis

The software NEMOH is a Boundary Element Methods
(BEM) code calculating the wave loads on offshore structures
(added mass, radiation, damping, diffraction forces), developed
by researchers at Ecole Centrale de Nantes. In the present
work, it has been used to estimate the dynamic response of
the floating support structures analysed. Differently from other
BEM softwares, NEMOH’s approach decouples the resolution
of the linear free surface Boundary Value Problem (BVP) and
the definition of the boundary condition on the body (body
condition). For further details, please refer to [20].

In particular, for the present work, NEMOH has been used
to derive
• the A6×6(ω) and B6×6(ω) added mass and radiation

damping matrices, function of the frequency;
• the Xk(ω) first order wave load transfer functions (inci-

dent and diffraction potential);
• the C6x6 hydrostatic restoring matrix.
It should be noted that, in the present work, being the

floating support structures analysed always axisymmetric, only
one incident wave direction has been considered.

B. Mass matrix and centre of gravity

At this preliminary design stage, the support structure mass
is usually estimated as a fraction of the mass of displace water
[22], and in the present case this fraction is equal to 0.26.
Then, the support structure mass matrix Mss

6x6 is estimated by
considering each frustum of a cone element mass distributed
on the external panel, also allowing the estimation of its centre
of gravity CoGss

1×3.
The wind turbine mass matrix, Mwt

6x6, and its centre of
gravity, CoGwt

1×3, is an input to the problem, and the ones
assumed here are those of the open access NREL 5 MW
reference offshore wind turbine [23].

The ballast mass can be therefore calculated using the
floatability requirement, i.e., the sum of the wind turbine
weight, the support structure weight, and the ballast weight



has to be equal to the total buoyancy force. The ballast mass
matrix Mbal

6x6 and the ballast centre of gravity CoGbal
1×3 are

then derived, considering the ballast filling the lowest part of
the support structure. The material considered for the ballast
is a mix of seawater and heavy solid material, with a density
equal to ρ = 1800 kg

m3 .
Therefore, the mass matrix and the centre of gravity of the

whole system are derived as follow

M6x6 =Mss
6x6 +Mwt

6x6 +M bal
6x6 (5)

CoG1×3 =
mssCoGss +mwtCoGwt +mbalCoGbal

m
(6)

where mi = M i(1, 1) is the mass of the i−th subsystem.

C. Mooring system restoring forces

The mooring system stiffness matrix has been considered
constant and equal to the one provided for the open access
OC3 Spar floating offshore wind turbine [24].

III. DATASET CREATION

Our ability to generate input data for the learning phase
can be exploited to positively affect the performance of the
surrogate model. As such, special consideration was given
in the careful sampling of the design space, to generate a
limited set of representative geometries. We defined the design
space on the basis of the foundation’s draft and the external
radii of the axi-symmetric platform, at six different depths
along the vertical axis of the structure. To sample the design
space, the external radii were varied between one and six
meters, with a discretization interval of one meter, whereas the
foundation draft was varied between 50 and 140 meters, with
a discretization interval of 10 meters. A full factorial design
of the experiments was employed to allow us to capture the
joint effects of all the design parameters on each of the RAOs.
Given the discretization used, a total of 2187 geometries were
generated.

Finally, the mesh of each geometry, along with the load
cases to be evaluated were inserted into the potential-flow
based code to derive the global rigid-body response of each
platform quantified by the 6DOF RAOs. Examples of gener-
ated geometries are given in Fig. 1.

IV. LEARNING THE RAO

The problem of learning the RAO based on the data
described in Section III can be easily mapped in the now-
classical Machine Learning regression problem [25]. However,
our scope is broader, and we want to learn a model with limited
computational requirements, namely, the computational effort
to compute the model output given its inputs should be
as limited as possible. As we will see in this section, this
constraint will guide us to a particular solution.

Let us recall the now-classical Machine Learning regression
problem [25]. Let X ⊆ Rd be the input space consisting
of f features, and let Y = R be the output space. Let

(a) Example Geometry 1 (b) Example Geometry 2

(c) Example Geometry 3 (d) Example Geometry 4

Fig. 1. Sample of geometries for the learning phase.

TABLE I
LIST OF FEATURES IN THE DATASET

Name Description
r1×6 External radii of the platform
T Foundation draft
CoGwt

1×3 Wind turbine center of gravity
zssG Support structure center of gravity - vertical position
ztsG Total structure center of gravity - vertical position
Mss

6×6 Support structure mass matrix
M ts

6×6 Total structure mass matrix
Cm

6×6 Mooring system restoring matrix
Chst

6×6 Hydrostatics and ballast restoring matrix
ω1×207 Frequency vector

Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ X and Yi ∈ Y
∀i ∈ {1, · · · , n}, be a sequence of n ∈ N∗ samples drawn
independently from an unknown probability distribution µ over
X ×Y . Let us consider a model (function) f : X → Y chosen
from a set F of possible ones. An algorithm AH : Dn×F → f
characterised by its hyperparameters H selects a model inside
a set of possible ones based on the available dataset.

Note that many algorithms for solving regression problems
exist in the literature [25]. In particular, it is possible to
identify three main different families of methods which are
mostly effective in practice [25]–[27]: the kernel methods, the
ensemble methods, and the neural networks. As we will see
later, our constraints on the computational requirements of the
final learned model will guide us to the use of a particular
sub-family of neural networks called ELM [28], [29]. In fact,



kernel methods [30] and ensemble methods [31], [32] are
known to be very effective, but the computational requirements
grow a lot if we want to increase the accuracy. ELM, instead,
allows to easily build and learn highly non-linear regressors
with the use of random projection. Even if this approach is
quite effective, still the computational requirement of an ELM
can be high since many random projection may be not very
useful for increasing the accuracy. For this reason, we will
purpose to clean up the number of random projections by
keeping just the ones which are really useful and effective
in improving the regressors accuracy.

The error of f in approximating P{Y | X} is measured
by a prescribed metric M : F → R. Note that many different
metrics are available in the literature for regression, which may
provide insights on the performance of the model [33]. In our
case, we will make use of the Mean Absolute Percentage Error
(MAPE). In order to define it, let us first consider a subset
of the available data Tt, also called test set, coming from µ
but different from Dn since the data that have been used to
learn f should be different to the ones exploited to evaluate its
performance so to avoid overfitting [34]. Then we can define
the MAPE as

MAPE(f)=MAPE(f, Tt)=
100

t

∑
(X,Y )∈Tt

∣∣∣∣f(X)− Y
Y

∣∣∣∣ (7)

Finally, to tune the performance of the AH, namely to select
the best set of hyperparameters, and to estimate the perfor-
mance of the final model according to the desired metrics,
a MS and EE phase needs to be performed [34]. Finally we
will also measure the time, in seconds, of computing f(X)
(TIME(f)) on the same infrastructure where the BEM Model
has been run (see Section II).

A. The Proposed Model
As we previously described, the method that we propose is

based on ELM, plus a smart cleaning strategy of the random
generated features in the ELM.

The ELM approach was originally introduced to overcome
problems posed by back-propagation training algorithm in
classical neural networks; specifically, potentially slow con-
vergence rates, the critical tuning of optimisation parameters,
and the presence of local minima that call for multi-start and
re-training strategies [28], [29]. ELM was originally developed
for the single-hidden-layer feed-forward neural networks and
then generalised in order to cope with cases in which the ELM
is not neuron alike.

f(X) =

h∑
j=1

wjgj(X), (8)

where gj : Rd → R, j ∈ {1, · · · , h} is the hidden-layer
output corresponding to the input sample X and w is the
output weight vector between the hidden layer and the output
layer.

In our case, the input layer has d neurons and connects to
the hidden layer (having h neurons) through a set of weights

vj ∈ Rd, j ∈ {1, · · · , h}, (9)

the j-th hidden neuron embeds a bias term,

v0j , j ∈ {1, · · · , h}, (10)

and a nonlinear activation function, ϕ : R→ R (in our case the
hyperbolic tangent). Thus, the neuron’s response to an input
stimulus, X , is

ϕ(vj ·X + v0j ), j ∈ {1, · · · , h}. (11)

Note that Eq. (11) can be further generalised to include a
wider class of functions; therefore, the response of a neuron
to an input stimulus X can be generically represented by any
nonlinear piece-wise continuous function characterised by a
set of parameters. In ELM, these parameters (vj and v0j ) are
set randomly (in our case these parameters are sampled from
the Normal distribution). A vector of weighted links, w ∈ Rh,
connects the hidden neurons to the output neuron without any
bias. The overall output function, f(X), of the network is

f(X) =
h∑

j=1

wjϕ(vj ·X + v0j ). (12)

It is convenient to define an activation matrix V ∈ Rn×h, such
that the entry Vi,j is the activation value of the j-th hidden
neuron for the i-th input pattern. The V matrix is

V=

ϕ(v1·X1+v
0
1) · · · ϕ(vh·X1+v

0
h)

...
. . .

...
ϕ(v1·Xn+v

0
1) · · · ϕ(vh·Xn+v

0
h)

=
φ

T (X1)
...

φT (Xn)

. (13)

In the ELM model, the quantities {vj , v0j } in Eq. (11) are
set randomly and are not subject to any adjustment, and the
quantity w in Eq. (12) is the only degree of freedom. Hence,
the training problem reduces to minimisation of the convex
cost

w∗ = argmin
w
‖Vw − y‖2 . (14)

A matrix pseudo-inversion yields the unique L2 solution

w∗ = V +y. (15)

The simple, efficient procedure to train an ELM therefore
involves the following steps

1) Randomly generate hidden node parameters (in or case
vi and bias v0i ) for each hidden neuron;

2) Compute the activation matrix V , of Eq. (13);
3) Compute the output weights by solving the pseudo-

inverse problem of Eq. (15).
Despite the apparent simplicity of the ELM approach, the
crucial result is that even random weights in the hidden
layer endow a network with notable representation ability.
Moreover, regularisation strategies can further improve the
approach’s generalisation performance. As a result, the cost
function of Eq. (14) is augmented by a regularisation factor
as follows

w∗ = argmin
w
‖Vw − y‖2 and ‖w‖ , (16)



where ‖w‖ can be any suitable norm of the output weights.
A common approach is then to use the L2 regularizer

w∗ = argmin
w
‖Vw − y‖2 + λ ‖w‖2 , (17)

and consequently the vector of weights w∗ is then obtained
as follows

w∗ = (V TV + λI)−1V Ty, (18)

where I ∈ Rh×h is an identity matrix.
Note that, also intuitively, not all the random projection will

be useful for actually improving the accuracy of the model.
For this reason, we propose to incrementally add random
projection. In particular, instead of contemporary extracting
all the h projections (Step 2 in the ELM), the model is built
incrementally adding nh projections at the time and keeping
only if the increment in accuracy is at least ph%. This simple
strategy helps the model in generating only informative ran-
dom projection, reducing the number of parameters required
by the regressor to reach a good accuracy.

B. Model Selection and Error Estimation

MS and EE deal with the problem of tuning and as-
sessing the performance of a learning algorithm [34]. Re-
sampling techniques like k-fold cross validation and non-
parametric bootstrap are often used by practitioners because
they work well in many situations [35]. Other alternatives
exist, which represent bases in the Statistical Learning Theory
and give more insight into the learning process. Examples
of methods in this last category are: the seminal work of
the Vapnik-Chervonenkis Dimension, its improvement with
the Rademacher Complexity, the theory of compression, the
Algorithmic Stability breakthrough, the PAC-Bayes theory,
and more recently the Differential Privacy theory [34].

In this work, we will exploit the resampling techniques
which rely on a simple idea: the original dataset Dn is resam-
pled once or many (nr) times, with or without replacement, to
build three independent datasets called learning, validation and
test sets, respectively Lr

l , Vr
v , and T r

t , with r ∈ {1, · · · , nr}.
Note that Lr

l ∩ Vr
v = �, Lr

l ∩ T r
t = �, Vr

v ∩ T r
t = �, and

Lr
l ∪ Vr

v ∪ T r
t = Dn for all r ∈ {1, · · · , nr}.

Then, to select the best combination of the hyperparameters
H in a set of possible ones H = {H1,H2, · · · } for the
algorithm AH or, in other words, to perform the MS phase,
the following procedure has to be applied

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lr
l ),Vr

v ), (19)

where AH(Lr
l ) is a model built with the algorithm A with

its set of hyperparameters H and with the data Lr
l and

where M(f,Vr
v ) is a desired metric. Since the data in Lr

l are
independent from the ones in Vr

v , the idea is that H∗ should
be the set of hyperparameters that allows to achieve a small
error on a data set that is independent from the training set.

Then, to evaluate the performance of the optimal model,
which is f∗A = AH∗(Dn) or, in other words, to perform the
EE phase, the following procedure has to be applied

MAPE(f∗A ) =
1

nr

nr∑
r=1

MAPE(AH∗(Lr
l ∪ Vr

v ), T r
t ). (20)

Since the data in Lr
l ∪ Vr

v are independent from the ones in
T r
t , M(f∗A ) is an unbiased estimator of the true performance,

measured with the metric M , of the final model [34].
If nr = 1, if l, v, and t are aprioristically set such that

n = l + v + t, and if the resampling procedure is performed
without replacement, the hold out method is obtained [34].
For implementing the complete nested k-fold cross validation,
instead, it is needed to set nr ≤

(
n
k

)(n−n
k

k

)
, l = (k − 2)nk ,

v = n
k , and t = n

k and the resampling must be done
without replacement [35]. Finally, for implementing the nested
non-parametric bootstrap, l = n and Lr

l must be sampled
with replacement from Dn, while Vr

v and T r
t are sampled

without replacement from the sample of Dn that has not been
sampled in Lr

l [35]. Note that for the bootstrap procedure,
nr ≤

(
2n−1

n

)
. In this paper, the complete nested k-fold cross

validation is exploited because it represents the state-of-the-art
approach [34], [35].

V. EXPERIMENTS RESULTS

We built a model using the MS strategy where we set k = 10
and nr = 1000. During the MS, we searched the hyperpa-
rameters using the following ranges: h ∈ 10{1.0,1.2,1.4,··· ,4.0},
λ ∈ 10{ − 6.0,−5.8, · · · ,+4.0}, nh = h/{10, 20, 40, 80, 160},
and ph ∈ {0.5, 1.0, 2.0, 4.0, 8.0, 16}.

All the developed models have a TIME (f) of a few
milliseconds maximum.

Two modelisation scenarios have been investigated
• Interpolation Scenario: in this case the models try to

predict the RAOs in various, but different, configurations
of the design parameters, as discussed in Section III,
within the ones exploited for building the model. In other
words, this scenario is accounting for configurations that
belong inside the search space used to build the dataset;

• Extrapolation Scenario: in this scenario, the models try to
predict the RAOs in various, but different, configurations
of the design parameters, with respect to those exploited
for building the model. This second scenario, instead
is considering configurations that belong outside of the
search space used to build the dataset.

Basically the two scenarios just differ in the definitions
of Ll, Vv , and Tt, that are the subset of data exploited for
building, tuning, and testing the models.

The interpolation scenario is obviously the simplest one. In
this scenario Ll, Vv , and Tt have been created by splitting ran-
domly all the samples of the datasets described in Section III.
In this way the models have been tested in their ability to
predict the RAO in various, but different, conditions within
those exploited for building the models.

On the contrary, the extrapolation scenario tests the ca-
pability of the models to predict the RAO for cases not



included in the variable domain of the data used to build
them. The practical application of the extrapolation scenario
is to demonstrate that the regression model can be utilised
outside the limits of the design variables (external radii and
foundation drafts). As such, the proposed model can be
embedded within a broader optimisation framework, having
a much broader search space for the design variables. In order
to obtain an indication of the extrapolation performance, the
authors performed a number of extrapolations scenarios, one
for each design variable (ri, i ∈ 1, ..., 6, and T ), and one
additional scenario, for the extrapolation of all design variables
simultaneously. The results are reported in Table II.

From the results, we can note that an average MAPE of 2%
is achieved across the different RAOs for the interpolation
scenario. As expected, a higher MAPE is observed for all
the considered extrapolation scenarios. The highest MAPE is
obtained when all design variables lie outside the initial search
space X . Nonetheless, it is worth noting that, in the worst
case scenario, an average MAPE of 5% is reported. A more
detailed description of the results for the surge, heave, and
pitch motions is given in Figs. 2 - 4. We can observe that
for the majority of the geometries, the ELM forecast is very
close to the BEM-based solution (vertical distance between the
blue circles and the red line). Moreover, the error distribution
for the surge and heave motions for both the interpolation and
extrapolation scenarios reveals that for 98% of the geometries,
the MAPE is less than 2%. While, for the pitch motion, the
same error is less than 1%, which is also verified by the smaller
variance presented in Fig. 4.

To better illustrate the ability of the regression model to
accurately predict the 6 RAOs, and to provide the reader with
a visual impression of the results, the authors report the RAOs
predicted with the high-fidelity BEM solver and the ELM
in Fig. 5, for the geometry of Fig. 6, characterised by the
following design parameters: X = {1, 1, 5, 5, 1, 5, 120} (all
the quantities are reported in meters).

Due to the fact that the wet geometry is axisymmetric,
the only incident wave direction considered has been 0 deg
(i.e., aligned with x), and therefore the only RAO considered
are those in surge, heave, pitch, and yaw, since the sway
RAO will be equal to the surge RAO, and the one in roll
equals the pitch RAO. Again, due to the wet geometry being
axysimmetric, the excitation in yaw is minimal, negligible with
respect to the others. Nevertheless, we can safely state that
the ELM is able to predict the behaviour of the BEM solver,
even purely in terms of numerical noise. Moreover, the RAOs
for surge, heave, and pitch motions are well captured for the
entire frequency spectrum. It is worth noting that the learning
phase has been carried out in a base-10 logarithmic scale, to
properly capture the behaviour of the RAOs near the resonance
frequencies for all geometries. For the sake of consistency, we
have reported the results of Fig. 5 in base-10 logarithmic scale.

VI. CONCLUSIONS & DISCUSSION

In this paper, the authors presented a surrogate model
for the hydromechanics analysis of floating offshore wind

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 2. Surge motion ELM forecast

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 3. Heave motion ELM forecast



TABLE II
MEAN ABSOLUTE PERCENTAGE ERROR

Scenario Surge Heave Pitch
Interp 2.52± 0.30 2.52± 0.33 1.43± 0.20
r1 3.51± 0.43 4.11± 0.33 2.11± 0.23
r2 4.11± 0.39 3.76± 0.47 2.00± 0.22
r3 3.45± 0.25 3.62± 0.48 2.17± 0.25
r4 3.65± 0.34 3.45± 0.30 2.22± 0.15
r5 3.41± 0.43 3.57± 0.30 2.07± 0.21
r6 3.82± 0.44 3.36± 0.29 2.02± 0.22
T 3.40± 0.28 3.82± 0.51 2.00± 0.16
X 5.78± 0.27 5.51± 0.62 3.75± 0.49

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 4. Pitch motion ELM forecast

turbines. The authors proposed an alternative computational
framework to accelerate the design process with minimal
accuracy loss and minimal computational requirements. Based
on the results of a state-of-the-art potential-flow code on a
limited set of geometries, an ELM-based surrogate model
has been developed to approximate the Response Amplitude
Operators of any arbitrary floating offshore wind turbine of
the spar buoy type. The results demonstrate the feasibility
of replacing the computationally expensive BEM solver with
a fast, yet accurate surrogate model. More specifically, the
surrogate ELM-based model can predict the RAOs of any
FOWT geometry with an average MAPE of 2% across all
the DOFs, when the design variables are within the limits
of the search space used to learn the surrogate model. In
the more challenging extrapolation scenario, in which the
design variables lie outside the limits of the original search

(a) Surge Motion

(b) Heave Motion

(c) Pitch Motion

Fig. 5. Interpolation scenario results

Fig. 6. Interpolation scenario geometry



space, the average MAPE increases up to 5% for all the
DOFs. The current state-of-the-art, high fidelity approaches for
this analysis are based on CFD and HOBEM. However, the
computational cost of these methods limits their application
in optimisation, restricting the number of configurations that
can be investigated, thus limiting the assessed designs. The
proposed ELM-based surrogate model, when exploited within
an optimisation framework, can overcome this limitation by
enabling fast, robust, and highly accurate hydrodynamics
analysis, built-on high-accuracy numerical simulation data.
We expect that the proposed approach will pave the way
towards innovative support platform geometries investigation
and design, optimising the hydrodynamics response, which can
substantially enhance the performance of FOWTs.
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