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Abstract: The assessment of the buckling and ultimate strength is a mandatory step in 

the ultimate limit state design of ship structures. The collapse analysis of ship-type 

stiffened panels under longitudinal compression is highly affected by initial geometric 

imperfection. Several geometric imperfection models are available in the literature. 

Broadly speaking, they can be categorised into deterministic and probabilistic 

approaches. The deterministic approach describes the initial deflection field with a 

presumed geometric shape and a characteristic maximum distortion magnitude. Several 

geometric deflection shapes are commonly adopted, including hungry-horse (HH) mode, 

Admiralty Research Establishment (ARE) mode and critical buckling (CM) mode. Each of 

these deflection mode shapes is used in conjunction with a characteristic maximum 

distortion magnitude.  Except otherwise specified, an average-level magnitude is usually 

applied. By contrast, the probabilistic approach evaluates the initial geometric 

imperfection as a random field, generated based on the prescribed statistics. A 

A comparison of geometric imperfection models for collapse analysis of ship-type stiffened plated grillages

1

This is a peer-reviewed, accepted author manuscript of the following article: Li, S., Georgiadis, D. G., Kim, D. K., & Samuelides, M. S. (2022). A comparison of geometric 
imperfection models for collapse analysis of ship-type stiffened plated grillages. Engineering Structures, 250, [113480]. https://doi.org/10.1016/j.engstruct.2021.113480

mailto:shen.li@strath.ac.uk
mailto:dgeorgiadis@central.ntua.gr
mailto:do.kim@snu.ac.kr


comparative study is presented in this study in the light of analysing the uncertainty in 

ultimate compressive strength of stiffened plated grillages induced by different 

modelling of geometric imperfection. In addition, the influence of relative deflection in 

the adjacent panels is analysed. Recommendations for choosing an imperfection model 

for buckling analysis of ship-type stiffened plated structures are reported. 

Keywords: Geometric imperfection, Buckling, Ultimate strength, Stiffened panel, 

Random filed. 

Nomenclature 

𝑎𝑎 Plate length 

𝑏𝑏 Plate width 

𝑡𝑡 Plate thickness 

𝜎𝜎𝑌𝑌 Material yield stress of plate 

𝐸𝐸 Material elastic modulus 

𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌 Equivalent material yield stress of stiffened panel 

𝐵𝐵 Grillage width 

ℎ𝑤𝑤 Stiffener web’s height 

𝑡𝑡𝑤𝑤 Stiffener web’s thickness 

𝑏𝑏𝑓𝑓 Stiffener flange width 

𝑡𝑡𝑓𝑓 Stiffener flange thickness 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 Plate distortion 

𝑤𝑤𝑜𝑜𝑜𝑜 Column type distortion 

𝑤𝑤𝑜𝑜𝑜𝑜 Stiffener sideway distortion 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 Maximum magnitude of plate distortion 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 Maximum magnitude of column type distortion 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 Maximum magnitude of stiffener sideway distortion 

A comparison of geometric imperfection models for collapse analysis of ship-type stiffened plated grillages

2



𝛽𝛽 = 𝑏𝑏 𝑡𝑡⁄ �𝜎𝜎𝑌𝑌 𝐸𝐸⁄  Plate slenderness ratio 

𝜆𝜆 = 𝑎𝑎 (𝜋𝜋𝜋𝜋)⁄ �𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌 𝐸𝐸⁄  Column slenderness ratio 

𝜌𝜌𝑜𝑜𝑜𝑜 Relative ratio of column type distortion of adjacent bays 
 

1. Introduction 

The examination of buckling resistance and ultimate capacity, also known as the Ultimate 

Limit State (ULS), is a central task in the design, appraisal and optimisation of a structural 

system [1-8]. A large body of studies in the maritime sector has been devoted to this 

research field to investigate the influence of structural slenderness, initial imperfection, 

boundary condition, secondary loading, cyclic loading, dynamic loading, arctic 

environment, cryogenic condition, elevated temperature, corrosion, fatigue crack  and 

accidental damage [9-13]. Relevant studies in other disciplines such as civil engineering 

may also refer to [14-18]. 

It is a standard procedure to consider the initial geometric imperfection in buckling 

analysis of stiffened plated structures, which is also recognised as one of the most 

important influencing parameters. Many studies are available in the literature to 

investigate the buckling capacity of stiffened plated structures with initial geometric 

imperfection [19-37]. For a ship-type stiffened plated grillage, three different types of 

geometric imperfections are considered, local plate distortion, column-type distortion 

and stiffener sideway distortion. Regarding the column-type and stiffener sideway 

distortions, they are usually assumed as a single-half wave mode shape with its 

magnitude proportional to the panel's length. As for the local plate distortion, various 

geometric imperfection models are available in the literature. Broadly speaking, they can 

be categorised into deterministic and probabilistic approaches. 
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The deterministic approach approximates the initial deflection field with a presumed 

geometric shape and characteristic maximum distortion magnitude. Several geometric 

deflection shapes are commonly adopted, including hungry-horse (HH) mode [38, 39], 

Admiralty Research Establishment (ARE) [40-42] mode and critical buckling (CM) mode 

[43]. In deterministic modelling, each of these deflection mode shapes is used in 

conjunction with a characteristic maximum distortion magnitude. Three different 

characteristic magnitudes may be chosen, corresponding to a slight, average, and severe 

level, respectively. Except otherwise specified, an average-level magnitude is usually 

applied. The deterministic approach provides practical modelling of the initial geometric 

imperfection of stiffened panels. However, these representations usually correspond to 

an as-built condition, which may not be applicable for in-service stiffened plated 

structures. After several years in service, the geometric imperfection of stiffened plated 

structures could be substantially different from the as-built condition, possibly due to the 

presence of local dents and accumulation of permanent set etc. By contrast, the 

probabilistic approach evaluates the initial geometric imperfection as a random field.  A 

stochastic geometric imperfection was proposed by [44], in which the random deflection 

fields are generated based on the first/second-order statistics and a target auto-

correlation form. This model is able to consider the inherent randomness of geometric 

imperfection and therefore applicable for both as-built and in-service stiffened plated 

structures. 

Very recently, a benchmark study involving seventeen participants worldwide 

demonstrated the uncertainty in predicting the ultimate capacity, failure mode and 

location of a stiffened plated grillage [45]. The modelling of initial distortion was 

suggested as one of the critical factors, which differed between each participant. Most of 

the existing literature on the effects of initial imperfection have only focused on the 
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imperfection magnitude or performed case studies on simple column structures. No 

research is available on the comparison of different geometric imperfection models 

(profile and magnitude) applied to a multi-frame and multi-bay orthogonally stiffened 

plated grillage. 

It should be noted that the imperfection models aforementioned are all of an empirical 

nature. However, their developments have been based on a fairly large fairly large 

database, which covered the most typical manufacturing practice in the shipbuilding 

industry. In the light of this, they can be viewed as a generalised formula that can be 

applied to all ship-type stiffened panel, provided that the structures are manufactured in 

accordance with a standard approach. All of these formulae are well accepted by the 

marine structure community and widely applied in many different studies. However, 

there is no comparative study on these models. 

In light of this, the object of this paper is to present a comparative study for different 

imperfection models and to provide some recommedatino on choosing an appropriate 

imperfection model for buckling analysis of ship-type stiffened plated structures. 

Collapse analyses of several ship-type stiffened plated grillages with different 

slenderness are completed. In addition to the comparison between different geometric 

imperfection models, the influence of the relative defection in the adjacent panels is also 

analysed. The induced uncertainty in ultimate strength will be discussed.  

The remaining part of this paper will be structured as follows. A concise summary of the 

modelling of geometric imperfection is given in section 2 for both deterministic and 

probabilistic approaches. The test matrix of the comparative study is detailed in section 

3. The finite element modelling for the collapse analysis of stiffened panels is given in 
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section 4. The insights developed from the analyses are discussed in section 5. Finally, the 

conclusions drawn from this comparative study are summarised in section 6. 

 

2. Modelling of Geometric Imperfection 

2.1 Principle 

The initial geometric imperfection of a stiffened plated grillage is formed of three 

components, namely local plate distortion (𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 ), column-type distortion (𝑤𝑤𝑜𝑜𝑜𝑜 ) and 

stiffener sideway distortion (𝑤𝑤𝑜𝑜𝑜𝑜), as shown in Figures (1) and (2). 

 

Figure 1. Schematic illustration of the initial geometric imperfection. 

 

Figure 2. Examples of different types of initial deflections applied in the finite element 

model. 
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Both deterministic and probabilistic approaches are available to model the local plate 

distortion, whereas only a deterministic approach has been developed for modelling the 

column-type and stiffener sideway distortions. In the following, the prevailing geometric 

imperfection models are introduced. 

2.2 Local Plate Distortion (Deterministic Approach) 

The distortion profile and its maximum magnitude should be defined in a deterministic 

approach for modelling the local plate distortion. A general expression of this approach 

can be written as: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦) (1) 
 

where 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum distortion magnitude and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦) is the distortion profile 

as a function of the spatial coordinates. 

2.2.1 Distortion Profile 

Three geometric imperfection profiles are commonly adopted, namely the hungry-horse 

(HH) mode, Admiralty Research Establishment (ARE) mode and critical buckling (CM) 

mode. The hungry horse mode, which is sometimes named the thin-horse mode, was 

proposed by [38] based on full-scale measurement data of ship structures. It was 

assumed that the deflection of the plating could be approximated by a Fourier series with 

eleven components, as given by Equation (2): 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻(𝑥𝑥,𝑦𝑦) = ∑ 𝐴𝐴𝑖𝑖11
𝑖𝑖=1 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑖𝑖𝑚𝑚

𝑚𝑚
� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑦𝑦

𝑏𝑏
�  (2) 

 

With the aid of full-scale measurement data, a least-square regression was applied to 

estimate the coefficient of each Fourier component, which is summarised in Table (1). A 
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recent full-scale measurement by Yi et al. [46] may confirm the validity of a hungry-horse 

mode shape induced by the common welding technique in modern shipyards. In fact, an 

equivalent model was also developed in the field of civil engineering in earlier work [47]. 

 

Table 1. Deflection coefficients of hungry-horse mode geometric imperfection model 

Aspect ratio 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5 𝐴𝐴6 
1 < 𝑎𝑎 𝑏𝑏⁄ √2 1.1158 -0.0276 0.1377 0.0025 -0.0123 -0.0009 
√2 < 𝑎𝑎 𝑏𝑏⁄ √6 1.1421 -0.0457 0.2284 0.0065 0.0326 -0.0022 
√6 < 𝑎𝑎 𝑏𝑏⁄ √12 1.1458 -0.0616 0.3079 0.0229 0.1146 -0.0065 
√12 < 𝑎𝑎 𝑏𝑏⁄ √20 1.1439 -0.0677 0.3385 0.0316 0.1579 -0.0149 
√20 < 𝑎𝑎 𝑏𝑏⁄ √30 1.1271 -0.0697 0.3483 0.0375 0.1787 -0.0199 

Aspect ratio 𝐴𝐴7 𝐴𝐴8 𝐴𝐴9 𝐴𝐴10 𝐴𝐴11  
1 < 𝑎𝑎 𝑏𝑏⁄ √2 -0.0043 0.0008 0.0039 -0.0002 -0.0011  
√2 < 𝑎𝑎 𝑏𝑏⁄ √6 -0.0109 0.0010 -0.0049 -0.0005 0.0027  
√6 < 𝑎𝑎 𝑏𝑏⁄ √12 0.0327 0.0000 0.0000 -0.0015 -0.0074  
√12 < 𝑎𝑎 𝑏𝑏⁄ √20 0.0743 0.0059 0.0293 -0.0012 0.0062  
√20 < 𝑎𝑎 𝑏𝑏⁄ √30 0.0995 0.0107 0.0537 -0.0051 0.0256  

 

The ARE mode is a semi-empirical imperfection representing a “real” plate whilst 

ensuring that the plate buckling will nucleate into an appropriate pattern [40-42]. As 

given by Equation (3), three imperfection modes are superimposed to define the 

complete profile, in which the first two modes (i.e. 𝐴𝐴1 and 𝐴𝐴𝑗𝑗) represent a combination of 

realistic distortion and critical buckling, while the high-order mode (𝐴𝐴𝑗𝑗+1) ensures that 

the nucleation of out-of-plane deflection occurs at one part of the plate. 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥, 𝑦𝑦) = �𝐴𝐴1𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖𝑚𝑚
𝑚𝑚
� + 𝐴𝐴𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑗𝑗𝑖𝑖𝑚𝑚
𝑚𝑚
� + 𝐴𝐴𝑗𝑗+1𝑠𝑠𝑠𝑠𝑠𝑠 �

(𝑗𝑗+1)𝑖𝑖𝑚𝑚
𝑚𝑚

�� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑦𝑦
𝑏𝑏
�  (3) 

 

The ratio between 𝐴𝐴1  and 𝐴𝐴𝑗𝑗  as specified by Equation (4) is introduced based on 

measurements. It is unclear if any thorough regression analysis was performed, but the 
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proposed ratio is generally in agreement with the data reported in [48]. Typical values of 

𝐴𝐴1 and 𝐴𝐴𝑗𝑗 are given in Table (2) for different aspect ratios. 

𝐴𝐴1 𝐴𝐴𝑗𝑗⁄ = 4.0  (4) 
 

In the ARE model, the half-wave number of the preferred buckling mode shape is given 

as: 

𝑗𝑗 = 𝑎𝑎 𝑏𝑏⁄ + 1, 𝑗𝑗 ∈ ℤ  (5) 
 

Table 2. Deflection coefficients of ARE mode geometric imperfection model 

 𝑗𝑗 = 3 𝑗𝑗 = 4 𝑗𝑗 = 5 𝑗𝑗 = 6 𝑗𝑗 = 7 𝑗𝑗 = 8 
𝐴𝐴1 1.1177 0.8410 0.7998 0.8195 0.8619 0.8122 
𝐴𝐴𝑗𝑗 0.2794 0.2102 0.2000 0.2049 0.2155 0.2031 
𝐴𝐴𝑗𝑗+1 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

 

The CM mode is only constituted by one sinusoidal function, which is the preferred 

buckling mode of the tested plating as given by Equation (6). 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑚𝑚𝑖𝑖𝑚𝑚
𝑚𝑚
� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑦𝑦

𝑏𝑏
�  (6) 

 

It should be noted that the half-wave number in the preferred buckling mode of the CM 

model is different from that in the ARE model. For the CM model, it can be determined by: 

𝑎𝑎 𝑏𝑏⁄ ≤ �𝑚𝑚(𝑚𝑚 + 1),𝑚𝑚 ∈ ℤ  (7) 
 

In numerical simulation based on CM mode, the distortion of the plating would generally 

follow the initial shape up to and probably beyond the ultimate collapse. The CM mode 

may result in an overly conservative estimation of the ultimate strength of plates and 

A comparison of geometric imperfection models for collapse analysis of ship-type stiffened plated grillages

9



stiffened panels. Moreover, a significant distortion could occur from the beginning of the 

compressive load application, which causes an underestimation of the in-plane stiffness 

of the panels as compared with the other two mode shapes. However, the CM mode could 

help to avoid the convergence issue of numerical analysis, which is particularly useful for 

analysing large-scale structures. A comparison of HH, ARE and CM models is illustrated 

in Figure (3) for plating with aspect ratios from 𝑎𝑎 𝑏𝑏⁄ = 2 to 𝑎𝑎 𝑏𝑏⁄ = 5. Although the three 

deterministic models all belong to the Fourier series expansion method, their differences 

in the Fourier series terms could lead to substantial variation in predicting buckling and 

ultimate strength of ship-type stiffened plated structures. In addition, while the accuracy 

of characterisation of an actual geometric imperfections will increase with more Fourier 

series terms, the development of the HH model was based on a particular dataset. Its 

application to all ship structures and analyses still raises an uncertainty that needs to be 

evaluated. 
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Figure 3. Comparison of HH, ARE and CM distortion profiles 

2.2.2 Distortion Magnitude 

Once the deterministic shape of the geometric distortion is defined, the maximum 

amplitude of the distortion field should be specified. The recommendation by Smith et al. 

[40, 41] is given by Equation (8) to (10), which includes three different levels of 
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severities given in terms of plate slenderness ratio (𝛽𝛽) and plate thickness (𝑡𝑡), and is 

developed from the measurements on full-scale ship structures. 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.025𝛽𝛽2𝑡𝑡  for slight level (8) 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1𝛽𝛽2𝑡𝑡 for average level (9) 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3𝛽𝛽2𝑡𝑡 for severe level (10) 
 

The slight and severe levels correspond to 3% and 97% quantiles assuming a log-normal 

distribution, respectively. There are different definitions of the local plate distortion 

magnitude in the literature, such as [49], where the distortion magnitude was expressed 

as a function of plate width or a combination of plate width and plate thickness. However, 

some of these expressions were dedicated to civil engineering structures and may not be 

applicable in ship structures due to the difference in manufacturing practice and 

standards. On the contrary, Equation (8) to (10) were developed based on the 

measurement of ship structures and therefore appeared to be the most accepted 

specification of geometric imperfection magnitude. A comparison of the imperfection 

magnitude between the empirical formulae recommended by Smith et al. [40, 41] and 

experimental measurements summarised by Paik and Thayamballi [50] is shown in 

Figure (4). It could be suggested from this comparison that the average-level magnitude 

is a rational specification in ultimate strength analysis, and it appears that a severe 

distortion magnitude could not be found in all measurements. However, it should be 

noted that these measurements were completed on small-scaled structures and 

represented a laboratory as-built condition. The scaling effect may not be fully catered by 

the dimensionless parameter 𝛽𝛽  and therefore lead to a deviation of the distortion 

magnitude between small-scaled and full-scaled structures. A comparison between 

Smith's formulae and several full-scale measurements was reported by [39], as shown in 
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Figure (5). Compared with a limited database, the maximum distortion magnitude is 

between the average and the slight level. 

 

Figure 4. Comparison between Smith's formulae and small-scale measurement for the 

maximum local plate distortion magnitude. 

 

Figure 5. Comparison between Smith's formulae and full-scale measurement for the 

maximum local plate distortion magnitude [39] (Note: JSQS = Japan Shipbuilding Quality 

Standard). 
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2.3 Local Plate Distortion (Probabilistic Approach) 

A stochastic geometric imperfection model was proposed by Georgiadis and Samuelides 

[44] for local plating, which is denoted as the G-S model hereafter. The schematic profile 

view of this stochastic model is shown in Figure (6). 

 

Figure 6. Schematic illustration of the stochastic geometric imperfection model. 

Note that this model is a one-dimensional formulation. The stochastic geometric 

imperfection model aims to preserve the global dominant barrel shape while introducing 

random local distortion. The random field is introduced on the effective length 𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓.  The 

geometric imperfection 𝑤𝑤𝑌𝑌𝑓𝑓𝑓𝑓 within the effective length is given as: 

𝑤𝑤𝑌𝑌𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑜𝑜 + 𝑓𝑓(𝑥𝑥)  (11) 

where 𝑤𝑤𝑜𝑜  is the mean imperfection magnitude and 𝑓𝑓(𝑥𝑥)  is a zero-mean Gaussian 

stochastic field. Considering a single half-wave sinusoidal over the breadth of the plate, 

the full description of the local plate imperfection is given as follows: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤𝑌𝑌𝑓𝑓𝑓𝑓(𝑥𝑥 = 𝑎𝑎𝑜𝑜) �𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑖𝑖𝑚𝑚
2𝑚𝑚𝑜𝑜

�� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑦𝑦
𝑏𝑏
� , 𝑥𝑥 ∈ [0,𝑎𝑎𝑜𝑜)  (12) 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤𝑌𝑌𝑓𝑓𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜋𝜋𝑦𝑦
𝑏𝑏
� , 𝑥𝑥 ∈ [𝑎𝑎𝑜𝑜 ,𝑎𝑎𝑜𝑜 + 𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓] (13) 
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𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤𝑌𝑌𝑓𝑓𝑓𝑓�𝑥𝑥 = 𝑎𝑎𝑜𝑜 + 𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓� �𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖�𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒�

2𝑚𝑚𝑜𝑜
�� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑦𝑦

𝑏𝑏
� , 𝑥𝑥 ∈ (𝑎𝑎𝑜𝑜 + 𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓 ,𝑎𝑎]  (14) 

For determining the effective length 𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓, the following relationship could be used, which 

was introduced by Dow and Smith [51] and is universally applicable for aspect ratio. 

𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓 = 0.80𝑎𝑎  (15) 

Alternatively, based on full-scale measurement, Ueda and Yao [38] provides an aspect 

ratio-dependent relations as follows: 

𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓 = 0.50𝑎𝑎, 𝑎𝑎 𝑏𝑏⁄ ∈ [√2,√6)  (16) 

𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓 = 0.67𝑎𝑎, 𝑎𝑎 𝑏𝑏⁄ ∈ [√6,√12] (17) 

𝑎𝑎𝑌𝑌𝑓𝑓𝑓𝑓 = 0.75𝑎𝑎, 𝑎𝑎 𝑏𝑏⁄ ∈ (√12,√20] (18) 

The zero-mean Gaussian stochastic field 𝑓𝑓(𝑥𝑥) can be realised by a series representation 

as follows [52]: 

𝑓𝑓(𝑥𝑥) = √2 �𝐴𝐴𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0

𝑐𝑐𝑐𝑐𝑠𝑠�𝜅𝜅𝑛𝑛𝑥𝑥 + 𝜙𝜙𝑛𝑛
(𝑖𝑖)� (19) 

where the deterministic amplitude 𝐴𝐴𝑛𝑛 is given by a prescribed power spectral density 

function 𝑆𝑆𝑓𝑓𝑓𝑓: 

𝐴𝐴𝑛𝑛 = �2𝑆𝑆𝑓𝑓𝑓𝑓(𝜅𝜅𝑛𝑛)∆𝜅𝜅 (20) 
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and the random phase angle 𝜙𝜙𝑛𝑛
(𝑖𝑖)  is uniformly distributed from 0 to 2𝜋𝜋  using a Latin 

Hypercube Sampling (LHS) method. 

𝜙𝜙𝑛𝑛
(𝑖𝑖)~𝑈𝑈(0,2𝜋𝜋) (21) 

The wave number 𝜅𝜅𝑛𝑛 in Equation (20) is taken as 

𝜅𝜅𝑛𝑛 = 𝑠𝑠∆𝜅𝜅 (22) 

where ∆𝜅𝜅 is a function of the total number of the trigonometric functions N and the cut-

off wave number 𝜅𝜅𝑢𝑢: 

∆𝜅𝜅 = 𝜅𝜅𝑢𝑢 𝑁𝑁⁄  (23) 

The cut-off wave number 𝜅𝜅𝑢𝑢 can be specified by the following criterion with 𝜖𝜖 ≪ 1, e.g. 

𝜖𝜖 = 0.05. 

 ∫ 𝑆𝑆𝑓𝑓𝑓𝑓(𝜅𝜅)𝜅𝜅𝑢𝑢
0 𝑑𝑑𝜅𝜅 = (1 − 𝜖𝜖)∫ 𝑆𝑆𝑓𝑓𝑓𝑓(𝜅𝜅)∞

0 𝑑𝑑𝜅𝜅 (24) 

It should be noted that when generating the sample function of the simulated stochastic 

field, the space increment ∆𝑥𝑥 has to satisfy the following condition: 

∆𝑥𝑥 = 𝜋𝜋 𝜅𝜅𝑢𝑢⁄  (25) 

The power spectral density function 𝑆𝑆𝑓𝑓𝑓𝑓  suggested in [44] was selected based on the 

available measurement to fit with an auto-correlation function 𝑅𝑅𝑓𝑓𝑓𝑓 given as follows: 
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𝑅𝑅𝑓𝑓𝑓𝑓 = 𝜎𝜎𝑓𝑓2
𝑙𝑙𝑜𝑜4(𝑙𝑙𝑜𝑜2 − 3|𝜏𝜏2|)

(𝑙𝑙𝑜𝑜2 + |𝜏𝜏|2)3  (26) 

where |𝜏𝜏| = |𝑥𝑥1 − 𝑥𝑥2| is the relative distance between two positions, 𝜎𝜎𝑓𝑓 is the standard 

deviation of the random field and 𝑙𝑙𝑜𝑜  is the correlation length. Using the Fourier 

transformation, the power spectral density function 𝑆𝑆𝑓𝑓𝑓𝑓 is given as follows: 

𝑆𝑆𝑓𝑓𝑓𝑓 =
1
𝜋𝜋
� 𝑅𝑅𝑓𝑓𝑓𝑓(𝜏𝜏)
∞

0
cos (𝜅𝜅𝜏𝜏)𝑑𝑑𝜏𝜏 (27) 

𝑆𝑆𝑓𝑓𝑓𝑓 =
𝜎𝜎𝑓𝑓2

4
𝑙𝑙𝑜𝑜3𝜅𝜅2𝑒𝑒𝑥𝑥𝑒𝑒(−𝑙𝑙𝑜𝑜|𝜅𝜅|) (28) 

where 𝜅𝜅 is the wave number. 

In short, in the probabilistic modelling of geometric imperfection, the 𝑤𝑤𝑜𝑜 , 𝜎𝜎𝑓𝑓  and 𝑙𝑙𝑜𝑜  are 

the three main inputs. 

2.4 Column-Type Distortion 

The column-type distortion refers to the flexural distortion of stiffener and its attached 

plating and is of a single half-wave sinusoidal shape in both longitudinal and transverse 

direction, given as: 

𝑤𝑤𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜋𝜋𝑥𝑥
𝑎𝑎
� 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜋𝜋𝑦𝑦
𝐵𝐵
� (29) 

where 𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum column-type distortion magnitude and 𝐵𝐵  is the overall 

breadth of the entire panel. 

The profile of the column-type distortion is universally accepted, and the maximum 

distortion magnitude is usually given as a percentage of the panel length, given as: 
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𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑎𝑎 (30) 

Nevertheless, there are different recommendations available in the literature regarding 

the coefficient 𝐶𝐶𝑜𝑜𝑜𝑜. As summarised in Table (3), Smith et al. [41] suggested three levels of 

the maximum column-type distortion magnitude and are given as a function of column 

slenderness ratio 𝜆𝜆. 

Table 3. Deflection coefficients of ARE mode geometric imperfection model 

 Slight Average Severe 
𝜆𝜆 ∈ [0.2,0.4) 0.00025 0.0008 0.0020 
𝜆𝜆 ∈ [0.4,0.6) 0.00025 0.0012 0.0038 
𝜆𝜆 ∈ [0.6,∞) 0.00025 0.0015 0.0046 

 

Alternatively, ISSC [43] adopted a relatively conservative magnitude, 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0015𝑎𝑎 (31) 

and Yao and Fujikubo [39] suggest a somewhat optimistic value. 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0010𝑎𝑎 (32) 

Regarding the relative distortion between adjacent bays, asymmetric column distortion 

is equivalent to a clamped boundary condition at the frame intersection and may be 

assumed to be appropriate for a panel that supports significant lateral pressure from the 

plate side, such as hydrostatic or deck loads. However, typical imperfection patterns of 

British warships measured amongst others by Faulkner [53] showed a tendency for an 

asymmetric type column imperfection pattern, but with different magnitudes of 

maximum imperfection in each direction. Smith et al. [41] proposed the following ratios 
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of the maximum column-type distortion magnitude between adjacent bays based on full-

scale measurement. 

𝜌𝜌𝑜𝑜𝑜𝑜 = −0.25, 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠ℎ𝑡𝑡 & 𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑒𝑒 (33) 

𝜌𝜌𝑜𝑜𝑜𝑜 = −1, 𝑠𝑠𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒 (34) 

However, it seems that no suggestion was reported in [39, 43] concerning the relative 

column-type distortion pattern. 

2.5 Stiffener Sideway Distortion 

The stiffener sideway distortion refers to the distortion of stiffener in the horizontal 

direction. It may have a significant impact on the torsional buckling (tripping) of 

stiffeners. The deterministic approach is the only available option for modelling stiffener 

sideway distortion at the moment, given as: 

𝑤𝑤𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑧𝑧) = 𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑧𝑧) (35) 

where 𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum sideway distortion magnitude and 𝑓𝑓𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑧𝑧) is the sideway 

distortion profile. The profile of the stiffener sideway distortion is usually of a single half-

wave sinusoidal and linearly varies from null at the plate-stiffener intersection to the 

maximum at the top flange of the stiffener, as adopted in [39, 43]. 

𝑓𝑓𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑧𝑧) =
𝑧𝑧
ℎ𝑤𝑤

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜋𝜋𝑥𝑥
𝑎𝑎
� (36) 

Alternatively, a higher-order component may be included in addition to the single half-

wave mode shape. 
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𝑓𝑓𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑧𝑧) =
𝑧𝑧
ℎ𝑤𝑤

�0.8𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜋𝜋𝑥𝑥
𝑎𝑎
� + 0.2𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑠𝑠𝜋𝜋𝑥𝑥
𝑎𝑎 �� (37) 

where 𝑠𝑠 = 𝑎𝑎 ℎ𝑤𝑤⁄ , 𝑠𝑠 ∈ ℤ. 

When it comes to the maximum stiffener sideway distortion magnitude, the ISSC 

benchmark study [43] adopted: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0015𝑎𝑎 (38) 

Yao and Fujikubo [39] suggest 

𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0010𝑎𝑎 (39) 

Regarding the relative sideway distortion between adjacent bays, it seems that no 

recommendation has been proposed. 

3. Test Matrix 

3.1 Model Characteristics 

Four multi-span/multi-bay orthogonally stiffened panels, initially tested by Smith [54], 

are adopted for the comparative study (Figure 7).  The principal particulars of the four 

case study grillages are summarised in Table (4). The dimensionless parameters of each 

grillage are summarised in Table (5). Note that an elastic perfectly plastic material 

behaviour is assumed. 
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Figure 7. Case study stiffened plated grillages 

Table 4. Principal particular of the case study stiffened plated grillages 

Particular Symbol Unit Grillage 
No. I 

Grillage 
No. II 

Grillage 
No. III 

Grillage 
No. IV 

Plate length 𝑎𝑎 mm 1219.2 1524.0 1524.0 1219.2 
Plate width 𝑏𝑏 mm 609.6 304.8 304.8 254.0 
Plate thickness 𝑡𝑡𝑜𝑜 mm 8.0 7.7 6.4 6.4 
Long. web height ℎ𝑤𝑤 mm 153.7 114.3 77.2 76.7 
Long. web thickness 𝑡𝑡𝑤𝑤 mm 7.2 5.4 4.6 4.5 
Long. flange width 𝑏𝑏𝑓𝑓 mm 79.0 44.7 27.9 27.7 
Long. flange thickness 𝑡𝑡𝑓𝑓 mm 14.2 9.5 6.4 6.4 
Tran. web height ℎ𝑤𝑤′  mm 257.6 203.7 153.9 201.9 
Tran. web thickness 𝑡𝑡𝑤𝑤′  mm 9.3 8.3 6.9 8.6 
Tran. flange width 𝑏𝑏𝑓𝑓′  mm 125.5 102.6 79.2 102.4 
Tran. flange thickness 𝑡𝑡𝑓𝑓′  mm 18.3 16.3 14.2 16.3 
Gird. web height ℎ𝑤𝑤′′  mm - - - 307.3 
Gird. web thickness 𝑡𝑡𝑤𝑤′′ mm - - - 6.4 
Gird. flange width 𝑏𝑏𝑓𝑓′′ mm - - - 78.0 
Gird. flange thickness 𝑡𝑡𝑓𝑓′′ mm - - - 9.5 
Plate  yield stress 𝜎𝜎𝑌𝑌 MPa 226.2 237.2 228.9 235.8 
Long. yield stress 𝜎𝜎𝑌𝑌 MPa 230.3 244.1 202.7 212.4 
Tran. yield stress 𝜎𝜎𝑌𝑌 MPa 255.1 220.0 248.2 233.1 
Gird. yield stress 𝜎𝜎𝑌𝑌 MPa - - - 235.8 
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Table 5. Dimensionless parameters of the case study stiffened plated grillages 

Parameter Symbol Grillage 
No. I 

Grillage 
No. II 

Grillage 
No. III 

Grillage 
No. IV 

Plate slenderness ratio 𝛽𝛽 2.67 1.42 1.68 1.41 
Column slenderness ratio 𝜆𝜆 0.24 0.42 0.70 0.54 
Length to radius of gyration 𝑎𝑎 𝜋𝜋⁄  21.00 35.71 63.60 48.71 

 

Grillage I represents relatively slender plating stiffened by stocky stiffeners. 

Consequently, the collapse of this panel is normally dominated by the plate buckling 

without distinct failure of stiffeners, which is one of the three classical buckling failure 

modes of ship structures as classified in [54] and the Mode-II failure, as categorised in 

[1].  Because of this collapse mechanism, the case study stiffened panel is appropriate to 

examine the uncertainty due to different geometric imperfection models for local plating. 

The buckling behaviour may be less sensitive to column-type and stiffener sideway 

imperfections. Grillage II is of intermediate slenderness ratios. The failure of this type of 

grillage is usually triggered by the interframe buckling of longitudinal stiffeners in 

combination with inelastic local plate buckling. Grillage III is the most slender panel 

among all case study models. Its failure is induced by the beam-column buckling. Grillage 

IV is similar to Grillage II in terms of slenderness but is also stiffened by several 

longitudinal girders, leading to a smaller transverse extent of the panel (i.e., B). These 

grillage models represent the most typical buckling failure modes found in ship 

structures. In fact, a thorough numerical analysis of multi-span/multi-bay orthogonally 

stiffened panels is relatively limited in the maritime sector. For this reason, the present 

numerical study is of significance on the collapse analysis of ship structures in the view 

of gaining improved insights on the uncertainty caused by initial imperfection. 
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3.2 Scope of Analysis 

A series of analyses are performed on four stiffened plated grillages, with different 

models for local plate distortion (deterministic and probabilistic) and different relative 

distortion between adjacent bays (symmetric, asymmetric, random). A summary of the 

test matrix is given in Table (6). 

Table 6. Summary of the test scneario matrix 

 Grillage I Grillage II Grillage III Grillage IV 
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 HH, ARE, CM, G-S HH, ARE, CM HH, ARE, CM HH, ARE, CM 
𝑓𝑓𝑜𝑜𝑜𝑜 Eq. 29 Eq. 29 Eq. 29 Eq. 29 
𝑓𝑓𝑜𝑜𝑜𝑜 Eq. 36 Eq. 36 Eq. 36 Eq. 36 
𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 [0.025𝛽𝛽2𝑡𝑡, 0.3𝛽𝛽2𝑡𝑡] [0.025𝛽𝛽2𝑡𝑡, 0.3𝛽𝛽2𝑡𝑡] [0.025𝛽𝛽2𝑡𝑡, 0.3𝛽𝛽2𝑡𝑡] [0.025𝛽𝛽2𝑡𝑡, 0.3𝛽𝛽2𝑡𝑡] 
𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 0.0015𝑎𝑎 0.0015𝑎𝑎 0.0015𝑎𝑎 0.0015𝑎𝑎 
𝑤𝑤𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 0.0015𝑎𝑎 0.0015𝑎𝑎 0.0015𝑎𝑎 0.0015𝑎𝑎 
𝑤𝑤𝑜𝑜 0.064𝛽𝛽2 - - - 
𝜎𝜎𝑓𝑓 0.028𝛽𝛽2 - - - 

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 
1, -1, 0.8,  

rand [1, -1] -1 -1 -1 

𝜌𝜌𝑜𝑜𝑜𝑜 1, -1, rand [1, -1] -1 -1 -1 
𝜌𝜌𝑜𝑜𝑜𝑜 1, -1, rand [1, -1] -1 -1 -1 

 

Both deterministic and probabilistic models are adopted for local plate distortion of 

grillage I, whereas only deterministic models are applied to grillages II, III and IV. 

Regarding the deterministic modelling of local plate distortion, three imperfection 

models, i.e., HH mode, ARE mode and CM mode, are utilised, with maximum distortion 

magnitude varying from 0.025𝛽𝛽2𝑡𝑡 to 0.3𝛽𝛽2𝑡𝑡 at an increment of 0.025𝛽𝛽2𝑡𝑡 (i.e., 12 cases). 

When it comes to the stochastic modelling of local plate distortion of grillage I, the mean 

and standard deviation of the random distortion field are specified in accordance with 

the experimental measurement. The correlation length parameter is set equal to 𝑙𝑙𝑜𝑜 =

1700mm. This value has been suggested in [44] based on measurements from actual 

plates. One hundred simulations are completed, which is considered sufficient to 
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compute the statistics of ultimate strength. In terms of column-type and stiffener sideway 

distortions, a deterministic modelling approach with fixed magnitude is employed for all 

grillages. As for the relative distortion between adjacent bays, symmetric (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 =

𝜌𝜌𝑜𝑜𝑜𝑜 = 1) and asymmetric (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = −1) conditions are considered for grillage 

I (100 ×  2 + 12 ×  2 ×  3 = 272 cases), whereas only the asymmetric condition is 

considered for grillage II, III and IV (12 × 3 × 3 = 108 cases). Two additional relative 

distortion scenarios are analysed for grillage I, i.e. 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8 and 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑠𝑠𝑑𝑑[1,−1]. A 

random relative distortion scenario (rand[-1,1]) is analysed in conjunction with the 

stochastic local plate modelling for grillage I (100 cases). In this case, 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜, 𝜌𝜌𝑜𝑜𝑜𝑜, and 𝜌𝜌𝑜𝑜𝑜𝑜 

are randomly selected from -1 and 1. The scenario 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8  is considered in 

combination with HH mode shape (12 cases), which is a modelling technique suggested 

in [14]. In short, a total of (272 + 108 + 100 + 12) = 492 finite element simulations are 

completed. 

4. Finite Element Modelling 

Inconsistent with many previous studies, a four-node shell element with reduced 

integration is employed for the finite element modelling, which is suitable for buckling 

analysis of stiffened plated structures. In general, a characteristic mesh size of 50mm × 

50mm is applied in the local plate discretisation. For grillage I, 24 and 12 elements are 

applied in the longitudinal and transverse directions, respectively. For grillage II and III, 

30 and 6 elements are applied in the longitudinal and transverse directions, respectively. 

For grillage IV, 24 and 10 elements are applied in the longitudinal and transverse 

directions, respectively. In terms of the meshing of longitudinal stiffeners, 6 elements are 

utilised in both web and flange. When it comes to the transverse frame, a compatibly 

coarse meshing scheme with a typical mesh size of 100mm × 100mm is applied. The 
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geometric imperfection is applied to the finite element model using the direct nodal 

translation approach via an external subroutine [55]. 

A simply supported boundary condition is assumed along all four edges, which is 

consistent with the experimental configuration reported in [54]. The vertical and 

transverse displacements at the loaded edge are constrained, while the transverse pull-

in is allowed at the unloaded long edge.  To ensure an uniform loading, the edge 

compression is applied through a master point coupled with all nodes in the loaded edge. 

Displacement-controlled loading combined with the arc-length solver is utilised in all 

cases. 

5. Results and Discussions 

5.1 Collapse Characteristics 

The von-Mises stress distributions and deformation of four case study grillages at ULS 

are shown in Figure (8). It can be seen that the collapse of grillage I is predominately 

triggered by local plate buckling. While the yielding zone has also propagated to the 

longitudinal stiffeners, no significant distortion is observed at the ULS of grillage I. 

Nevertheless, a considerable sideway distortion of stiffeners is found in the post-collapse 

range. 

Regarding the collapse of grillage II, a gross yielding is observed throughout the entire 

panel, accompanied by moderate buckling of the local plate. This is a reasonable collapse 

behaviour of stiffened plated structures with stocky plating. 

A typical beam-column collapse failure is seen at the ULS of grillage III, where the stiffener 

and attached plating deflect as a combined unit. This failure mode also corresponds to 

the single-frame overall collapse suggested in [1]. 
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Beam-column type buckling is observed in grillage IV. In addition, a significant sideways 

deflection is found on the longitudinal girders of grillage IV. In fact, the elastoplastic 

buckling initiates at the longitudinal girders, which leads to a substantial loss of boundary 

support of the local panels. Subsequently, elastoplastic buckling is propagated to the 

plates and longitudinal stiffeners, resulting in the final collapse of the grillage. 

 

Figure 8. Stress distribution and deformation of case study grillages at ultimate limit state 

5.2 Effects of Distortion Profiles 

The mean ultimate compressive strength of the case study stiffened plated grillages 

incorporated with different deterministic imperfection models is shown in Figure (9) 

(Mean of 12 distortion magnitudes). Note that the presented results correspond to the 

asymmetric imperfection pattern, i.e. 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = −1 . It can be noted that a 

conservative prediction is given by the CM imperfection model. For grillages I and II, the 

use of the HH model gives the most optimistic prediction, while the ARE model 
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corresponds to an intermediate prediction. For grillages III and IV, the prediction based 

on HH and ARE models are close. 

 

Figure 9. Mean ultimate strength of case study stiffened plated grillages (Note: mean of 

12 simulations) 

5.3 Effects of Distortion Magnitude 

The relations between the maximum distortion magnitude (𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚) and the normalised 

ultimate compressive strength of stiffened plated grillage (𝜎𝜎𝑚𝑚𝑢𝑢 𝜎𝜎𝑌𝑌𝑌𝑌𝑌𝑌⁄ ) are shown from 

Figure (10) to Figure (13). Note that the presented results correspond to the asymmetric 

imperfection pattern, i.e. 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = −1. 
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Figure 10. Relation between distortion magnitude and ultimate strength (Grillage I). 

 

Figure 11. Relation between distortion magnitude and ultimate strength (Grillage II). 

 

Figure 12. Relation between distortion magnitude and ultimate strength (Grillage III). 
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Figure 13. Relation between distortion magnitude and ultimate strength (Grillage IV). 

It is evident that the ultimate compressive strength of grillage II, III and IV are reduced as 

the maximum local plate distortion magnitude is increased, regardless of the distortion 

profile. In particular, a significant reduction due to the increase of distortion magnitude 

is seen when the CM mode shape is assumed. Nevertheless, when HH mode and ARE 

mode are adopted, grillage III and grillage IV are not sensitive to the variation in 

distortion magnitude. This insensitivity is mainly due to the beam-column type buckling 

failure mode of grillages III and IV, which is not greatly governed by the local plate 

distortion. From these comparisons, we may arrive at the conclusion that the stiffened 

plated grillage is sensitive to the change of maximum magnitude of local plate distortion 

when the column slenderness ratio (𝜆𝜆) is approximately less than 0.4. For grillages with 

𝜆𝜆 > 0.4, the use of CM mode shape might be conservative. 

However, the foregoing monotonically decreasing relation is not observed in Figure (10) 

for grillage 1 when the HH or ARE mode is applied. Instead, in certain scenarios, there is 

an increase of the ultimate strength with a larger distortion magnitude. For instance, 

when the distortion magnitude is increased from 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.10𝛽𝛽2𝑡𝑡 to 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15𝛽𝛽2𝑡𝑡 , 

the ultimate compressive strength of grillage I is increased by 3.6%. This distinctive 
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phenomenon may be the result of interaction between the distortion components with 

different half-wave numbers. The deflection component other than the preferred 

buckling mode has a strengthening effect on the stiffened panel since it will suppress the 

development of out-of-plane deflection. To elucidate this, a decomposition of the 

deflection field of the central plating is completed for grillage I assuming ARE mode shape. 

The decomposition is completed using a least-square method introduced in [39].  In 

principle, the overall deflection field is approximated by eleven sinusoidal components 

with the half-wave number varying from 1 to 11. The coefficient of each component is 

estimated using a least-square method. Details of this technique are documented in the 

Appendix. The development of the two most significant deflection components is shown 

in Figure (14) for grillage 1, i.e. 𝑠𝑠 = 1 (single half-wave) and 𝑠𝑠 = 3 (preferred buckling 

shape). The vertical axis in Figure (14) represents the coefficient of the deflection 

component, and the horizontal axis shows the average applied strain. In the initial phase 

of the loading application, an increase of the deflection coefficient is shown in all cases, 

indicating that the local plate develops its out-of-plane deflection following the initial 

shape. If 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15𝛽𝛽2𝑡𝑡  (dash line), this trend keeps nearly the same until a rapid 

growth before the collapse. However, there is a marked turning point if 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.10𝛽𝛽2𝑡𝑡 

(solid line) where the deflection component with 𝑠𝑠 = 3 keeps increasing, but the single 

half-wave component vanishes. The vanishing single half-wave component results in 

more significant development of the out-of-plane deflection in the preferred buckling 

mode shape, leading to a pre-mature failure of the grillage. Recalling the solid line 

corresponds to the lower level of distortion magnitude. This comparison may 

demonstrate the distinct feature of grillage I shown in Figure (10). 
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Figure 14. Development of the most significant deflection components during the 

progressive collapse of grillage I. 

 

5.4 Effect of Relative Distortion in Adjacent Bays 

The effects of the relative distortion in adjacent bays are illustrated in Figure (15). 

Generally, the relative distortion in adjacent bays has a significant influence when the HH 

or ARE models are adopted, leading to a prediction discrepancy of up to 12%. Conversely, 

the CM model shape is much less affected by the distortion in adjacent bays. In addition, 

it appears that the effect of relative distortion is also magnitude-dependent. It has the 

largest impact when the maximum distortion magnitude is about 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.05𝛽𝛽2𝑡𝑡  to 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.10𝛽𝛽2𝑡𝑡 . However, when 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 > 0.15𝛽𝛽2𝑡𝑡 , the strength prediction difference 

based on different configurations of relative distortion is generally small. 

A comparison is also illustrated for the HH model with 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 1 and 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8. The latter 

configuration is recommended in [56]. For this case study grillage, it seems that the 

former case generally gives a higher prediction. However, a few exceptions are found, in 

which case the assumption of  𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8 gives a considerably lower prediction. 
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Figure 15. Effect of the relative distortion in adjacent bays on the ultimate strength of 

grillage 

5.5 Deterministic Approach versus Probabilistic Approach 

The foregoing sections have reported the results based on deterministic imperfection 

models. This section summarises the comparison between the deterministic approach 

and the probabilistic approach. A bar chart is given in Figure (16), showing the mean 

prediction of the ultimate strength of grillage 1 and its standard deviation. 

 

Figure 16. Comparison of ultimate strength based on deterministic and stochastic 

imperfection models (𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15𝛽𝛽2𝑡𝑡 for all deterministic models) 
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Three scenarios are considered, namely symmetric relative distortion (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 =

𝜌𝜌𝑜𝑜𝑜𝑜 = 1), asymmetric relative distortion (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = −1) and random relative 

distortion (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑠𝑠𝑑𝑑[1,−1]). In line with the observations in the previous 

section, the assumption of the symmetric distortion pattern gives a higher strength 

prediction. A similar standard deviation is found between the predictions based on 

symmetric distortion pattern and asymmetric distortion pattern, while assuming a 

random relative distortion leads to higher prediction variance. This is probably not a 

surprising result since extra randomness is introduced. The computations based on 

deterministic models with 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15𝛽𝛽2𝑡𝑡  are also plotted in Figure (16) for 

comparison. Recalling that the mean and standard deviation of the local plate distortion 

used in the stochastic modelling of geometric imperfection are 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.064𝛽𝛽2𝑡𝑡  and 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.028𝛽𝛽2𝑡𝑡  respectively. Hence, a Gaussian distribution gives a maximum 

distortion magnitude (𝑤𝑤𝑜𝑜 + 3𝜎𝜎𝑓𝑓) statistically close to 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15𝛽𝛽2𝑡𝑡. It can be seen that 

the stochastic imperfection-based predictions are slightly conservative comparing with 

the HH and ARE modes, while close to the asymmetric CM mode and being optimistic with 

respect to the symmetric CM mode. Considering its ability to evaluate the prediction 

uncertainty, the G-S stochastic model is a capable alternative for modelling the geometric 

imperfection of stiffened plated structures. 

 

5.6 Discussions 

An  appreciable discrepancy of the ultimate compressive strength resulted by different 

geometric imperfection models is found in all four case study grillages. It is difficult to 

conclusively suggest which model is the best choice for the buckling and collapse analysis 
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of stiffened plated structures.  However, the following insights may be useful for making 

such a decision. 

The HH model is usually the best approximation of the actual distortion field, as it is 

developed from full-scale measurement. However, it should be aware that it likely causes 

convergence issue in a nonlinear finite element simulation. This is usually due to the 

distortion localisation, which takes place near the ultimate limit state. It is quite often 

observed that the distortion near two loaded edges of the plate will significantly develop 

in the initial phase of loading. But when the ultimate collapse is about to occur, a rapid 

distortion localisation would take place in one of the loaded edges, which is usually 

accompanied by a snap-back response that likely leads to a convergence issue. For a 

stiffened panel, this convergence may be easy to resolve in most commercial finite elemnt 

package by tuning the incrementation step size. However, in the research of ship 

structures, the analysis of the structural capacity of an entire ship or cross section (single 

or multiple) are often needed. The degrees of freedom involved in these analyses will be 

extremely large and therefore it might be difficult to resolve the convergence issue. 

The ARE model is generally close to the HH model in terms of the ultimate strength 

prediction.  It is also less affected by the convergence issue aforementioned. Nonetheless, 

future research may be required to justify the ratio between the coefficients of a single 

half-wave component 𝐴𝐴1  and critical buckling component 𝐴𝐴𝑗𝑗 , which is now tentatively 

assumed as 𝐴𝐴1 𝐴𝐴𝑗𝑗⁄ = 4.0. 

If one would like to greatly eliminate the aforementioned convergence issue due to 

distortion localisation, the use of the CM model is recommended. This will become 

particularly useful when the buckling behaviour of a large-scale structure (e.g. ship hulls) 

is analysed. However, it should be noted that the CM model is perhaps the worst 

A comparison of geometric imperfection models for collapse analysis of ship-type stiffened plated grillages

34



imperfection shape, and the prediction based on this model is generally more 

conservative, especially the post-collapse response. 

In terms of the relative distortion pattern, both symmetric and asymmetric patterns can 

be adopted.  This choice is mainly related again to the convergence issue and therefore 

also depends on the purpose of finite element simulation. 

Indisputably, the inherent randomness of imperfect geometry motivates the use of a 

probabilistic imperfection model.  The applied G-S stochastic imperfection model aims at 

capturing the real distortion field by retaining the global barrel shape of a plate, as a result 

of manufacturing processes, while accommodating the random localized dents 

lengthwise, mainly, as a result of impact loads during operation. To this end, the G-S 

model can potentially provide a more sophisticated description of the real distortion field. 

It is, however, acknowledged that the use of the G-S model is more complicated in practice. 

Further data should be acquired, in both as-built and service conditions, further data 

should be acquired to tune the statistics (i.e. mean deflection and standard deviation) and 

the auto-correlation form of the model. 

 

6. Concluding Remarks 

Geometric imperfection is one of the most crucial parameters of influence in the buckling 

analysis of stiffened plated structures. Several geometric imperfections are available, 

including deterministic and probabilistic approaches. A comparison of the prevailing 

geometric imperfection models and their influence on the ultimate compressive strength 

of ship grillages is completed in this paper.  The following insights are developed from 

this study. 
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Different geometric imperfection models lead to an appreciable uncertainty in the 

ultimate compressive strength of ship-type stiffened plated grillages. The uncertainty is 

caused by the assumed distortion mode and the relative distortion pattern. These 

differences also have an implication in the convergence of numerical simulation. The 

purpose of simulation should be taken into account when choosing the geometric 

imperfection model, i.e. whether a more realistic structural response is desired or a 

robust prediction is aimed for. The use of stochastic modelling improves the 

deterministic approach by considering a wide spectrum of imperfect profiles whose 

geometry resembles real-life. 

Based upon the insights developed in this study, future research could be directed to 1) 

measurement of the distortion of ship structures in both as-built and in-service 

conditions, in particular for the stiffener distortions; 2) improvement of the stochastic 

geometric imperfection model; 3) extended the analysis to investigate the effects of 

column-type imperfection and stiffener sideway imperfection; 4) development of 

alternative random imperfection model based on Karhunen–Loève expansion and 

Fourier series expansion. 
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Appendix 

As reported in [81], the deflection field of local plating 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 in the longitudinal direction 

can be approximated by a series of sinusoidal functions where N = 11 is usually sufficient: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 ≈ ∑ 𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖𝑖𝑖𝑚𝑚
𝑚𝑚
�𝑁𝑁

𝑖𝑖=1   (40) 

For node at 𝑥𝑥𝑛𝑛, the vertical deflection can be estimated by Equation (40) as: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑛𝑛) ≈ ∑ 𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑚𝑚
�𝑁𝑁

𝑖𝑖=1   (41) 

The residual (= error) between the estimation and the actual value can be written as: 

𝑎𝑎 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑛𝑛) − ∑ 𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑚𝑚
�𝑁𝑁

𝑖𝑖=1   (42) 

A least-square problem can be formulated by taking the sum of the square of each 

residual: 

𝑅𝑅 = ∑ �𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑛𝑛) − ∑ 𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑚𝑚
�𝑁𝑁

𝑖𝑖=1 � 2𝑛𝑛
1   (43) 

The best-fit coefficients can be estimated by enforcing the condition that the derivative 

of the R with respective to each coefficient equals to zero: 
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𝜕𝜕𝐴𝐴
𝜕𝜕𝐴𝐴𝑖𝑖

= 0  (44) 

A system of linear equations can then be formulated: 

𝐇𝐇 ∙ 𝐀𝐀 = 𝐖𝐖  (45) 

where 

𝐀𝐀 = {𝐴𝐴1 𝐴𝐴2 ⋯ 𝐴𝐴𝑖𝑖 ⋯ 𝐴𝐴𝑁𝑁}𝑇𝑇  (46) 

𝐖𝐖 = {𝑊𝑊1 𝑊𝑊2 ⋯ 𝑊𝑊𝑖𝑖 ⋯ 𝑊𝑊𝑁𝑁}𝑇𝑇 (47) 

𝐇𝐇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐻𝐻11 𝐻𝐻12 ⋯ 𝐻𝐻1𝑗𝑗 ⋯ 𝐻𝐻1𝑁𝑁
𝐻𝐻21 𝐻𝐻22 ⋯ 𝐻𝐻2𝑗𝑗 ⋯ 𝐻𝐻2𝑁𝑁
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
𝐻𝐻𝑖𝑖1 𝐻𝐻𝑖𝑖2 ⋯ 𝐻𝐻𝑖𝑖𝑗𝑗 ⋯ 𝐻𝐻𝑖𝑖𝑁𝑁
⋮ ⋮ ⋯ ⋮ ⋱ ⋮

𝐻𝐻𝑁𝑁1 𝐻𝐻𝑁𝑁2 ⋯ 𝐻𝐻𝑁𝑁𝑗𝑗 ⋯ 𝐻𝐻𝑁𝑁𝑁𝑁⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (48) 

The entries in H and W can be written as the following two general expressions: 

𝐻𝐻𝑖𝑖𝑗𝑗 = ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑖𝑖𝑚𝑚
𝑚𝑚
� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑗𝑗𝑖𝑖𝑚𝑚

𝑚𝑚
�𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 , 𝑠𝑠 = 0,1,2,⋯ ,𝑁𝑁 & 𝑗𝑗 = 0,1,2,⋯ ,𝑁𝑁  (49) 

𝑊𝑊𝑖𝑖 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑚𝑚
�𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑛𝑛)𝑛𝑛

1 , 𝑠𝑠 = 0,1,2,⋯ ,𝑁𝑁  (50) 
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