The Selfish Mitochondrion

John G. McCarron & Calum Wilson

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK. Mitochondria match ATP supply to fluctuations in cellular energy requirements. Cellular energy requirements are often signaled to mitochondria by increases in the cytoplasmic concentration of Ca²⁺ ions. These increases in Ca²⁺ reach the mitochondrial matrix to regulate the proteins, enzymes and transporters required for mitochondrial ATP synthesis. Mitochondria may also limit energy demands by capturing the ion and shaping cytosolic Ca²⁺ signaling. Mitochondrial uptake of Ca²⁺ is driven by the substantial electrochemical gradient generated by the respiratory chain complexes. Although functional studies since the 1960s hinted at the nature of the Ca²⁺ channel involved, the molecular identity eluded physiologists until 2011 when the mitochondrial Ca²⁺ uniporter (MCU) gene was identified^{1,2}. MCU is a Ca²⁺ selective inwardly rectifying channel and a major pathway for the passage of Ca²⁺ ions from the cytoplasm into mitochondria. However, while well understood at the genetic and protein level, how MCU regulates cell function is unresolved. Understanding MCU regulation is of the utmost importance as disturbances in mitochondrial Ca²⁺ uptake accompanies several human diseases³.

Mitochondrial regulation of the Ca²⁺ store

Mitochondrial Ca²⁺ uptake via MCU regulates cell function by controlling cytoplasmic Ca²⁺ concentration. The uptake facility allows mitochondria to control IP₃-mediated Ca²⁺ release by regulating store-operated Ca²⁺ entry (SOCE; a key mechanism that replenishes internal Ca²⁺ stores), Ca²⁺ transfer to the internal store, and by modulating the channels responsible for Ca²⁺ release^{4,5}. In each case, mitochondria's control of IP₃-mediated Ca²⁺ signaling generates parallel changes in the cytoplasmic Ca²⁺ concentration.

Yoast *et al.* have now reported a disconnection between mitochondrial control of the Ca²⁺ increase arising from SOCE, and the current (I_{CRAC}) that gives rise to the Ca²⁺ increase⁶. Using an array of functional protocols, the authors' found that CRISPR/Cas9 MCU knockout decreased SOCE in a range of cells, while paradoxically increasing the Ca²⁺ rise from SOCE. The experiments reveal that MCU activity increases the overall current and local Ca²⁺ rise occurring via I_{CRAC}, but decreases the global Ca²⁺ rise occurring via SOCE. The major effect of MCU on cytoplasmic Ca²⁺ appears to arise from the organelle's accumulation of the ion and not from the control of Ca²⁺ influx; mitochondria hoard so much Ca²⁺ that they limit rather than promote store refilling. Store refilling occurs, but only after mitochondria have acquired their "share" of Ca²⁺.

A comparison of electrophysiological properties revealed that a slow Ca²⁺-dependent inactivation of I_{CRAC} was accelerated by MCU knockout, and reduced by 'energized' mitochondria that presumably buffer cytoplasmic Ca²⁺ more effectively⁶. The prevailing proposal for the effects of MCU on I_{CRAC} hinges on a negative feedback loop in which a rise in cytoplasmic Ca²⁺ inactivates the channels. By buffering incoming Ca²⁺, mitochondria diminish

this feedback to prolong Ca²⁺ influx⁷⁻⁹. That MCU knockout increases the rise in cytoplasmic Ca²⁺ caused by SOCE, while SOCE is reduced, is counterintuitive to this model. To explain this, the authors put forth the simple idea that mitochondrial accumulation of the ion reduces cytoplasmic Ca²⁺ and limits store refilling. Given that Ca²⁺ stores refill faster and store content is increased when MCU is disabled, mitochondrial Ca²⁺ homeostasis appears to take priority over the organelles control of the internal store content.

MCU knock-out also increased the frequency of agonist-induced cytosolic Ca²⁺ oscillations, NFAT translocation, and B-lymphocyte proliferation. These effects likely arise from an increased cytoplasmic Ca²⁺ concentration occurring in stimulated MCU-deficient cells. However, the authors⁶ used optical patch clamp Ca²⁺ imaging to show that MCU knockout has no effect on elementary IP₃ receptor (IP₃R) activity. These results appear at odds with the known role of mitochondria in regulating IP₃-evoked Ca²⁺ release, by buffering cytoplasmic Ca²⁺, and modulating Ca²⁺ store content (hence the driving force for Ca²⁺ release), and raise an important question. Why is IP₃R activity unaltered in MCU knockout when the store content is increased? Perhaps IP₃R activity is decreased to precisely offset the increased Ca²⁺ store content. This seems unlikely, but a lack of other plausible alternatives makes it clear that there is much still to be resolved to fully understand MCU regulation of cell physiology

Future work to unravel mitochondrial Ca²⁺ control complexity

A quantitative analysis of store Ca²⁺ concentrations and Ca²⁺ oscillation parameters will directly address how IP₃-mediated Ca²⁺ release alone is unaltered in the absence of uniporter activity. But contemporary genome editing effects also contrast with those obtained using siRNA knockdown¹⁰ and highlight cell-type specificity in certain features of MCU function. For example, in HEK293 cells, mitochondrial Ca²⁺ uptake does not alter mitochondrial Ca²⁺, SOCE, or IP₃R activity, but does modulate Ca²⁺ release. What other cell/tissue-specific roles does MCU play? In this regard, pharmacological mitochondrial uncoupling accelerates Ca²⁺ decline from I_{CRAC} inactivation in HEK293 cells lacking MCU, but not RBL-1 or Jurkat cells. The authors suggest accelerated decline may be related to free radical generation. However, given that severe mitochondrial uncoupling can deplete cytosolic ATP, and ATP levels, the ATP/ADP ratio, or protein kinases may offset MCU effects on I_{CRAC}, the effect of mitochondrial uncoupling is difficult to interpret.

In raising these questions, Yoast *et al.*⁶, have used the power of modern molecular physiology to provide new insight into MCU regulation. They demonstrate that mitochondrial Ca²⁺ uptake is complex and that additional efforts are required to complete our understanding of the multifaceted contributions of MCU to the physiological control of Ca²⁺ signaling. This is of the utmost importance for our understanding of pathophysiology in which dysfunctional mitochondrial Ca²⁺ signaling is involved³.

References

- De Stefani, D., Raffaello, A., Teardo, E., Szabò, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. *Nature* 476, 336–340 (2011).
- 2. Baughman, J. M. *et al.* Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. *Nature* **476**, 341–345 (2011).
- 3. Woods, J. J. & Wilson, J. J. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. *Curr. Opin. Chem. Biol.* **55**, 9–18 (2020).
- Lawrie, A. M., Rizzuto, R., Pozzan, T. & Simpson, A. W. M. A Role for Calcium Influx in the Regulation of Mitochondrial Calcium in Endothelial Cells (*). *J. Biol. Chem.* 271, 10753–10759 (1996).
- 5. Parekh, A. B. Store-operated Ca²⁺ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. *J. Physiol.* **547**, 333–348 (2003).
- 6. Yoast, R. E. *et al.* The Mitochondrial Ca²⁺ uniporter is a central regulator of interorganellar Ca²⁺ transfer and NFAT activation. *J. Biol. Chem.* **297**, 101174 (2021).
- 7. Hoth, M., Fanger, C. M. & Lewis, R. S. Mitochondrial Regulation of Store-operated Calcium Signaling in T Lymphocytes. *J. Cell Biol.* **137**, 633–648 (1997).
- 8. Gilabert, J. A. & Parekh, A. B. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca²⁺ current I_{CRAC}. *EMBO J.* **19**, 6401–6407 (2000).
- Samanta, K., Douglas, S. & Parekh, A. B. Mitochondrial Calcium Uniporter MCU Supports
 Cytoplasmic Ca²⁺ Oscillations, Store-Operated Ca²⁺ Entry and Ca²⁺-Dependent Gene
 Expression in Response to Receptor Stimulation. *PLOS ONE* 9, e101188 (2014).
- 10. Samanta, K., Bakowski, D., Amin, N. & Parekh, A. B. The whole-cell Ca²⁺ release-activated Ca²⁺ current, I_{CRAC}, is regulated by the mitochondrial Ca²⁺ uniporter channel and is independent of extracellular and cytosolic Na+. *J. Physiol.* **598**, 1753–1773 (2020).