Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Swarm robot social potential fields with internal agent dynamics

Mabrouk, M. H. and McInnes, C.R. (2007) Swarm robot social potential fields with internal agent dynamics. In: 12th International Conference on Aerospace Sciences and Aviation Technology, ASAT-12, 2007-05-29 - 2007-05-31.

[img]
Preview
Text (strathprints007834)
strathprints007834.pdf - Accepted Author Manuscript

Download (168kB) | Preview

Abstract

Swarm robotics is a new and promising approach to the design and control of multiagent robotic systems. In this paper we use a model for a second order non-linear system of self-propelled agents interacting via pair-wise attractive and repulsive potentials. We propose a new potential field method using dynamic agent internal states to successfully solve a reactive path-planning problem. The path planning problem cannot be solved using static potential fields due to local minima formation, but can be solved by allowing the agent internal states to manipulate the potential field. Simulation results demonstrate the ability of a single agent to perform reactive problem solving effectively, as well as the ability of a swarm of agents to perform problem solving using the collective behaviour of the entire swarm.