Development of a sensor-based behavioral monitoring solution to support dementia care
Thorpe, Julia Rosemary and Forchhammer, Birgitte Hysse and Maier, Anja M (2019) Development of a sensor-based behavioral monitoring solution to support dementia care. JMIR mHealth and uHealth, 7 (6). e12013. ISSN 2291-5222 (https://doi.org/10.2196/12013)
Preview |
Text.
Filename: Thorpe_etal_JMIR_mHuH_2019_Development_of_a_sensor_based_behavioral_monitoring_solution.pdf
Final Published Version License: Download (846kB)| Preview |
Abstract
Background: Mobile and wearable technology presents exciting opportunities for monitoring behavior using widely available sensor data. This could support clinical research and practice aimed at improving quality of life among the growing number of people with dementia. However, it requires suitable tools for measuring behavior in a natural real-life setting that can be easily implemented by others. Objective: The objectives of this study were to develop and test a set of algorithms for measuring mobility and activity and to describe a technical setup for collecting the sensor data that these algorithms require using off-the-shelf devices. Methods: A mobility measurement module was developed to extract travel trajectories and home location from raw GPS (global positioning system) data and to use this information to calculate a set of spatial, temporal, and count-based mobility metrics. Activity measurement comprises activity bout extraction from recognized activity data and daily step counts. Location, activity, and step count data were collected using smartwatches and mobile phones, relying on open-source resources as far as possible for accessing data from device sensors. The behavioral monitoring solution was evaluated among 5 healthy subjects who simultaneously logged their movements for 1 week. Results: The evaluation showed that the behavioral monitoring solution successfully measures travel trajectories and mobility metrics from location data and extracts multimodal activity bouts during travel between locations. While step count could be used to indicate overall daily activity level, a concern was raised regarding device validity for step count measurement, which was substantially higher from the smartwatches than the mobile phones. Conclusions: This study contributes to clinical research and practice by providing a comprehensive behavioral monitoring solution for use in a real-life setting that can be replicated for a range of applications where knowledge about individual mobility and activity is relevant.
-
-
Item type: Article ID code: 78280 Dates: DateEvent30 May 2019Published2 April 2019AcceptedSubjects: Medicine > Medicine (General) Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 27 Oct 2021 10:03 Last modified: 01 Aug 2024 01:31 URI: https://strathprints.strath.ac.uk/id/eprint/78280