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Abstract

We introduce a new natural notion of convergence for permutations at any specified scale,
in terms of the density of patterns of restricted width. In this setting we prove that limits
may be chosen independently at a countably infinite number of scales.

1. Introduction

We study pattern densities in permutations. Let Sn denote the set of permutations
of length n. An occurrence of pattern π ∈ Sk in permutation σ ∈ Sn (with k 6 n) is a
k-element subset of indices 1 6 i1 6 . . . 6 ik 6 n whose image σ(i1) . . . σ(ik) under σ is
order-isomorphic to π. If π occurs in σ, then π is a subpermutation of σ. For example, 132
is a subpermutation of 35142, since 35142 contains two occurrences of the pattern 132.

Let ν(π, σ) be the number occurrences of π in σ. Then the global density of π in σ,
which we denote ρ(π, σ), is ν(π, σ)

/(
n
k

)
. Observe that ρ(π, σ) = P

[
σ(K) = π

]
, where K

is drawn uniformly from the k-element subsets of [n], and σ(K) denotes the permutation
order-isomorphic to the image of K under σ.

We say that an occurrence i1 6 . . . 6 ik of π in σ, has width ik − i1 + 1. Given a real
number f ∈ [k, n], let νf (π, σ) be the number of occurrences having width no greater
than f . Then the density of π in σ at scale f , denoted ρf (π, σ), is νf (π, σ)

/(
n
k

)
f
, where

(
n

k

)
f

=

bfc∑
w=k

(n− w + 1)

(
w − 2

k − 2

)
is the number of k-element subsets of [n] of width at most f . Thus, ρf (π, σ) = P

[
σ(K) =

π
]
, where K is drawn uniformly from the k-element subsets of [n] of no greater than f .

Clearly, ρn(π, σ) is the same as ρ(π, σ). And ρk(π, σ) = νk(π, σ)/(n−k+1) is the density
of consecutive occurrences of the pattern π in σ; namely, the local density of π in σ.

The scale f can be envisaged as specifying a “zoom level” or “magnification”: the
horizontal extent of a window through which we inspect a permutation. We typically
consider the scale f to be a function f(n) of the length, n, of the host permutation σ,
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such as log n,
√
n or n/ log n. With a slight abuse of notation, we omit the argument

when it is clear from the context.
We say that a function f : N → R+ is a scaling function if 1 � f(n) � n and

f(n) 6 n for all n, where we write f(n) � g(n) to denote that limn→∞ f(n)/g(n) = 0.
Note that we require scaling functions to tend to infinity and also to be sublinear. Our
interest is in the behaviour of pattern density at different scales as n tends to infinity.

Two recent papers have investigated the density of patterns at different scales. In [3],
the following scenario is considered. Suppose σ is drawn uniformly from those per-
mutations in Sn containing exactly m inversions (21 patterns); that is, ν(21, σ) = m.
Moreover, suppose that m = m(n) satisfies n� m� n2/ log2 n. Then clearly ρ(21, σ)�
1/ log2 n→ 0, and indeed it is shown that ρf (21, σ)→ 0 as long as f � m/n. However,
at smaller scales, two points are as likely to form an inversion as not: if f � m/n, then
ρf (21, σ)→ 1/2. Thus, the local structure of σ reveals nothing about its global form.

Borga and Penaguiao [6] consider the general relationship between asymptotic global
pattern densities and asymptotic local pattern densities, and prove that they are inde-
pendent in the following sense: Given a set of patterns G and any consistent combination
of their asymptotic global pattern densities Γ ∈ [0, 1]G, and similarly a set of consecu-
tive patterns L and any consistent combination of their asymptotic local pattern densities
Λ ∈ [0, 1]L, then there exists a sequence of permutations (σj)j∈N such that ρ(π, σj)→ Γπ
for each π ∈ G, and ρ|τ |(τ, σj)→ Λτ for each τ ∈ L.

Our main result is that this independence can be extended to infinitely many scales.
If any consistent combination of asymptotic pattern densities is chosen for each of a
countably infinite number of suitably distinct scales, then there exists a sequence of
permutations for which all the limiting densities at each scale match the choices.

In the next section we look at various notions of convergence for permutations. To
begin, we recall the basic results concerning the global convergence of a sequence of
permutations. We then introduce and investigate an approach to defining convergence
at a specified scale, and also present a stricter notion of convergence in which the choice
of scale is irrelevant. Finally, we briefly recall the essential results concerning local
convergence.

In Section 3, we prove a number of results concerning convergence at a given scale,
most notably (Theorem 3.5) that scale limits can be limits at any scale. Then, in Sec-
tion 4, building on these results, we prove our main theorem (Theorem 4.1) showing
asymptotic independence at a countably infinite number of scales. After briefly present-
ing two example constructions, we extend this result to two dimensions (Theorem 4.4).

2. Notions of convergence

2.1. Global convergence

An infinite sequence (σj)j∈N of permutations with |σj | → ∞ is globally convergent if
ρ(π, σj) converges for every permutation π. To every convergent sequence of permuta-
tions one can associate an analytic limit object. A permuton is a probability measure Γ
on the σ-algebra of Borel sets of the unit square [0, 1]2 such that Γ has uniform marginals.
That is, for every interval [a, b] ⊆ [0, 1], we have Γ

(
[a, b]×[0, 1]

)
= Γ

(
[0, 1]×[a, b]

)
= b−a.

Given a permuton Γ and an integer k, we can independently randomly sample k
points (x1, y1), . . . , (xk, yk) in [0, 1]2 from the measure Γ. With probability one, their x-
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and y-coordinates are distinct, because Γ has uniform marginals. So, from these points,
we can define a permutation π as follows. If we list the x-coordinates in increasing order
xi1 < . . . < xik , then π is the unique permutation order-isomorphic to yi1yi2 . . . yik . We
say that a permutation sampled in this way from a permuton Γ is a Γ-random permutation
of length k.

This sampling approach is used to define a notion of pattern density for permutons.
If Γ is a permuton and π is a permutation of length k, then ρ(π,Γ) is the probability
that a Γ-random permutation of length k equals π.

We now recall the core results from [12, 13]. For every convergent sequence (σj)j∈N
of permutations, there exists a unique permuton Γ such that

ρ(π,Γ) = lim
j→∞

ρ(π, σj) for every permutation π.

This permuton is the limit of the sequence (σj)j∈N.
Conversely, if Γ is a permuton and, for each j ∈ N, σj is a Γ-random permutation of

length j, then with probability one the sequence (σj)j∈N is convergent, and Γ is its limit.
We call such a sequence (that converges to Γ) a Γ-random sequence.

Permutons were introduced in [12, 13, 14] employing a different but equivalent def-
inition. The measure theoretic view presented above was originally used in [18], and
was later exploited in [9], in which the term “permuton” was first used. Subsequently,
among other things, permutons have been applied to the investigation of the feasible
region of possible pattern densities [10, 15], to the characterisation of quasirandom per-
mutations [16, 8], and to determining the shapes of permutations in substitution-closed
permutation classes [2, 1] (introducing the notion of the random Brownian separable
permuton [17]).

2.2. Convergence at specified scales

In an analogous manner to the definition of global convergence, we introduce a notion
of convergence at a specified scale. Given a scaling function f , an infinite sequence (σj)j∈N
of permutations with |σj | → ∞ is convergent at scale f if ρf (π, σj) converges for every
permutation π.

If (σj)j∈N is convergent at scale f , then there exists an infinite vector Ξ ∈ [0, 1]S

(where S is the set of all permutations) such that ρf (π, σj) → Ξπ for all π ∈ S. Note
that, for any k > 1, we have

∑
π∈Sk

Ξπ = 1. In the current context, we consider Ξ
itself to be the limit of the sequence at scale f . We call these limits scale limits. We
prove below (Theorem 3.5) that scale limits can be limits at any scale in the following
sense: If Ξ is any scale limit and f any scaling function, then there exists a sequence of
permutations which converges at scale f to Ξ.

Sometimes there exists a (unique) permuton Γ such that ρ(π,Γ) = Ξπ for every π. If
such a Γ does exist, then we interchangeably deem either Ξ or Γ to be the limit. However,
in general this is not the case.

Suppose ΓV is the V-shaped permuton , in which the mass is uniformly dis-
tributed along the decreasing diagonal of the left half and uniformly distributed along
the increasing diagonal of the right half. Suppose (σj)j∈N is a ΓV-random sequence
and f is a scaling function. If K is drawn uniformly from subsets of [j] of width
no greater than f(j), then the probability that σj(K) is not monotone is no greater
than (f(j) − 2)/(j + 1 − f(j)) ∼ f(j)/j, which tends to zero with increasing j. So,
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Figure 1: Some tiered permutons; the dashed lines delineate a vertical strip

ρf (π, σj)→ 1/2 if π is an increasing or decreasing pattern (by the law of large numbers),
and ρf (π, σj)→ 0 for all other π.

Note that this limit is not equal to any permuton. Specifically, there is no permuton Γ
such that ρ(12,Γ) = ρ(21,Γ) = 1/2 but ρ(π,Γ) = 0 for all non-monotone π ∈ S3. Indeed,
it seems natural to consider the limit of a ΓV-random sequence at scale f to be, in some
sense, equal to 1

2 + 1
2 . In general, we believe that certain probability distributions

over permutons (that is, certain random permutons) should suffice to model scale limits.
However, the characterisation of these limits is beyond the scope of this paper.

Question 2.1. Can all scale permutation limits be represented by random permutons?
If so, which random permutons are scale limits?

We also postpone to future work any consideration of the packing density of patterns
at a specified scale (see [18, 19]) and, more generally, of the feasible region for pattern
densities at a specified scale (see [15, 6]).

2.3. Scalable convergence

We now briefly introduce a stricter notion of convergence in which the choice of scale
is immaterial. We say that an infinite sequence (σj)j∈N of permutations with |σj | → ∞
is scalably convergent if, for every permutation π, there exists ρπ such that ρf (π, σj)
converges to ρπ for every scaling function f . We call a limit of a scalably convergent
sequence a scalable limit. Let us consider some scalable limits which can be represented
by permutons.

We say that a permuton is tiered if it can be partitioned into a finite or countably
infinite number of rectangular horizontal tiers [0, 1]× [a, b] such that in each tier the mass
is uniformly distributed either on the whole tier or else along the increasing or decreasing
diagonal of the tier. See Figure 1 for an illustration of some examples.

Tiered permutons have the property that any vertical strip is equivalent to the whole
permuton, in the following sense. Suppose Γ is a tiered permuton and consider a vertical
strip [a, b] × [0, 1] of Γ, as delineated by the dashed lines in the example at the left of
Figure 1. Now let Γ[a,b] be the permuton that results from rescaling this strip to fill [0, 1]2
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in such a way that the result has a total mass of one and uniform marginals, and is thus
a valid permuton. This requires horizontal expansion by a factor of 1/(b − a) and the
vertical expansion of each line segment so as to become a diagonal of its tier. Formally,
the following defines Γ[a,b]:

Γ[a,b]

(
[0, x] × [0, y]

)
= 1

b−aΓ
(
[a, a+ x(b− a)] × [0, h]

)
,

for any (x, y) ∈ [0, 1]2, where h is any solution of the equation Γ
(
[a, b]× [0, h]

)
= (b−a)y.

Given any tiered permuton Γ and interval [a, b] ⊆ [0, 1], it is easy to see that Γ[a,b] = Γ.
In particular, Γ[a,a+f(n)/n] = Γ for any scaling function f , all a ∈ [0, 1), and all n

large enough that a + f(n)/n 6 1. Thus, for any scaling function f and every pattern
π, we have ρf (π,Γ) = ρ(π,Γ). Hence, if Γ is tiered, every Γ-random sequence is scalably
convergent to its global limit Γ. We believe that tiered permutons are the only permutons
with this property:

Conjecture 2.2. If Γ is a permuton for which every Γ-random sequence is scalably
convergent, then Γ is tiered.

More generally, it seems likely that scalable limits can be characterised as probability
distributions over tiered permutons:

Question 2.3. Can all scalable permutation limits be represented by random tiered per-
mutons? If so, which random tiered permutons are scalable limits?

Note that there exist sequences of permutations that converge to a tiered permuton
but which are not scalably convergent. For example, from [3] we know that if we let
σj be drawn uniformly at random from those permutations of length j2 that have j3

inversions, then, with probability one, (σj)j∈N converges to the increasing permuton ,
but is not scalably convergent; indeed, at any scale f � n1/4, the scale limit is the
uniform permuton.

Recall that a ΓV-random sequence converges to the same limit at any scale f , as long
as 1� f � n. Thus a ΓV-random sequence is scalably convergent, but its scalable limit
is not equal to ΓV. It seems reasonable to believe that the fact that ΓV-random sequences
are scalably convergent is not due to any specific properties of ΓV:

Conjecture 2.4. If Γ is any permuton, then every Γ-random sequence is scalably con-
vergent.

2.4. Local convergence

We conclude this section with a very brief foray into local convergence, the theory
of which was recently developed by Borga in [5]. An infinite sequence (σj)j∈N of per-
mutations with |σj | → ∞ is said to be locally convergent if ρ|π|(π, σj) converges for
every pattern π. One can take the local limit of a locally convergent sequence of per-
mutations to be a shift-invariant random infinite rooted permutation (SIRIRP). By [5,
Proposition 2.44 and Theorem 2.45] and [6, Proposition 3.4], in an analogous manner
to the theory of global limits, every locally convergent sequence of permutations has a
SIRIRP as a local limit, and every SIRIRP is the local limit of some locally convergent
sequence of permutations.
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3. Scale limits

In this section, we prove some fundamental results concerning scale limits. We begin
by establishing (Theorem 3.5) that scale limits can be limits at any scale. We then show
(Proposition 3.6) that, for any scale limit Ξ and scaling function f , there exists a sequence
of permutations (τ`)`∈N convergent to Ξ at scale f with the property that |τ`| = ` for
each ` ∈ N. Finally (Proposition 3.8), we demonstrate that, in general, convergence at
scale f is not independent of convergence at scale cf , if c is a constant.

We begin by determining the asymptotics of the number of k-element subsets of [n]
of width no greater than f .

Proposition 3.1. If k � f � n, then the number of k-element subsets of [n] of width
no greater than f is asymptotic to nfk−1/(k − 1)!.

Proof. For f ∈ N, (
n

k

)
f

=

f∑
w=k

(n− w + 1)

(
w − 2

k − 2

)
=

(f + 1− k)(nk − fk + f)

k(k − 1)

(
f − 1

k − 2

)
∼ fnk

k(k − 1)

fk−2

(k − 2)!

=
nfk−1

(k − 1)!
,

where each term in the sum is the number of k-element subsets of [n] of width w, and
the second identity can be established by induction over f .

The remainder of our proofs make use of two standard operations on permutations.
Given two permutations σ and τ with lengths k and ` respectively, their direct sum σ⊕τ
is the permutation of length k + ` consisting of σ followed by a shifted copy of τ :

(σ ⊕ τ)(i) =

{
σ(i) if i 6 k,

k + τ(i− k) if k + 1 6 i 6 k + `.

We also use
⊕c

σ to denote the direct sum of c copies of σ. See the left of Figure 2 for
an illustration. Note that permutation inversion (which reflects the plot about the main
diagonal) distributes over direct sum: (σ ⊕ τ)−1 = σ−1 ⊕ τ−1.

We also make use of substitution. Suppose σ ∈ Sk and τ ∈ S`, then we denote by
σ[τ ] the permutation of length k` created by replacing each point (i, σ(i)) in the plot
of σ with a small copy of τ . Note that substitution is associative: σ[τ ][υ] = σ[τ [υ]].
See the right of Figure 2 for an illustration. Note also that inversion distributes over
substitution: σ[τ ]−1 = σ−1[τ−1].

Most of the subsequent proofs have a very similar structure. We outline the argument
here, so we can abbreviate the proofs below. Suppose a sequence of permutations (σj)j∈N
converges at scale f to a scale limit Ξ. From this sequence we construct another sequence
(τm)m∈N, each term τm being built from multiple copies of a specific σj using directs
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Figure 2: Plots of 4231⊕
⊕4 35142 (left) and 213[1324][12] (right)

sums and/or substitution, where j = j(m) increases with m. We desire to prove that
(τm)m∈N converges to Ξ at scale g. It suffices to show that, for any pattern π, we have
lim
m→∞

ρg(π, τm) = lim
j→∞

ρf (π, σj).

Suppose |π| = k. Then ρg(π, τm) = P
[
τm(K) = π

]
, where K is drawn uniformly from

the family F consisting of k-element subsets of [|τm|] of width no greater than g(|τm|).
Let us say that K is good if each of its members is drawn from a single copy of σj used
to build τm and, when restricted to that copy of σj , K has width at most f(|σj |). If F
includes every good subset, and the probability that K is not good is bounded above by
∆m, then

(1−∆m) ρg(π, τm) 6 ρf (π, σj) 6 (1−∆m) ρg(π, τm) + ∆m.

Thus, if ∆m → 0, the two asymptotic densities of π are equal, as required.
The next four propositions establish that scale limits can be limits at any scale. We

begin with a simple technical result for later use.

Proposition 3.2. Suppose a function f : R+ → R+ satisfies f(x) 6 x for all x > 0.
If c > 1 is a constant, then lim inf

x→∞
f(cx)/f(x) 6 c, and thus it is not the case that

f(cx)� f(x).

Proof. Suppose not, and there exists d > c and X > 0 such that for all x > X we have
f(cx)/f(x) > d. Then, f(ckX) > dkf(X) for each k ∈ N, and so f(ckX) > ckX if
k > log(X/f(X))/ log(d/c), in contradiction to the assumption that f(x) 6 x.

Proposition 3.3. Let f be a scaling function and f• be another scaling function domi-
nated by f . Suppose there exists a sequence of permutations which converges at scale f
to a limit Ξ. Then there exists a sequence of permutations which converges at scale f•
to Ξ.

Proof. Let (σj)j∈N be a sequence of permutations which converges at scale f to Ξ, and
suppose |σj | = uj for each j ∈ N. Extend the domains of f and f• to R>1 by interpolation
(so both are continuous), and for every u > 1, let

C(u) = max
{
c > 0 : f•(cu) = f(u)

}
,
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which is well-defined because f � f• � 1. If f• is strictly increasing (and thus has
an inverse), then we simply have C(u) = f−1•

(
f(u)

)
/u. For example, if f(n) = nα and

f•(n) = nβ with α > β, then C(u) = uα/β−1.
We claim that C(u) → ∞. Suppose, to the contrary, that there exists a constant

B > 1 such that C(u) < B for arbitrarily large values of u. Then, for all such u, we have
f•(Bu) > f(u) � f•(u). However, f•(u) 6 u, so by Proposition 3.2, we do not have
f•(Bu)� f•(u), a contradiction.

For each j ∈ N, let cj = dC(uj)e and let τj be the permutation
⊕cj σj of length

`j = cjuj . We claim that the sequence (τj)j∈N converges at scale f• to Ξ.
Let’s compare scales:

f•(`j) = f•
(
(1 + o(1))C(uj)uj

)
= (1 + o(1))f•(C(uj)uj), since f•(n)� n,

= (1 + o(1))f(uj).

It suffices to prove that, for any pattern π, we have ρf•(π, τj) ∼ ρf (π, σj). Suppose
|π| = k. Then ρf•(π, τj) = P

[
τj(K) = π

]
, whereK is drawn uniformly from the k-element

subsets of [`j ] of width no greater than f•(`j). Since τj consists of copies of σj , each
of length uj , the probability that K contains points from two copies of σj is bounded
above by f•(`j)/uj ∼ f(uj)/uj � 1. Moreover, by Proposition 3.1, the probability that

K has width at most f(uj) is asymptotically
(
f•(`j)/f(uj)

)k−1
, which tends to 1 since

k is constant.
Thus, lim

j→∞
ρf•(π, τj) = lim

j→∞
ρf (π, σj).

Proposition 3.4. Let f be a scaling function and f• be another scaling function that
dominates f . Suppose there exists a sequence of permutations which converges at scale
f to a limit Ξ. Then there exists a sequence of permutations which converges at scale f•

to Ξ.

Proof. Let (σj)j∈N be a sequence of permutations which converges at scale f to Ξ, and
suppose |σj | = uj for each j ∈ N. Extend the domains of f and f• to R>1 by interpolation
(so both are continuous), and for every u > 1, let

D(u) = max
{
d > 0 : f•(du) = df(u)

}
.

If g(n) = f•(n)/n is strictly decreasing, then we simply have D(u) = g−1
(
f(u)/u

)
/u.

For example, if f(n) = nα and f•(n) = nβ with α < β, then D(u) = u(β−α)/(1−β).
We claim that D(u) → ∞. Suppose, to the contrary, that there exists a constant

B > 1 such that D(u) < B for infinitely many values of u. Then, for all such u, we
have f(Bu) � f•(Bu) > Bf(u). But this is impossible, because f(u) 6 u, so by
Proposition 3.2, we do not have f(Bu)� f(u).

For each j ∈ N, let dj = dD(uj)e and let τj be the permutation σj [ϕj ], where ϕj is
an arbitrary permutation of length dj . Note that τj has length `j = djuj . We claim that
(τj)j∈N converges at scale f• to Ξ.
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Let’s compare scales:

f•(`j) = f•
(
(1 + o(1))D(uj)uj

)
= (1 + o(1))f•(D(uj)uj), since f•(n)� n,

= (1 + o(1))D(uj)f(uj)

= (1 + o(1))djf(uj).

It suffices to prove that, for any pattern π, we have ρf•(π, τj) ∼ ρf (π, σj). Suppose
|π| = k. Then ρf•(π, τj) = P

[
τj(K) = π

]
, where K is drawn uniformly from the

k-element subsets of [`j ] of width no greater than f•(`j). Since τj consists of copies of ϕj ,
each of length dj , the probability that K contains two or more points from the same copy

of ϕj is bounded above by
(
k
2

)
dj/f

•(`j) ∼
(
k
2

)
/f(uj) � 1, since the probability of any

two points being from the same block is less than 1/f (uj). Moreover, by Proposition 3.1,

the probability that K has width at most djf(uj) is asymptotically
(
f•(`j)/djf(uj)

)k−1
,

which tends to 1 since k is constant.
Thus, lim

j→∞
ρf•(π, τj) = lim

j→∞
ρf (π, σj).

Our first theorem follows by combining these last two propositions.

Theorem 3.5. Let Ξ be any scale limit and f be any scaling function. Then there exists
a sequence of permutations which converges at scale f to Ξ.

Proof. Since Ξ is a scale limit, there is some scaling function g for which there exists a
sequence of permutations which converges to Ξ at scale g. If either f � g or f � g, the
result then follows directly from Proposition 3.3 or Proposition 3.4, respectively.

Otherwise, let h be the scaling function defined by h(n) =
√

min(g(n), f(n)), so both
h� g and h� f . Proposition 3.3 can then be applied to give a sequence of permutations
which converges at scale h to Ξ. A subsequent application of Proposition 3.4 then yields
a sequence of permutations which converges to Ξ at scale f .

Our next proposition allows us to assume the existence of a sequence convergent at
a specific scale that consists of permutations of every length.

Proposition 3.6. Suppose Ξ is a scale limit and f a scaling function. Then there exists
a sequence of permutations (τ`)`∈N convergent to Ξ at scale f with the property that
|τ`| = ` for each ` ∈ N.

Proof. Suppose (σj)j∈N is a sequence of permutations which converges at scale f to Ξ,
and that |σj | = uj for each j ∈ N. Such a sequence exists by Theorem 3.5. By taking a
subsequence, we may assume that uj is strictly increasing. We also extend the domain
of f to R>1 by interpolation.

Let L : R+ → R+ be a continuous, positive, strictly increasing function.
For every ` > `1 = L(u1), let j(`) = max{j ∈ N : L(uj) 6 `} select an index into the

sequence (σj)j∈N, and let u(`) = uj(`) be the length of the corresponding permutation.
Note that u(`) is a weakly increasing integer-valued step function, and that L(u(`)) 6 `,
so we have u(`) 6 L−1(`).

9

Independence of permutation limits at infinitely many scales

 



For every ` > `1, let D(`) = f(`)/f(u(`)). We claim that if L grows sufficiently fast,
then D(`)→∞. Let f0 : R+ → R+ be a continuous positive strictly increasing function
such that f0(`) 6 f(`) for all `, and suppose L(u) > f−10 (u2). Then,

f(u(`)) 6 u(`) 6 L−1(`) 6
√
f0(`) 6

√
f(`),

so D(`) >
√
f(`)� 1.

Now, for every ` > `1, let C(`) =
`

f(`)

f(u(`))

u(`)
, so that C(`)D(`)u(`) = `.

If L grows fast enough, then C(`)→∞: Let g(`) = `/f(`). Then C(`) = g(`)/g(u(`)).
So by the argument used to show that D diverges, we can choose L so that C(`) >

√
g(`),

which tends to infinity because f(`)� `.
For each positive integer ` < `1, let τ` be any permutation of length `. For each

integer ` > `1, let d` = bD(`)c and c` = bC(`)c, and let τ` be the permutation

ψ` ⊕
⊕c`

σj(`)[ϕ`],

where ψ` is any permutation of length ` − c`d`u(`), which may be zero, and ϕ` is an
arbitrary permutation of length d`. Note that τ` has length `, as required, since |σj(`)| =
u(`). Note also that |ψ`| <

(
(c` + 1)(d` + 1) − c`d`

)
u(`) = (c` + d` + 1)u(`) � `. We

claim that (τ`)`∈N converges at scale f to Ξ.
Let’s compare scales: f(`) = D(`)f(u(`)) = (1 + o(1))d`f(u(`)).
It suffices to prove that, for any pattern π, we have ρf (π, τ`) ∼ ρf (π, σj(`)). Suppose

|π| = k. Then ρf (π, τ`) = P
[
τ`(K) = π

]
, where K is drawn uniformly from the k-element

subsets of [`] of width no greater than f(`). Now the probability that K contains a point
from ψ` is bounded above by |ψ`|/(` − f(`)) � 1. Also, since τ` consists of copies of
σj(`)[ϕ`], each of length d`u(`), the probability that K contains points from two copies
of σj(`)[ϕ`] is bounded above by f(`)/d`u(`) ∼ f(u(`))/u(`) � 1. Moreover, since τ`
consists of copies of ϕ`, each of length d`, the probability that K contains two or more
points from the same copy of ϕ` is bounded above by

(
k
2

)
d`/f(`) ∼

(
k
2

)
/f(u(`)) � 1,

since k is constant. Furthermore, by Proposition 3.1, the probability that K has width

at most d`f(u(`)) is asymptotically
(
f(`)/d`f(u(`))

)k−1
, which tends to 1 since k is

constant.
Thus, lim

`→∞
ρf (π, τ`) = lim

j→∞
ρf (π, σj).

In a similar manner, we may also assume that the existence of a locally convergent
sequence convergent that consists of permutations of every length. We provide a proof,
since this doesn’t seem to be in the literature.

Proposition 3.7. Suppose Λ is a permutation local limit. Then there exists a sequence
of permutations (τ`)`∈N that converges locally to Λ with the property that |τ`| = ` for each
` ∈ N.

Proof. Suppose (σj)j∈N is a sequence of permutations which converges locally to Λ, and
that |σj | = uj for each j ∈ N. By taking a subsequence, we may assume that uj is strictly
increasing.

For every ` > `1 = u1
2, let j(`) = max{j ∈ N : uj

2 6 `} select an index into the
sequence (σj)j∈N, and let u(`) = uj(`) be the length of the corresponding permutation.
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Note that u(`)2 6 `, so u(`) 6
√
`. Also, for every ` > `1, let C(`) = `/u(`), so that

C(`)u(`) = `. Note that C(`) >
√
`, so C(`)→∞.

For each positive integer ` < `1, let τ` be any permutation of length `. For each
integer ` > `1, let c` = bC(`)c, and let τ` be the permutation

ψ` ⊕
⊕c`

σj(`),

where ψ` is any permutation of length ` − c`u(`), which may be zero. Note that τ` has
length `, as required. Note also that |ψ`| < u(`) � `. We claim that (τ`)`∈N converges
locally to Λ.

It suffices to prove that, for any pattern π, we have ρ|π|(π, τ`) ∼ ρ|π|(π, σj(`)). Sup-

pose |π| = k. Then ρk(π, τ`) = P
[
τ`(K) = π

]
, where K is drawn uniformly from the

subintervals of [`] of width k. Now the probability that K contains a point from ψ` is
bounded above by |ψ`|/(` − k) � 1. Also, since τ` consists of copies of σj(`), each of
length u(`), the probability that K contains points from two copies of σj(`) is bounded
above by k/u(`)� 1.

Thus, lim
`→∞

ρk(π, τ`) = lim
j→∞

ρk(π, σj).

In the next section, we establish our primary result, showing asymptotic independence
at a countably infinite number of scales. As a condition for this, we require that the set of
scales is totally ordered by domination, that is, for every distinct pair of scaling functions
f and g, either f � g or g � f .1 We conclude this section by proving a result that shows
that we need this condition, or one like it: limits at scales whose ratio is a constant are
not in general independent.

Proposition 3.8. If a sequence of permutations converges at scale f to the increasing
permuton , then for any constant c ∈ (0, 1), at scale cf the sequence also converges

to .

Proof. Suppose (σj)j∈N converges at scale f to the increasing permuton; that is,

lim
j→∞

ρf (π, σj) =

{
1, if π is an increasing permutation,

0, otherwise.

Suppose further, and contrary to the claim, that for some positive constant c < 1, some
non-increasing π ∈ Sk and some ρ > 0, we have lim sup ρcf (π, σj) = ρ. Then (σj)j∈N has
a subsequence, (τj)j∈N say, such that ρcf (π, τj) → ρ. Suppose that |τj | = nj for each
j ∈ N, and let ιk = 1 . . . k denote the increasing permutation of length k.

Given that cf < f ,

νf (ιk, τj) + νcf (π, τj) 6

(
nj
k

)
f

,

since the left-hand side is the number of occurrences of certain length-k patterns of
width no greater than f and the right-hand side is the total number of occurrences of all
length-k patterns of width at most f .

1For a delightful elementary exposition of the properties of the poset of real-valued functions under
ordering by domination, see Hardy’s Orders of infinity [11].
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However, νf (ιk, τj) ∼
(
nj

k

)
f

since (τj)j∈N converges to at scale f . Moreover, by

Proposition 3.1,

νcf (π, τj) ∼ ρ
nj(cf)k−1

(k − 1)!
= ρck−1

njf
k−1

(k − 1)!
∼ ρck−1

(
nj
k

)
f

,

and so νf (ιk, τj) + νcf (π, τj) ∼ (1 + ρck−1)
(
nj

k

)
f
, which is a contradiction because ρck−1

is a positive constant.

4. Independence of limits

In this final section, we first prove independence of limits at countably infinite scales
(Theorem 4.1). Then, after briefly presenting two examples, we extend this result to
independence of limits in two directions (Theorem 4.4).

4.1. Independence of scale limits

Theorem 4.1. Let {ft : t ∈ N} be any countably infinite set of scaling functions totally
ordered by domination. For each t ∈ N, let Ξt be any scale limit. Let Γ be any permuton
and Λ be any permutation local limit. Then there exists a sequence of permutations which
converges to Ξt at scale ft for each t ∈ N, converges globally to Γ, and converges locally
to Λ.

Proof. We build a suitable sequence (τm)m∈N by iteratively combining the following
component sequences using substitution:

• Let (σj0)j∈N be a convergent sequence of permutations with global limit Γ, such

that |σj0| = j for each j ∈ N. A Γ-random sequence would suffice.

• For each t ∈ N, given a scaling function et to be specified below, let (σjt )j∈N be a

sequence of permutations that converges to Ξt at scale et, such that |σjt | = j for
each j ∈ N. Proposition 3.6 guarantees that such a sequence exists.

• Let (σj∞)j∈N be a locally convergent sequence of permutations with local limit Λ,
such that |σj∞| = j for each j ∈ N. The existence of such a sequence is guaranteed
by Proposition 3.7.

Fix an index m > 1, and let f1 � f2 � . . . � fm (with superscript indices) be the
total ordering by domination of the m scaling functions f1, . . . , fm. So, for each “level”
` ∈ [m], there is a distinct t(`,m) ∈ [m] such that f ` = ft(`,m). Similarly, for each t 6 m,

there is a distinct level `(t,m) ∈ [m] such that f `(t,m) = ft.
Note that we cannot assume that the scaling functions are initially ordered by domi-

nation f1 � f2 � . . ., since that would restrict the applicability of the theorem to sets of
scaling functions that are well-ordered by domination with order type ω. Neither exam-
ple in Section 4.2 below satisfies this restriction, both having a set of scaling functions
of the form {nα : α ∈ A} for a set A dense in (0, 1).
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Let f0 = n and fm+1 = 1, and for each ` ∈ [m + 1], let h` =
√
f `−1f ` be a scaling

function that is dominated by f `−1 and dominates f `. Let h0 = n and hm+2 = 1. Thus,
we have the following ordering:

n = h0 = f0 � h1 � f1 � h2 � f2 � . . . � fm � hm+1 � fm+1 = hm+2 = 1.

For each ` ∈ [0,m + 1], let g` = h`/h`+1 be the “size of the gap” between h` and h`+1.

Note that h` =
∏m+1
r=` gr.

We want each gap to grow sufficiently fast with m. Let

Nm = min

{
N ∈ N :

f `−1(n)

h`(n)
> m and

h`(n)

f `(n)
> m for every n > N and ` ∈ [m+ 1]

}
.

This definition is valid because f `−1 � h` � f ` for each `.
Now, for each ` ∈ [0,m+ 1], let M `

m = dg`(Nm)e. For ` ∈ [m], this is always at least
m2, while M0

m and Mm+1
m are no less than m. These are the sizes of the terms from

the component sequences to be used in the construction. Note that for each `, we have

h`(Nm) ∼
∏m+1
r=` M

r
m since their ratio is less than

(
m+1
m

)2(m2+1
m2

)m ∼ 1.

For each ` ∈ [m], let λm` = σ
M`

m

t(`,m), and let λm0 = σ
M0

m
0 and λmm+1 = σ

Mm+1
m∞ . Thus, for

each t, the sequence
(
λm`(t,m)

)
m>t

is a subsequence of the component sequence (σjt )j∈N,

and
(
λm0
)
m∈N and

(
λmm+1

)
m∈N are subsequences of (σj0)j∈N and (σj∞)j∈N, respectively.

We now assemble τm by iterated substitution as follows:

τm = λm0
[
λm1
][
λm2
]
. . .
[
λmm
][
λmm+1

]
.

Let nm =
∏m+1
`=0 M `

m be the length of τm. Note that nm > Nm, but nm ∼ Nm.
Also, let κm` = λm0

[
λm1
]
. . .
[
λm`−1

]
and µm` = λm`+1

[
λm`+2

]
. . .
[
λmm+1

]
, so we have the

following tripartite decomposition for any ` ∈ [m]:

τm = κm`
[
λm`
][
µm`
]

= λm0
[
λm1
]
. . .
[
λm`−1

]︸ ︷︷ ︸
κm
`

[
λm`
] [
λm`+1

]
. . .
[
λmm+1

]︸ ︷︷ ︸
µm
`

.

Local convergence. Since λmm+1 = σ
Mm+1

m∞ , to prove that (τm)m∈N converges locally
to Λ, it suffices to show, for all k and every permutation π of length k, that ρk(π, τm) ∼
ρk(π, λmm+1). Now, ρk(π, τm) = P

[
τm(K) = π

]
, where K is drawn uniformly from the

subintervals of [nm] of width k. Since τm is constructed from copies of λmm+1, each of
width Mm+1

m > m, the probability that K contains points from two copies of λmm+1 is
bounded above by k/m, which tends to zero since k is a constant. Thus, lim

m→∞
ρk(π, τm) =

lim
m→∞

ρk(π, λmm+1).

Global convergence. To prove that (τm)m∈N converges to Γ, it suffices to show
that ρ(π, τm) ∼ ρ(π, λm0 ) for every permutation π. Suppose |π| = k. Then ρ(π, τm) =
P
[
τm(K) = π

]
, where K is drawn uniformly from the k-element subsets of [nm]. Since τm

is constructed from M0
m > m copies of µm0 , the probability that K contains two or more

points from the same copy of µm0 is bounded above by
(
k
2

)
/m. Thus, lim

m→∞
ρ(π, τm) =

lim
m→∞

ρ(π, λm0 ).
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Convergence at other scales. Fix t > 1 and let `m = `(t,m), so f `m = ft.
Now

(
λm`m

)
m>t

consists of terms from (σjt )j∈N. So to prove that (τm)m∈N converges to

Ξt at scale ft, it suffices to show that we can choose a scaling function et in such a
way that ρft(π, τm) ∼ ρet

(
π, λm`m

)
for every permutation π. Suppose |π| = k. Then

ρft(π, τm) = P
[
τm(K) = π

]
, where K is drawn uniformly from the k-element subsets of

[nm] of width no greater than ft(nm).
Recall that τm = κm`m

[
λm`m

][
µm`m

]
. Thus τm

• is constructed from copies of λm`m
[
µm`m

]
, of length um =

∏m
`=`m

M `
m ∼ h`m(nm),

• each of which is made of copies of µm`m , of length wm =
∏m
`=`m+1M

`
m ∼ h`m+1(nm).

So the probability that K contains points from two copies of λm`m
[
µm`m

]
is bounded above

by ft(nm)/um, which tends to zero because um ∼ h`m(nm) and, from the definition of
Nm, we know that h`m(nm)/ft(nm) > m. Moreover, the probability that K contains
two or more points from the same copy of µm`m is bounded above by

(
k
2

)
wm

ft(nm) , which

also tends to zero since wm ∼ h`m+1(nm) and, from the definition of Nm, we know that
ft(nm)/h`m+1(nm) > m.

To conclude, we define et so that et(um) = ft(nm). This defines a valid scaling
function since ft(nm) � h`m(nm) ∼ um and thus et � n, and yields lim

m→∞
ρft(π, τm) =

lim
m→∞

ρet(π, λ
m
`m

).

4.2. Examples

Example 1. By appropriately choosing each Ξt in the statement of Theorem 4.1 to
be either the increasing or the decreasing permuton, we can construct a sequence of
permutations (ζj)j∈N such that, for each irreducible p/q ∈ Q∩(0, 1], we have the following:

• If q is odd, then (ζj) converges at scale np/q to the increasing permuton .

• If q is even, then (ζj) converges at scale np/q to the decreasing permuton .

Thus, a length k subpermutation of ζj of width at most |ζj |p/q chosen uniformly at
random is asymptotically almost surely the increasing permutation 12 . . . k if q is odd,
and is asymptotically almost surely the decreasing permutation k . . . 21 if q is even.

Example 2. A skinny monotone grid class is a set of permutations defined by a ±1
vector. Given such a vector v = (v1, . . . , vd), let Γv be the tiered permuton with d tiers
of equal height numbered from top to bottom, such that in tier i the mass is on the
increasing diagonal if vi = 1 and on the decreasing diagonal if vi = −1. The permuton
Γ(1,1,−1) is shown at the right of Figure 1.

Given a tiered permuton Γv, the skinny monotone grid class Grid(v) contains every
permutation that can be sampled from Γv as described in Section 2.1 (that is, it consists
of every possible Γv-random permutation). For more on skinny grid classes, see [4,
Chapter 3] and [7]. We can assemble a sequence of permutations (ηj)j∈N so that, for
every skinny monotone grid class Grid(v), there is a scale fv such that (ηj) converges at
scale fv to Γv.

First, we associate to each skinny monotone grid class Grid(v) a unique value α(v) ∈
(0, 1), defined by α(v) = 1

2

(
1 +

∑d
i=1 vi/2

i
)
. For example, α(1, 1,−1) = 13

16 . Note that
14
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Figure 3: The plot of the box product 213�4312: each vertical strip is a copy of 213 and each horizontal
strip is copy of 4312

α takes values dense in (0, 1). Let fv(n) = nα(v). Then, by choosing each Ξt in the
statement of Theorem 4.1 to be the tiered permuton of a distinct skinny monotone grid
class, we can construct (ηj) so that, for each ±1 vector v, a length k subpermutation of
ηj of width at most |ηj |α(v) chosen uniformly at random is asymptotically almost surely
a permutation in Grid(v).

4.3. Independence in two directions

Our final goal is to prove that we can choose limits at a countably infinite number of
scales independently both for a sequence (σj)j∈N and for its inverse sequence (σ−1j )j∈N.

To do this, we use the following operation on permutations. Given permutations
σ ∈ Sk and τ ∈ S`, we define their box product σ � τ to be the permutation of length k`
satisfying, for each index i,(

σ � τ
)
(i) = `

(
σ
(
(i− 1 mod k) + 1

)
− 1
)

+ τ
(
b(i− 1)/kc+ 1

)
.2

The box product is designed so that it consists of the juxtaposition of ` copies of σ, and
so that its inverse (σ � τ)−1 consists of k copies of τ−1. See Figure 3 for an illustration.

We first establish that limits at a given scale can be chosen independently for a
sequence and its inverse sequence.

Proposition 4.2. Let Ξ and Ξ′ be any scale limits, and f be any scaling function. Then
there exists a sequence of permutations (ϕj)j∈N convergent to Ξ at scale f such that
(ϕ−1j )j∈N converges to Ξ′ at scale f .

Proof. Let g be the scaling function defined by g(n) = f(n2), and suppose (σj)j∈N and
(τj)j∈N converge at scale g to Ξ and Ξ′, respectively, with |σj | = |τj | = j for each j.
Proposition 3.6 guarantees the existence of these sequences.

Consider the sequence of permutations (ϕj)j∈N where ϕj = σj� τ
−1
j for each j. Note

that ϕj has length j2 and consists of j copies of σj , while ϕ−1j consists of j copies of τj .
We claim that (ϕj)j∈N converges at scale f to Ξ.

2If the convention were for indices and values of a k-permutation to range from 0 to k − 1, rather
than from 1 to k, then we would simply have (σ � τ)(i) = `σ(i mod k) + τ(bi/kc), which is rather more
insightful.
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It suffices to prove that, for any pattern π, we have ρf (π, ϕj) ∼ ρg(π, σj). Suppose
|π| = k. Then ρf (π, ϕj) = P

[
ϕj(K) = π

]
, where K is drawn uniformly from the

k-element subsets of [j2] of width no greater than f(j2) = g(j). Since ϕj consists of
copies of σj , each of length j, the probability that K contains points from two copies of
σj is bounded above by f(j2)/j = g(j)/j � 1. Thus, lim

j→∞
ρf (π, ϕj) = lim

j→∞
ρg(π, σj).

By a symmetrical argument, we also have lim
j→∞

ρf (π, ϕ−1j ) = lim
j→∞

ρg(π, τj).

The analogous result holds for local limits.

Proposition 4.3. Let Λ and Λ′ be any permutation local limits. Then there exists a
sequence of permutations (ϕj)j∈N that converges locally to Λ such that (ϕ−1j )j∈N converges
locally to Λ′.

Proof. Suppose (σj)j∈N and (τj)j∈N converge locally to Λ and Λ′, respectively. For each
j ∈ N, let ϕj = σj � τ

−1
j for each j. Note that ϕj has length |σj ||τj | and consists of |τj |

copies of σj , while ϕ−1j consists of |σj | copies of τj . We claim that (ϕj)j∈N converges
locally to Λ.

It suffices to prove that, for any pattern π, we have ρ|π|(π, ϕj) ∼ ρ|π|(π, σj). Suppose

|π| = k. Then ρk(π, ϕj) = P
[
ϕj(K) = π

]
, where K is drawn uniformly from the

subintervals of [|ϕj |] of width k. Now, the probability that K contains points from two
copies of σj is bounded above by k/|σj | � 1, since k is constant and |σj | → ∞. Thus,
lim
j→∞

ρk(π, ϕj) = lim
j→∞

ρk(π, σj).

By a symmetrical argument, we also have lim
j→∞

ρk(π, ϕ−1j ) = lim
j→∞

ρk(π, τj).

Note that no similar result for global convergence is possible. If (σj)j∈N converges
globally to a permuton Γ, then (σ−1j )j∈N converges globally to Γ−1, the reflection of Γ
about the main diagonal.

Recall that permutation inversion distributes over both direct sum and substitution.
As a result, if a sequence (τm)m∈N is constructed from component sequences by these
operations, then any relationship between a limit of (τm)m∈N and a limit of one of the
component sequences (σj)j∈N also holds between the corresponding limits of (τ−1m )m∈N
and (σ−1j )j∈N. This observation means that each result above can trivially be adapted to
incorporate this two-dimensional perspective and enables us to extend our main result
to limits in two directions.

Theorem 4.4. Let {ft : t ∈ N} be any countably infinite set of scaling functions totally
ordered by domination. For each t ∈ N, let Ξt and Ξ′t be any scale limits. Let Γ be any
permuton, and let Λ and Λ′ be any permutation local limits. Then there exists a sequence
of permutations (τj)j∈N which converges to Ξt at scale ft for every t, converges globally
to Γ, and converges locally to Λ, such that (τ−1j )j∈N converges to Ξ′t at scale ft for every
t and converges locally to Λ′.

Proof. We apply the construction from the proof of Theorem 4.1 to

• a sequence of permutations with global limit Γ,

• for each t ∈ N, a sequence of permutations that converges to Ξt at scale et whose
inverse sequence converges at scale et to Ξ′, and
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• a sequence of permutations with local limit Λ whose inverse sequence converges
locally to Λ′.

Propositions 4.2 and 4.3, along with two-dimensional extensions of Propositions 3.6
and 3.7 guarantee the existence of suitable sequences. The result follows mutatis mutan-
dis.
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