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10 
ABSTRACT 11 

Despite increasing collection efforts of empirical human reliability data, the available databases are still insufficient for 12 
understanding the relationships between human errors and their influencing factors. Currently, probabilistic tools such as 13 
Bayesian network are used to model data uncertainty requiring the estimation of conditional probability tables from data 14 
that is often not available. The most common solution relies on the adoption of assumptions and expert elicitation to fill 15 
the gaps. This gives an unjustified sense of confidence on the analysis.  16 

This paper proposes a novel methodology for dealing with missing data using intervals comprising the lowest and highest 17 
possible probability values. Its implementation requires a shift from Bayesian to credal networks. This allows to keep track 18 
of the associated uncertainty on the available data. The methodology has been applied to the quantification of the risks 19 
associated to a storage tank depressurisation of offshore oil & gas installations known as FPSOs and FSOs. The critical 20 
task analysis is converted to a cause-consequence structure and used to build a credal network, which extracts human 21 
factors combinations from major accidents database defined with CREAM classification scheme. Prediction analysis shows 22 
results with interval probabilities rather than point values measuring the effect of missing-data variables. Novel decision-23 
making strategies for diagnostic analysis are suggested to unveil the most relevant variables for risk reduction in presence 24 
of imprecision. Realistic uncertainty depiction implies less conservative human reliability analysis and improve risk 25 
communication between assessors and decision-makers. 26 

Keywords: Credal network, missing data, human reliability analysis (HRA), CREAM, FPSO/FSO, quantified bow-tie 27 

1. Introduction28 

The risks arising from the interaction of workers, tools, technologies and techniques can be assessed in 29 
industry through a systematic process known as human reliability analysis (HRA). HRA aims to identify the 30 
possible types of human errors for each task, to understand which factors might trigger them, and to propose 31 
solutions to reduce human errors. In the early stages of human reliability practice, engineers have started to 32 
collect data on human errors using the same concepts of component reliability – focusing on errors occurred in 33 
function of tasks and time. More recently, engineers have started to work together with psychologists and 34 
sociologists, moving the empirical focus to measure errors under certain context (i.e. performance shaping 35 
factors, also known as performance influencing factors and human factors, which includes organisational and 36 
technological factors) [1, 2]. Unfortunately, many of those databases had been discredited due to their large 37 
variability, especially if compared against the components reliability estimates [1]. Overall, many data 38 
collection projects have been mostly used to validate methods based on expert judgement rather than serving a 39 
data-driven human reliability analysis [3]. This might be one of the reasons why some authors consider the state 40 
of the art in quantitative human reliability analysis too poor to make the summative assessments of risk and 41 
reliability required by regulators. This highlights the urgent need for novel tools and methodology able to tackle 42 
such limitations [4].  43 

The starting point of this work is the research question if imprecise probability theory might help to capture 44 
and adequately model human reliability’s variability, ensuring its credibility. This could potentially translate in 45 
numbers the soft barriers concept already used in safety analysis. Soft barriers (or soft defences) consist of risk 46 
reduction measures that rely on human decisions or actions (i.e. administrative systems or procedures), 47 
acknowledgeable more variable than hard barriers which rely on hardware (i.e. physical or technical 48 
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components) [5, 6]. Thus, soft barriers are already recognised as carrying a higher degree of variability, and 49 
safety analysts would potentially benefit from the depiction of soft barriers variability. 50 

As the very name suggests, the reliability of soft barriers is considered more uncertain than that associated 51 
with hard barriers. Variability is inherent to human behaviour. Recent research suggests that Bayesian network, 52 
a graphical probabilistic tool developed in the late 1980s, could be a more suitable solution to model the 53 
uncertainty associated with human reliability analysis [7]. However, its use implies the need to characterise the 54 
conditional probability distribution associated with each model variable, requiring a larger amount of data than 55 
is usually required by other traditional tools, such as fault and event trees [8]. This implies that despite increasing 56 
empirical data collection efforts, the problem of missing human reliability data would persist, as many of the 57 
conditional dependencies between human errors and performance shaping factors are not found in the available 58 
databases. While in theory this would suggest the impossibility of certain human errors under certain 59 
organisational and technological conditions, it is more reasonable to interpret such information as the result of 60 
a lack of knowledge rather than a reliable depiction of reality, as uncertain information rather than impossible 61 
events [9]. Hence, many of the human error probabilities proposed in existing human reliability methods are 62 
based on experts’ opinions rather than on the incomplete available information [8].  63 

This paper proposes an alternative strategy that captures the inherent imprecision of human behaviour within 64 
soft safety barriers and accounts for typical missing data in conditional probability tables, bypassing the need 65 
for strong and often unjustified assumptions (see examples in section 2.2.4). The strategy relies on the use of 66 
credal networks, an extension of Bayesian networks characterised by the capability of representing imprecision 67 
[10]. The approach proposed in this study expands on strategies developed by some of the authors in a former 68 
study [11]. 69 

The current paper is organised as follows: the theoretical background in section 2 focuses on the nature of 70 
empirical data and the qualitative and quantitative tools to model them, including the approaches used so far to 71 
tackle missing human reliability data.  Section 3 describes the proposed alternative approach based on credal 72 
networks to tackle the problem of sparse data, and their mathematical background. The developed methodology 73 
is then applied to a case study in section 4, where the human reliability of depressurising oil tanks in an offshore 74 
oil & gas installation has been evaluated. Finally, the advantages, possible applications and limitations of the 75 
approach are discussed in section 5. 76 

2. Theoretical background 77 

2.1. Human reliability empirical data 78 

Empirical data are obtained by observation and experimentation. The definition of human reliability data 79 
entail information able to provide a human error probability (HEP) for each operational task in function of time 80 
or context (performance shaping factors), i.e. number of observed errors by number of opportunities for error 81 
[1, 2]. It is common practice in human reliability analysis to fill gaps within the data with expert opinions: the 82 
provision of probability measures by experts is known as expert elicitation. Although largely adopted in 83 
practice, it is widely recognised that expert elicitation is affected by bias [12] and overconfidence [13]. It might 84 
also be unfeasible if experts need to elicit a variable under many simultaneous conditions [14]. Therefore, 85 
research efforts have been directed at collecting empirical human reliability data. The latter may be essentially 86 
divided into four major categories: laboratory-based studies [15, 16], simulators (e.g., HuREX, SACADA,  87 
HAMMLab, and ongoing efforts to develop a data framework to quantify the IDHEAS method) [17-20], derived 88 
from near-misses (i.e., incident events that could have resulted in severe consequences [5]) [21, 22], and finally 89 
analysis derived from major accidents [23, 24]. They all have their strengths and pitfalls in relation to volume 90 
of generated data, insights of cognitive mechanisms, correlation with performance shaping factors, and 91 
availability to the public [25]. Previous studies have offered suggestions on how to generate meaningful HRA 92 
empirical data, regarding preparation, collection, analysis, and application [26]. 93 

In the human reliability field, data collection and classification are usually done by other humans (experts), 94 
but further research is addressing the need for computer support. For example, simulators data can be observed 95 
and debriefed by experts as in the worksheets described by [27], but also can be recorded by specifically 96 
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designed simulators [28]. In incidents databases, the data might be collected through extensive reading of 97 
investigation reports [29] or by using a machine-learning strategy of text recognition and classification [30]. 98 
However, collecting more data is usually expensive and is not an assurance of decreasing the uncertainty but on 99 
the contrary, it may result in an increase of uncertainty due to poor sample quality [31].  100 

The characteristics of the generated database can impact the choice of the quantification tool used (e.g., if 101 
each variable is recorded per event and is clear about variables dependencies, or if overall results are 102 
aggregated). Sometimes, the results from data collection efforts are aggregated for the purpose of publishing an 103 
article, but the authors maintain a copy of the full database in a public data repository.  For example, the study 104 
in [29] provides human errors and influencing factors as aggregated results, serving well the purpose of fault 105 
and event tree analysis. Nevertheless, the complete database behind the study allows to identify whether a 106 
variable (factor) have occurred or not for each event [23]. This allows the use of tools that require explicit 107 
relationships between all variables, such as Bayesian and credal networks. 108 

2.2. Tools to model human reliability data 109 

For risk-informed decision making, causal or explanatory models are widely regarded as preferable to 110 
traditional statistical approaches [9]. This makes graphical probabilistic tools particular appealing for the task, 111 
since they are able not only to provide a good and intuitive representation of operation but also to quantify the 112 
associated risk and uncertainty [1]. In HRA, the most reportedly used tools are fault trees (FT), event trees (ET) 113 
and, more recently and mainly in research, Bayesian networks (BN) and credal networks (CN) [11]. For all 114 
graphical probabilistic tools, the model structure (also known as topology) plays an important role on the 115 
numerical outputs. Thus, most human reliability methods suggest a qualitative analysis that result in a graphical 116 
structure of an operational task before the quantification of its human error probabilities. An exception to this 117 
practice would happen if the model structure were also driven by data, as investigated by [27]. However, the 118 
application of such tools to real-world operations would imply the need for (very) large amount of data, a need 119 
not met by current human reliability databases for most industries and operations [8].  120 

2.2.1. Qualitative analysis: model structure 121 

Critical tasks, potential human errors and performance shaping factors are identified by qualitative analysis, 122 
resulting in a structure for the model and preferably establishing causality. Meticulous conduction and clear 123 
description of the qualitative analysis improves the consistency of quantification results [3, 19]. For this reason, 124 
critical task analysis is used here to identify the relevant model variables and bow-tie diagrams to define the 125 
relationships between variables. 126 
Critical task analysis entails the identification and examination of tasks performed by humans as they interact 127 
with systems. For assessing human reliability, only the critical tasks need to be selected, i.e., the key tasks that 128 
prevent (or recover from) an incident event. One of the most popular methods is the hierarchical task analysis 129 
(HTA) [32], which starts by describing the work as imagined (e.g., written information such as operational 130 
procedures, equipment’s manuals and risk analysis) and, if possible, comparing it with the work as done (e.g. 131 
using interviews and walking through the task at site with workers involved in the operation). The basic steps 132 
to a HTA are: identification of main hazards, which tasks contribute to hazards, who performs each task, when 133 
and in what sequence; the representation of tasks in tables or diagrams in sufficient detail, and finally the 134 
identification of potential human errors and performance shaping factors [32]. A risk or hazard identification 135 
analysis is an important aid to identify which tasks are critical [2, 32]. For the identification of potential types 136 
of human errors and performance shaping factors, it is recommended that assessors follow guidelines of an 137 
existing human reliability method (e.g., HEART, THERP, CREAM), as each has a different set of taxonomies 138 
and cognitive models. An example of HTA is provided in the case-study analysed in the following sections. The 139 
structure resulting from the hierarchical task analysis can be converted into graphical probabilistic models (e.g. 140 
fault tree, Bayesian network), where the operation chronological-sequence would determine the direction of 141 
links between human actions, according to some traditional human reliability approaches [2]. However, results 142 
of such sequential model could fail to deliver meaningful results, making it difficult for the assessors to diagnose 143 
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the actions and PSFs that are more relevant to the overall risk. To overcome this, the outputs provided by HTA 144 
can be structured as a causal analysis, by selecting which tasks correspond to the risk event, and its trigger, 145 
control, mitigation, and consequent events. This modelling approach, proposed as the causal taxonomy of risk 146 
by [9], resembles the bow-tie approach, a popular qualitative risk analysis in Oil & Gas industry. This can be 147 
seen in Figure 1 where the nodes in the Bayesian Network represent the main component of the Bow-tie 148 
diagram. The risk event node in the ‘causal taxonomy’ diagram represents the hazard (top event) in the middle 149 
of the ‘bow-tie diagram’, which is triggered by the events on the left and produces the consequence on the right. 150 
The blocks between triggers and hazard are the measures to prevent hazards (control node), while the blocks 151 
between hazard and consequence are the mitigation barriers (mitigation nodes) [33, 34]. Bow-tie diagrams have 152 
been already used to model and quantify human factors by using a combination of fault and event trees [34, 35] 153 
and Bayesian networks  [36].  154 
 155 

 156 

Figure 1. Similarity of the ‘causal taxonomy of risk’ between a Bayesian network and a ’bow-tie diagram’. 157 

2.2.2.  Quantitative analysis with Bayesian networks: data inputs and outputs 158 

The quantitative analysis aims at finding the probability of human errors initiating an accident event under 159 
different scenarios of performance shaping factors, ideally based on the model resulted from the qualitative part. 160 
For many years, fault and event trees have been the most used tools in human reliability quantification 161 
techniques [1]. Previous studies have been demonstrating that Bayesian networks (BNs) might be a better choice 162 
than more traditional probabilistic tools (such as fault and event trees) to model and extract all information from 163 
human reliability data, many of them explored in a comprehensive review in [7]. Indeed, Bayesian networks are 164 
potentially more intuitive than fault trees, as modellers do not need to understand logical gates, just the existence 165 
of relations between variables. Variables are represented by nodes in the network, and their instantiation is 166 
defined by at least two states independent from each other (e.g. Boolean states: true or false, success or failure). 167 
Variables are known as parent nodes if they influence others, the children nodes. Root nodes are variables 168 
without parents. This relationship is represented as directed edges or arrows, whose direction defines the 169 
influence of parents on their child node, thus a link cannot point in both directions. For instance, in the example 170 
in Figure 2, nodes PSF1, PSF2 and PSF3 represent different performance shape factors (PSF) that trigger human 171 
error (HE) – as it is often assumed in HRA. PSF1 represents the organisational factor, PSF2 the technological 172 
factor and PSF3 the individual factor and they are parents of the node HE. PSF2 is a parent node of PSF3 while 173 
only PSF1 and PSF2 are root nodes.  174 
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 175 

Figure 2. Example of a simple Bayesian network used for modelling human error. 176 

The conditional probability tables (CPTs) specify the strength of the relationships represented by the 177 
network links. Root nodes require the estimation of unconditional probabilities as they are not conditioned by 178 
other nodes. Children nodes require the estimation of conditional probabilities as they are conditioned on the 179 
state of the parent nodes. The size of the resulting CPT dictates the amount of data needed. For instance, 180 
considering 2 states per node (e.g., True, False), a child with one parent requires the estimation of 4 conditional 181 
probabilities in a 2x2 table; if a child node has 2 parents the CPT contains 8 conditional probabilities (a 2x4 182 
table) and so on by following the rule 𝑠(𝑛𝑝+1) where s represents the number of states and np the number of 183 
parent nodes [37].  184 

The structure of a Bayesian network for a set of n random variables (X1,…,Xn) induces a unique joint 185 
probability density that can be written as a product of the individual density functions, conditional on their 186 
parent variables 𝝅𝒊: 187 
 188 
Equation 1 189 
 190 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝝅𝒊)

𝑛

𝑖=1

 191 

where, 𝑥𝑖 represents the status of random variable 𝑋𝑖, 𝝅𝒊 represent the status of all variables that are parents of 192 
the variable 𝑋𝑖 .  193 
For the case of HE shown in Figure 2, we use P(HE=T) to indicate the probability of HE to be true and P(HE=F) 194 
the probability that HE is false. We might also be interested in calculating the probability of the HE when all 195 
the PSFs are true. Then, the Eq. 1 becomes: 196 
 197 
Equation 2 198 

𝑃(𝐻𝐸 = 𝑇, 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇) = 𝑃(𝐻𝐸 = 𝑇|𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇)  199 
 200 
Instead, the overall probability that the Human Error is true (HE=True) is obtained via marginalisation. This 201 
means that all the 8 combinations of conditional probabilities involved in the states of PSF producing the desired 202 
state of the node HE need to be added as follows:   203 
 204 
Equation 3 205 

𝑃(𝐻𝐸 = 𝑇) = 𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇) +  206 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝑇) + 207 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝐹) + 208 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝐹) + 209 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇) + 210 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝑇) + 211 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝐹) + 212 
𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝐹). 213 
 214 
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The calculation of the joint probability of a Bayesian network becomes an impossible task to be carried on 215 
manually since the number of combinations quickly explodes with the number of nodes present in the network. 216 
For instance, with binary discrete variables and 10 nodes, it requires the calculation of 2(10+1) = 2048 217 
combinations. The computation of the posterior probabilities of the queried nodes, from prior probabilities and 218 
evidence can be carried out adopting different inference methods. Exact inference algorithms based on analytical 219 
approaches provide the exact value of the interval probability (e.g. computation tree [37]), while approximation 220 
algorithms provide probabilities near the true value [38]. Usually, end users do not need to fully understand the 221 
applied inference algorithm, however they must have in mind that the complexity of the model and their need 222 
for reproducibility of results might impact their choice. Although exact inferences result in the computation of 223 
exact probability interval, they are computationally expensive and unfeasible for large-sized systems. 224 
Consequently, for large networks approximation algorithms are necessary, although usually associated to 225 
unknown rate of convergence which can compromise the robustness and reproducibility of the analysis [38, 39].   226 

Bayesian networks are also used for diagnosis. They allow to identify the input with the higher impact on 227 
the output. For instance, an analyst would like to identify which PSF is the most likely trigger for the HE. Using 228 
the Bayes’ rule the conditional probability of PSF1 knowing that HE has occurred (that represents the evidence) 229 
can be computed: 230 

      231 

Equation 4 232 

𝑃(𝑃𝑆𝐹1 = 𝑇|𝐻𝐸 = 𝑇) =
𝑃(𝐻𝐸 = 𝑇|𝑃𝑆𝐹1 = 𝑇) × 𝑃(𝑃𝑆𝐹1 = 𝑇)

𝑃(𝐻𝐸 = 𝑇)
 233 

Similarly, the conditional probability for PSF2 and PSF3 can be computed. The above Equation can also be 234 
used to calculate the probability of PSF1 knowing that HE has not occurred, i.e., 𝑃(𝑃𝑆𝐹1 = 𝑇|𝐻𝐸 = 𝐹) and any 235 
other combination of events. This method is known as Bayesian inference. 236 

Diagnosis is particularly useful in HRA to investigate which factors affect human error the most, which 237 
helps risk analysts in proposing risk reduction measures. Additional benefits of using Bayesian networks for 238 
HRA are that different sources of information can be combined, and parent nodes can be dependent on each 239 
other – important features considering the mutual influence of performance shaping factors. There are different 240 
strategies to define the Bayesian networks graphical structure. Domain knowledge engineers usually prefer to 241 
follow a library of patterns, known as idioms. Each idiom represents a type of uncertain reasoning, being the 242 
four more common the cause-consequence idiom, measurement idiom, definitional/synthesis idiom, and 243 
induction idiom [9]. It is also possible to learn Bayesian network structure from data [27, 40], although this 244 
feature is considered more useful for data-rich applications.  Usually this is not the case for human reliability 245 
data [8]. Instead of choosing between Bayesian networks or fault trees to model human reliability data, one can 246 
opt to transform Fault Trees into Bayesian networks [41] or even to combine both, as demonstrated by previous 247 
studies that have integrated human reliability Bayesian networks into systems’ Fault Tree analysis [42-44]. 248 
Besides supporting the evaluation of reduction measures at the organisational level [43], or to complement an 249 
existing system reliability analysis with human reliability elements, the Bayesian network - Fault Tree 250 
integration might provide a better acceptance of Bayesian networks in sectors already familiar with Fault Trees. 251 

  252 
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2.2.3. Missing data in Bayesian networks’ conditional probability tables (a recurrent problem in HRA) 253 

Missing data is a main problem for the application of Bayesian networks to model and quantify human 254 
reliability analysis. Describing all possible combinations within variables comes at a cost: a huge amount of 255 
data needed. For instance, with respect to the conditional probability table in Table 1 representing the model in 256 
Figure 2, all states of a combination must sum to one, as defined by a probability axiom [9, 37].  257 

Table 1. Conditional Probability Distribution of node 'Human Error' (HE).  258 

PSF1: Organisational factor TRUE FALSE 

PSF2: Technological factor TRUE FALSE TRUE FALSE 

PSF3: Person related factor TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE 

HE: Human error = FALSE 0 0.1 0.0 0 0.1 0.7 0.5 0.4 

HE: Human error = TRUE 1 0.9 0.0 1 0.9 0.3 0.5 0.6 

However, Table 1 has a column which both states have zero probability (showed with bold font), because that 259 
combination of factors has never being recorded (i.e., there is no available data). This results into a 260 
computational (the missing combination does not comply with a probability axiom and preventing the use of 261 
the inference algorithms) as well as conceptual problem preventing the use of Bayesian networks.  262 

The conceptual problem is that, although this particular missing data set has been previously defined as 263 
impossible path [9], treating it as an impossible event is equal of assuming that this combination of states is 264 
impossible to occur. However, there is no evidence to corroborate such hypothesis. It seems more reasonable to 265 
assume that the lack of data is an indication of an uncertain event, due to past events with incomplete 266 
information [9]. For this reason, it is assumed that missing data in HRA may be due to lack of observations 267 
rather than due to the impossibility of the associated event. This is tantamount to acknowledging that a 268 
combination of events that have not been observed in past events and collected into a database might actually 269 
occur. This concept is present in almost all human reliability data collection efforts: for simulators, debriefing 270 
does not always clarify which PSFs have triggered a human error [26] ; for near-misses reports, events might 271 
be underreported to regulators [22]; for accident reports [23], even after scrutinised investigations [29] , some 272 
factors might not be observed or reported due to investigators’ time, knowledge and bias constraints [45]. On 273 
the basis of such observations, the next paragraphs review how previous studies have dealt with the uncertainty 274 
caused by missing data, especially when using Bayesian networks. 275 

2.2.4. Common approaches to deal with missing data in HRA 276 

When observations are not available to fully define conditional probability distributions (CPDs), a standard 277 
approach adopted in practice is to assign equal probability for both states [9]. This is also the standard approach 278 
used by some Bayesian networks software [46]. However, such strategy implicitly relies on an extremely strong 279 
assumption and it might introduce significant bias in favour of a state that is actually rare.  280 

Linear interpolation algorithms have been also used to fill data gaps in CPTs, by extracting information on 281 
the factor effects from known CPDs using anchors, i.e., positions in CPTs which the filling method will be 282 
based on, and extrapolate for the unknown CPDs. An ordinary linear interpolation procedure is then adopted to 283 
generate data searches for the maximum and minimum parameters (known prior probabilities) and interpolate 284 
the values in-between [42]. The functional interpolation [47] and the Cain calculator [48] are methods to build 285 
CPTs from limited expert judgement, and they seem to be adaptable to work solely based on empirical data – 286 
provided that the database fulfils the anchors instead of prompting them from experts. The functional 287 
interpolation method consists of approximating CPD anchors with functions, interpolating among available 288 
CPDs to obtain full set of approximating functions, and discretizing them back to obtain the full set of CPTs [8, 289 
47]. Cain calculator differs not only on the position of anchors, but also on further calculating interpolation 290 
factors for parent nodes, and missing relationships in CPDs by using interpolation factors [8, 48]. The method 291 
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directly exploits monotonicity, as interpolation factors to determine the proportion of change in the child states 292 
probabilities from parent nodes and missing relationships in CPTs [8, 48]. Monotonicity might be an unjustified 293 
assumption as it implies that parents’ effect on children state has a constant direction, with monotonic and 294 
positive influence. However, contextual factors effects on human could be also affected by the model structure 295 
[42], or by socio-technical systems not necessarily behaving as coherent systems with multistate components 296 
[25]. Indeed, this has been also pointed by a validation study of HRA methods with empirical data, which has 297 
concluded that significant improvement in the treatment of dependence is needed for all methods assessed [19].  298 

Expert elicitation is the most common strategy for filling gaps on data. Using expert judgement to elicit data 299 
means asking one or more experts in a field what probability they would assume for a specific set of conditions. 300 
Many approaches exist in HRA to tackle issues related to expert opinions, e.g., bias  [12], disagreement [7] and 301 
overconfidence [13]. Experts can contribute with direct probability values (i.e., direct elicitation) or via relative 302 
judgements (i.e., indirect elicitation), e.g., give their opinion through qualitative scales, questionnaires [44]. 303 
There are approaches to aggregate human error probabilities estimated by multiple experts, and some are able 304 
to distinguish the variability of HEPs from the variability between the experts [49]. Expert elicitation are limited 305 
to the estimation of small CPTs due to humans’ inability to estimate the influence of more than three factors 306 
simultaneously [14] or the impracticable large number of combinations leading to excessive elicitation burden 307 
[50].  308 

Noisy-OR method is the most used model to populate CPTs from partial information, supporting both expert 309 
elicitation and empirical data mining [8, 51]. The approach assumes that parents are independent, and each 310 
parent node combination of binary states produces an effect on a child node. Finally, their interaction is 311 
expressed by a logic OR gate. For HRA these are undesired assumptions [8]. To tackle these impediments, 312 
extensions have been proposed. The noisy-MAX model enabling multi-states nodes [52]; the recursive noisy-OR 313 
(RNOR) model allows multiple causes as input [53] and inhibition when multiple causes are present to allow 314 
the impact of each factor [54]. The non-impeding noisy-AND tree allow both reinforcement and undermining 315 
effects [51]. However, these Noisy-OR extensions generally address either dependent influences or multi-state 316 
nodes rather than both issues simultaneously [8]. 317 

A pragmatical solution consists of adding an extra state to child node with missing combination in its CPT. 318 
This extra state is often labelled ‘not applicable’ state: the states without data remain with zero probability and 319 
the ‘not applicable’ state is assigned with the number one [9]. If the new state propagates to other children nodes, 320 
all new combinations generated from this state have to be also assigned to ‘not applicable’ states. In HRA field, 321 
it has been observed that this strategy strongly assumes that the missing combinations are impossible to occur, 322 
although its use increases the transparency about uncertainties, and helps to maintain track of missing 323 
combinations in CPTs [25]. 324 

Artificial data implies the generation of data with known properties by an algorithm rather than expert 325 
opinion. The Maximum Likelihood Estimator (MLE) identify the missing values as the probability that makes 326 
observed data the most likely to occur [55]. MLE was used in human reliability research to test a modelling 327 
approach where performance shaping factors have a joint effect on human error probability [56]. The study was 328 
not aimed at filling missing data, but to test the boundaries of Bayesian networks for HRA by using artificial 329 
data, e.g., testing the effect of different sample sizes. Although the approach seems promising to estimate 330 
missing data in an unbiased manner, there are two potential weaknesses to address. Firstly, the assumption 331 
underlying the randomly generated data is an inherent limitation of the approach[56]. Secondly, while 332 
interpreting an MLE-based analysis the user should not jump to conclusions if one model fits the data better 333 
than another. This is because achieving a superior fit might be unrelated to the model’s fidelity to the underlying 334 
process, but merely because the more parameters a model have the higher the chance of fitting all data – 335 
sometimes performing even better than the real models that generated the data [55].  336 

The approach of deriving data from underlying method relationships is based on the principle that the model 337 
structure is what ultimately defines the conditional probability distributions. If the empirical database does not 338 
provide information for a certain combination, the assessors can go back to the qualitative analysis and merge 339 
some factors until the full CPT can be assessed. This assumption is based on causal information that can be 340 
learned from theories underlying HRA methods, patterns in the data or expert judgement [27, 40]. The approach 341 
is also known as synthesis idiom (determining synthetic nodes from parents by using a combination rule) [9]. 342 
Merging data from factors communication failure and missing information in CREAM methodology, as they 343 
both relate to communication, is a good example of synthesis idiom [2]. In a marine engineering application, 344 
CREAM [2] has been synthesised by incorporating fuzzy evidential reasoning and Bayesian inference logic to 345 
model dependency among common performance conditions [57]. In [27], a structure simplification has been 346 
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conducted by identifying error contexts after a preliminary analysis of data using correlation and factor analysis. 347 
Error contexts can be also obtained with self-organising maps to analyse patterns from major accident reports 348 
[58]. Deriving data from underlying method relationships reaffirms the importance of  the qualitative 349 
assessment as changing the structure also changes the amount of information needed [19]. 350 

Although data generated in simulators has been traditionally used to validate probabilities obtained by 351 
experts [3, 19], recent research investigates its use to fill missing data. In [27], recorded events from multiple 352 
simulator data collection efforts have been merged by a structured set of performance shaping factors guided by 353 
a theoretical model that aggregates their information from over a dozen HRA methods. In [59], a Bayesian 354 
updating process was conducted on HEPs generated by simulator data – the prior distribution being based on an 355 
HRA method, and the likelihood function specified to match simulator data. Yet, simulators have their 356 
limitations. A summary of important changes in simulators code to account for the human performance 357 
uncertainty has been listed after reviewing HRA methods, options of probabilistic models, and interface [28]. 358 
A summary of lessons learned from challenges in data collection from simulators has been suggested by [26] , 359 
which considerations might assist on the use of simulator as a unique data source to HRA models or to complete 360 
missing information.  361 

All approaches described here make assumptions, some more than others. The issue underlying the adoption 362 
of unjustified assumptions is that they can lead to significant deviations from reality, resulting in risk 363 
underestimation or wrong resource allocation. Furthermore, no characterization of uncertainty is provided by 364 
the presented approaches making impossible for the decision-makers to associate output uncertainties with 365 
missing data.  366 

3. Proposed Methodology 367 

3.1. Credal networks  368 

This paper proposes a methodology of replacing missing combinations in CPTs with probability intervals. 369 
This requires a shift from Bayesian network to credal networks. There are a few examples of applications of 370 
credal nets in literature, e.g. elicitation of experts with different opinions in military field [60], risk of fire in 371 
residential buildings [61] and railway [39]. To the best of the authors knowledge,  credal network has not been 372 
previously adopted in the context of HRA with the exception of a preliminary research on a conference 373 
proceedings by some of the authors of this work [11]. 374 

Credal networks are a generalisation of Bayesian networks sharing an identical graphical structure but being 375 
characterised by different probability values (Figure 3). Credal networks rely on imprecise probability theory to 376 
deal with the lack of data and to avoid the use of expert judgement or unjustified assumptions. Thus, a credal 377 
network is a directed acyclic graph with random variables described in terms of sets of probabilities (credal sets) 378 
instead of crisp values as in a Bayesian network [62]. This results in higher flexibility, allowing probabilities to 379 
be expressed also in the form of inequalities [10]. Figure 3 provides a graphical representation of a credal 380 
network, where each Bayesian network represents a local combination of the network, i.e. a set of probability 381 
values complying with theoretical constraints. 382 

 383 

 384 
Figure 3. Credal network - a set of Bayesian networks characterised by different probability values. 385 

A credal set, 𝐾(𝑋𝑖),  consists of a group with a finite number of probability distributions 𝑃(𝑋𝑖) for a generic 386 
random variable 𝑋𝑖 . More rigorously, according to the theory of imprecise probability, the credal set is a closed 387 
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and convex set of probability mass functions [63]. Likewise, the conditional credal set,  𝐾(𝑥𝑖|𝜋𝑖), represents 388 
the set of conditional probability distributions 𝑃(𝑥𝑖|𝜋𝑖) where similarly to the case of Bayesian network 𝜋𝑖 389 
represent the status of all the parents nodes of the variable 𝑋𝑖.  When defining the probability of each state 390 
𝑃(𝑋𝑖 = 𝑥𝑖) of a variable 𝑋𝑖, the credal set can be expressed as an interval probability with the bounds defined 391 
by the extreme of the set of probability: 𝑃(𝑋𝑖 = 𝑥𝑖) = min

𝐾(𝑋𝑖=𝑥𝑖)
(𝑃(𝑋𝑖 = 𝑥𝑖)) and a upper bound 𝑃(𝑋𝑖 =392 

𝑥𝑖)= max
𝐾(𝑋𝑖=𝑥𝑖)

(𝑃(𝑋𝑖 = 𝑥𝑖)). 393 

There are several sets of probability measures that can be used to represent a credal network depending on 394 
the notion of independence for imprecise probability.  The present study uses the strong extension of a credal 395 
network that allows having extreme points represented by standard Bayesian networks [10] . In other words, the 396 
smallest set of local Bayesian networks that contain combinations of extreme points (i.e., the convex hull, CH) 397 
corresponds to the definition of a credal network:     398 
 399 
Equation 5 400 

𝐾(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) ∶= 𝐶𝐻 {𝑃(𝑋𝑖)|𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑛

𝑖=1

} 401 

When working with credal networks, the posterior probabilities are expressed in the form of intervals. The lower 402 
and upper bounds must be real numbers and they must be complementary as shown in the equations below: 403 
 404 
Equation 6 405 

𝑃(𝑋𝑖 = 𝑥𝑖) + ∑ 𝑃

𝑗≠𝑖

(𝑋𝑖 = 𝑥𝑗) ≤ 1 406 

and 407 

Equation 7 408 

𝑃(𝑋𝑖 = 𝑥𝑖) + ∑ 𝑃

𝑗≠𝑖

(𝑋𝑖 = 𝑥𝑗) ≥ 1    409 

Where the summation in Eq. 6 and 7 is over all the states of the variable x different than 𝑥𝑗.   410 

3.2. Inference methods for credal networks 411 

A credal network, like a Bayesian network, can be computed for predictive as well as diagnostic purposes 412 
when imprecise data sets are present. To compute the inference of strong extension of credal networks, the lower 413 
and upper bounds of an event of interest referred to a query node (xq) are given as the marginalised probability 414 
[39]: 415 

 416 
Equation 8 417 

𝑃(𝑋𝑞 = 𝑥𝑞) = min
𝑃(𝑥𝑞)∈𝐾(𝑥)

𝑃(𝑋𝑞 = 𝑥𝑞) = min
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃

𝑛

𝑖=1

(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑥1,…,xn\𝑥𝑞

 418 

 419 
 420 
Equation 9 421 
 422 

𝑃(𝑋𝑞 = 𝑥𝑞) = max
𝑃(𝑥𝑞)∈𝐾(𝑥)

𝑃(𝑋𝑞 = 𝑥𝑞) = max
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃

𝑛

𝑖=1

(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑥1,…,xn\𝑥𝑞

 423 

 424 
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The model outputs are obtained by computing the lower and upper bounds of the posterior probability of 425 
the queried variable P(xq), when we insert the evidence (xe): 426 

 427 
Equation 10 428 

𝑃(𝑋𝑞 = 𝑥𝑞|𝑋𝑒 = 𝑥𝑒) =  min
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛,𝑥𝑞

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛\𝑥𝑞

 429 

 430 
Equation 11 431 

𝑃 (𝑋𝑞 = 𝑥
𝑞
|𝑋𝑒 = 𝑥𝑒) =  𝑚𝑎𝑥

𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛,𝑥𝑞

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛\𝑥𝑞

 432 

 433 

In the above equations, the summation operator in the nominator acts over all variables, including the queried 434 
variable in state xq (x1, . . . , xn, xq), while in the denominator , the summation is done only on the variables that 435 
are different from the queried variable (x1, . . . , xn\xq).  436 

In credal networks the computation of the posterior probabilities of the queried nodes requires dedicated 437 
inference methods and often approximate approaches are inevitable if using continuous variables [38, 39]. The 438 
approximation algorithms used in credal networks can be divided in inner approximation (e.g., linear 439 
programming, Hill-climbing [64]) and outer approximation (e.g., branch and bound [64], pseudo-network [39]). 440 
The inner and the outer approximations provide probability bounds which enclose the exact probability interval 441 
(see Figure 4).  442 

 443 

Figure 4. Inference methods for credal networks  444 

An approximate inference algorithm combined with an exact method is used here. It adopts linear 445 
programming as an optimization method to find the extreme points of the credal set and then the variable 446 
elimination method is used to obtain the posterior of each local combination. The combination providing the 447 
minimum value is considered as an approximation to the lower bound. The upper bound is obtained from the 448 
combination yielding the maximum value. More details on mathematical background and inference methods 449 
applied to credal networks can be found in [10, 39]. Freely available packages that implement algorithms to 450 
compute credal networks can be found in [10, 38, 65]. 451 

3.3. Defining the intervals to replace missing data combinations 452 

Credal networks are used for handling imprecise and incomplete beliefs of standard Bayesian models where 453 
the missing CPT combinations are replaced by intervals comprising the lowest and highest possible 454 
probabilities, i.e., zero and one [0,1]. Therefore following the example in in Table 1 the replace missing CPT 455 
combinations become: P(HE=T|PSF1=T,PSF2=F,PSF3=T)=[0,1] and 456 
P(HE=F|PSF1=T,PSF2=F,PSF3=T)=[0,1].  457 
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Due to strong extension properties, it was possible to replace missing CPT combinations (e.as in Table 6) 458 
with probability intervals comprising the lowest and highest possible probabilities, i.e. zero and one [0,1].  It is 459 
possible to use intervals with upper bounds less than 1 (e.g., [0, 0.5]), and the impact is a reduction on the widths 460 
of the posterior probabilities’ intervals. However, as both states have to sum up to one, assuming 0.5 of one 461 
state is assuming 0.5 for the complementary state – and that would mean observations on both conditions. As 462 
the missing combinations in MATA-D mean the total lack of observations for both states, the present 463 
methodology considers that the probability interval [0,1] would be the option that best indicate the total lack of 464 
data: the number zero expresses the minimum and the number one the maximum probability of occurrence of 465 
the associated event. 466 

Credal networks can model non-monotonic behaviour (thus more realistic human factors effects on human 467 
performance might be captured) and allows more than two states per node (enabling its application to HRA 468 
methods describing many states of human performance). Replacing missing combinations in CPTs with [0,1] 469 
intervals is a straightforward process if the table contains only one missing combination. However, in CPTs 470 
with more than two missing combinations (e.g., Table 6), the process is cumbersome, since the introduction of 471 
probability intervals in a CPT implies the review of all other probability values in order to verify the strong 472 
extension condition expressed in Equation 8 and Equation 9 (i.e.  the summation of the lower/upper bound of 473 
one of variable state and the upper/lower bounds of the other states must equal to one). The process of replacing 474 
missing data with intervals has been automatized and available in the developed tools.  475 

 476 

3.4. Overview of how the proposed methodology works 477 

The methodology is composed by four main modules and summarised in Figure 5. Part A converts MATA-478 
D to prior probabilities in conditional probability tables (detailed procedure is described in a previous study 479 
[25], but also in the case study section 4.3). Part B adds intervals [0,1] to combinations with no data in the 480 
conditional probability tables, transforming the nodes into credal nodes. The theory is detailed in section 3.3, 481 
and the algorithm is named switch to upper extreme in OpenCossan [66]. Part C performs the inference of the 482 
credal network with both discrete and credal nodes (theory detailed in section 3.2). Part D uses variable 483 
elimination to obtain the outputs of the model, where the posterior probabilities are expressed as intervals for 484 
credal nodes. 485 
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 486 
Figure 5. Flowchart of methodology highlighting how the mechanisms of credal network algorithm works 487 
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3.5. Decision making and criteria selection with imprecise results  488 

In the case all the CPT combinations of a specific node are unknown, [0,1] intervals represent the complete 489 
ignorance about that specific event. As a consequence, the results also become intervals, and wider intervals are 490 
often associated to more data missing.  Therefore, credal networks with imprecise probability support the 491 
decision-makers to take more informed decisions by presenting the results with their associate accuracy [67]. 492 
In addition, the diagnostic analysis provides the sensitivity analysis for HRA models, helping to allocate 493 
resources to the most influencing factors of a specific human error. Despite previous attempts to rank the 494 
variables in presence of imprecision (see e.g. [68, 69]), challenges remain and the comparison of two of more 495 
variables affected by imprecision is not straightforward. 496 

Let consider the simple example shown in Figure 2. If decision-makers want to reduce P(HE=T), then they 497 
might ask if P(PSF1=T) has to be reduced or P(PSF2=T). This is different than reducing the imprecision of the 498 
conditional probability of the event, e.g. P(HE=T|PSF1=T). In human reliability analysis, a decision-maker can 499 
interpret the lower bound of the HE probability as the best-case scenario and the upper bound as the worst-case 500 
scenario. Following this reasoning the upper bound will contain information about the highest possible 501 
probability of error under the conditions defined in the model. Criteria might vary between decision-makers, 502 
i.e. risk-prone versus risk averse. Thus, a general strategy is suggested: 503 

• [0,1] interval for the posterior probability cannot support decisions, thus more data should be collected, 504 
or a penalty should be applied; 505 

• Wider intervals suggest insufficient data to support the importance of a factor (and more evidence is 506 
needed to answer the question with confidence);   507 

• Small intervals suggest that there is enough evidence to support a statement; 508 
• Collecting more data is not an assurance that wide intervals would decrease, as it might represent state 509 

combinations that are indeed rare to happen – for these cases, it would be interesting to measure the 510 
confidence in the analysis before taking decisions, by computing the reliability with a tool such as 511 
confidence-boxes [70] 512 

• Different factors might have overlapping intervals and the most impacting factor might also be the most 513 
uncertain one.  The interval dominance criteria [69] is used in this study for selecting the most important 514 
factor. Interval dominance criteria is a method for classification accuracy usually taken as heuristic, 515 
where an interval is called dominant  if might have a higher probability than a probability of the variable 516 
valued on another node [69]. 517 

The suggested criteria are summarised in the workflow shown in Figure 6.  518 
To explain the identified criteria, the pairwise comparison of hypothetical factors shown in Figure 7 is 519 

performed. The factors represent conditional probabilities, i.e. probability that a PSF is true knowing that a HE 520 
has occurred. In the first case the interval for the factor A is contained in the interval of the factor B, thus B is 521 
selected as the most impacting factor due to interval dominance as B has a highest upper bound. In the second 522 
case, the two factors C and D have the same lower bounds, but D has a larger interval. Therefore, it seems logic 523 
to select D because it might be possible that the factor D has a larger influence but certainly has at least the same 524 
influence of the factor C.  In the third case, the factor E has the lower bound larger than the upper bound of the 525 
factor F. Hence, we have the guarantee that the factor E is more important than F. The fourth case G has the 526 
lowest lower bound but H has the highest upper bound.  Again, we select H exactly based on its highest upper 527 
bound probability – as in this case, both intervals have the same width. The fifth case shows the two factors I 528 
and J with the same upper bounds but with J having a higher lower bound. Therefore, it is logic to select J.  529 

 530 
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 531 
Figure 6. Suggested criteria for decision-making in sensitivity analysis of HRA 532 

A more rigorous criteria could be developed if there are dependencies between parent nodes as for PSF2 533 
and PSF3 in Figure 2. For instance, reducing P(PSF2=T) might also reduce P(PSF3=T). Therefore, a 534 
dependency analysis is required (e.g., including evidence in node PSF2 and PSF3 to calculate P(HE) and then 535 
including evidence in P(PSF3) and P(HE) to calculate P(PSF2)). For instance, the imprecision of PSF3 could 536 
derive entirely from the imprecision of PSF2.  537 

  538 
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 539 

A = [0.1, 0.15] 
B = [0.05, 0.25] 

 

C = [0.2, 0.25] 
D = [0.2, 0.35] 

 

E = [0.5, 0.6] 
F = [0.1, 0.4] 

 
G = [0.1, 0.3] 
H = [0.5, 0.7] 

 

I = [0.1, 0.7] 
J = [0.5, 0.7] 

 
 

 

Figure 7. Pairwise comparison of hypothetical factors – highlighted by dashed lines are the results that could depend on the decision-540 
making style; by solid lines: results where there is no doubt. 541 

Results highlighted by dashed lines in Figure 7 are those that could have easily led to a different 542 
interpretation if the suggested criteria were not strictly followed, as they might depend on the decision-making 543 
style (many people would rather prefer allocating resources in more certain probabilities). Results highlighted 544 
by solid lines are those where there is no doubt (both lower and upper bound are higher).  545 
 546 

3.6. Software 547 

The credal networks methodology and the associated inference and diagnostic algorithms are implemented 548 
in the OpenCossan Bayesian network toolbox [60], part of the OpenCossan software [66, 71]. OpenCossan is 549 
an open-source and object-oriented software for uncertainty quantification purposes based on Matlab.  550 

The Bayesian network toolbox is used for reduction, inference computation and sensitivity analysis of credal 551 
networks [38, 39]. The object-oriented code of the toolbox allows flexibility. It automatically selects the required 552 
algorithms according to the type of node defined in the network.  For instance, if the CPTs are complete and 553 
include only crisp probability values, discrete nodes are used. Otherwise, if the CPTs have missing 554 
combinations, credal nodes are used.  555 

The toolbox allows to automatically substitute missing data with intervals and calculating the corresponding 556 
bounds. 557 
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4. Case Study 558 

This case study aims to quantify the human reliability of operator during the storage tank depressurisation 559 
on static offshore oil & gas installations known as FPSO (floating production storage and offloading system) 560 
and FSO (floating and offloading system – also known as FSUs, floating storage units). The operation is 561 
necessary for safety reasons, to avoid explosion of storage tanks due to overpressure [72]. However, under 562 
certain wind conditions the vapours released might reach a source of ignition (e.g. other equipment, operations 563 
and maintenance works) with the potential to cause fire, explosion or financial loss due to emergency production 564 
shutdown [73, 74].  The operators are the main barriers to prevent an incident event, with little or no support 565 
from automatic systems/technology. The human reliability analysis provides a risk-informed support tool for 566 
engineers/project managers to evaluate the eventual need for design changes. 567 

4.1. Description of the case study: FPSO’s and FSO’s storage tank venting  568 

FPSOs are offshore installations that process oil & gas and store oil. Their system has production facilities 569 
on deck and storage tanks in the hull (Figure 8). In a generic design, a FPSO receives crude oil from an undersea 570 
reservoir via flexible risers. The incoming flow is then separated into oil, gas, and water (and sometimes salt) 571 
by process equipment on deck. The separated oil is stored in the vessel’s tanks for periodic offloading to a 572 
shuttle tanker (Figure 10) using a floating hose, or to an FSO via fixed pipelines [73]. Thus, FSOs do not have 573 
the production and process facilities (Figure 9). 574 

 575 

 
Figure 8. FPSO 1 

 
 Figure 9. FSO1 

 
Figure 10. Shuttle tanker 2 

During FPSO/FSO operations, inert gas (nitrogen) is usually injected in the storage tanks, to blanket their 576 
ullage spaces and avoid an explosive mixture of oxygen and hydrocarbon vapours. In a safe design concept, 577 
when tanks are over-pressured their vents are opened (automatically or manually) to allow inert gas to escape 578 
(Figure 11) and avoid overpressure [72]. This depressurisation of oil cargo tanks is known as cargo venting 579 
operation [75]. During the operation, a small amount of hydrocarbons vapours, associated with the inert gas, 580 
escapes. This adds some risk of flammable vapours meeting a spark at the deck, resulting in a fire and/or 581 
explosion [72,74]. 582 

FPSOs/FSOs and shuttle tankers have similar storage tanks venting systems, but the risk is higher for 583 
FPSOs/FSOs because they do not navigate during operation, as they are moored. Therefore, the vapours are not 584 
easily dispersed by wind as in shuttle tankers [75]. In addition, FPSOs/FSOs have their deck space more packed 585 
with equipment than tankers (as can be noted by comparing Figure 8 to Figure 10), impeding flammable vapour 586 
to dissipate. The operational risk increases in case of low wind speed prevents vapours to dissipate, and  in case 587 
of wind blowing vapor towards the process plant increases the chance of encountering ignition sources – 588 
generated by maintenance tasks, nearby support vessels and helicopters, droplets falling from flare, and 589 
equipment. Even explosion proof equipment (i.e. Ex equipment) can be a source of hazard if their electrical 590 
installations are not correctly maintained [75].  591 

 
1 FPSO and FSO figure source: https://www.modec.com/fps/fpso_fso/lineup/index.html  
2 Shuttle tanker figure source: https://www.hellenicshippingnews.com/oil-tanker-demand-solid-but-trade-tensions-could-change-that/ 
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 592 

 593 

Figure 11. Scheme of a tank with its vent outlet and a photo of a vent outlet on a FPSO3 594 

Accidents related to venting operation have the potentiality to create significant financial losses due to the 595 
loss or delay of production [73].  For instance, in Brazil, whilst duty holders are increasing their production of 596 
lighter crude oil [76], they have been challenged with increasing number of cases of emergency shutdowns 597 
(ESD) triggered by gas detectors been activated by flammable vapours originated during cargo venting 598 
operation [77], which cause financial loss. Past related incidents have been investigated on relation to the vapour 599 
content [74] and possible sources of ignition [78, 79], triggering the UK safety regulator to require duty holders 600 
to take appropriate measures to prevent fire and explosion [75].  601 

After the risk assessment, it comes the decision on what is the more appropriate safeguard to implement: a 602 
design modification of the system or operational measures performed by workers [73, 75]. Even in installations 603 
where this operation is partially automatized, human decisions are still part of the process as imposed by weather 604 
conditions and concomitant operations with other nearby installations. The human reliability analysis proposed 605 
in this work attempts to support this decision. The risk evaluated is the chance of a human error triggered by 606 
different performance shaping factors of initiating an incident event. 607 

4.2. Qualitative analysis: Model qualitative part: defining the structure  608 

The qualitative part of the study defines the model structure. It was based on the operation’s hierarchical 609 
task analysis: a structured way of condensing large amount of written information into a sequence of critical 610 
actions, screening potential human errors modes, performance shaping factors, and flagging tasks performed by 611 
different teams. The definition and criticality of individual tasks were based on information from: a safety 612 
bulletin from the UK health and safety regulator [75], related incidents [74, 78, 79], different design and 613 
operational measures [73] and written operational procedures and risk analysis (including computational fluid 614 
dynamics model) from two different duty holders operating in Brazil (not referenced here for confidentiality 615 
reasons). All the evaluated documents had not yet considered human reliability analysis.  616 

Figure 12 presents the identified hierarchical task analysis where ‘A’ refers to tasks performed by team A 617 
cargo/marine team, ‘B’ to radio-operator, ‘C’ to production team, and ‘D’ to maintenance team. Starting at the 618 
top, the first box specifies the overall task, i.e. cargo venting operation. The next layer of boxes describes the 619 
complete tasks in eight steps. Some steps consist of straightforward tasks such as taking a reading from a control 620 

 
3 Cargo vent outlet figure and scheme source: 
http://www.anp.gov.br/images/EXPLORACAO_E_PRODUCAO_DE_OLEO_E_GAS/Seguranca_Operacional/Relat_incidentes/Sao_
Mateus/anp-final-report-fpso-cdsm-accident.pdf 
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panel; other steps are complex and described in more detail in the next layer of boxes. Each layer provides a 621 
complete description of the task, but each level provides more detail in a hierarchy way.  622 

After critical tasks were selected, their potential human errors and respective performance shaping factors 623 
were identified using the authors’ expertise and knowledge. The antecedent-consequent model (i.e. a CREAM 624 
human reliability methodology) was used as a supporting tool as it provides the correlation between human 625 
errors and performance shaping factors. The Supplementary material provides a detailed description of tasks, 626 
their potential human errors and PSFs and the full correlation table adapted from [2]. Note that a more realistic 627 
model would have required the use of interviews and walking through the task at site with workers involved in 628 
the operation. 629 

 630 
Figure 12. Diagram of critical tasks analysis (using methodology of hierarchical task analysis) 631 

After defining the nodes with critical task analysis, the links between nodes were defined (the model 632 
structure). Instead of having a model based merely on the chronological task sequence, the cause-consequence 633 
idiom [9] was used, which resembles the logic of a bow-tie diagram. Using this idiom, each node receives a 634 
function in the model: risk or consequence event, risk trigger, risk control, or consequence mitigation. The task 635 
of actually opening the cargo tank valve (or failing to close it if the conditions change) was selected as the risk 636 
event node. The tasks and PSFs that would trigger the risk event are the trigger nodes. The tasks and PSFs that 637 
would prevent human error in the risk event or prevent the gas spreading to undesired directions were defined 638 
as the control nodes (regarding the task analysis sequence, the tasks that would finish just before the valve is 639 
opened). The consequence node is not a task nor a PSF, but the representation of possible outcomes in case the 640 
risk event actually happens, such as emergency shutdown or fire. The mitigation nodes are tasks and PSFs that 641 
would help to prevent or mitigate the consequence (e.g. tasks that would prevent spark, and tasks or systems 642 
conditions that have to be working concomitantly with the venting, from the moment the valve is opened until 643 
it is closed).  The resulting model structure (model #1) is presented in Figure 13, where discrete nodes are 644 
represented by rectangles (child nodes in green, root nodes in blue), and credal nodes by grey ellipses.  645 

An alternative model #2 has been created and shown in Figure 14. It differs from model #1 in the 646 
classification given for subtasks of tasks 3, 6 and 7, and consequently their PSFs. This is because each node of 647 
model #1 corresponds to a task in the hierarchical task analysis, while in model #2 some nodes have been merged 648 
by using underlying CREAM method relationships. The decision to create a second model has been made to 649 
compare the impact of the structure simplification in the quantification results, and to measure the impact of a 650 
potential limitation of the database used, which did not account for recurrent error modes in the same event. In 651 
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model #1 there are some combinations of parents and children nodes with the same error mode classification – 652 
which results in many missing combinations in the quantification phase. In contrast, due to the merged nodes, 653 
model #2 does not contain children nodes with the same classification as their parents (e.g. if child and parent 654 
nodes had the same human error, the parent was replaced by the next performance shaping factor in the structure, 655 
provided that the logic of the HRA method was maintained). Although model #2 resulted in less uncertain model 656 
(due to the less number of missing combinations), the simplification is not required for the use of the 657 
methodology proposed – thus model #2 and its results are found on the Supplementary material, while a brief 658 
comparison of both models are presented in results session. 659 

 660 

 661 
 662 
Figure 13. Proposed human reliability model structure for the tank venting operation (model #1) 663 

 664 
Figure 14. Model #2, some nodes were merged by using underlying CREAM method relationships 665 
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Table 2 presents a summarised description of nodes and links of model #1, while model #2 description is 666 
presented at Table 3. In Model #2, the model simplification strategy of synthetizing or collapsing nodes by 667 
applying ‘underlying method relationships’ has been used to avoid the same human error mode in consecutive 668 
nodes (as a strategy to minimise incomplete paths in the conditional probability tables). 669 

The performance shaping factors of CREAM classification scheme, and their links to different tasks reflect 670 
the overarching influence of organisational and technological factors on performance of different teams (e.g. 671 
the root node inadequate procedure is the parent of six children nodes in model #1: task 3.A, task 4.A, subtask 672 
6.3B, inadequate plan of team C in task 6, subtask 7.1.C, and faulty diagnosis of team B in task 7). Finally, 673 
cognitive functions have been modelled separately if they were underlying tasks performed by different teams 674 
(e.g. in model #1, faulty diagnosis of team A in task 6 and faulty diagnosis of team B task 7 have been kept 675 
separated in two different nodes). 676 
 677 
Table 2. Nodes’ details in model #1  678 

Trigger nodes       
Node (task 
number and their 
classification in 
CREAM 
taxonomy) 

Task description Team 
performi
ng the 
task 

Parent nodes (subtasks or 
PSFs, and their 
classification in CREAM 
taxonomy) 

States Node 
Type  

Data source  

PSF 1 (Design 
failure, an 
organisational 
factor) 
 

Tank vent outlet 
incorrectly designed 
and in unsafe location. 

Not 
applicable 
(in 
operationa
l phase) 

None two 
(true/ 
false) 
 

Discrete  MATA-D 
[23, 29] 

Task 2A 
(Observation 
missed, a cognitive 
function failure) 

Verify pressure in 
cargo tanks 
 

Cargo 
team (A) 
 

PSFs: maintenance failure, 
incomplete information, 
inadequate quality control, 
insufficient knowledge. 

two 
(true/ 
false) 
 

Credal  MATA-D 

Control nodes       
Task 3A 
(Inadequate plan, a 
cognitive function 
failure)) 
 

Decide between 
suspending or 
continuing operation  
 

Cargo 
team (A) 
 

Subtask 3.1.A; subtask 3.2.A; 
subtask 3.3.A. PSFs: 
inadequate procedure; 
inadequate task allocation; 
insufficient knowledge 

two 
(true/ 
false) 
 
 

Credal  MATA-D 

Subtask 3.1A 
(Observation 
missed) 
 
Note (1) 

Check wind speed and 
direction  
 

Cargo 
team (A) 
 

PSFs: incomplete 
information; inadequate task 
allocation; insufficient skills 
 

two 
(true/ 
false) 
 

Discrete  MATA-D 
 

Subtask 3.2.A 
(Observation 
missed) 
 
Note (1) 

Check boats and 
helicopter   
 

Cargo 
team (A) 
 

PSFs: inadequate task 
allocation, insufficient skills, 
missing information, adverse 
ambient conditions 

two 
(true/ 
false) 
 

Credal  MATA-D 

Subtask 3.3.A 
(Incorrect 
prediction, a 
cognitive function 
failure) 

Check lightning  
 

Cargo 
team (A) 
 

PSFs: adverse ambient 
conditions, cognitive bias, 
insufficient knowledge, 
management problem  

two 
(true/ 
false) 
 

Credal  MATA-D 

Task 4A (Action in 
wrong place, also 
known as action 
out of sequence, 
execution error) 
 

Inform other teams of 
upcoming operation  
 

Cargo 
team (A) 
 

PSFs: inadequate procedure, 
inadequate quality control, 
insufficient knowledge, 
missing information, faulty 
diagnosis 
 

two 
(true/ 
false) 
 

Credal  MATA-D 

Risk event node       
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Task 5A 
(Execution of 
wrong type 
performed, 
execution error, 
e.g. action 
performed too fast, 
too slow or in 
wrong direction 
[2]) 
 

Start tank venting by 
opening a valve (or 
failing to stop the 
venting operation by 
closing a valve) 

Cargo 
team (A) 
 

PSF 1 (design failure); task 
2A; task 3A , task 4A , PSF 
equipment failure 

two 
(true/ 
false) 
 

Credal  MATA-D 

Mitigation nodes       
Task 6ABCD 
(Action in wrong 
place) 

Suspend operations 
that generate spark  
 

Cargo 
team (A), 
radio-
operator 
(B), 
production 
team (C), 
maintenan
ce team 
(D) 

Subtask 6.1A , subtask 6.2.C 
, subtask 6.3.B , cognitive 
bias, missing information 
 

two 
(true/ 
false) 
 

Credal  MATA-D 

Subtask 6.1.A 
(Action in wrong 
place) 
 
Note (2) 

Request permission to 
work (PTW) to 
suspend operations 
that generate spark 
 

Cargo 
team (A) 
 

Faulty diagnosis of team A 
 
Parent nodes of faulty 
diagnosis of team A: PSFs 
inadequate task allocation, 
communication failure, 
insufficient knowledge 

two 
(true/ 
false) 
 

Discrete  MATA-D 
 

Subtask 6.2.C 
(Action in wrong 
place) 
 
Note (2) 

Analyse affected area 
and issue permission 
to work (PTW)  
 

Productio
n team (C) 
 

Subtask 6.1.A , inadequate 
plan of team C 
 
Parent nodes of inadequate 
plan of team C: faulty 
diagnosis of team A, 
inadequate task allocation, 
insufficient knowledge, 
inadequate quality control, 
inadequate procedure  

two 
(true/ 
false) 
 

Discrete MATA-D 

Subtask 6.3.B 
(Action in wrong 
place) 
 
Note (2)  

Announce tank 
venting will start on 
public address system 
(PA, i.e. speakers)  

Radio-
operator 
(team B) 
 

PSFs: distraction (of team B), 
maintenance failure, 
inadequate procedure 
 
Parent node of distraction of 
team B: communication 
failure 

two 
(true/ 
false) 
 

Discrete  MATA-D 
 

Task 7A (Action 
performed at 
wrong time (an 
execution error) 
 

Remain standby in 
marine control room 
until venting 
completion  

Cargo 
team (A) 
 

Subtask 7.2.C , subtask 7.3.B 
, PSFs: priority error, 
distraction, communication 
failure) 

two 
(true/ 
false) 
 

Credal  MATA-D 

Subtask 7.1.C 
(Observation 
missed) 
 

Monitor level of gas 
detection  
 

Productio
n team (C) 
 

PSFs: cognitive bias, 
inadequate procedure, 
inadequate quality control, 
inadequate task allocation, 
insufficient knowledge 

two 
(true/ 
false) 
 

Credal  MATA-D 

Subtask 7.2.C 
(Action performed 
at wrong time) 
 
Note (3) 

Inform changes of 
system state to team A  
(if flammable gas is 
detected by sensors in 
production modules) 

Productio
n team (C) 
 

Subtask 7.1.C, PSFs: 
communication failure, 
inadequate task allocation, 
insufficient skills, missing 
information 

 two 
(true/ 
false) 
 

Credal  MATA-D 
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Subtask 7.3.B 
(Action performed 
at wrong time)  
 
Note (3)  

Inform changes of 
system state to team A 
(unplanned helicopter 
or boat approaching) 

Radio-
operator 
(team B) 
 

Faulty diagnosis of team B 
 
Parent nodes of faulty 
diagnosis of team B: PSFs 
inadequate procedure, 
inadequate quality control, 
inadequate task allocation, 
insufficient knowledge 

two 
(true/ 
false) 
 

Discrete  MATA-D 

PSF 8.D 
(Equipment 
failure, a 
technological 
factor) 
 

Failure of explosion 
proof equipment (i.e. 
Ex equipment), 
generating spark 

Maintenan
ce team 
(D) 

PSFs: maintenance failure, 
inadequate quality control 
 

two 
(true/ 
false) 
 

Discrete  MATA-D 

PSF 9 (Design 
failure) 
 

Droplets from flare  Not 
applicable 

None 
 

two 
(true/ 
false) 
 

Discrete  UK offshore 
hydrocarbon 
releases 
database [80] 

Consequence 
node 

      

10 (consequence, 
not classified in 
CREAM 
taxonomy) 
 

Fire or emergency 
shutdown due to tank 
vapours 
   

Not 
applicable 

Task 5A , task 6.ABCD , task 
7.A , PSF 8.D (equipment 
failure), PSF 9 (droplets from 
flare) 

Three 
(No 
conseq
uence; 
ESD; 
Fire) 
 
 

Credal  Brazilian 
incident 
system and 
regulator 
reports [69]; 
UK FPSOs 
[70,71]; UK 
offshore 
hydrocarbon 
releases 
database [80] 

Note (1): In model#1, tasks 3.1.A and 3.2.A have been represented separately. In the alternative model#2 these nodes have been merged 679 
(as they have same cognitive function and are in the same team). 680 
Note (2): In model #1, task 6.ABCD and subtasks 6.1.A, 6.2.C and 6.3.B have the same human error mode. In model #2, using the 681 
underlying HRA method relationships, human error of subtasks 6.1.A, 6.2.C and 6.3.C was replaced by the next cognition function 682 
described in the model structure. 683 
Note (3): In model #1, tasks 7.A, and subtasks 7.2.C and 7.3.B have the same human error mode. In model #2, the subtasks 7.2.C and 684 
7.3.C were merged and the human error was replaced by the next cognition function described in the model. 685 
  686 
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 687 
Table 3. Nodes’ details in model #2 (only nodes that differ from model #1 are shown) 688 

Node (task or PSF, and their 
classification in CREAM 
taxonomy) 

Description  Team performing the 
task 

Parent nodes (task or PSF, and 
their classification in CREAM 
taxonomy) 

States  Source 

Control nodes 
Task 3A (Inadequate plan) 
 
(different from Model #1, due 
to subtasks) 

Decide between 
suspending or carrying 
on operation  

Cargo team (A) 
 

Subtask 3.1.A & 3.2.A merged 
(observation missed), subtask 
3.3.A (incorrect prediction), PSFs 
inadequate procedure, inadequate 
task allocation, insufficient 
knowledge 

two (true/ 
false)    
 
 

MATA-D 

Subtask 3.1.2A (Observation 
missed)  
 
(different from Model #1)  

Check wind speed and 
direction  
and 
Check boats and 
helicopter 

Cargo team (A) 
 

PSFs: incomplete information, 
inadequate task allocation, 
insufficient skills, missing 
information, adverse ambient 
conditions 
 
 

two (true/ 
false) 
 

MATA-D 
 

Note: In model #2, nodes 3.1.A and 3.2.A have been merged, as they represent the same cognitive failure and are potentially performed by the same 
person in the same team) 
 
Mitigation nodes 
subtask 6.1.A (faulty 
diagnosis, cognitive function 
failure)  
 
(different from Model #1)  

Request permission to 
work (PTW) to suspend 
operations that generate 
spark 

Cargo team (A) 
 

PSFs: inadequate task allocation, 
communication failure, 
insufficient knowledge 

two (true/ 
false) 
 

MATA-D 
 

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.1.A it has been used the cognitive function pointed by the 
risk assessor as underlying that specific action (in this case, ‘faulty diagnosis’). 
 
subtask 6.2.C (inadequate 
plan,cognitive function 
failure) 
 
(different from Model #1) 

Analyse affected area 
and issue permission to 
work (PTW)  

Production team (C) 
 

Subtask 6.1.A (faulty diagnosis), 
PSFs inadequate procedure, 
inadequate quality control, 
inadequate task allocation, 
insufficient knowledge 

two (true/ 
false) 
 

MATA-D 

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.2.C it has been used the cognitive function pointed by the 
risk assessor as underlying that specific action (in this case, ‘inadequate plan’). 
 
Node subtask 6.3.B 
(Distraction, a temporary 
individual factor) 
 
(different from Model #1)  

Announce tank venting 
will start on public 
address system (PA, i.e. 
speakers) 

Radio-operator (team 
B) 

PSFs: communication failure, 
maintenance failure, 
inadequate procedure 

two (true/ 
false) 
 

MATA-D 
 

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.3.B it has been used the cognitive function pointed by the 
risk assessor as underlying that specific action (in this case, ‘distraction’). 
 
Node task 7A (Action 
performed at wrong time, 
execution error) 
 
(different from model #1, due 
to some different PSFs) 

Remain standby in 
marine control room 
until venting completion  
 

Cargo team (A) 
 

Subtask 7.1.C (observation 
missed), subtask 7.2.BC (faulty 
diagnosis), PSFs priority error, 
distraction, communication 
failure 

two (true/ 
false) 
 

MATA-D 

Node subtasks 7.2.BC (faulty 
diagnosis, cognitive function 
failure) 
 
(different from model #1)  

Inform changes of 
system state to team A 
(flammable gas is 
detected by sensors in 
production modules) 

Radio-operator (Team 
B), production (Team 
C) 
 

Node 7.1.C (observation missed), 
PSFs inadequate procedure, 
inadequate quality control, 
inadequate task allocation, 
insufficient knowledge 

 two (true/ 
false) 
 

MATA-D 

Note: merged subtasks 7.2C and 7.3B 
 689 

  690 
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4.3. Quantitative analysis part: feeding data to the probabilistic tool 691 

The strategy to quantify and predict human performance used in this study diverges from the original 692 
CREAM method [2], which suggests the evaluation of worker control level on performing an operation (i.e. 693 
scrambled, opportunistic, tactical, strategic) by adjusting the human error probabilities according to common 694 
performance conditions. In this study, the control level and common performance conditions were not evaluated: 695 
instead, the assessors selected the PSFs for each task but the HEP was solely adjusted by empirical data. This 696 
was possible as the model of the task was made with the same taxonomy (i.e., classification scheme) described 697 
in CREAM and used in MATA-D: a set of 53 variables including performance shaping factors, cognitive 698 
functions and human execution errors. 699 

Therefore, the quantitative analysis required the definition of the CPT for the network structure defined in 700 
Section 4.2. The conditional probability tables of children nodes were computed as relative frequencies gathered 701 
from empirical data found from the MATA-D (Multi-Attribute Technological Accidents Dataset (MATA-D) 702 
[23, 29]. This relies on the interpretation that the relationship between human errors and their influencing factors 703 
in FPSO/FSOs operations are equivalent to those observed in the industrial accidents included in the dataset.  704 
MATA-D was selected as the main empirical source of data for three main reasons:  705 

1. it provides dependency between human errors and performance shaping factors;  706 
2. it contains data from industries with equivalent level of socio-technical complexity as FPSOs/FSOs; 707 
3. it allows to incorporate lessons from different industries rather than waiting for the reoccurrence of 708 

similar accident patterns [25].  709 
Two nodes had different data sources. Node 9 (droplets from flare) relates to a specific design failure that 710 

leads to droplets falling from flare (a potential ignition source). Although design failure data from MATA-D 711 
could have been used, it was decided to use more specific information regarding flares from the UK offshore 712 
hydrocarbon releases database [80]. Node 10 (consequence node), which represents the possible consequences 713 
of having flammable gas above safe limits in installations have variable states (fire, emergency shut-down and 714 
no-consequence) that cannot be related to any variable available in the MATA-D. Thus, specific data from 715 
similar offshore installations was used. The data for emergency shut-downs due to gas detectors activation 716 
during tank venting in FPSOs was obtained from near-misses investigations (obtained during safety audits) and 717 
incident reported to the Brazilian regulator [77]. The information about frequency of droplets from flare in 718 
FPSOs was obtained from [80], and ignition followed by fire in FPSO during tank venting was obtained from 719 
conference papers describing investigations of similar occurrences in UK North Sea FPSOs [74, 78, 79].  720 

Root nodes prior probabilities are obtained straightforward from the MATA-D, as they are not conditioned 721 
by any other nodes. However, the calculation of conditional probability tables for children nodes is more 722 
complex and nodes with many parents require an impracticable time to be assessed manually. Thus, a dedicated 723 
script code was developed to automatize the procedure of collecting the combination of events from the database 724 
(see data collection code in Supplementary material). The procedure of how the data in MATA-D translates 725 
into number in conditional probability tables is based on the fact that prior probabilities are expressed in terms 726 
of K events out of N trials. For example, in Table 4, the PSF design failure was observed (i.e., true) in 157 727 
events out of 238 accidents, thus the resulting relative frequency of 0.66 was translated into prior probability 728 
distribution of design failure being true (0.66) and false (1 – 0.66). As the distribution of this root node does not 729 
lack data, it is defined in the model as a discrete node. 730 

 731 
Table 4. Prior probabilities of nodes PSF 1, 8D and 9, all discrete root nodes 732 

Design failure  
 from MATA-D 

FALSE 0.34 
 TRUE 0.66 

Node PSF 8D (equipment 
failure) from MATA-D [23] 

 

FALSE 0.44 

TRUE 0.56 

Node PSF 9  
(Droplets from flare) from [80] 

FALSE 9.97x 10-1 
TRUE 3.0 x 10-3 

 733 
Table 5 shows the conditional probability table of subtask 3.1.A – where the assessors of the qualitative 734 

analysis identified that the operator could miss an observation, triggered by the PSFs incomplete information, 735 
inadequate task allocation, and insufficient skills. For instance, the combination #1 in the CPT represents the 736 
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events in MATA-D where none of the PSFs was observed (i.e., false). According to MATA-D this context 737 
combined with the cognition failure observation missed occurred in only 8 out of 238 accidents, while the same 738 
context without observation missed occurred in 59 out of 238 accidents. The respective relative frequencies in 739 
MATA-D are 0.03 and 0.25, but in terms of prior probabilities these numbers are expressed as 0.12 and 0.88 as 740 
probabilities range from 0 to 1 (in other words the numbers 0.03 and 0.25 were normalised within the range 0 741 
to 1, thus the probability of combination #1 when observation missed is false is equal to 0.88 and the probability 742 
of combination #1 when observation missed is true is equal to 0.12). As all the combinations are complete for 743 
this specific CPT, this node is defined as a discrete node in the model. 744 

Table 5. Prior probabilities in CPT for subtask 3.1.A (variable: observation missed), a discrete child node 745 
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Incomplete information false false false false true true True True 

Inadequate task allocation false false true true false false True True 

Insufficient skills false true false true false true false True 
Observation Missed – 

FALSE 0.88 0.84 0.91 0.87 0.60 0.50 0.73 0.67 

Observation Missed – TRUE 0.12 0.16 0.092 0.13 0.40 0.50 0.28 0.33 

 746 
Table 6 describes the CPT of subtask 3.3.A, where the assessors defined incorrect prediction as the potential 747 
cognition failure for the task, in a context where the main PSFs were cognitive bias, management problem, 748 
insufficient knowledge, and adverse ambient conditions. Table 6 shows the frequency this same context occurred 749 
in accidents recorded in MATA-D. Differently from CPTs shown in Table 4 and Table 5, some combinations 750 
of states of these variables do not have any reported event within all 238 accidents in the dataset (e.g. 751 
combinations #8, #10, #12 , #14 and #16). Therefore, as the lack of possible combinations events in MATA-D 752 
is interpreted as missing data rather than impossible events, the incomplete combinations were replaced by zero-753 
to-one intervals [0,1]. As this node contains intervals, it was defined as a credal node. For this model, the 754 
majority of children nodes with more than four parent nodes had to be defined as credal nodes. 755 

Table 6. Prior probabilities in CPT for subtask 3.3A (variable: incorrect prediction), a credal child node 756 
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#1
5 

C
om

bi
na

tio
n 

#1
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Cognitive bias false false false false false false false false true true true true true true true true 

Management 
problem 

false false false false true true true true false false false false true true true true 

Insufficient 
knowledge 

false false true true false false true true false false true true false false true true 

Adverse 
ambient 
conditions 

false true false true false True false true false true false true false true false true 

Incorrect 
prediction 
FALSE 

0.99 0.93 0.91 1.0 1.0 1.0 0.88 [0, 1] 1.0 [0, 1] 1.0 [0, 1] 1.0 [0, 1] 1.0 [0, 1] 

Incorrect 
prediction  
TRUE 

0.01 0.07 0.09 0.0 0.0 0.0 0.12 [0, 1] 0.0 [0, 1] 0.0 [0, 1] 0.0 [0, 1] 0.0 [0, 1] 

 757 
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The complete CPTs for all nodes can be found on the Supplementary material. More details on how to 758 
convert the relative frequencies from MATA-D to the CPTs can be accessed on [25].   759 

OpenCossan software was used to evaluate the models. The analyses were performed on a machine with 760 
x16 Intel Xeon CPU ES-2679 v2 @2.50GHz and 252.4Gb RAM. For model #1, the computational time for the 761 
predictive analysis was in average 3.2 hours/node. The diagnostic analysis required 2.5 hours per queried node. 762 
For model #2, the computational time for predictive analysis and diagnostic analysis was in average 0.74 763 
hours/node and 0.64 hours/node, respectively. If the same analysis is performed on a middle-range laptop it 764 
requires 20 and 11 hours/node to run predictive analysis of model #1 and for model #2, respectively. Diagnostic 765 
analysis would have required 9 and 5 hours per query of model#1 and for model #2, respectively. The algorithm 766 
of variable elimination has been used in all the analysis. 767 

4.4. Results 768 

4.4.1. Predictive analysis 769 

The results of the predictive analysis are presented in Table 7 for model #1, Figures 15 and 16 for the model 770 
#1 and Figures 17 and 18 for model #2, while some possible diagnostic analysis are presented from Table 8 and 771 
from Figure 19. In Table 7, the posterior probabilities are presented for all variables’ states, which are TRUE 772 
and FALSE for the nodes related to tasks and performance shaping factors, and states no consequence, 773 
emergency shutdown and fire for the node related to the consequence event. The posterior probabilities of 774 
discrete nodes are point values and those of credal nodes are intervals. For instance, the probability that subtask 775 
3.1.A (check wind speed and direction) is true is a point value (a crisp probability), as the lower and upper 776 
bounds are the same. For the subtask 3.3.A (check lightning) the result in state true is represented by an interval. 777 
Another aspect about the binary credal nodes, is that the lower bound of the false state and the upper bound of 778 
the true state sum up to one (as well as the lower bound of the true state and the upper bound of false state). In 779 
the credal node ‘consequence’, with three states, the unity is achieved if summing up two lowest states of the 780 
lower bound with the highest state of the upper bound, as well as summing up the two lowest states of the upper 781 
bound with the highest state of the lower bound.  782 

The state TRUE of each binary node represents the probability of an error has been observed, and the state 783 
FALSE probability that an error has not been observed. Thus, for the subtask 3.1A probabilities can be 784 
interpreted as follows: for every thousand times operators read an instrument to check wind speed and direction, 785 
chances are that in 159 times they misread it. Similarly, for the subtask 3.3A: for every thousand times operators 786 
check the weather to predict if lightning is going to occur, between 34 and 42 times they incorrectly predict it. 787 
The distinction between results for discrete and credal nodes can be better visualised in Figure 15, which depicts 788 
the true states of trigger, control, mitigation and risk event nodes, and Figure 16 which depicts all the three states 789 
of consequence node. 790 

Comparing the results obtained from models #1 and #2 reveals smaller intervals in model #2 (especially 791 
tasks 3A, 6ABCD and 7A). The majority of model #2 results lie inside the intervals of model #1 (except for the 792 
subtasks assigned with different human error modes, such as subtasks 6.1A, 6.3B and 6.2C). Furthermore, it 793 
was noticed that the majority of probability intervals comprises the frequencies obtained directly from MATA-794 
D [23]. For instance, the ‘wrong type’ error mode has the relative frequency of 11.80% in MATA-D, while the 795 
posterior probability of task 5A (assigned with the same error mode) presents a probability interval between 796 
10.08% to 17.82%.  The predicted results might represent the interaction effect between human errors and PSFs, 797 
depicting the uncertainty of a certain type of human error occurring under a specific context (e.g. wrong type 798 
has a relative frequency of 11.80% in all 238 accident events in MATA-D, however, 10.08% – 17.82% would 799 
be the imprecise probability for it happening under the context of the PSFs equipment failure, design failure, 800 
observation missed, inadequate plan and action in wrong place occurring altogether). When inference is 801 
performed, the interval of posterior probabilities depicts the inputs you do not have enough data. 802 

  803 
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Table 7. Prediction of posterior probabilities in all variable states (model #1) 804 

Event State Lower bound Upper bound 
TRIGGERS     
Task 2A  
(observation missed) 

FALSE 0.83 0.84 

TRUE 0.16 0.17 
CONTROL BARRIERS   

Task 3A  
(inadequate plan)  

FALSE 0.66 0.92 
TRUE 0.08 0.34 

Subtask 3.1A  
(observation missed)  

FALSE 0.84 0.84 
TRUE 0.16 0.16 

Subtask 3.2A  
(observation missed)  

FALSE 0.82 0.83 
TRUE 0.17 0.18 

Subtask 3.3A  
(incorrect prediction)  

FALSE 0.96 0.97 
TRUE 0.034 0.04 

Task 4A  
(action in wrong place)  

FALSE 0.60 0.71 
TRUE 0.29 0.40 

RISK EVENT   
Task 5A  
(execution of wrong type)  

FALSE 0.82 0.90 
TRUE 0.10 0.18 

MITIGATION BARRIERS   

Task 6 ABCD  
(action in wrong place)  

FALSE 0.37 0.84 
TRUE 0.16 0.63 

Subtask 6.1A  
(action in wrong place)  

FALSE 0.62 0.62 
TRUE 0.38 0.38 

Subtask 6.2C  
(action in wrong place)  

FALSE 0.62 0.62 
TRUE 0.38 0.38 

Subtask 6.3B  
(action in wrong place)   

FALSE 0.58 0.58 
TRUE 0.42 0.42 

Task 7A (action performed at 
wrong time)  

FALSE 0.49 0.94 
TRUE 0.06 0.51 

Task 7.1C (observation 
missed)  

FALSE 0.83 0.86 
TRUE 0.14 0.17 

Task 7.2C (action performed at 
wrong time)  

FALSE 0.85 0.86 
TRUE 0.14 0.15 

Task 7.3B (action performed at 
wrong time)  

FALSE 0.58 0.58 
TRUE 0.42 0.42 

CONSEQUENCE   

Node 10 (consequence of 
hazard event)  

No consequence 0.8658 0.9999 

Emergency shut-down (ESD) 6.211 x 10-5 0.1342 

Fire  7.908 x 10-8 5.669 x 10-7 

 805 
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 806 

Figure 15. Point and interval posterior probabilities for the cargo venting human reliability model #1 807 

 808 

Figure 16. Posterior probabilities for the three states of the consequence node of model #1 809 
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 810 

Figure 17. Point and interval posterior probabilities for the cargo venting human reliability model #2 811 
 812 

 813 

Figure 18. Posterior probabilities of three states of consequence node in model #2 814 

 815 

4.4.2. Diagnostic analysis 816 

The ability to provide diagnostic analysis is one of the key features of Credal Network allowing the 817 
simulation of many scenarios. This allows to track and quantify the most important relations for each node and 818 
assisting in the identification of efficient risk reduction measures. The diagnostic analysis – also known as 819 
sensitivity analysis – is performed by introducing evidence into a node (i.e. observation) and querying another 820 
node of interest. For briefly, only the results directed to the risk and consequence events of the human reliability 821 
model, and to other findings that help explaining the methodology are presented. The diagnostic analysis for all 822 
tasks can be assessed in the Supplementary material.  823 

The objective here is to assess which tasks and PSFs are more relevant in triggering an operator error in the 824 
critical task of opening the cargo venting valve (task 5A). Figure 19 shows the sensitivity analysis for task 5A 825 
of model #1 to preceding tasks while Figure 20 presents the sensitivity analysis with respect to the PSFs. The 826 
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probability values of the sensitivity analysis of task 5A are reported in Table 8. Using the criteria proposed in 827 
the methodology section, the most impacting task is task 2A (verify pressure) and the most impacting PSF is 828 
incomplete information (technology factor).   829 

 830 

 
Figure 19.Task 5A|true - sensitivity to tasks (model #1) 

 
Figure 20. Task 5A|true - sensitivity to PSFs (model #1) 

 831 

Table 8. Sensitivity analysis of task 5A to other tasks and PSFs in model #1.  832 

 Task 5A|true (query) 
Evidence added to: Lower bound Upper bound 

Tasks 
Task 2A|true 0.1859 0.4322 
Task 3A|true 0.1182 0.3621 
Subtask 31A|true 0.1009 0.3092 
Subtask 32A|true 0.1006 0.2936 
Subtask 33A|true 0.1136 0.2264 
Task 4A|true 0.0090 0.1040 

Performance shaping factors 
Node1(Design)|True 0.1190 0.1649 
Bias| true 0.1005 0.1775 
Distraction| true 0.1008 0.1782 
Maintenance| True 0.0782 0.2506 
Quality| True 0.0921 0.1667 
Management| True 0.1010 0.1826 
Task| True 0.1003 0.1836 
Knowledge| True 0.0972 0.1871 
Ambient| True 0.0996 0.1962 
Procedure| True 0.0880 0.1769 
Incomp Info (tec)| True 0.1147 0.2677 
Communication| True 0.1009 0.1779 
Missing Info (org)| True 0.0871 0.1945 
Priority| True 0.1008 0.1782 
Diagnosis| True 0.0570 0.1754 
Skills| True 0.1009 0.1875 

 833 
An interesting finding to showcase the impact of missing data and the choice of criteria to interpret the 834 

diagnostic analysis is presented in Figure 21, the sensitivity of subtask 3.2A to PSFs in model #1. The wider 835 
interval in PSF ambient conditions shows its high uncertainty due to incomplete data regarding its interactions 836 
with the human error mode of subtask 3.2A. The result suggests that if poor ambient conditions occur, it has the 837 
potential to be the most impacting factor to trigger human error. On the other hand, if other criteria were used 838 
to benefit more certain intervals, a possible candidate of most impacting PSF could be insufficient skills, as this 839 
factor has the highest lower bounds. 840 
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 841 
Figure 21. Node 3.2A|true - sensitivity to PSFs 842 

Figure 22 to Figure 27 show diagnostic analysis for tasks 3A, 6ABCD and 7A, which are linked to subtasks, 843 
respectively. Their subtasks are the main difference between both models (i.e. assignment of different human 844 
error modes). What stands out in these figures is the difference in uncertainty between results from model #1 845 
and #2. 846 
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Figure 22. Node 3A|true - sensitivity to PSFs and subtasks 3.1A, 
3.2A & 3A3 (model #1) 

 
Figure 23.  Task 3A|true sensitivity to PSFs and subtasks 3.1.2A and 
3.3A (model #2) 

 
Figure 24. Task 6ABCD|true sensitivity to PSFs and subtasks 6.1A, 
6.2C, 6.3B (model #1) 

 

 
Figure 25. Task 6ABCD|true - sensitivity to PSFs and subtasks 6.1A, 
6.2C & 6.3B (model #2) 
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Figure 26. Task 7A|true sensitivity to PSFs and subtasks 7.1C, 
7.2C and 7.3B (model #1) 

 

 
Figure 27. Task 7A|true - sensitivity to PSFs and subtasks 7.1C & 
7.2BC (model #2) 

 

Table 9 presents diagnostic analysis of the impact of tasks and PSFs in the consequence events of emergency 847 
shutdown (ESD) and fire during cargo venting operation in FPSOs/FSOs. Figure 28 is the graphical 848 
representation of intervals for ESD sensitivity, represented in logarithmic scale to facilitate the analysis of lower 849 
bounds. Figure 29 shows the fire sensitivity to tasks and PSFs in log scale. By pairwise comparison of the two 850 
most impacting factors for fire to happen, task 5A (wrong action of opening the valve) and PSF 9 (‘droplets 851 
from flare’), it is clear that ‘droplets from flare’ is the most impacting factor as, according to the criteria, the 852 
intervals do not overlap and ‘droplets from flare’ has the highest lower bound. 853 
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Table 9. Sensitivity analysis to tasks and PSFs of ESD and fire occurring as a consequence (model #1) 855 

Evidence on node 
Node 10|ESD queried P(event/days) Node 10 | fire queried P(event/days) 
Lower bound Upper bound Lower bound Upper bound 

Performance Shaping Factors 
Node PSF 1 (design failure) 6.97 x10-5 0.13 8.67 x 10 -8 5.50 x 10 -7 
Node PSF 9 (droplets from flare) 9.47 x10-6 0.13 2.89 x 10-5 2.07 x 10-4 
Node PSF 8D (equipment failure) 0 0.19 0 0 
Cognitive bias 1.37 x10-4 0.14 6.20 x 10-8 5.71 x 10-7 
Distraction 9.56 x10-5 0.13 7.00 x 10-8 5.75 x 10-7 
Maintenance failure 5.63 x10-5 0.19 4.37 x 10-8 6.20 x 10-7 
Inadequate quality control 5.75 x10-5 0.13 6.74 x 10-8 4.93 x 10-7 
Management problem 6.77 x10-5 0.14 7.77 x 10-8 5.78 x 10-7 
Inadequate task allocation 5.64 x10-5 0.15 7.41 x 10-8 5.70 x 10-7 
Insufficient knowledge 6.02 x10-5 0.14 7.67 x 10-8 5.95 x 10-7 
Adverse ambient conditions 6.60 x10-5 0.14 7.95 x 10-8 6.17 x 10-7 
Inadequate procedure 6.08 x10-5 0.13 5.48 x 10-8 5.25 x 10-7 
Incomplete information (technology) 8.68 x10-5 0.20 8.58 x 10-8 9.43 x 10-7 
Communication failure 1.40 x10-4 0.14 4.15 x 10-8 4.80 x 10-7 
Missing information (organisation) 8.96 x10-5 0.14 6.27 x 10-8 6.83 x 10-7 
Priority error 7.45 x10-5 0.13 7.43 x 10-8 5.78 x 10-7 
Faulty diagnosis 4.80 x10-5 0.12 5.18 x 10-8 5.47 x 10-7 
Insufficient skills 7.40 x10-5 0.14 7.57 x 10-8 5.92 x 10-7 
Distraction of team B  5.17 x10-5 0.14 5.69 x 10-8 5.24 x 10-7 
Faulty diagnosis of team A 3.69 x10-5 0.15 3.65 x 10-8 4.88 x 10-7 
Faulty diagnosis of team B 1.01 x10-4 0.14 2.73 x 10-8 4.94 x 10-7 
Inadequate plan of team C 6.29 x10-5 0.14 7.18 x 10-8 5.60 x 10-7 
Tasks and subtasks 
Task 2A|true 1.34 x10-4 0.32 1.19 x 10-7 1.60 x 10-6 
Task 3A|true 1.26 x10-4 0.27 1.06 x 10-7 1.38 x 10-6 
Subtask 31A|true 8.79 x10-5 0.20 7.86 x 10-8 1.12 x 10-6 
Subtask 32A|true 7.02 x10-5 0.20 7.44 x 10-8 9.95 x 10-7 
Subtask 33A|true 1.14 x10-4 0.16 8.14 x 10-8 7.55 x 10-7 
Task 4A|true 1.61 x10-5 0.07 6.89 x 10-9 2.65 x 10-7 
Task 5A|true 5.10 x10-4 0.84 3.90 x 10-7 1.99 x 10-5 
Task 6ABCD|true 0 0.17 0 0 
Subtask 6.1A|true 0 0.16 0 4.31 x 10-7 
Subtask 6.2C|true 0 0.16 0 4.31 x 10-7 
Subtask 6.3B|true 0 0.16 0 4.31 x 10-7 
Task 7A|true 6.72 x10-4 0.14 0 0 
Subtask 7.1C|true 1.92 x10-4 0.14 4.66 x 10-8 4.91 x 10 -7 
Subtask 7.2C|true 3.79 x10-4 0.14 0 3.71 x 10 -7 
Subtask 7.3B|true 1.32 x10-4 0.14 0 5.17 x 10 -7 

 856 
 857 
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 858 
Figure 28. Sensitivity Node 10|ESD (in log scale).  859 
 860 

 861 
Figure 29. Node 10|Fire - sensitivity to tasks and PSFs (log scale) 862 
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Table 10 presents a summary of the most impacting factors for each task and subtask in model #1, where 864 
the factors in bold are those that are also the most impacting factors in model #2. The used criteria to select the 865 
most critical factors for each task, in order to either control the effect on a specific node or to reduce its 866 
uncertainty was presented in the methodology section.  867 

 868 
Table 10. Summary of most influencing factors in tasks of model #1 and #2 (in bold where both models agree) 869 

Node Most influencing tasks or performance shaping 
factors for model #1 

Most influencing tasks or performance 
shaping factors for model #2 

Task 2A|true PSF incomplete information (tech factor)  PSF incomplete information (tech factor)  
Task 3A|true Subtask 3.1A  Subtask 3.3A  
Subtask 3.1A 

(equals to 3.1.2A 
in model #2) 

PSF incomplete information (tech factor)  PSF ambient conditions, followed by 
incomplete information (tech factor) 

Subtask 3.2A 
(equals to 3.1.2A 

in model #2) 

PSF adverse ambient conditions (org factor) 

Subtask 3.3A PSF adverse ambient conditions  PSF adverse ambient conditions 
Task 4A PSF faulty diagnosis PSF faulty diagnosis 

Task 5A|true Task 2A (verifying pressure, cognitive failure of 
missing an observation), followed by PSF of 
incomplete information (technological factor) 

Task 2A 

Task 6ABCD  Subtask 6.1A (request PTW, tied up with 
subtask 6.2C, analyse area to issue PTW). Both 
are actions out of sequence, but in different teams. 

Subtask 6.1A 

Subtask 6.1A Faulty diagnosis of team A  Communication failure 
Subtask 6.2C Subtask 6.1A, followed by the PSF of faulty 

diagnosis of team A 
Subtask 6.1A 

Subtask 6.3B Distraction of team B, closely followed by the 
PSF inadequate procedure  

Communication failure 

Task 7A Subtask 7.2C (inform changes in gas detection to 
team A) 

Distraction 

Subtask 7.1C Cognitive bias of team C  Cognitive bias 
Subtask 7.2C 

(=subtask 7.2BC 
in model#2) 

Communication failure   
 

Cognitive bias 
 Subtask 7.3B 

(=subtask 7.2BC 
in model#2) 

Faulty diagnosis of team B  

Node 10|ESD Task 5A (opening or closing the cargo venting 
valve, wrong type execution error)  

Task 5A 

Node 10|fire PSF 9 (droplets from flare)  PSF 9 (droplets from flare) 
 870 

4.5. Discussion 871 

The case study has shown the applicability of credal networks to analyse the human reliability by performing 872 
predictive and diagnostic studies in presence of missing data. It was noted that besides the fact that the cargo 873 
venting task occurs in an error prone context, the model also shows that even if the human failure events occur 874 
the risk to safety and financial loss is very low (see Figure 16). 875 

It has been observed that, the majority of relative frequencies from MATA-D [23] lies inside the posterior 876 
probabilities’ intervals obtained using credal networks.  This can be interpreted as nominal HEPs being adjusted 877 
by their empirical relations with the selected PSFs, in a different methodology than proposed by previous studies 878 
[81]. Nominal HEPs would be the relative frequencies in MATA-D and empirical relations with PSFs provided 879 
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by credal network. In practice, this would mean that while an expert is still needed for the qualitative task of 880 
selecting the PSFs, the proposed methodology has the potential to replace or at least complement the 881 
contribution from experts on the quantitative analysis of traditional HRA methods, as they would no more be 882 
needed to define the strength of PSF influence. The proposed methodology also provides the adjustment of 883 
upper and lower bound empirically. 884 

A possible explanation for the quantified human error probabilities (HEP) associated to the model#1 tasks 885 
4A, 6ABCD, 7A, and subtasks 6A1, 6B3, 6C2, and 7B3 being higher than typical HRA method’s numbers (e.g. 886 
10-4 to 10-2) is because these HEPs do not refer to nominal HEPs. In traditional HRA methods such as THERP, 887 
all of the estimated HEPs in the data tables provided are nominal HEPs, which are usually modified upward 888 
after being adjusted by the effects of PSFs [82]. Conversely, the results of this study refer to HEPs already 889 
adjusted by the PSFs solely driven by empirical data (i.e., the relations between PSFs and human errors in 890 
MATA-D). Another possible explanation for higher HEP is that this model have accounted for the PSFs directly 891 
related in the context, without further propagating the antecedent-consequent model proposed by Hollnagel in 892 
CREAM (see the antecedent-consequents’ table provided in the supplementary material). For example, 893 
according to the antecedent-consequent model, the PSF Incomplete Information has inadequate procedure and 894 
design failure as its antecedents. If the full antecedent-consequent links between PSFs are added, the HEPs 895 
decrease, as the more parent nodes we have connected to a child, the smaller its probability (this had happened 896 
on a previous model used, with standard Bayesian network and MATA-D [25].   897 

It was noted that the confidence in our results is often to the second digit, while the nominal HEPs of 898 
traditional HRA methods (e.g. HEART, THERP) provide estimates with larger error bounds (e.g., one order of 899 
magnitude between the 5th and the 95th percentiles in some cases). This fact might be explained for two main 900 
reasons. Firstly, because the results obtained in this study are related to the final HEP estimates after task-901 
specific PSFs have been considered, while traditional HRA methods estimates are nominal HEPs where the 902 
uncertainty bounds include not only  the random variability of individuals but also  the presumed uncertainty of 903 
the analyst in the HRA process [82]. In our study we are proposing a methodology that does not need to account 904 
for the uncertainty of the analyst, which is one of the reasons why the estimates have skinner uncertainty bounds. 905 
Secondly, the uncertainty bounds of the nominal HEPs in the other methods were designed to predict many 906 
different contexts, while in this study few specific PSFs were selected as the modellers knew the context from 907 
the documents used in task analysis. 908 

This study has also shown how credal networks can be used to identify risk reduction measures of the human 909 
reliability model, by investigating the effect of each factor over each task. This may support reduction measures 910 
to decrease the risk of human error, fire and emergency shutdown during the cargo venting operation. The 911 
proposed criteria for selecting the most impacting factors aims to support comparison between different interval 912 
probabilities, identifying which variable is most important. For instance, to decrease the chances of having a 913 
human error of ‘wrong type’ during the event of opening the cargo venting valve (task 5A), reduction measures 914 
should focus mainly on the verification of cargo tank pressure (task 2A). The most important technological 915 
factor is incomplete information (i.e. temporary interface failure where the information provided by the interface 916 
is incomplete, e.g. error messages, directions, warnings [2]). The most important organisational factor is 917 
maintenance failure (i.e. missing or inappropriate management of maintenance leading to equipment not 918 
operational or indicators not working [2]), although this factor would clearly benefit of further data collection 919 
to minimise its uncertainty. To decrease the chances of emergency shutdown due to cargo venting, the critical 920 
task to be improved is task 5A (opening or closing the cargo venting valve, execution error of wrong type). To 921 
reduce the chances of having fire as a consequence, the most important organisational factor to tackle according 922 
to this model are ‘droplets falling from flare’, possibly caused by design failure.  The dependencies among 923 
variables should also be considered. For instance, in Figure 26 and Figure 27, it is possible that the imprecision 924 
of 7.2C derives entirely from the imprecision of 7.1C. Thus, further analysis would be required to fully 925 
understand the effect of both subtasks in task 7A. 926 

Although it was clear that the criteria can be refined to reflect other decision-making style (for instance, 927 
some decision-makers might feel more comfortable to give higher value to more precise intervals), it is also 928 
recommended that a unique criterion is used by all decision-makers of the same organisation. 929 
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Consistent with the literature, this research found that different model structures – obtained in the qualitative 930 
part of the analysis – impact the quantification. The significant decrease of uncertainty in model #2 nodes is 931 
evidenced by the smaller intervals obtained. This is a consequence of the reduced number of unknown 932 
combinations in CPTs following the adoption of the synthetic idiom strategy, avoiding children nodes with the 933 
same CREAM taxonomy as their parent nodes. Furthermore, the analysis of the most impacting factors in Table 934 
10 have identified 63% of agreement between both models. Although model #1 can be used without such 935 
simplification, using underlying method relationship provides a strategy to reduce the uncertainty and 936 
computational time of the model without significantly impairing the accuracy of the results.  937 

A final reminder about the model is that the probabilities of occurrence refer to the type of error mode and 938 
not directly to the task – for instance, task 2A results relates to the statistics of the variable ‘observation missed’ 939 
in MATA-D, and not to specific statistics of cargo operators failing to verify the cargo tanks pressure. This 940 
seems to be the main source of difference in models #1 and #2 (due to subtasks assigned with different human 941 
error modes). More importantly it means that the assessor’s opinion during the safety critical task analysis 942 
directly influences the results (as they assign human error and PSFs to tasks), and that it is possible to validate 943 
or update the model if human performance data is collected from cargo venting operation in FPSOs and FSOs. 944 

 945 

4.6. Further developments 946 

This paper used human reliability analysis as an aid to investigate the risks between operational change and 947 
design change options. However, further studies could be undertaken, such as further comparing the risk result 948 
to the company’s risk matrix, or estimating the societal risk by projecting the risk found on the model on a F-N 949 
curve (fatal events frequency x number of fatalities per year).  950 

Although the approach of modelling empirical data with credal network is a much-needed shift from 951 
conservative to realistic modelling, it is important to note that the methodology presented only considers interval 952 
probabilities for the nodes with missing data. However, input data with intervals can be used for all nodes if 953 
data are imprecise due to other reasons rather than sparse data, such as human subjects variability. Thus, it is 954 
suggested that credal networks and the methodology suggested in this paper is further applied to other types of 955 
HRA datasets, such as those obtained in a laboratory-based study or in a simulated control-room.  The code is 956 
available in Open Cossan website, therefore other research groups can test their own data. 957 

 958 
 959 

5. Conclusions 960 

A novel methodology for assessing human reliability under uncertainty and lack of data has been presented. 961 
The proposed methodology accepts and embraces the variability of human reliability databases – including their 962 
missing data – as an intrinsic aspect of any science that relies on human behaviour. Credal networks as an 963 
extension of Bayesian networks have been proposed to characterise the available data without making 964 
unjustified assumptions. It is a necessary tool for data-driven human reliability methods and avoid expert 965 
opinion to fill incomplete information. This is not a statement to stop using methods that rely on expert 966 
judgement. Experts should still be needed to structure the qualitative part of the human reliability analysis, such 967 
as modelling the tasks and establishing a framework to classify human errors and performance shaping factors 968 
for each task.  969 

Traditional human error reliability methods usually suggest human error nominal probabilities that are 970 
adjusted according to the selected performance shaping factors. Thus, depending on these factors and the 971 
strength of their influence defined by experts’ judgement, the estimated human error probabilities have large 972 
variability (and as credible as the expert selected). The methodology proposed removes the need of experts’ 973 
judgment for this quantification step of the human reliability analysis and therefore reducing the associated bias 974 
and variability.  975 
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The methodology might be of interest to both risk assessors and decision-makers. To risk assessors because 976 
credal networks provide a rigorous framework to deal with sparse data and imprecision avoiding strong 977 
assumptions, resulting in a much-needed shift from conservative to realistic modelling. To decision-makers (e.g. 978 
manager, regulator) because it provides a more accurate and realistic decision-making tool (e.g. bounds of the 979 
estimations can be interpreted as the best and worst-case scenarios), and because they can decide if the quality 980 
of the results (given by the intervals) is satisfactory or more resources in collecting additional data are needed. 981 
In summary, the risk communication between risk assessors and managers has the potential to be improved by 982 
the transparency provided by using imprecise probability being fairer to compare the risks between components 983 
and human reliability analysis and to allocate resources accordingly. The proposed approach allows to describe 984 
a variable with more than two states allowing the adaptation to other existing HRA methods with multiple states. 985 
In addition, model reduction using intuitive application of underlying relations based on the human reliability 986 
method such as CREAM is an effective approach for reducing the uncertain in the results and the computational 987 
costs.  988 

The approach has been successfully applied to a real case from oil & gas offshore industry, where a human 989 
reliability model could provide support to decision-makers and depict the uncertainties inherent to human 990 
behaviour. The credal network model has been created by translating the critical task analysis sequential 991 
structure into a cause-consequence structure that depicts also control and mitigation barriers, well known in the 992 
oil & gas industry as a bow-tie structure. The methodology permits to analyse non-monotonic behaviour, 993 
allowing to capture more realistic performance shaping factors effects on human performance and detecting the 994 
features of the scenario most likely to contribute to initiate (or fail to recover from) an incident event. This study 995 
also demonstrates that human reliability analysis is able to support design and operational decisions. Oil & gas 996 
operations can be assessed through scientific methodologies – with the possibility to borrow empirical evidence 997 
from industries with similar task complexity. 998 

Continued efforts are needed to make reliable tools more accessible to the human reliability community and 999 
accepted by industrial partners and regulators. This study has shown the importance of using probabilistic tools 1000 
that accept and depict uncertainty and imprecision supporting the fully data-driven human reliability analysis. 1001 
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