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Abstract — In this paper we perform nuclear data uncertain propagation with Total Monte Carlo, where 
the transport simulation is repeated for random evaluations of the data. The Oktavian Iron, Oktavian 
Nickel, and the Frascati Neutron Generator (FNG) neutron streaming SINBAD benchmarks were evaluated 
with OpenMC. Gaussian random deviates were drawn from the ENDF/B-VII.1 and TENDL-2017 libraries 
where the covariances were available. Uncertainty from multiple nuclides was propagated simultaneously 
assuming inter-nuclide independence. When the individual statistical uncertainty is negligible compared to 
the data uncertainty, then standard probability theory may be applied. If this is not the case and both need 
to be considered, we use Imprecise Probabilities (IP) to perform further analysis. We show how uncertain 
experimental data may be compared to uncertain simulation in the context of IP, and show how an 
uncertainty-based sensitivity analysis can be performed with IP.

Keywords — Fusion neutronics, uncertainty quantification, Imprecise Probabilities, probability box,  
Total Monte Carlo. 

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Neutronics has an important role in fusion 
research. Essential reactor subsystems like tritium 
breeder and heating blankets are neutronic systems. 
Various diagnostics, magnets, and the outside environ-
ment must also be shielded from radiation, either from 
the high-energy neutrons produced directly in the core 
or from the secondary particles produced from radia-
tion interactions with matter. Therefore, reliable neu-
tronics calculations are essential for the success of 

experimental fusion reactors and eventual power 
plants. The validation of Monte Carlo particle transport 
codes for fusion neutronics relies on legacy experimen-
tal data, the Shielding Integral Benchmark Archive 
Database (SINBAD) benchmarks, many of which 
were performed in the 1980s. SINBAD is a collection 
of reactor shielding (46), fusion blanket neutronics 
(31), and accelerator shielding (23) benchmarks.1 The 
database contains experimental details, along with 
experimental data and some computer code models 
(MCNP). In previous decades there have been efforts 
to assess the quality of SINBAD,2 particularly aimed at 
nuclear data validation purposes. The benchmarks 
greatly vary in quality and comprehensiveness, and it 
has been suggested that the database would greatly 
benefit from experimental reinterpretation and reeva-
luation with modern methods, which would require 
a large empirical effort.
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In this paper we present three benchmarks evalu-
ated with OpenMC (Ref. 3), an open-source and com-
munity-developed Monte Carlo code for neutron and 
photon transport. We evaluate the Oktavian Iron,4 

Oktavian Nickel,5 and the Frascati Neutron Generator 
(FNG) neutron streaming6 shielding benchmarks, with 
a particular focus on nuclear data uncertainty propaga-
tion. The uncertainty propagation was performed with 
the Total Monte Carlo method7 (TMC), with 
a proposed slight modification that allows for the 
nuclear data uncertainty to be combined with the sta-
tistical uncertainty of the transport simulation in 
a consistent way. If the statistical uncertainty is negli-
gible, then we propose that the individual simulated 
means may be used as data points in a standard prob-
abilistic analysis. If this is not the case, as is relevant 
in a variant of the TMC called Fast-TMC (Ref. 8) 
where larger statistical uncertainty is traded for com-
putational time, then we propose that the analysis is 
performed with Imprecise Probabilities9 (IP). Imprecise 
Probabilities is a generalization of probability theory 
that allows one to work with sets of distributions, 
which we use when the distributional output of trans-
port simulation cannot be ignored. It is shown how 
comparisons between two uncertain simulations can 
be performed in the context of IP, along with how 
uncertain experimental data and simulations can be 
compared.

II. NUCLEAR DATA AND UNCERTAINTY PROPAGATION

Nuclear data are a fundamental input to any nuclear 
application. They effectively define all of the complex 
particle-matter interaction rules for the transport simula-
tion. Nuclear data libraries usually provide at least three 
quantities for every nuclide-interaction pair:

1. interaction cross sections: characterize the prob-
ability of a particular reaction

2. exit energy/angle distributions: if the reaction 
has an exit particle, its next energy/angle state 
is sampled

3. covariances: the variance, autocorrelation, and 
cross-correlation information of the interaction 
cross sections.

The creation of nuclear data inputs for nuclear applica-
tions is a research field by its own right, known as nuclear 
data evaluation. Here it is the nuclear data evaluator’s task 
to statistically mix experimental reaction data with reaction 
models to produce his/her best estimate of the nuclear data 

quantities plus uncertainty. Due to the difficulty and cost of 
conducting nuclear reaction experiments, experimental data 
are sparse or often not present for the vast majority of 
nuclides and reactions. Excluding the main fission-related 
nuclides, which have been extensively studied and have low 
uncertainties, the uncertainty can be quite severe for most 
nuclides, with the worst case being that the covariance 
information is completely missing in some evaluations. 
This means that the uncertainty problem is quite severe in 
fusion compared to fission, since not only are the fusion- 
relevant nuclides less well studied, but the variety of 
nuclides that must be considered is far greater (i.e., the 
reactor material can be quite exotic).

The nuclear data are usually stored in the Evaluated 
Nuclear Data Format (ENDF) format, which is a low-rank 
approximation by polynomial expansion, the coefficients of 
which are stored. This allows for the data to be accurately 
approximated and sorted by a finite number of polynomials. 
(It is well known that any continuous function can be 
arbitrarily well approximated by a polynomial.) The covar-
iance, which is effectively a two-dimensional function for 
continuous energy, is also stored in this way. Although 
accurate, for Monte Carlo codes it is expensive to recon-
struct the cross sections from the expansion each time an 
event is sampled. The nuclear data are therefore converted 
to ACE format, which is effectively a lookup table with the 
nuclear data values defined on an energy grid that can be 
quickly interpolated by a Monte Carlo code.

Historically, perturbation methods have been used 
for nuclear data uncertainty propagation. However, 
these methods require the model to be linear in the 
range of the uncertainty and are too strong an approx-
imation for this severity of uncertainty. Currently only 
Monte Carlo methods have been successfully applied 
to fusion neutronics problems.10 Monte Carlo is a very 
general method for propagating a probability distribu-
tion. Here random evaluations of model inputs are 
sampled (from a distribution that must be known or 
assumed, including correlations), and samples of the 
output distribution are obtained by repeatedly evaluat-
ing the model for each random input. There are some 
drawbacks, for example, Monte Carlo simulation is 
generally expensive (although can be easily paralle-
lized) and only an approximation of the output is 
obtained. The output moments, such as the mean and 
covariance, may be computed in relatively few sam-
ples. However, if the full output distribution is sought,a 

a very large number of samples is required, particularly 
for the tails of the output (rare events). Monte Carlo 

a As it should be in any serious uncertainty or risk analysis.
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methods also require the input distribution to be com-
pletely known. If there is any uncertainty about this 
input distribution, perhaps if any of the marginals or 
dependencies are unknown, then multiple Monte Carlo 
loops are required.

II.A. Nuclear Data Sampling

There are two techniques for nuclear data sampling:

1. using the covariance and assuming normality

2. a Bayesian method with a nuclear reaction model 
code.

For the first method, one can use a well-known method 
for generating a correlated Gaussian random vector, e.g., 
like Cholesky factorization of the covariance matrix. This 
can also be used for continuous functions like a cross sec-
tion and is the same approached used in Gaussian process 
regression and Gaussian random fields. This method is 
made available for nuclear data by SANDY (Ref. 11), 
which generates random pointwise-ENDF evaluations 
from an ENDF file where the covariances are available. It 
should be noted that although the input distribution is nor-
mally distributed, the output distribution will not be. 
Normality is only generally preserved with linear transfor-
mations. Using this method, it is possible to generate 
a correlated random vector of nuclear data quantities that 
is from a specific distribution other than Gaussian, for 
example, uniform or lognormal. This can be done by firstly 
generating a correlated Gaussian random vector and invert-
ing the samples through a Gaussian cumulative distribution 
function (cdf). This produces a correlated random vector 
with standard uniform marginals distribution (with range 
½0; 1�). Samples from a specific distribution can then be 
generated by transforming these samples through the 
inverse cdf of the selected distribution. This is a form of 

inverse transform sampling but for stochastic processes. It 
should be noted that the covariance of the transformed 
samples and the original Gaussian vector may not be iden-
tical since the marginal distributions play a role in shaping 
the distribution dependency structure.

The second method is used by Koning and Rochman in 
the TMC and can be used for nuclear data evaluation as well 
as uncertainty propagation. The method relies on a nuclear 
reaction model code, such as TALYS (Ref. 12), that can 
produce a complete evaluated data set. They use Bayesian 
updating, a now popular uncertainty characterization 
method, to construct distributions for the input parameters 
of TALYS with the available experimental data. This input 
distribution can then be propagated through TALYS with 
Monte Carlo to construct a distribution of evaluated nuclear 
data quantities. The distribution from a Bayesian updating is 
usually non-Gaussian. Figure 1 shows a visualization of 
a TALYS Evaluated Nuclear Data Library (TENDL) cross 
section. They then suggest that either this distribution is 
condensed into a mean evaluation plus a covariance, 
which can then be propagated with another method, or 
that this distribution is simply propagated further with 
Monte Carlo. TENDL (Ref. 13) was created using this 
method and includes many covariance files missing from 
other libraries.

For Monte Carlo particle transport applications, this 
uncertainty propagation scheme can be considered 
as second-order Monte Carlo; that is, since each execution 
of the Monte Carlo particle transport simulation produces 
a distribution (a mean value and deviation corresponding to 
the Monte Carlo error), then repeated execution will pro-
duce a set of distributions. Figure 2 is an illustration of this. 
The overall dispersion of the distributions is due to the 
uncertain nuclear data input, with the variance of each 
individual distribution being due to the Monte Carlo error 
of that particular simulation. If the individual simulations 
are well converged, with a low statistical error, then 

Fig. 1. Visualization of TENDL 56Fe (n, absorption) at various dimensions with the mean evaluation in blue and random samples 
in red: (c) the bivariate distribution at 0.16 and 0.25 MeV on the x- and y-axis, respectively. 
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a standard probabilistic analysis can be performed with the 
output using the individual means as samples. If, however, 
this is not the case, then the statistical errors must be 
considered for an accurate representation of the uncertainty.

This is particularly relevant in a variant of the TMC 
called Fast-Total Monte Carlo,8 where computational 
time is exchanged for larger statistical uncertainty. This 
is simply done by reducing the number of particles simu-
lated in each individual transport simulation. If N parti-
cles are used in a simulation without uncertainty 
propagation, then it is proposed that N

n particles are 
used in the individual TMC calculations, where n is the 
number of nuclear data samples. This of course can lead 
to a nonnegligible statistical uncertainty. Rochman et al. 
suggest that the following quantities are calculated:

μTotal ¼ 1
n

Pn
i¼1 μi

σ2
Total � σ2

MC þ σ2
ND

8
>>>><

>>>>:

ð1Þ

and

σ2
ND ¼ 1

n�1
Pn

i¼1 ðμi � μTotalÞ
2

σ2
MC ¼ 1

n
Pn

i¼1 σ2
MC;i

8
>>>><

>>>>:

; ð2Þ

where μTotal is the overall mean, and σ2
Total is the overall 

variance, which is the sum of the variance of the means and 
the average statistical variance. There are some arguments 

that can be made against representing the uncertainty this 
way. First, any distinction between the Monte Carlo error 
and the uncertainty from the nuclear data is lost. 
Equivalently, this representation mixes the Frequentest and 
Bayesian interpretations of probability, which represent 
aleatory and epistemic uncertainty, respectively. These are 
generally conflicting and should not be aggregated. This is 
because the cross section is a single but unknown function 
and does not have a frequency. Its evaluation comes from 
a Bayesian method and its probability distribution is inter-
preted as a belief. The Monte Carlo error alternatively is 
rooted in the variability of the transport model itself and is 
a frequency. Second, this representation only gives the mean 
and the variance, which gives little information about the 
overall probability distribution. If normality is assumed for 
further analysis or to propagate this uncertainty, this repre-
sentation would lead to an underestimation of the uncer-
tainty. Last, note that the variance in Eq. (1) is only 
approximated. They state that Eq. (1) is accurate if 
σMC <, 0:5 σTotal, with the 0.5 not being a strict limit and 
application dependent. We believe that this quantification 
can be improved, where the statistical and nuclear data 
uncertainty can be represented in a consistent way that is 
a more exact characterization of the output uncertainty.

II.B. Imprecise Probabilities

Imprecise Probabilities is a generalization of probabil-
ity theory where computations can be performed with sets 
of distributions. This allows different types of uncertainty to 
be combined and expressed by the same mathematical 
structure. Randomness, stochasticity, or aleatory uncertainty 
is captured by the individual probability distributions in the 

Fig. 2. Illustration of Monte Carlo uncertainty propagation in deterministic and stochastic models. The output of the stochastic 
model is shown in terms of a set of cumulatives and densities. 
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set; while imprecision and vagueness, or epistemic uncer-
tainty, is captured by the differences in the distributions 
within the set. Epistemic uncertainty may also be modeled 
by probability theory (Bayesianism), however, it is thought 
by most in the uncertainty quantification community that 
epistemic and aleatory uncertainty should not be modeled in 
the same probability distribution since this mixes the two 
interpretations of probability (frequency and belief). This 
has therefore led to the theory of IP, a theory of structures 
that models both variability and imprecision.

There are many ways to mathematically represent 
a set of probability distributions, including

1. intervals14: sets of real numbers or a set of distri-
butions where only the range is known

2. random sets15: a probability distribution of inter-
vals or other sets

3. fuzzy numbers16: sets with nonbinary indicator 
functions

4. probability boxes (p-boxes)17: bounds on cdfs.

These structures were discovered independently and 
are often synonymous and can be translated from one to 
another. Imprecise Probability links all these theories into 
one. For a comprehensive overview of IP, and for a formal 
description of uncertainty and information in terms of these 
structures, Reference 18 is recommended.

For this work we will use p-boxes. A p-box represents 
a set of distributions with the following three constraints: (1) 
two bounding cdfs, (2) interval bounds on moments, and (3) 
the shape (e.g., normal). That is, a distribution FðxÞ is 
a member of a p-box if:

1. FðxÞ � FðxÞ � FðxÞ

2. μx 2 ½μx; μx� and vx 2 ½vx; vx�

3. FðxÞ 2 F,

where FðxÞ and FðxÞ are the p-boxes lower and upper 
cdf bounds, respectively; μx and vx are the mean and 
variance; and F is a distribution family (i.e., normal, 
uniform). Some of these constraints may be missing, 
for example, if the p-box shape is unknown then any 
distribution that meets criteria 1 and 2 is considered. 
Some of these constraints may be informed from the 
other. For example, bounds on the moments can be 
produced from the cdf bounds, and cdf bounds may be 
constructed from moment information. These construc-
tions generally use the Chebyshev, Markov, and Cantelli 
inequalities from probability theory.17 Figure 3 shows 
various examples of p-boxes. If all three criteria are 
missing but the range is known, the p-box is simply an 
interval.

A p-box can easily be constructed from the output 
of a TMC calculation by taking the upper and lower 
envelope over all the simulated cdfs. The p-box essen-
tially bounds all the properties of the TMC output. 
Arithmetic operations can be performed with p-boxes, 
with known or unknown correlations, which we use as 
tally arithmetic to compare between simulation and 
experiments or two uncertain simulations. How arith-
metic is performed with p-boxes is out of the scope of 
this paper, however, it is made available by the 
OpenSource software ProbabilityBoundsAnalysis.jl 
(Ref. 19) developed by the authors.

II.C. Uncertainty-Based Sensitivity Analysis

An uncertainty propagation calculation is often 
complemented by a sensitivity analysis, where the 
contribution of the individual uncertain inputs to the 
output uncertainty is calculated. Such calculations are 
relevant if, for example, one wants to reduce the 

Fig. 3. Examples of p-boxes with differing information: (a) a p-box with a known shape and interval moments in blue, and an example 
of a member of the p-box in red. (b), (c), and (d) P-boxes when only various range and moment information are available. 
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uncertainty by empirical effort but has limited 
resources and must select the most relevant inputs. 
In this section we describe how sensitivity analysis 
can be performed with p-boxes. This calculation 
follows a similar example in a recent paper,20 where 
a sensitivity analysis was performed on a random 
function (stochastic process) with p-box outputs.

The goal of a sensitivity analysis is to rank the uncer-
tain inputs of a computational model with respect to their 
contribution to the output uncertainty. The ranking is given 
by sensitivity indices, which are values in ½0; 1�, with 0 
indicating no contribution to the output uncertainty from 
a particular parameter and a 1 indicating the output uncer-
tainty comes entirely from that particular input. A simple 
formula for calculating the sensitivity indices is21

Si ¼ 1 �
Ui

UT
; ð3Þ

where UT is the total uncertainty, with all nuclides being 
varied, and Ui is the output uncertainty without nuclide i. If 
there is no influence from nuclide i, then Ui � UT 
and Si � 0.

Equation (3) requires some metric or measure of the 
output uncertainty Ui, which must be selected by the ana-
lyst. For precise distributions, the variance or the Shannon 
entropy of the output distribution is a typical choice. In the 
case of an output which is p-box or other imprecise struc-
ture, then the Hartley function22 is sometimes used. For this 
work, like in Ref. 20, the area metric will be used to measure 
the uncertainty contained in a p-box since it is easy to 
compute and has a nice interpretation. The area metric, 
which was originally proposed for model validation under 
uncertainty,23 is a measure of distance between two prob-
ability distributions and is a true metric between distribu-
tions in the mathematical sense (nonnegative, symmetric, 
triangle inequality, and identity of indiscernibles). The area 
metric d between two cdfs F and G is given by

dðF; GÞ ¼

ðþ1

�1

jFðxÞ � GðxÞj dx ; ð4Þ

and is the horizontal average, or area, between F and G. 
Unlike some other stochastic distance metrics, the area metric 
has some favorable properties such as being unbounded 
(d 2 ½0; 1�), returns the physical units of F and G (if F 
and G are in meters, their distance d will also be in meters), 
and is a stochastic generalization of Euclidean distance (when 
F and G are scalars, d returns the Euclidean distance). The 
area metric can be used to measure the amount of epistemic 
uncertainty contained within a p-box by measuring the 

distance between its two bounding cdfs, which we use to 
calculate Ui and UT in Eq. (3).

III. BENCHMARK RESULTS

The Oktavian Iron, Oktavian Nickel, and FNG neutron 
streaming SINBAD benchmarks were evaluated with 
OpenMC. The SINBAD database’s MCNP Constructive 
Solid Geometry (CSG) model and material input files were 
converted to an OpenMC input file with csg2csg (Ref. 24). 
The ENDF/B-VII.1 (Ref. 25) and TENDL 2017 (Ref. 13) 
nuclear data libraries were used. ProbabilityBoundsAnalysis. 
jl was used for the postsimulation uncertainty analysis with 
p-boxes. Five-hundred random samples were drawn from 
each library using SANDY,b with the individual nuclides in 
the libraries being sampled separately. With many of the 
covariance files missing from ENDF/B-VII.1, only the 
nuclides with available covariances were sampled. 
Generally no inter-nuclide covariances are provided (depen-
dence between the data of different nuclides), we therefore 
propagate uncertainties from multiple nuclides simulta-
neously assuming inter-nuclide independence. After nuclear 
data sampling, this can be done by randomly selecting 
nuclides from the sampled library and creating a list of 
nuclides to be used in the transport simulation, for example, 
{12C – 259, 54Fe – 461, 56Fe – 166, 57Fe – 375, . . .}, where 
the second number beside the nuclide is the index of the 
nuclide in the random library. This was done 500 times (the 
total number of random evaluations) and is done without 
replacement so that each random nuclide only appears once.

Figure 4 shows the results for Oktavian Iron. Figure 4a 
shows the simulated leakage from the iron sphere, with the 
mean of ENDF/B-VII.1 and TENDL-2017 in green and 
blue, respectively, and the red and gray envelopes showing 
the 95% confidence interval drawn from the p-boxes over 
all the simulations. The leakages were normalized by divid-
ing the output by the surface area of the iron sphere. 
Figure 4b shows a comparison of the simulation to experi-
mental results, shown with 95% confidence intervals. The 
absolute relative difference was calculated by subtracting 
the experimental distribution from the p-box created 
from the OpenMC simulation, dividing by the mean, and 
taking the absolute value. The 95% interval was then taken 
from the resulting p-box. It can be seen that many of the data 
points cross the agreement line, but with very large errors.

b There are some samples from the Bayesian method available from 
TENDL, however, the number of nuclides is currently quite 
limited.
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Figure 5 shows the results for Oktavian Nickel, show-
ing the range of the uncertainty as a 95% confidence interval 
again drawn from the p-boxes created from the OpenMC 
output and representing both the statistical and nuclear data 
errors. An evaluation from JEFF-3.3 (Ref. 26) is also shown 
but without uncertainty in black. A comparison between the 
two uncertain leakages is shown in Fig. 5b. This was again 
calculated by subtracting one simulated p-box from the 
other and normalizing by the mean for each point in energy. 
The comparison of the means is shown in red, with the 95% 
interval. There is a significant overlap between the two 
uncertain simulations, with the zero line of agreement 
being contained within the errors.

Table I shows the results of an uncertainty-based sen-
sitivity analysis for the principle nuclides in Oktavian 

Nickel, along with the weight fraction of each nuclide in 
the nickel sphere. Intuitively, most of the indices follow 
a similar ranking to their weight fraction, except perhaps 
64Ni which ranks as the third most influential nuclide but 
with a low weight. These indices were calculated by sum-
ming the individual neutron currents and constructing 
a p-box by enveloping. The indices can then be calculated 
by measuring the drop in uncertainty [Eq. (4)] when per-
forming the simulation without a particular nuclide being 
varied and applying Eq. (3). Figure 6 shows a comparison 
between the leakages when all nuclides are varied and 
when the three most important nuclides (58Ni, 60Ni, and 
64Ni) are individually left out of the TMC calculation. The 
sensitivity indices may also be calculated for each energy 
bin; and Fig. 7 shows this for 58Ni and 60Ni.

Fig. 4. Oktavian Iron simulation compared to experimental data: (a) uncertain leakage using ENDF/B-VII.1 and TENDL 2017 
compared to data, and (b) the absolute relative differences of the simulated and experimental results with uncertainty. The 95% 
confidence interval was drawn from p-boxes. 

Fig. 5. (a) Oktavian Nickel simulation compared to experimental with uncertainty, and (b) the relative difference between the 
TENDL and ENDF simulations. 
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Figure 8 shows the spacial flux of the FNG benchmark 
using ENDF/B-VII.1. Figure 8b shows the mean, with Figs. 
8a and 8c showing 5% and 95% quantiles of the uncertainty, 
respectively. P-boxes were used, and the uncertainty shows 
the joint contribution from the nuclear data and the statis-
tical uncertainties. It can be seen that the range of the 
uncertainty is largest at the back of the shielding, ranging 

from ,0 to ,10�6. We believe this is because of the large 
number of uncertain interactions the particles have taken in 
reaching the back of the shielding. An explanation for this is 
that the uncertainty is cumulative after each uncertain reac-
tion, meaning the more interactions the neutron has in its 
history, the larger its uncertainty. This may be relevant for 
large experiments like ITER, which have many meters of 

TABLE I 

Overall Sensitivity Indices and Weight Fractions of Nuclides in Oktavian Nickel 

58Ni 60Ni 61Ni 62Ni 64Ni 29Si 30Si 63Cu

Si 0.452 0.211 0.071 0.058 0.152 0.038 0.095 0.06
Wi 0.671 0.27 0.012 0.04 0.01 0.002 5 � 10�5 7 � 10�5

Fig. 6. Sensitivity indices for each energy bin for (a) 58Ni and (b) 60Ni in Oktavian Nickel. 

Fig. 7. P-boxes of the integrated leakages for all nuclides uncertain (black), and all but 58Ni (red), 60Ni (blue), and 64Ni (purple). 
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shielding. Figure 9 shows the 58Ni (n,p), 93Nb (n,a), and 
27Al (n,2n) reaction rates as a function of depth for FNG, 
showing the distribution of the means. The covariance files 
for 93Nb and 27Al were missing from ENDF/B-VII.1 and 
can be seen to have had a large impact on the calculated 
output uncertainty.

IV. CONCLUSIONS

Uncertainties in fusion neutronics are more than in fis-
sion simulations. This is due to the large number of nuclides 
that must be considered in fusion problems, many of which 

have large or missing covariances. In this paper we per-
formed nuclear data uncertainty propagation with the TMC 
in three SINBAD benchmarks using OpenMC. The ENDF/B 
and TENDL nuclear data libraries were used, with Gaussian 
random samples being drawn from the libraries’ covariance 
files. Uncertainty from multiple nuclides was propagated 
simultaneously assuming independence between the uncer-
tainty between different nuclides. P-boxes were used to 
model both the statistical uncertainty of individual particle 
transport simulations and the propagated nuclear data uncer-
tainty. Comparisons between uncertain simulations and 
experiments were performed with p-boxes. The nuclear 
data uncertainty was found to be generally large in all the 

Fig. 8. Spacial simulated flux for FNG using ENDF/B-VII.1: (b) shows the mean, with (a) and (c) showing the 5% and 95% 
quantiles of the uncertainty, respectively. 

Fig. 9. Examples of reaction rates as a function of depth for FNG. Shown is the distribution of the means for ENDF/B-VII.1 and 
TENDL-2017. Covariance files for 93Nb and 27Al were missing from ENDF/B-VII.1 and had a large impact on the output 
uncertainty. 
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simulated benchmarks, but particularly at the back of the 
shielding for the FNG benchmark. We believe this is due to 
the large number of uncertain interactions the particles must 
undergo to reach the back of shields. With uncertainty being 
cumulative, the larger the number of interactions, the larger 
the uncertainty. Such conclusions are relevant for ITER and 
other fusion experiments with many meters of shielding. The 
authors plan to pursue such calculations in the future. An 
example of a reaction rate tally with uncertainty was also 
shown, with and without covariances. It was shown that 
inclusion of the covariances in a reaction rate tally has 
a large impact on the output uncertainty.

It should be noted that this approach of using the 
nuclear data covariance matrix to sample from a Gaussian 
distribution provides only an approximation to the output 
uncertainty. Ideally, the data-correct distribution should be 
used in the form of random files provided by the libraries. 
At the time of writing, this is not usually provided by the 
libraries, with the exception of TENDL, which provides 
random ENDF and ACE files for some select few nuclides, 
although even here the variety is quite limited. Such approx-
imations may significantly effect the quantiles and depen-
dencies of the output uncertainty, and the authors would 
encourage more libraries to provide random nuclear data 
files. This would also simplify the calculation in this paper, 
as it would remove the need for Gaussian sampling.
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