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Abstract

Conditions that lead to undesired fouling events in oscillatory flow crystallis-

ers are investigated. The moving fluid oscillatory baffled crystalliser is used

to mimic the operating conditions of continuous oscillatory baffled crystallis-

ers, while reducing materials and energy consumption. A non-invasive imaging

method is deployed to determine fouling induction times as a function of os-

cillatory flow conditions and supersaturation in crystallisation of glycine and

L-glutamic acid from aqueous solutions. Heterogeneous nucleation kinetics are

extracted from the distribution of fouling induction times, showing that higher

fouling nucleation rates are observed when the frequency and amplitude of the

oscillatory flow are increased. Higher oscillatory Reynolds numbers result in

increased fluid shear in the crystalliser, promoting heterogeneous nucleation at

the glass-solution interface and leading to subsequent fouling. It is therefore es-

sential to consider the dependence of fouling kinetics on operating conditions to

enable rational design of continuous crystallisers that ensure smooth and robust

operation.
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1. Introduction

In recent years, oscillatory flow reactors (OFRs) are attracting increasing at-

tention as a means to enable transformation to continuous processing [1]. OFRs

provide robust continuous operation under overall plug flow conditions while

simultaneously enhancing mass and heat transfer through the oscillatory mo-5

tion of the fluid on each of its sections [2, 3, 4, 5]. In particular, continuous

oscillatory baffled crystallisers (COBC) create favourable conditions for crys-

tallisation with reduced equipment dimensions in comparison with traditional

plug flow reactors [6, 7, 8].

COBCs are usually formed by tubular jacketed straight sections with orifice10

baffles spaced equally throughout, as shown in Figure 1. Oscillation is gen-

erated through manipulating the frequency and amplitude of the flow via a

motor, which powers a bellows mechanism. When coupled with the oscillatory

flow, each cell of the COBC acts as an individual miniature stirred tank reactor

with the ability to reach steady state. Efficient heat transfer and mixing are also15

achieved and close to plug flow conditions can be reached [9, 10, 11] when the

operation is free of encrustation on the walls of the crystalliser. However, when

the fluid oscillation conditions are not appropriately controlled, crystallisation

enhancement can also promote encrustation or fouling of crystalline material

on the walls of the reactor. This quickly becomes a major hurdle in continuous20

manufacturing environments as it can lead to shut down of the entire opera-

tion [6]. Therefore, understanding fouling mechanisms and kinetics in OFRs is

key to their successful development for crystallisation processes.

Homogeneous nucleation where crystals spontaneously nucleate in the bulk

solution is a rare occurrence. In most cases, heterogeneous nucleation dom-25

inates since this route has a more favourable energy pathway [12]. Excessive

nucleation and growth on the walls of the crystalliser can lead to blockages, heat

transfer reduction, unwanted crystal properties and false information from pro-
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Figure 1: Diagram of a continuous oscillatory baffled crystalliser (COBC), with the region of

interest for this study circled in red. The bottom left and top right arrows indicate the COBC

inlet and outlet, respectively.

cess analytical technologies which are vital for process control [1, 13]. The time

taken for fouling to reach a critical extent is of great interest since prevention30

or mitigation methods can be implemented, allowing a continuous crystallisa-

tion process to operate efficiently with appropriate measures in place. However,

monitoring fouling is a challenging task.

Various direct and indirect approaches have been used to detect and moni-

tor fouling in industrial sectors such as food processing [14, 15] and membrane35

separations [16]. Direct methods [16, 17, 18, 19, 20] rely on disassembling the

fouled unit to measure the amount and chemical composition of the fouling

material. Although these methods can be useful for understanding fouling phe-

nomena, they are not suitable for on-line monitoring. In contrast, indirect

methods enable non-invasive determination of fouling by studying its effect on40

process variables such as pressure drop [21], thermal resistance [21, 22, 23, 24],

electrical resistance [25, 26], acoustic properties [27, 28] and moisture transfer

in membrane processing [17, 29]. When a window into the process is available,

in situ optical measurements become an appealing alternative [27].

In the crystallisation field, the focus of previous studies based on imaging is45

the characterisation of crystals in the bulk solution [30]. Crystal attributes have

been extracted through both invasive probe-based techniques [31, 32, 33, 34, 35]
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and non-invasive methods. The latter include the characterisation of crystal

slurries [36] and the study of growth rates of specific crystal faces [37] via video

microscopy with high-speed capture. Imaging techniques have also shown equiv-50

alent performance to other techniques such as focused beam reflectance mea-

surement (FBRM) and UV/vis spectroscopy for determination of metastable

zone widths [38]. Furthermore, more advanced approaches based on stereo-

scopic imaging have been implemented for the determination of 3D particle size

in the bulk solution [39, 40, 41, 42, 43, 44]. In oscillatory baffled crystallisers,55

video imaging has been used to better understand the effect of its internal ge-

ometry on multiphase flow [45] and to determine crystal size distributions in

the study of growth kinetics of paracetamol [46, 47]. The influence of the os-

cillatory flow conditions on crystal nucleation in the fluid bulk have also been

investigated [48]. However, in all cases, crystals in the bulk solution were of60

interest and any crystal growth on surfaces was ignored. In this context, we

recently showed in early trials that the use of video feeds for monitoring fouling

is a promising method [49].

The aim of this paper is to study the conditions that lead to fouling in COBC

setups via non-invasive imaging. In particular, we investigate how increasing the65

frequency and amplitude of the oscillatory flow effects fouling in crystallisation of

glycine and L-glutamic acid from aqueous solutions. Two non-invasive methods

are used to detect fouling and characterise it in terms of fouling induction times:

1) a visual inspection method and 2) an automated image processing algorithm.

We then extract information on nucleation kinetics from the distribution of70

fouling induction times as a function of the operating conditions in the COBC.

2. Methods

2.1. Experimental setup

In order to understand the effect that the oscillatory flow conditions have

on the fouling outcome, it would be useful to analyse a particular section of the75

COBC shown in Figure 1, without having to operate the equipment as a whole,

4
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Figure 2: Moving Fluid Oscillatory Baffled Crystalliser (MFOBC). (a) Diagram of the ex-

perimental setup used in this work. The position of the cameras and the PTFE collars that

connect the glass components together are indicated in the figure. The setup is divided in

three different jacketed areas: the input straight (A), the crystallisation straight where the

fluid is monitored (B), and the output straight open to the atmosphere (C). (b) Image of the

MFOBC setup showing the position of one of the cameras.

reducing the consumption of raw materials and energy. With these considera-

tions in mind, the moving fluid oscillatory baffled crystalliser (MFOBC), first

introduced by Briggs [50], was the experimental platform selected for this study.

It consists of DN15 glass components which are normally used to construct the80

larger COBC. The circled area in Figure 1 shows the glass straight of interest

for monitoring fouling. This area was removed from the continuous setup and

mounted vertically to create a batch system.

The final MFOBC experimental arrangement is shown in Figure 2(a). More

details on this setup can be found in previous publications [49, 50]. Area B is the85

region of interest where cooling crystallisation occurs and fouling is expected.

Two cameras are installed at the lower and upper end of this area to monitor

the occurrence of fouling; an illustration of the position of one of the cameras

is displayed in Figure 2(b). The boundary regions A and C are kept hot to

prevent seeding and nucleation in the bellows and the balloon, respectively.90
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The balloon was placed over the top of the MFOBC – which is open to the air

– to limit the effects of evaporation and avoid evaporative crystallisation. The

temperatures of the different regions were calibrated using pure water to ensure

that the crystallisation straight was always at the predefined temperature.

2.2. Experimental conditions95

Hot supersaturated solution was pumped in to the MFOBC using a peri-

staltic pump via a port at the base of the equipment. The MFOBC was filled so

that the upper half straight was approximately 75% full. At this point, the oscil-

lation was initiated and temperatures were recorded as the experiment was run.

The total volume of solution present in the equipment, including the fluid inside100

the unjacketed bellows section was approximately 420 ml in each experiment.

Glycine (purity ≥ 99%; CAS number 56-40-6) and β-L-glutamic acid (purity

≥ 98.5%; ≤ 0.1% of α form; CAS number 56-86-0), both purchased from Sigma-

Aldrich, were chosen for analysis in the MFOBC due to the detailed data avail-

able on their solubility in water (glycine [51, 52]; L-glutamic acid [52, 53]). All105

the solutions were prepared using deionised water sourced from a Thermo Sci-

entific Barnstead Reverse Osmosis water purification unit. Table 1 summarises

the range of experimental conditions studied in this work. The concentrations

of the aqueous solutions were chosen based on their corresponding values of

supersaturation (S) at the crystallisation temperature in the cold straight.110

In order to study the effect of the oscillation conditions on the occurrence of

fouling, two different oscillation frequencies (i.e. 1 and 2 Hz) were applied to all

experiments. For the experiments with L-glutamic acid, the amplitude of the

flow oscillation was set to 45 mm—the equivalent to the height of two cells in the

MFOBC. For glycine, two different oscillation amplitudes (i.e. 23 and 45 mm)115

were tested. In order to avoid crystallisation in the upper straight, the solution

had to be kept hot enough. For L-glutamic acid, this could only be achieved at

amplitude of 45 mm, where the heat transfer from the jacket was fast enough,

as higher temperature was required than for glycine to prevent crystallisation

on the upper straight. Greater amplitudes were unable to be achieved due to120
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System Glycine L-glutamic acid

Temperature (°C) 20 20 30

Concentration (g/L) 385 28.3 42.4

Supersaturation [51, 52, 53] 1.8 4.0 6.0 4.2

Amplitude (mm) 23 45 45

Frequency (Hz) 1 2 1 2 1 2 1 2 1 2

Table 1: Summary of experimental conditions in the MFOBC.

the competing temperatures between the three glass straights in the system.

Increasing the amplitude further meant that the chiller unit would have to run

at lower temperatures. However, this resulted in condensation on the outer glass

wall of the MFOBC making imaging of the region of interest impossible.

To ensure the reproducibility of the results, at least five repetitions were per-125

formed for each concentration and oscillation condition. All data underpinning

this publication are openly available from the University of Strathclyde Knowl-

edgeBase at https://doi.org/10.15129/6d07001a-ad6c-4e0b-bdbb-f8ebf74c142e.

2.3. Fouling detection methods

The objective of the non-invasive imaging technique described in this paper is130

to elicit more quantitative information on the effects the operating parameters of

the MFOBC exert on fouling behaviour. During an experiment in the MFOBC,

images were taken of the crystallisation straight at two independent positions

(i.e. at two different heights; 66.5 cm and 88.0 cm), as shown in Figure 2(a).

No preferential areas for fouling were observed under the conditions of this135

study. However, it is important to note that, for systems where fouling does

not occur evenly in the crystalliser, more careful consideration of the position

of the cameras may be required. Microsoft LifeCam VX-3000 webcams with

manual adjustable focus were aligned with the center of MFOBC cells, as shown

in Figure 2(b). The focus was sharpened so that the glass wall was clearly140

viewed. The YAWCAM software [54] was used to save simultaneous images

from the two cameras every three seconds. The cameras were contained within
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Figure 3: Visual inspection method for fouling detection. The white rectangle indicates the

region analysed in the original image. In the resulting pixel intensity maps, bright areas

correspond to denser fouling.

a box lined with black foam which was mounted to the MFOBC. An LED

torch with a white diffuser was placed inside the box. This environment created

suitable illumination conditions, making the experiments more reproducible and145

producing images of better quality.

The image sets generated in the experiments were further analysed. First,

the images were converted to greyscale where all pixels were given a value be-

tween 0 (black) and 255 (white) based on their intensity. A threshold pixel

intensity of 5 was set to eliminate noise in the images but still be sensitive150

enough to detect the first signs of fouling. The first image in the set, for which

no fouling had yet occurred, was subtracted from every other image in the se-

quence to eliminate background effects. Then, as shown in Figure 3, a region

of the image was defined to carry out the analysis. This region was the same

for all image sets. Finally, two different methods were used for determination155

of fouling induction times:

(a) Visual inspection method: A pixel intensity heat map was generated to

enable easier detection of fouling in the selected region – see Figure 3.

Fouling induction times were obtained through visually inspecting the

software interface as it ran through the image sequence. When growth on160

the wall commenced, the fouled pixels became more intense and persistent.
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In contrast, crystallisation in the bulk had lower intensity since the camera

was focused on the wall. Additionally, due to the oscillation of the flow,

the distinction between material which was stationary (i.e. fouling) and

material which was in constant motion (i.e. crystals in the bulk fluid) was165

clear. The fouling induction time was defined as the time when the first

crystal appeared and persisted on the glass surface.

(b) Automated image processing method: An alternative method was devel-

oped to minimise human intervention in the determination of fouling in-

duction times. The average pixel intensity of the selected region was170

plotted over time, as shown in Figure 4. The characteristic shape of the

resulting curves with a noticeable intensity rise when fouling became more

extensive gave the opportunity to automate the analysis. The fouling in-

duction time is defined as the time at which the average pixel intensity

of the region rises above a value of 10 and this condition persists for at175

least 10 consecutive frames. The latter condition is included to discard

outliers. For example, Figure 4 shows an initial short pixel intensity spike

that is due to an erroneous frame captured by the camera, as shown in

Figure B.10 in the Appendix. Outliers could also be caused by the pres-

ence of bubbles or nucleation events in the bulk liquid. These occurrences180

are not to be confused with the persistent fouling event observed later.

The specific persistence threshold of 10 frames is selected based on a sen-

sitivity analysis of its effect on the mean fouling induction time for glycine

and L-glutamic acid, as shown in Figure B.11 in the Appendix.

2.4. Analysis of fouling induction times185

Fouling nucleation phenomena are usually characterised in terms of mean

induction times. However, the experimentally measurable induction times are a

convolution of two effects: the actual nucleation of a crystal on the wall of the

crystalliser and the growth of this crystal until detectable sizes. Therefore, the

9

Effect of oscillatory flow conditions on crystalliser fouling investigated through non-invasive imaging



0 20 40 60 80
Time / min

0

20

40

60

80

Av
er

ag
e 

pi
xe

l i
nt

en
sit

y

detection
threshold

fouling
induction
time

*

*

Figure 4: Automated image processing method for fouling detection. Evolution of the average

pixel intensity of the analysed region with time. The red dot indicates the fouling induction

time that corresponds to the indicated detection threshold (black dotted line). Green asterisks

represent outliers.

determination of fouling induction times enables further study of both fouling190

nucleation rates and growth kinetics.

The experimental probability distribution of induction times is given by:

P (t) =
M+(t)

M
(1)

where M+(t) is the number of experiments where fouling is detected at time t

and M is the total number of experiments.

Assuming time-independent nucleation rate, the probability distribution of

induction times P (t) can be described using a Poisson distribution [55]. The

probability that at least one nucleus is created during a time interval t − tg is

given by:

P (t) = 1 − exp [−J (t− tg)] (2)

where J is the overall nucleation rate in terms of the number of nuclei formed

per unit time in the region under observation, and tg is the growth time, i.e. the

time delay between the appearance of one crystal nucleus and the time required

for this nucleus to grow to detectable sizes, t. Rearranging Equation 2 results

in:

ln [1 − P (t)] = −Jt+ Jtg (3)
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A linear fit of this model to the experimental cumulative probability distribution

of induction times P (t) using the least squares method leads to the determina-195

tion of the nucleation rate J and the growth time tg.

3. Results and discussion

Experiments were carried out in the MFOBC to establish the effect of os-

cillatory flow parameters (i.e. frequency and amplitude) on fouling induction

times. The procedure to establish the desired temperature and supersaturation200

profiles in the MFOBC is presented first. This is followed by the determination

of fouling induction times and corresponding nucleation kinetics for aqueous so-

lutions of glycine and L-glutamic acid at different concentrations and oscillatory

flow conditions.

3.1. Determination of temperature profiles in the MFOBC205

The MFOBC was characterised to establish the temperature profiles within

the equipment. This was achieved through adjusting the jacket temperatures

of each glass straight (i.e. sections A, B and C in Figure 2(a)) in a calibra-

tion experiment with water. The following temperatures were crucial: 1) TA,

which should be high enough to avoid nucleation in the bellows section, 2) TB ,210

the crystallisation temperature in the cold straight, and 3) TC , high enough

so that nucleation was guaranteed to take place in the crystallisation straight

first. By way of example, Figure 5 shows the temperature profile achieved in

the calibration experiment when the target for TB was set to 20°C. To ratio-

nalise the choices of temperature, the supersaturations along the height of the215

MFOBC were also calculated based on this measured temperature profile, us-

ing solubility data available in the literature for glycine [51, 52] and L-glutamic

acid [52, 53]. Figure 5 includes the corresponding supersaturation profiles for

aqueous solutions of L-glutamic acid at 21.2, 28.3 and 42.4 g/L. Examples of the

actual temperature profiles recorded during the experiments with glycine and L-220

glutamic acid are shown in the Appendix (see Figure A.9(a) and Figure A.9(b),

respectively).
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A CB

Figure 5: Temperature profile (yellow diamonds) obtained during calibration with pure water

and expected supersaturation profiles for L-glutamic acid aqueous solutions at 42.4 g/L (blue

circles), 28.3 g/L (orange squares) and 21.2 g/L (grey triangles). The position of the cameras

and the PTFE collars (vertical bars) in the MFOBC are indicated in the figure, along with the

extension of the input straight (A), the crystallisation straight (B), and the output straight

(C).

Two crystallisation temperatures (TB) were tested in the case of L-glutamic

acid (i.e. 20°C and 30°C), while all experiments with glycine were performed at

20°C. After 3.5 hours of experiment, crystallisation was not achieved for glycine225

solutions at 299.06 g/L (S=1.4 at 20°C). The same situation was observed for

the 21.2 g/L L-glutamic acid solution (S=3 at 20°C). Therefore, nucleation was

hindered in the lower (A) and upper (C) straights of the MFOBC by keeping the

temperature in these sections above a value that guaranteed supersaturations

lower than 1.4 and 3 for glycine and L-glutamic acid, respectively. Heating of230

the upper straight also ensured that any undesired crystallisation at the top of

the upper straight would be avoided as the walls would be periodically washed

by a hot solution.

3.2. Fouling induction times

The temperature profiles defined in the previous section were applied to the235

set of experiments introduced in Table 1. The aim was to study the influence of

oscillation conditions and solution supersaturation on fouling induction times in

the MFOBC. The data obtained from the image-based fouling monitoring setup

12
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(b) L-glutamic acid(a) Glycine

Figure 6: Evolution of average pixel intensity for (a) all glycine experiments at 20°C and 385

g/L (S=1.8) with an oscillation amplitude of 23 mm, and (b) all L-glutamic acid experiments

at 20°C and 42.4 g/L (S=6) with an oscillation amplitude of 45 mm. The black dotted line

represents the fouling detection threshold for the automated method.

were analysed to extract this information.

The time evolution of the average pixel intensity of the regions of interest, for240

several repetitions of glycine and L-glutamic acid fouling experiments at 20°C,

are shown in Figure 6(a) and Figure 6(b), respectively. The experiments are

performed under two different oscillatory flow frequencies (i.e. 1 Hz and 2 Hz).

These figures include results from both the lower and the upper cameras since

no significant differences were observed between the two regions under study.245

The curves have a characteristic sigmoidal shape where a sharp increase in av-

erage pixel intensity is triggered by the occurrence of fouling on the walls of the

MFOBC. Despite the randomness of the nucleation events leading to fouling,

a shift to shorter induction times is observed when the oscillation frequency is

raised from 1 to 2 Hz for both systems. In some cases, an intensity drop is250

observed towards the end of the runs, likely due to detachment of encrustation

after a certain level of deposition is achieved. An example of this behaviour is

shown in Figure B.12 in the Appendix, where it is suspected that eddy forma-

tion around the baffles constriction generates higher local shear, which provide

sufficient force to dislodge adhering solids.255
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In order to enable a simpler comparison between experimental conditions,

the fouling events were quantified in terms of fouling induction times using both

the visual inspection and the automated image processing methods previously

described. The black dotted lines in Figure 6 illustrate the fouling detection

threshold used by the automated method.260

System
Operating conditions Mean induction time (min)

T (°C) S f (Hz) x0 (mm) Visual Automated

Glycine

20 1.8 1 23 57 ± 6 61 ± 6

20 1.8 2 23 24 ± 2 26 ± 2

20 1.8 1 45 26 ± 3 28 ± 3

20 1.8 2 45 11 ± 1 12 ± 1

L-glutamic

acid

20 6 1 45 14 ± 2 22 ± 2

20 6 2 45 9 ± 1 15 ± 2

20 4 1 45 130 ± 30 170 ± 20

20 4 2 45 80 ± 20 70 ± 8

30 4.2 1 45 25 ± 4 36 ± 3

30 4.2 2 45 11 ± 2 19 ± 2

Table 2: Mean induction times for glycine and L-glutamic acid experiments obtained with the

visual inspection and the automated image analysis methods. The error values correspond to

one standard deviation.

The resulting mean induction times for each set of conditions used in the

glycine and L-glutamic acid experiments can be found in Table 2. Figure B.13 in

the Appendix displays the individual fouling induction times used to calculate

this mean. In general, good agreement is achieved between the fouling induction

times provided by image processing and visual inspection methods, although the265

former tend to be slightly longer. This is expected since the visual inspection

method can detect individual fouling events occurring early in the process while

the automated image processing method provides an aggregated view through

the average pixel intensity of the entire region of interest. More extended fouling

coverage is required to trigger a detection in this case. Nevertheless, initial270

fouling by a limited number of single crystals on the glass walls is not a major
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manufacturing concern. The fouling levels achieved when the image processing

method generates a warning remain low and effective corrective actions can still

be put in place.

On closer inspection, the fouling induction times for the glycine dataset275

reveal some key features of the effect of the oscillation conditions in the MFOBC.

As observed in Table 2 and Figure B.13(a), and as anticipated from the results

observed in Figure 6(a), increasing the oscillation frequency from 1 to 2 Hz

results in shorter fouling induction times. This is also the case for all studied

combinations of temperature and supersaturation studied for L-glutamic acid280

(i.e. [20°C, S=6], [20°C, S=4] and [30°C, S=4.2]). Higher frequencies increase

fluid shear and encourage nucleation on the glass surface at a greater rate [56,

57, 58, 59, 60]. In addition, the results obtained for glycine reveal that increasing

the amplitude of the flow oscillation also decreases fouling induction times. The

effect is similar to the one observed when the oscillation frequency is raised since285

increasing the amplitude of the oscillation promotes fluid shear in the system

that enhances crystal nucleation. As expected, the combination of increasing

the two variables simultaneously has the largest effect on the early appearance

of fouling.

For L-glutamic acid, increasing the supersaturation of the solution in the290

cold straight from S=4 to S=6, decreases the fouling induction time by almost

one order of magnitude, independently of the oscillation frequency. As expected,

nucleation is faster and therefore shorter fouling induction times are observed at

higher supersaturation at a given temperature. The opposite effect is observed

when the temperature in the crystallisation straight is increased from 20°C to295

30°C at a given solution concentration (i.e. 42.4 g/L). The temperature increase

translates into a supersaturation drop from S=6 to S=4.2 that reduces the

driving force for crystallisation and hence leads to slower nucleation rates and

longer fouling induction times.

15
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(b)(a)

Figure 7: Fouling nucleation rates (blue squares) and growth times (red circles) for (a) glycine

and (b) L-glutamic acid aqueous solutions at different levels of supersaturation and oscillatory

flow conditions. Closed symbols correspond to results obtained with the automated image

processing method while open symbols represent results obtained through visual inspection.

The nucleation kinetics parameters for L-glutamic acid at 20°C and S=4 are not displayed

for the automated image processing method due to limited number of samples to achieve a

representative fit of the Poisson distribution model.

3.3. Nucleation rates and growth times300

The Poisson distribution model [55] (Equations 2 and 3) provides a frame-

work to further extract fouling nucleation kinetics from the distribution of foul-

ing induction times. The fits of this model to the cumulative probability dis-

tribution of induction times for every experimental condition are shown in Fig-

ure C.14 in the Appendix. The estimated values of the nucleation rates J and305

the growth times tg are displayed in Figure 7, and summarised in Table C.3 and

Table C.4 in the Appendix. It can be noted that changing the frequency by 1 Hz

has approximately the same effect on J and tg as changing the amplitude by

22 mm, as shown in Figure 7(a). This indicates that amplitude and frequency

have a synergistic effect in affecting fouling nucleation kinetics. In the case of310

L-glutamic acid, a similar trend is observed on the effect of frequency on fouling

nucleation kinetics, as shown in Figure 7(b).

The combined effect of frequency f and amplitude x0 of the oscillatory flow

on nucleation kinetics can be characterised in terms of the oscillatory Reynolds
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Figure 8: Fouling nucleation rates (blue squares) and growth times (red circles) for glycine

aqueous solutions at different oscillatory flow conditions. Closed symbols correspond to results

obtained with the automated image processing method while open symbols represent results

obtained through visual inspection. For nucleation rates, some of the results obtained with

these two methods overlap and some error bars are smaller than the symbol size. Dashed lines

are a guide to the eye.

number Reo [1, 45, 61, 62], given by:

Reo =
2πfx0ρde

µ
, (4)

where ρ and µ are the fluid density and dynamic viscosity, respectively, and de is

the effective tube diameter. For systems at constant temperature and pressure

studied within fixed equipment (i.e. constant de), the oscillatory Reynolds num-315

ber is proportional to the product of amplitude and frequency of the oscillatory

flow (i.e. x0f).

Figure 8 shows the effect of x0f on fouling nucleation rate and growth time

for the glycine system. Good agreement is achieved between visual inspec-

tion and automated image processing, with all the results falling within the320

error bars of the two methods (corresponding to one standard deviation). The

fouling nucleation rate and the fouling growth time have a strong but inverse

dependence on the product x0f , and therefore on the oscillatory Reynolds num-

ber Reo. These observations suggest that the oscillatory Reynolds number is

a good indicator of the effect of fluid flow on nucleation kinetics in oscillatory325
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flow crystallisers.

The results of this study are consistent with previous investigations on the

effect of fluid shear on crystal nucleation. Yang et al. observed that induction

times in the bulk fluid of butyl paraben-ethanol solutions decreased with in-

creasing amplitude and frequency of the oscillatory flow in COBC and MFOBC330

setups [48]. Forsyth et al. also showed that increasing the shear rate leads to

larger nucleation rates and shorter growth times for glycine aqueous solutions

in Couette and capillary flow setups [59]. Furthermore, using Couette cells,

primary nucleation kinetics were shown to increase with larger glass-liquid in-

terfacial areas [60], indicating that heterogeneous nucleation on glass surfaces335

would be the predominant mechanism for primary nucleation. Since the oscilla-

tory Reynolds number is proportional to the peak shear rate, a similar scenario

is expected in COBC and MFOBC setups. The highest primary nucleation

rates occur where shear rates are the highest, leading to onset of fouling on the

walls of the crystalliser and inducing subsequent secondary nucleation in the340

bulk liquid. While previous work hypothesised this scenario based on indirect

observations [48, 60], here we validate this insight through direct measurements

of heterogeneous nucleation on the wall of the crystalliser.

4. Conclusions

The influence of oscillatory flow conditions on the occurrence of fouling is345

studied here for the first time in oscillatory baffled crystallisers. The fouling

phenomena expected in the COBC are reproduced in the compact MFOBC,

reducing the consumption of materials and energy during the experiments. A

non-invasive and automated imaging method based on commodity web cameras

is used to capture fouling events and determine fouling induction times in glycine350

and L-glutamic acid aqueous solutions. The results are validated through visual

inspection and the imaging technique is shown to be sensitive enough to provide

timely early warnings of fouling in the system.

This paper shows that higher frequencies and larger amplitudes of the flow
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oscillation result in increased fluid shear that promotes heterogeneous nucleation355

on the crystalliser walls, leading to fouling. A Poisson distribution model is used

to determine fouling nucleation kinetics from the distribution of induction times.

The analysis reveals that increasing the oscillatory Reynolds number leads to

increased fouling nucleation rates and shorter growth times, in agreement with

previous work investigating effects of fluid shear on primary nucleation.360

The results obtained in this work provide further insight to enable better

understanding and control of crystal nucleation on the crystalliser walls as a

key to ensuring a stable operation in continuous crystallisation processes.
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Appendix A. Temperature profiles655

(a) (b)

20oC 1 Hz 45 mm

20oC 2 Hz 45 mm
30oC 1 Hz 45 mm
30oC 2 Hz 45 mm

1 Hz 45 mm

2 Hz 45 mm

1 Hz 23 mm
2 Hz 23 mm

Figure A.9: Temperature profiles in the MFOBC for: (a) glycine aqueous solutions at 385

g/L and a crystallisation temperature of 20 °C and (b) L-glutamic acid aqueous solutions at

42.4 g/L. The vertical bars represent the position of the PTFE collars in the MFOBC.

Appendix B. Determination of fouling induction times

Figure B.10: Example of 5 consecutive frames from a glycine experiment at 20°C and 385 g/L

(S=1.8) with an oscillation frequency of 1 Hz and amplitude of 23 mm. The outlier observed

in the central frame was detected and discarded by the image analysis algorithm due to lack

of persistence of the bright signal.
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(b) L-glutamic acid(a) Glycine

Figure B.11: Effect of persistence threshold on mean fouling induction times obtained with

the automated image processing method for (a) glycine and (b) L-glutamic acid aqueous

solutions. The dotted black line indicates the selected persistence threshold (i.e. the pixel

intensity remains above the fouling detection threshold for longer than 10 consecutive frames).

Dashed lines are a guide to the eye.

Figure B.12: Example of an event of encrustation detachment over time after extensive fouling

has occurred during an L-glutamic acid experiment.
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(b) L-glutamic acid(a) Glycine

Figure B.13: Effect of oscillation conditions, temperature and concentration on fouling induc-

tion times of (a) glycine and (b) L-glutamic acid aqueous solutions. Closed symbols correspond

to results obtained with the automated image processing method while open symbols represent

results obtained through visual inspection.

Appendix C. Fouling nucleation and growth kinetics

(a) (b)

(d)(c)

Figure C.14: Cumulative probability distributions of fouling induction times for glycine: (a)

automated image processing method and (b) visual inspection method; and L-glutamic acid:

(c) automated image processing method and (d) visual inspection method. Symbols represent

experimental data while solid lines show the corresponding Poisson distribution fits.
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Operating conditions Nucleation rate J (min−1) Growth time tg (min)

f (Hz) x0 (mm) Visual Automated Visual Automated

1 23 0.038 ± 0.003 0.038 ± 0.003 29 ± 5 33 ± 6

2 23 0.102 ± 0.01 0.099 ± 0.007 14 ± 3 16 ± 3

1 45 0.076 ± 0.006 0.075 ± 0.006 12 ± 3 14 ± 3

2 45 0.35 ± 0.02 0.32 ± 0.02 8 ± 1 8 ± 1

Table C.3: Fouling nucleation rates and growth times for for 385 g/L glycine solutions at

20 °C (S=1.8) using both the visual inspection and the automated image processing methods.

Operating conditions Nucleation rate J (min−1) Growth time tg (min)

T (°C) S f (Hz) Visual Automated Visual Automated

20 6 1 0.20 ± 0.02 0.15 ± 0.02 9 ± 2 15 ± 4

20 6 2 0.29 ± 0.04 0.19 ± 0.03 6 ± 2 9 ± 3

20 4 1 0.011 ± 0.001 – 30 ± 20 –

20 4 2 0.018 ± 0.002 – 19 ± 8 –

30 4.2 1 0.083 ± 0.007 0.09 ± 0.03 12 ± 3 30 ± 11

30 4.2 2 0.22 ± 0.02 0.13 ± 0.02 5 ± 1 12 ± 3

Table C.4: Fouling nucleation rates and growth times for L-glutamic acid experiments using

both the visual inspection and the automated image processing methods. The nucleation

kinetics parameters at 20°C and S=4 are not displayed for the automated image process-

ing method due to limited number of samples to achieve a representative fit of the Poisson

distribution model.
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