

Community Exposure Assessment to Anti-microbial Resistance (AMR); case study of Malawi

¹Centre for Water, Sanitation, Health and Appropriate Technology Development (WASHTED), Malawi ² Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi. ³Liverpool School of Tropical Medicine, Liverpool, UK. ⁴Department of Environmental Health, Malawi University of Business and Applied Sciences, Blantyre, Malawi ⁵Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK. Email: taomwapasa@gmail.com

Background

- Anti-microbial resistance is currently one of the greatest global health threat (CDC, 2020, WHO, 2020).
- Efforts have previously focused on the healthcare sector through antibiotic stewardship and surveillance (Cueni, 2020)
- Poor water, sanitation and hygiene (WASH) practices and infrastructure contribute to the transmission of resistant bacteria (Iskandar et al., 2020)
- Low-and middle-income countries (LMICs) such as Malawi have pre-existing WASH challenges, which increase the risk of population exposure to AMR (Cassivi et al., 2020).
- There is an existing knowledge gap regarding the prevalence of AMR in the wider community environment (Ahammad et al., 2018)

Study Objectives П.

Main study objective

Examine potential human and spaces in both urban and rural

Specific objectives Understand contributing practices to environmental contamination

- and exposure.
- exposure in the environment
- Determine the presence of resistant ESBL *E. coli* and *K*. pneumoniae in the exposure pathways

III. Methods

- Data collected monthly from September 2020-April 2021 Method based on the principles of the Sanipath tool (https://www.sanipath.net)
- Conducted in 3 study sites; Ndirande (Urban), Chileka (Periurban) and Chikwawa (Rural)
- In-depth Interviews with community leaders (n=9) selected purposively to understand the WASH status in the study sites
- Transect walks in 3 sections of each study site to identify potential transmission pathways
- 40 environmental samples from potential transmission pathways collected every month at each study site (n=120/month)
- Thematic analysis was used to generate themes from the interviews
- Samples were pre-processed (filtration, enrichment) and then grown on ESBL CHROMagar[™] media to identify ESBL *E.coli* and ESBL K. Pneumoniae isolates.
- Univariate analysis conducted using Stata 14.0 (College Station, TX: StataCorp LP) to describe the data.

Figure 2: Sample collection from a drain

IV. Results: Interviews & transect walks

Infrastructure:

Poor bathrooms and latrines leading to open drains

WASH practices:

- Poor solid waste disposal in the urban and peri-urban
- Poor animal waste management and disposal. **Perceived Risk:**
- Open wells and rivers perceived as safe sources of water for household chores but not for drinking.

Identified transmission pathways: Drains

- Standing water
- Areas of frequent hand contact (e.g. borehole handles)
- Soil (dumping sites and playing areas).
- (Examples of transmission pathways shown in Figure 4)
- Pathway Drain water Standing water Bathing water Contact Public taps Waste disposal sites Broken pipes Soil Animals Contact

Taonga Mwapasa^{*1}, Madalitso Mphasa², Derek Cocker^{2, 3}, Kondwani Chidziwisano^{1,4}, Nicholas Feasey^{2,3} and Tracy Morse ^{1,5}

animal exposure to AMR in public settings in Southern Malawi

Identify potential risk pathways of

Figure 1: Data collection team

Type of exposure Contact/ingestion

Contact/ingestion

Contact/ingestion

Contact/ingestion

Contact/ingestion

Contact/ingestion

Figure 5: Sample distribution per type

Figure 8 : ESBL positivity per site each month, stratified by bacterial species

V. Conclusions

- Poor hygiene practices & infrastructure in communities, lead to contaminated Drains and standing water are the major transmission pathways in community
- Presence of ESBL E.coli & K. pneumoniae in over half of the transmission pathways in the urban site indicates a greater exposure of the urban population to ESBL E.coli & K.
- The persistence and high levels of ESBL bacteria throughout both wet and dry seasons point towards a continued and ongoing risk within the broader environment Environmental water, sanitation and hygiene conditions need to be improved to reduce

Citation

- Ahammad, S., Arduino, M., Husman, A. M. de R., Durso, L., Edge, T., (2018). *Initiatives for Addressing Antimicrobial Resistance in the* Environment: Current Situation and Challenges. https://wellcome.org/sites/default/files/antimicrobial-resistance-environment-
- Cueni, T. (2020). How to stop drug-resistant superbugs from causing the next pandemic. World Economic Forum.
- Cassivi, A., Tilley, E., Waygood, E. O. D., & Dorea, C. (2020). Trends in access to water and sanitation in Malawi: Progress and
- Iskandar, K., Molinier, L., Hallit, S., Sartelli, M., Catena, F., Coccolini, F., Craig Hardcastle, T., Roques, C., & Salameh, P. (2020). Drivers of Antibiotic Resistance Transmission in Low- and Middle-Income Countries from a "One Health" Perspective—A Review. Antibiotics,
- WHO, W. H. O. (2020). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance