
polymers

Article

Liquid-Crystal Ordering and Microphase Separation in the
Lamellar Phase of Rod-Coil-Rod Triblock Copolymers.
Molecular Theory and Computer Simulations

Mikhail A. Osipov 1,2,*, Maxim V. Gorkunov 2,3 , Alexander A. Antonov 2,3 , Anatoly V. Berezkin 2 and
Yaroslav V. Kudryavtsev 2,4

����������
�������

Citation: Osipov, M.A.;

Gorkunov, M.V.; Antonov, A.A.;

Berezkin, A.V.; Kudryavtsev, Y.V.

Liquid-Crystal Ordering and

Microphase Separation in the

Lamellar Phase of Rod-Coil-Rod

Triblock Copolymers. Molecular

Theory and Computer Simulations.

Polymers 2021, 13, 3392. https://

doi.org/10.3390/polym13193392

Academic Editor: Masoud Jabbari

Received: 14 September 2021

Accepted: 27 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
2 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia;

gorkunov@crys.ras.ru (M.V.G.); antonov.wasd@yandex.ru (A.A.A.); berezkin.anatoly@rambler.ru (A.V.B.);
yar@ips.ac.ru (Y.V.K.)

3 Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”,
Russian Academy of Sciences, 119333 Moscow, Russia

4 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,
119071 Moscow, Russia

* Correspondence: m.osipov@strath.ac.uk

Abstract: A molecular model of the orientationally ordered lamellar phase exhibited by asymmetric
rod-coil-rod triblock copolymers has been developed using the density-functional approach and gen-
eralizing the molecular-statistical theory of rod-coil diblock copolymers. An approximate expression
for the free energy of the lamellar phase has been obtained in terms of the direct correlation functions
of the system, the Flory-Huggins parameter and the Maier-Saupe orientational interaction potential
between rods. A detailed derivation of several rod-rod and rod-coil density-density correlation
functions required to evaluate the free energy is presented. The orientational and translational
order parameters of rod and coil segments depending on the temperature and triblock asymmetry
have been calculated numerically by direct minimization of the free energy. Different structure and
ordering of the lamellar phase at high and low values of the triblock asymmetry is revealed and
analyzed in detail. Asymmetric rod-coil-rod triblock copolymers have been simulated using the
method of dissipative particle dynamics in the broad range of the Flory-Huggins parameter and
for several values of the triblock asymmetry. It has been found that the lamellar phase appears to
be the most stable one at strong segregation. The density distribution of the coil segments and the
segments of the two different rods have been determined for different values of the segregation
strength. The simulations confirm the existence of a weakly ordered lamellar phase predicted by the
density-functional theory, in which the short rods separate from the long ones and are characterized
by weak positional ordering.

Keywords: phase transitions; block copolymers; liquid crystals; microphase separation

1. Introduction

Rod-coil block copolymers are very interesting soft matter systems which combine
the properties of coil-coil block copolymers and liquid crystals. They exhibit a large
variety of anisotropic phases which are characterized by different types of translational
and orientational ordering and are considered to be promising materials for applications
in polymer photovoltaics, LEDs, thin-film transistors, and sensors [1–4] not to mention a
plethora of tunable micellar structures in solutions [5]. Such copolymers are composed
of flexible and rigid fragments of various chemical structure. Their rigid anisotropic
fragments can be orientationally ordered both due to the anisotropic interaction between
them (π − π conjugation, H-bonding, etc.) and due to the intrinsic macroscopic anisotropy
of the separated domains. The most stable phase exhibited by rod-coil copolymers is the
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orthogonal lamellar phase which has exactly the same symmetry as the smectic A liquid
crystal phase [6].

From the materials science point of view, triblock copolymers attract significant atten-
tion because of their architecture, which enables one to tune the macroscopic properties
by changing the position, structure, and length of the third block [7,8]. In contrast to
diblock copolymers, in the lamellar phase the triblock macromolecules can be in the looped
and bridged configurations. In the looped case, the terminal blocks belong to the same
layer, while in the bridged one, the tails reside in two different layers separated by a
domain occupied by middle blocks. The presence of such bridges strongly affects the
mechanical properties of block copolymer materials including, for example, thermoplastic
elastomers [9]. It should be also noted that the overall structure of coil-rod-coil triblock
copolymers is most reminiscent of conventional liquid crystals which usually possess a
rod-like rigid core and two flexible tails. At the same time, the triblock macromolecules
are significantly larger than typical low-molar-mass mesogenic molecules and the flexible
blocks are substantially longer.

So far the statistical theory of triblock copolymers has been developed using two
different approaches. The first approach is based on the Landau—de Gennes expansion
of the free energy in terms of the translational order parameters [10–12]. The coefficients
of such an expansion have been evaluated in terms of the monomer-monomer correlation
functions of the ideal (Gaussian) polymer chains derived following the approach proposed
by Leibler [13]. This theory enables one to describe various non-conventional morphologies,
which have been overlooked in other approaches. One notes, however, that this approach
is valid in the vicinity of the transition into the isotropic disordered phase. The equilibrium
monomer density also contains only one Fourier harmonic and hence it can be used in
the case of weak segregation only [14]. Another approach employs the self-consistent
field theory (SCFT) which has been successfully used for the description of coil-coil and
rod-coil diblock copolymers [15–22]. In this theory, the free energy of a single chain in a self-
consistent mean-field is calculated by numerically evaluating the path integral along the
chain or by solving the generalized diffusion equations for several joint worm-like chains.
So far, SCFT based on path integral calculation has been applied only to the coil-coil-coil
and coil-rod-coil triblock copolymers [23].

Another version of SCFT based on the model or worm-like chains has been also
applied to rod-coil triblock copolymers [20,21,24–31]. One notes that even with recently
developed effective numerical algorithms [22,32], SCFT remains computationally chal-
lenging particularly in the case of long triblock macromolecules with rigid fragments
characterized by many orientational and translational degrees of freedom. As a result, the
existing theory of rod-coil triblock copolymers employs a crude lattice model and does
not take into consideration the orientational interaction between rigid fragments. The
theory also does not describe the orientational ordering in rod-coil triblock copolymers [33].
Solution-based systems containing copolymers with rod-like blocks demonstrate even
more complex behavior which stimulates using simplified scaling approaches [34]. SCFT
has also been used to describe chain folding morphology of semicrystalline polymers based
on a rod–coil multiblock model [35]. Molecular dynamics simulations have also been
performed by Wilson et al. [36,37] in an isothermal-isobaric ensemble where the rigid block
was represented by a spherocylinder and the coil was modeled by a sequence of tangential
spheres. It has been shown that multiblock rod-coil copolymers can self-assemble into more
complex structures, especially in solutions, where the simulations predicted formation of
nanowires [37].

Recently, the general density functional approach, which is successfully used in the
molecular theory of liquid crystals [38–42], has been applied by the authors to develop
a molecular statistical theory of rod-coil diblock copolymers [43–45]. In this approach,
the free energy is expressed as a functional of the equilibrium densities of rod and coil
monomer units. Integral equations for these densities are obtained by minimization of the
free energy functional. One notes that the density functional theory is not based on the
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expansion in terms of the order parameters. The monomer densities are nonlinear functions
of the order parameters and hence contain an infinite number of Fourier harmonics. Thus
the theory is expected to be approximately valid also in the case of relatively strong
segregation far from the transition into the disordered phase. At the same time, the theory
also employs the density-density correlation functions for Gaussian chains which are also
used in the Landau—de Gennes theory of rod-coil block copolymers [46]. Such a density
functional theory is not as precise as the full SCFT, but it is also much less computationally
challenging and can be used to calculate detailed orientational and translational order
parameter profiles in an efficient way [43,44].

Coarse-grained computer simulations of triblock copolymers are most popular for
mapping out the morphological phase diagrams in solutions and for identifying potentially
interesting aggregate structures [47,48]. Self-assembly of rod-coil-rod triblocks in rod-
or coil-selective solvents can be predicted with Langevin dynamics [49] or dissipative
particle dynamics (DPD) [50]. DPD simulations can be specific to the chemical nature
of copolymers, for example, the flow behavior of pluronics [51] and the effect of dop-
ing of polypeptide rod-coil-rod copolymers with Au nanoparticles [52] can be analyzed.
Microphase separation of triblock copolymers in the bulk can be effectively addressed
provided that they contain no rigid blocks [53], while the studies of roil-coil-rod systems
are still scarce since rearrangements of stacked rods take a lot of computation time in the
absence of solvent. After the first Monte Carlo simulation of rod-coil-rod and coil-rod-coil
aggregation in thin films [54], only two papers have been published up to date: a DPD
study of rod-coil-rod copolymer self-assembly within a planar slit [55], where parallel
half-cylinders and arrowhead-shaped morphology appeared for the copolymers with long
symmetric rods, and a Brownian dynamics study [56], in which liquid crystalline ordering
which leads to the hierarchical lamellar-in-lamella structures peculiar to such copolymers
was addressed. In the present study, we simulate asymmetric rod-coil-rod triblock copoly-
mers using the DPD technique previously applied by us for the investigation of the tilted
phase in rod-coil diblock copolymers [45,57].

The paper is arranged as follows. In Section 2 we derive a molecular-statistical theory
of rod-coil-rod triblock copolymers using the density functional approach and present an
approximate expression for the free energy of the lamellar phase suitable for a numerical
minimization procedure. The detailed derivation of the free energy is given in Appendix A.
In Section 3, the Ornstein-Zernike equations for triblock copolymers are considered in order
to establish a relation between the direct correlation functions which enter the expression
for the free energy and the total pair correlation functions which can be calculated based
on the statistics of Gaussian chains and rigid rods. The general derivation of the the
Ornstein-Zernike equations is presented in Appendix B and the approximate solution
of these equations is considered in Appendix C. Finally, we present in Section 3 explicit
expressions for all density-density correlation functions of the system of noninteracting
rod-coil-rod triblock molecules. A detailed derivation of these correlation functions is
given in Appendix D. In Section 4.1 the results of numerical free energy minimization
are presented including the phase diagrams, colormaps and profiles of orientational and
translational order parameters in the lamellar phase. The results of DPD simulations of
asymmetric rod-coil-rod triblock copolymers are presented in Section 4.2, and, as discussed
in Section 4.3, they confirm the molecular-statistical theory predictions. Main conclusions
are drawn in Section 5.

2. Molecular-Statistical Theory of Triblock Copolymers
2.1. General Density Functional Theory

The classical density functional approach has been developed in the statistical theory of
inhomogeneous and anisotropic fluids and applied to the theory of liquid
crystals [38,39,41,42,58,59]. Recently, the density functional approach has been used by the
authors to develop a molecular theory of rod-coil diblock copolymers [43–45,60]. In this
approach, the fluid is described by the Helmholtz free energy functional which depends on
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the particle density in phase space. In the case of triblock rod-coil-rod copolymers, the free
energy functional depends on the equilibrium densities of rod and coil monomers and is
related to the Gibbs free energy (which depends on the external fields) by the generalized
Legendre transformation equation:

F[ρr1(x), ρr2(x), ρc(r)] = F[Ur1(x), Ur2(x), Uc(r)]

−
∫

ρr1(x)Ur1(x)dx−
∫

ρr2(x)Ur2(x)dx−
∫

ρc(r)Uc(r)dr, (1)

where F[Ur1(x), Ur2(x), Uc(r)] is the Gibbs free energy which depends on the external fields
Uν, ν = (r1, r2, c), acting on the rod and coil monomers. Here ρr1(x), ρr2(x), ρc(r) are the
phase space number densities of the rod 1, rod 2 and coil monomers, respectively, and
the variable x = (r, a) denotes both the position r of a rod monomer and its orientation
specified by the unit vector a pointing along the rod axis.

The equilibrium monomer densities in the phase space are formally defined as:

ρν(x) =

〈
∑

i
δ(x− xi)

〉
, (2)

where 〈· · · 〉 denotes the ensemble average and the sum is over all monomers of the type ν.
One notes that in contrast to rod monomers, the number density of coil monomers depends
only on the position r.

The free energy functional F[ρr1(x), ρr2(x), ρc(r)] of a block copolymer can generally
be written as a sum of two terms:

F = W + H, (3)

where W is the free energy of the system without intermolecular interactions, and H
depends on the intermolecular interactions and correlations. Without the external field, the
functional W can be expressed as

βW[ρr1(x), ρr2(x), ρc(r)] =
∫

ρr1(x) ln[ρr1(x)Λ] dx

+
∫

ρr2(x) ln[ρr2(x)Λ] dx +
∫

ρc(r) ln[ρc(r)Λ] dr, (4)

where β = (kBT)−1.
One notes that W is the orientational and translational entropy of the system which

depends on the one-particle distribution functions fν(x) = ρν(x)/Nν that specify the
probability to find a monomer of the type ν at the position r with the orientation a.

The second functional derivatives of the reduced free energy H[ρν(x)] with respect to
the equilibrium densities are related to the direct correlation functions of the system:

β
δ2H

δρν(x1)δρµ(x2)
= −Cνµ(x1, x2), (5)

where Cνµ(x1, x2) are the direct pair correlation functions between the monomers ν and µ,
(ν, µ) = (r1, r2, c).

Now the free energy of the anisotropic phase can be obtained by performing a func-
tional Taylor expansion of the free energy around its value in the isotropic phase of the
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copolymer. Similarly to the statistical theory of diblock copolymers [43–45], the free energy
functional of the rod-coil-rod triblock copolymer can approximately be expressed as:

βF = βFI +
∫

ρc(r)[ln ρc(r)− 1]dr

+
∫

ρr1(r, a)[ln ρr1(r, a)− 1]drda +
∫

ρr2(r, a)[ln ρr2(r, a)− 1]drda

− 1
2

∫
Ccc(r1, r2)δρc(r1)δρc(r2)dr1dr2 −

∫
Cr1c(r1, r2, a1)δρr1(r1, a1)δρc(r2)dr1dr2da1

−
∫

Cr2c(r1, r2, a1)δρr2(r1, a1)δρc(r2)dr1dr2da1

− 1
2

∫
Cr1r1(r1, r2, a1, a2)δρr1(r1, a1)δρr1(r2, a2)dr1dr2da1da2

− 1
2

∫
Cr2r2(r1, r2, a1, a2)δρr2(r1, a1)δρr2(r2, a2)dr1dr2da1da2

−
∫

Cr1r2(r1, r2, a1, a2)δρr1(r1, a1)δρr2(r2, a2)dr1dr2da1da2, (6)

where FI is the free energy of the isotropic phase, while Ccc(r1, r2), Cric(r1, r2, a1) and
Crirj(r1, r2, a1, a2) are the direct correlation functions of the monomers of coil and rod
fragments as indicated by the corresponding indexes, and δρν = ρν− ρ0ν are the differences
between the one-particle densities of monomers of type ν in a partially ordered phase and
in the isotropic disordered phase.

Similarly to the theory of diblock copolymers, we distinguish between strong corre-
lations of monomers within the same chain and weaker interactions between monomers
in different chains. The latter can be taken into account in the so-called random phase
approximation, and, for simplicity, we reduce them to a repulsion between monomers of
different kinds and the Maier-Saupe orientational interactions of the rod fragments. This
allows expressing the direct correlation functions as:

Ccc(r1, r2) ≈ C(I)
cc (r12), (7)

Cric(r1, r2, a1) ≈ C(I)
ric (r12, a1)− χ(r12) (8)

Cr1r2(r1, r2, a1, a2) ≈ C(I)
r1r2(r12, a1, a2) + βJ(r12)P2(a1 · a2), (9)

Criri(r1, r2, a1, a2) ≈ δ(a1 − a2)C
(I)
riri(r12, a1) + βJ(r12)P2(a1 · a2), (10)

where C(I)
cc (r12), C(I)

ric (r12, a1), C(I)
r1r2(r12, a1, a2), and C(I)

riri(r12, a1) are the direct correlation
functions between the monomers within the same chain in the isotropic phase of melt
of noninteracting chains, and the occurrence of a delta-function in Criri formally reflects
an infinite rigidity of each rod, as all its fragments are identically oriented. The function
χ(r12) describes the isotropic repulsion between rod and coil monomers and the term
βJ(r12)P2(a1 · a2) is a Maier-Saupe-like orientational interaction of all rod monomers,
where P2(x) is the second Legendre polynomial.

Substituting these direct correlations into the free energy (6) and minimizing it with
respect to ρc(r) and ρri(r, a) yields the following expressions for the densities of coil and
rod monomers:

ρc(r1) = Z−1
c exp

{∫
C(I)

cc (r12)δρc(r2)dr2

−
∫ [

χ(r12)− C(I)
r1c(r12, a2)

]
δρr1(r2, a2)dr2da2

−
∫ [

χ(r12)− C(I)
r2c(r12, a2)

]
δρr2(r2, a2)dr2da2

}
(11)
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ρr1(r1, a1) = Z−1
r1 exp

{∫
C(I)

r1r1(r12, a1)δρr1(r2, a1)dr2+∫
C(I)

r1r2(r12, a1, a2)δρr2(r2, a2)dr2da2 −
∫ [

χ(r12)− C(I)
r1c(r12, a1)

]
δρc(r2)dr2

+β
∫

J(r12)P2(a1 · a2)[δρr1(r2, a2) + δρr2(r2, a2)]dr2da2

}
(12)

ρr2(r1, a1) = Z−1
r2 exp

{∫
C(I)

r2r2(r12, a1)δρr2(r2, a1)dr2

+
∫

C(I)
r1r2(r12, a1, a2)δρr1(r2, a2)dr2da2 −

∫ [
χ(r12)− C(I)

r2c(r12, a1)
]
δρc(r2)dr2

+β
∫

J(r12)P2(a1 · a2)[δρr1(r2, a2) + δρr2(r2, a2)]dr2da2

}
(13)

where Zc, Zr1, and Zr2 are the corresponding normalization factors.

2.2. Free Energy of the Lamellar Phase

In the lamellar phase, all one-particle densities are periodic functions of the position
along the axis of the phase and have the same period. Thus one concludes that the effective
mean-field potentials are also periodic and one can expand them in Fourier series taking
into account the first dominant harmonics. By appropriately choosing the coordinate
origin, the mean-field potentials can be considered as even functions of the position, and
the corresponding Fourier expansions contain only cosine terms.

The details of the Fourier expansion of all terms in Equations (11–13) are presented
in Appendix A. In particular, the coefficients of such an expansion are proportional to
the Fourier transforms of the direct correlation functions or to the functions χ(q) and
J(q). Some of these coefficients, which depend on the orientation of the rods, can also be
expanded in Legendre polynomials taking into account the first few terms which enables
one to express the densities and the free energy as a function of the orientational and
translational order parameters.

For example, the Fourier transform of the coil-coil direct correlation function depends
only on the magnitude of the wave vector q, i.e., Ccc = Ccc(q). In contrast, the direct
correlation function between rod and coil monomers depends on the orientation of the rod
and can be approximated as:

C(I)
ric (q, a) ≈ C(0)

ric (q) + C(2)
ric (q)P2(a · k), (14)

where the unit vector k is along q.
The direct correlation function for the two segments of the same rod can be approxi-

mately expressed in a similar way:

C(I)
riri(q, a1) ≈ 4πC(0)

riri(q) + 4πC(2)
riri(q)P2(a1 · k). (15)

Finally, the direct correlation function between the segments of the two different rods
depends on the orientations a1 and a2 of both rods:

C(I)
r1r2(q, a1, a2) ≈ C(0)

r1r2(q) + C(2)
r1r2(q)[P2(a1 · k) + P2(a2 · k)] + C(3)

r1r2(q)P2(a1 · a2), (16)

As shown in Appendix A, the free energy of the lamellar phase in triblock rod-coil-rod
copolymers can finally be expressed in the following approximate form:
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βF/V = ρ2
0

[
f 2
r1C(2)

r1r1(q)ψr1σ1 + f 2
r2C(2)

r2r2(q)ψr2σ2 + fr1 fr2C(2)
r1r2(q)(ψr1σ2 + ψr2σ1)

+ fc fr1C(2)
r1c(q)ψcσ1 + fc fr2C(2)

r2c(q)ψcσ2

]
+ ρ2

0C(4)
r1r2 fr1 fr2S1S2 +

1
2

ρ2
0βJ0(S1 fr1 + S2 fr2)

2

+ ρ2
0

[
βJ2 + C(3)

r1r2(q)
]

fr1 fr2σ1σ2 +
1
2

ρ2
0

[
βJ2 + 5C(0)

r1r1(q) +
10
7

C(2)
r1r1(q)

]
σ2

1 f 2
r1

+
1
2

ρ2
0

[
βJ2 + 5C(0)

r2r2(q) +
10
7

C(2)
r2r2(q)

]
σ2

2 f 2
r2

+
1
2

ρ2
0 f 2

c C(0)
cc (q)ψ2

c +
1
2

ρ2
0 f 2

r1C(0)
r1r1(q)ψ

2
r1 +

1
2

ρ2
0 f 2

r2C(0)
r2r2(q)ψ

2
r2 + ρ2

0 fr1 fr2C(0)
r1r2(q)ψr1ψr2

+ ρ2
0 fc fr1C(0)

r1c(q)ψr1ψc + ρ2
0 fc fr2C(0)

r2c(q)ψr2ψc − ρ2
0 fr1 fcχψcψr1 − ρ2

0 fr2 fcχψcψr2

− ρ0 fr1 ln Zr1 − ρ0 fc ln Zc − ρ0 fr2 ln Zr2 (17)

where V is the polymer volume and the partition functions read as

Zc =
∫

dz exp
[
ρ0 cos(qz)

(
fcC(0)

cc (q)ψc + fr1C(2)
r1c(q)σ1 + fr1C(0)

r1c(q)ψr1+

fr2C(2)
r2c(q)σ2 + fr2C(0)

r2c(q)ψr2 − fr1χψr1 − fr2χψr2 − λ
)]

, (18)

Zr1 =
∫

dzda exp
[
ρ0 cos(qz)

(
fr1C(0)

r1r1(q)ψr1 + fr2C(0)
r1r2(q)ψr2 + fcC(0)

r1c(q)ψc − fcχψc − λ
)

+ ρ0 cos(qz)P2(a · k)
(

fcC(2)
r1c(q)ψc +

1
4π

fr1C(2)
r1r1(q)ψr1 + fr2C(2)

r1r2(q)ψr2

+ fr2

[
βJ2 + C(3)

r1r2(q)
]
σ2 + fr1

[
βJ2 + 5C(0)

r1r1(q) +
10
7

C(2)
r1r1(q)

]
σ1

)
+ ρ0 cos(qz)

[
fr1C(2)

r1r1(q)σ1 + fr2C(2)
r1r2(q)σ2

]
+ρ0βJ0( fr1S1 + fr2S2)P2(a · k) + ρ0 fr2C(4)

r1r2S2P2(a · k)
)

, (19)

Zr2 =
∫

dzda exp
[
ρ0 cos(qz)

(
fr2C(0)

r2r2(q)ψr2 + fr1C(0)
r1r2(q)ψr1 + fcC(0)

r2c(q)ψc − fcχψc − λ
)

+ ρ0 cos(qz)P2(a · k)
(

fcC(2)
r2c(q)ψc + fr2

1
4π

C(2)
r2r2(q)ψr2 + fr1C(2)

r1r2(q)ψr1

+ fr1

[
βJ2 + C(3)

r1r2(q)
]
σ1 + fr2

[
βJ2 + 5C(0)

r2r2(q) +
10
7

C(2)
r2r2(q)

]
σ2

)
+ cos(qz)ρ0

[
fr2C(2)

r2r2(q)σ2 + fr1C(2)
r1r2(q)σ1

]
+ρ0βJ0( fr1S1 + fr2S2)P2(a · k) + ρ0 fr1C(4)

r1r2S1P2(a · k)
)

, (20)

where the z-axis points along the wavevector q. Definitions of all coefficients are given
in Appendix A, and Si, ψi and σi are the order parameters of the fragments of rods of
type i in the lamellar phase. In particular, the nematic order parameters, S1 and S2, are
conventionally introduced as

Si = 〈P2(a · k)〉ri =
∫

f (ri)
1 (r, a)P2(a · k)drda, (21)

where i = 1, 2. The mixed order parameters

σi = 〈P2(a · k) cos(q · r)〉ri =
∫

f (ri)
1 (r, a)P2(a · k) cos(q · r)drda, (22)
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characterize the degree of simultaneous orientational and positional ordering of the rods
of type i.

In the expression for both order parameters, the averaging 〈· · · 〉ri is performed with
the single-particle distribution function f (ri)

1 (r, a) of the fragments of rods of type i, which

is related to the corresponding density as ρri(r, a) = Nri f (ri)
1 (r, a) = Vρ0 fri f (ri)

1 (r, a), where
ρ0 is the density of the fragments of all types, Nri is the total number of the corresponding
rod fragments and fri is their relative fraction. Note that the density differences entering
Equations (11)–(13) are defined as δρri(r, a) = ρri(r, a)− 1

4π ρ0 fri but their latter constant
parts provide vanishing contributions to the integrals.

Finally, the positional order parameter of the coil segments is defined by the equation:

ψc = 〈cos(q · r)〉c =
∫

f (c)1 (r) cos(q · r)dr, (23)

while the positional order parameter for the rod segments is expressed as:

ψri = 〈cos(q · r)〉ri =
∫

f (ri)
1 (r, a) cos(q · r)drda. (24)

The incompressibility condition requires the order parameters (23) and (24) to obey
the equation

fcψc + fr1ψr1 + fr2ψr2 = 0, (25)

which can be ensured by adding to the free energy a corresponding term with a Lagrangian
multiplier λ. The free energy can then be minimized with respect to the order parameters
and the Lagrange multiplier λ to obtain a conditional minimum with the relation (25)
being precisely fulfilled. In practice, such a minimization can be performed only if the
direct correlation functions of the reference system of noninteracting triblock copolymer
molecules are known. These correlation functions are calculated below.

3. Correlation Functions in Rod-Coil-Rod Triblock Copolymers
3.1. Ornstein-Zernike Equations

Direct pair correlation functions of block copolymers are not known explicitly but they
are generally related to the corresponding total pair correlation functions by the Ornstein-
Zernike equations. The total correlation functions, in turn, can readily be expressed in
terms of the density-density correlation functions which in principle can be evaluated for
any combination of Gaussian chains and rigid rods.

In the case of a simple isotropic fluid composed of spherical molecules, the Ornstein-
Zernike equation can be written in the form

h(r12) = C(r12) + ρ0

∫
C(r13)h(r23)dr3, (26)

which can readily be solved in the Fourier representation. Here the first term describes the
direct correlation between molecules “1” and “2” while the second term corresponds to
the indirect correlation via the third particle “3”. In the case of multi-component fluids
composed of anisotropic particles, including rod-coil copolymers, the Ornstein-Zernike
equations are significantly more complicated because they include several terms describing
indirect correlations and these terms may involve integration over all orientations of the
third particle. Thus the Ornstein-Zernike equations for rod-coil-rod triblock copolymers
are nontrivial, and they have never been presented in the literature. The detailed derivation
of the Ornstein-Zernike equations for rod-coil-rod triblock copolymers is described in
Appendix B, where it is shown that there are six independent Ornstein-Zernike equations.
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Firstly, both the direct and the total pair correlation between coil monomers in the
isotropic phase depend only on the distance between the segments and hence the corre-
sponding Ornstein-Zernike equation can be written in the form:

hcc(r) = C(I)
cc (r) +

1
4π

ρ0 fr1

∫
C(I)

r1c(r− r′, a1)hr1c(r′, a1)dr′da1

+
1

4π
ρ0 fr2

∫
C(I)

r2c(r− r′, a2)hr2c(r′, a2)dr′da2 + ρ0 fc

∫
C(I)

cc (|r− r′|)hcc(r′)dr′, (27)

In contrast, the correlation functions between coil segments and those of the rod 1
depend also on the unit vector a1 along the rod 1. Then the corresponding Ornstein-Zernike
equation is expressed as:

hr1c(r, a1) = C(I)
r1c(r, a1) +

1
4π

ρ0 fr1

∫
hr1r1(r′, a1)C

(I)
r1c(r− r′, a1)dr′

+
1

4π
ρ0 fr2

∫
hr1r2(r′, a1, a2)C

(I)
r2c(r− r′, a2)dr′da2 + ρ0 fc

∫
hr1c(r′, a1)C

(I)
cc (|r− r′|)dr′, (28)

Note that the orientation of all segments of the rod 1 is the same and hence their density
does not include a factor of (4π)−1. The Ornstein-Zernike equation for the correlation
functions of coil segments with those of the rod 2 can be obtained by swapping the indices
“1”and “2” in Equation (28).

The pair correlation functions between different segments of the same rod i = 1, 2
depend on the same orientation ai of this rod and, therefore, the corresponding Ornstein-
Zernike equations reads as:

hr1r1(r, a1) = C(I)
r1r1(r, a1) +

1
4π

ρ0 fr1

∫
C(I)

r1r1(r− r′, a1)hr1r1(r′, a1)dr′

+
1

4π
ρ0 fr2

∫
C(I)

r1r2(r− r′, a1, a2)hr1r2(r′, a1, a2)dr′da2

+ ρ0 fc

∫
C(I)

r1c(r− r′, a1)hr1c(r′, a1)dr′, (29)

The corresponding equation for hr2r2(r, a1) can again be obtained by swapping the
indices “1” and “2” .

The remaining Ornstein-Zernike equation for the correlations between segments
of different rods depends on the orientations of both rods and can be written in the
following form:

hr1r2(r, a1, a2) = C(I)
r1r2(r, a1, a2) +

1
4π

ρ0 fr1

∫
hr1r1(r′, a1)C

(I)
r1r2(r− r′, a1, a2)dr′

+
1

4π
ρ0 fr2

∫
hr1r2(r′, a1, a2)C

(I)
r2r2(r− r′, a2)dr′ + ρ0 fc

∫
hr1c(r′, a1)C

(I)
r2c(r− r′, a2)dr′. (30)

The Ornstein-Zernike equations make a set of coupled integral equations which
cannot be solved analytically. However, it is possible to obtain an approximate solution
by using the expansions of the direct correlation functions given by Equations (14)–(16)
and expanding the total correlation functions in a similar way. As shown in Appendix C,
one obtains a system of 12 linear equation for the expansion coefficients of the direct
correlation functions which enter the expression for the free energy of the lamellar phase.
These equations can readily be solved numerically and the results can then be substituted
into the free energy. One notes that this procedure requires the knowledge of the total
pair correlation functions of rod-coil-rod triblock copolymers which are presented in the
following section.
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3.2. Density-Density Correlation Functions of Rod-Coil-Rod Triblock Copolymers

The coil-coil density correlation function for Gaussian chains has been calculated by
many authors (see e.g., Ref. [61]) and can be written in the form:

hcc(q) =
4N

ρ0 f 2
c

1
x2 [ fcx + exp(− fcx)− 1]. (31)

where fc is the fraction of coil segments and x = q2Na2/6 = q2R2.
Total pair correlation functions between rod and coil monomers and between monomers

of the same rod have been used in the theory of rod-coil diblock copolymers [46] without
providing a detailed derivation. We derive the correlation functions used in Ref. [46] in
Appendix D and also calculate there for the first time to our knowledge those arising in the
triblock molecules. In particular, as shown in Appendix D, the Fourier transform of the
rod-coil total pair correlation function is expressed as:

hric(q, a) = 2
∫

hric(r, a) cos(q · r)dr =
2N
ρ0 fc

1
x
[1− exp(− fcx)]

sin yi
yi

, (32)

where yi = N fria(q · a). The cosine Fourier transform of the rod-rod total correlation
functions between the segments of the same rod reads:

hriri(q, a) = 2
∫

hriri(r, a) cos(q · r)dr =
8π

ρ0 f 2
ri

1
N

N fri

∑
j 6=k

cos[(k− j)a(q · a)]

≈ 8π

ρ0 f 2
ri

1
N

∫ N fri

0

∫ N fri

0
cos[(k− j)a(q · a)]dk dj = 16π

N
ρ0

1− cos yi

y2
i

. (33)

Finally, the total correlation function for the monomers of different rods separated by
a coil has not been presented in the literature. As shown in Appendix D, its cosine Fourier
transform can be written in the form:

hr1r2(q, a1, a2) = 2
∫

hr1r2(r, a1, a2) cos(q · r)dr =
2

ρ0 fr1 fr2

1
N

N fr1

∑
j=1

N fr2

∑
k=1

Pjk(q, a1, a2)

≈ 2
ρ0 fr1 fr2

exp(− fcx)
N

∫ N fr1

0

∫ N fr2

0
cos[a(ja1 − ka2) · q]dkdj

=
2
ρ0

N
exp(− fcx)

y1y2
[cos(y1 − y2)− cos y1 − cos y2 + 1]. (34)

4. Results and Discussion
4.1. Phase Diagrams and Transitions

We employ MATLAB fminsearch routine to minimize the free-energy density (17)
as a function of all the order parameters. Note that the nematic order parameters of rod
monomers enter in Equation (17) only via a combination ( fr1S1 + fr2S2), which we use
as one of the minimization variables. The nematic phase corresponds to a free-energy
minimum where only this parameter is nonzero.

In the lamellar phase, all the introduced order parameters are nonzero, and the phase
wavenumber q should be also considered as a minimization variable. We organize the
corresponding numerical procedure in three stages. Firstly, the system of linear equations
for the expansion coefficients of the direct correlation functions, presented in Appendix C,
is solved numerically and the results are substituted in the expression for the free energy.
At the second stage, for each guessed value of the wavenumber q, the local minimum
is found and the corresponding value of the free energy is evaluated. Finally, we vary
the wavenumber q to compare the energy in all such local minima and to identify the
global free-energy minimum. On each step, we verify that the incompressibility and the
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self-consistence conditions are accurately fulfilled. The decision on the stable phase for
particular sets of parameters is taken by comparing the free energy values of the disordered
state (zero energy), the nematic state, and the lamellar state.

For convenience, we use the dimensionless temperature τ = kBT/J0 determined by
the parameter J0 of the main Maier-Saupe-like term in Equation (A4). As the interactions
of rod monomers are supposed to be short-ranged compared to the rod length and the
lamellar periodicity, we set the other parameter to J2 = 2J0, which corresponds to the limit
q→ 0 in Equation (A5).

A set of typical phase diagrams for asymmetric rod-coil-rod triblock copolymers in
terms of the rod fraction ratio fr1/ fr2 — dimensionless temperature τ is combined in
Figure 1a. One notes that the lamellar phase is less stable in the region fr1/ fr2 ≈ 0.4–0.5
where the corner-shaped region of the disordered phase is observed on the phase diagram.
From this region, the transition into the lamellar phase occurs both with the increasing and
with the decreasing asymmetry of the rods. In particular, for fr1/ fr2 > 0.5 the transition
temperature into the disordered phase gradually increases with the decreasing asymmetry
of the rods. The lamellar phase is also stable in the region fr1/ fr2 < 0.4 but it should
be noted that its structure in this domain is very different. Indeed, for fr1/ fr2 > 0.4 the
transition into the disordered phase is strongly temperature dependent which indicates
that both phase separation effects, controlled by the Flory-Huggins parameter χ, and the
periodic term in the mean filed potential, controlled by the Mayer-Saupe orientational
interaction parameter J2, promote the lamellar ordering. For fr1/ fr2 < 0.4, on the contrary,
the boundary between the lamellar and the disordered phase is practically temperature
independent which indicates that the corresponding transition is governed by athermal
phase separation effects.

Drastic difference in the structure of lamellar phase in the region fr1/ fr2 < 0.4 and for
fr1/ fr2 > 0.5 becomes obvious from the analysis of the order parameter colormaps shown
in Figure 1b–f,h,i. One can readily see that for fr1/ fr2 > 0.5, the distribution of all order
parameters of rods of both types is qualitatively the same, although certain quantitative
differences remain determined by different rod lengths. All order parameters are close to
unity and do not vary significantly. Thus the triblock copolymer is strongly ordered both
translationally and orientationally in this region.

In contrast, for fr1/ fr2 < 0.4, the behavior of the order parameters is qualitatively
different. In particular, both orientational and translational order parameters of shorter
rods are much smaller than those of the longer rods, and they even turn negative at
higher temperatures. Considering the behavior of the orientational order parameters, we
unambiguously point out that for fr1/ fr2 < 0.4 the short rods remain strongly disordered
and even have a weak tendency to align parallel to the lamellar planes, while the long rods
remain strongly ordered along the lamella normal. The peculiar values of the translational
order parameters indicate that while longer rods remain well separated from coils (in a
same way as they are in diblock copolymers), the shorter rods tend to arrange layers within
the coil fragments effectively avoiding their longer counterparts. Remarkably, the shorter
rods separate from the longer ones despite the fact that the segments of both rods are
equivalent and attract each other. Avoiding further speculations about the mechanism of
such microphase separation, we assume that it is determined by entropic effects associated
with large difference in the rod lengths.

In spite of qualitatively different lamellar ordering at low and high triblock asymmetry,
we do not observe a distinct phase transition, which could hypothetically exist between
different lamellar phases. Instead, as is exemplified in Figure 2, with growing asymmetry
(decreasing rod fraction ratio) the copolymer gradually transforms from a state with all
order parameters close to unity to a state with orientationally disordered shorter rods
which are spatially distributed together with the coil fragments, i.e., effectively avoiding
their longer counterparts.
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Figure 1. Phase diagrams, order parameters and equilibrium wavenumber in the axes of rod fraction
ratio fr1/ fr2—dimensionless temperature τ = kBT/J0 of asymmetric rod-coil-rod triblock copolymer
calculated numerically by minimizing the free energy (17) for N = 30, J2 = 2J0 and fc = 0.5.
Phase diagrams for different indicated values of the Flory-Huggins parameter χ are shown in (a).
The colormaps (b–i) are calculated for χ = 1/5 and represent the variation of orientational (b–c),
translational (d–f) and mixed (h,i) order parameters in the lamellar phase. The colormap in (g) shows
the wavenumber of the lamellar structure.
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Figure 2. Order parameters of lamellar phase of the asymmetric rod-coil-rod triblock copolymer as
functions of the rod fraction ratio fr1/ fr2 at a constant dimensionless temperature τ = 0.2. All other
model parameters are the same as in Figure 1.

The transition from the lamellar to disordered state with growing temperature, on
the contrary, is remarkably abrupt. Typical temperature variation of the order parameters
shown in Figure 3a illustrate that this is a strong first order phase transition. The inherent
nature of the transition appears to be though more peculiar than one can expect from
the analogies with low molecular weight liquid crystals. As we evaluate the minimum
free energy by consequent minimizations with respect to the order parameters and the
wavenumber, it is possible for us to reveal how the latter affects the free energy value. We
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present in Figure 3b a typical set of such dependencies at several temperatures below and
above the phase transition. One can readily see that below the transition temperature, the
free energy is negative and exhibits a distinct minimum at a certain wavenumber. Closer to
the transition, this minimum on the free energy elevates and eventually the lamellar state
with a finite wavenumber becomes less favorable compared to a homogeneous state with
zero wavenumber. Above the transition, the former minimum disappears and the system
can attain only the homogeneous state. Note that in all cases the free energy remains
negative, i.e., for an arbitrary wavenumber the lamellar state remains more favorable
than a fully disordered phase having zero energy. Although the polymer on its own is
in a frustrated state here, a weak external influence can provide a stable or, at least, a
meta-stable lamellar structure with a desired wavenumber.
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Figure 3. Transition from lamellar to disordered phase of the asymmetric rod-coil-rod triblock copoly-
mer with fr1/ fr2 = 0.7 with growing dimensionless temperature τ. (a) Temperature dependencies
of all order parameters. (b) Dependencies of free energy density on the lamellae wavenumber at
different temperature values indicated on the lines. All other model parameters are the same as
in Figure 1.

4.2. Computer Simulations of Lamellar Phase

DPD is nowadays considered as one of the most powerful mesoscopic methods for the
simulations of self-assembling in block copolymers. Large integration step in the equations
of motion and low friction coefficient for the particles with soft potentials allow one to
address macromolecular ordering on large space-time scales. Previously, we used DPD
to check the predictions of the molecular theory of rod-coil diblock copolymers regarding
the possibility of the tilting transition [45] and to evaluate the parameters that characterize
the tilted lamellar phase [57]. Note that the DPD method was originally developed for
flexible polymers [62] and it needs modification when one of the copolymer blocks is stiff.
To this end, we treated such blocks as rigid bodies using an algorithm by Miller et al. [63].
Here we used the same approach for the simulation of rod-coil-rod triblock copolymers.
More technical details can be found in our previous papers [45,64]. The calculations were
performed using a free source code LAMMPS [65] in a periodic simulation box of the size
lx × ly × lz = (32× 32× 32)r3

c (where rc is a certain cut-off radius that is treated as a unit
length) filled with a total of 98,304 DPD particles.

First of all, we prepared a microphase separated state in the symmetric A10B10 diblock
copolymer, where A is a rigid block and B is a flexible block. For a rod-coil copolymer, rather
weak repulsion between chemically different particles (aAB = 30, aAA = aBB = 25) was
enough to attain a well-defined lamellar morphology after 4 · 106 time steps. Rigid blocks
are locally ordered within lamellae, which reflects a strong tendency of rods to stacking
provided their length exceeds 7 units, which agrees with our previous simulations [45,64].
Further on, we attached a shorter rigid Ax (x = 3, . . . , 6) block to the free end of every B
block thus obtaining a A10B10Ax triblock copolymer (some of the diblocks were discarded
during this process to maintain the constant density ρ = 3 in the simulation cell) and
equilibrated the system for 2 · 106 time steps. The resulting morphologies are shown in
Figure 4.
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a)                      b)                      c)                       d) 
Figure 4. Snapshots of the triblock A10B10Ax rod-coil-rod (red-gray-orange) copolymers at weak
immiscibility between A and B particles (aAB = 30, aAA = aBB = 25) for x = 3 (a), x = 4 (b),
x = 5 (c), and x = 6 (d).

One can see that shorter rigid A blocks shown with orange color prefer to be mixed
with flexible B blocks (gray) rather than with chemically identical longer A blocks (red).
The tendency of longer rigid blocks to stacking overcomes the effective repulsion between
A and B units and the lamellar morphology persists for all the situations illustrated in
Figure 4. The lamellae remain nearly perfect for the shortest third block (x = 3, Figure 4a),
whereas its elongation leads to undulations (x = 4, Figure 4b) and more substantial
smearing defects (x = 5 and 6, Figure 4c,d). Note that an increase in the Ax length not only
reduces the disparity between the lengths of the rigid blocks but also makes the copolymer
compositionally more asymmetric, which, in turn, can destabilize the lamellar order.

After that we gradually increased the repulsion between A and B particles in the
A10B10 Ax copolymers by steps of ∆aAB = 1 up to aAB = 50 (which corresponds to the Flory-
Huggins parameter χ = 7.65) with a relaxation for 2.5 · 105 time steps after each stage. The
resulting morphologies are shown in Figure 5. Growing immiscibility leads to a separation
between shorter rigid Ax blocks and flexible B10 blocks. The rigid blocks can either form
micelles in the B domains or stick to the existing A lamellae formed by longer rigid A10
blocks. The micelles, which correspond to a more extended conformation of the triblock
copolymer chains, dominate at x = 3 and 4 (Figure 5a,b). Their presence causes a periodic
modulation in the thicknesses of lamellar A and B domains. Morphology of the domains
formed by longer and shorter rigid A blocks at x = 4 is shown in Figure 6. It is clear that
A4 blocks indeed form cylindrical micelles and each micelle has a few contacts with a
neighboring lamellar A10 domain, i.e., all A domains in the system are interconnected.

a)                      b)                      c)                       d) 
Figure 5. Snapshots of the triblock A10B10Ax rod-coil-rod (red-gray-orange) copolymers at stronger
immiscibility between A and B particles (aAB = 50, aAA = aBB = 25) for x = 3 (a), x = 4 (b),
x = 5 (c), and x = 6 (d).

At the same time, even in Figures 5a,b and 6 some of the Ax blocks are tightly adsorbed
at the interface between the lamellar A and B layers and this trend strongly increases at
x = 5 and 6 (Figure 5c,d). Since A5 and A6 blocks, which are still too short for stacking,
occupy a considerable part of the system volume, they markedly decrease the degree of
ordering in the simulated system.
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a)        b) 
Figure 6. Morphology of the domains formed by longer (red) and shorter (brown) rigid A blocks
of the A10B10A4 copolymer for aAB = 50, aAA = aBB = 25. Snapshots (a,b) are taken from
different viewpoints.

Figure 7 presents the spatial distribution of the component volume fractions, φA1
(longer rigid blocks), φB, (flexible blocks), and φA2 (shorter rigid blocks) in the A10B10 A4
copolymer along the z-axis which is perpendicular to the lamellar domains plotted for two
values of the repulsion parameter aAB = 30 ( χ = 1.53) and aAB = 45 (χ = 6.12). One can
see that an increase in the repulsion parameter aAB mainly affects the component fractions
within the lamellar B domains. Longer rigid A blocks are expelled from that region, while
shorter rigid A blocks are displaced to the boundary between the lamellar A and B domains.
We also evaluated the nematic order parameter of the longer A rigid blocks and found it to
be weakly positive everywhere with the average value of about 0.12. This value should
not be taken too seriously, however, because the orientational order parameter is strongly
affected by the layer undulation and the possible local tilt of the rods [45].
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z
Figure 7. Lamellar ordering in the A10B10A4 triblock copolymer: the profiles of the component
volume fractions, φA1(z), φA2(z), and φB(z) calculated for the two values of the Flory-Huggins
parameter χ = 1.53 (solid lines) and χ = 6.12 (dashed lines).

4.3. The Effect of Polymer Chain Asymmetry on Lamellar Ordering

We focus here on asymmetric rod-coil-rod triblock copolymers where the two rods
have different lengths, while, in principle, one would expect that the properties of such a
system reduce to those of rod-coil diblock copolymers in the limit of very small length of one
of the rods. We have uncovered, however, that the structure of the lamellar phase at high
asymmetry of the rods and relatively low concentration of the coils is significantly different
from that at low total concentration of rods. In fact, there exist two qualitatively different
types of ordering in the lamellar phase. The disordered phase prevails at intermediate
values of the rod fraction ratio fr1/ fr2 and the system undergoes a transition into the
lamellar phase both with the increasing temperature and with the decreasing fr1/ fr2. At
relatively high ratio fr1/ fr2 > 0.5, the critical value of fr1/ fr2 is strongly temperature
dependent which indicates that the transition into the lamellar phase is promoted by both
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the phase separation effects, controlled by the Flory-Huggins parameter χ, and by the
orientational attraction interaction between rods, which is the primary factor that stabilizes
smectic ordering in the theory of low molecular weight liquid crystals.

In contrast, in the case of high rod asymmetry fr1/ fr2 < 0.4, the critical value of
fr1/ fr2 is practically temperature independent which means that the lamellar ordering is
not affected by the orientational interaction between rods. Moreover, the critical value of
fr1/ fr2 also does not depend on the values of χ, i.e., the transition into the lamellar phase
is also not controlled by the repulsion between rods and coils. Then the most likely cause
of the translational ordering in this region is the entropy driven spontaneous microphase
separation between rods of different lengths.

The peculiar details of unusual structure of lamellar phase, observed at high rods
asymmetry, are revealed by the colormaps and profiles of the orientational and transla-
tional order parameters presented in Figures 1 and 2. In the region fr1/ fr2 > 0.5, all order
parameters weakly depend on the asymmetry of the rods and are close to unity, i.e., the
lamellar phase is nearly perfectly ordered. In contrast, at higher values of rods asymmetry,
all order parameters of short rods dramatically decrease and even turn negative at higher
temperatures. Thus the short rods become partially disordered and phase separate away
from the long ones. One notes that in contrast to the system simulated in Ref. [56], the
segments of the rods are completely equivalent in the present model and hence the phase
separation should be driven by some entropy effects. One may assume that in the lamellar
phase existing at lower concentration of rods, both short and long rods are mainly located
in the same layer and, therefore, the triblock macromolecules are mainly in the hairpin con-
formation. In contrast, in the unusual lamellar ordering existing at high rod concentration,
the short and long rods are located in different layers. Thus the triblock macromolecules
are mainly in the extended conformation and overlap three consecutive layers which may
result in an enhancement of the mechanical rigidity of the lamellar phase.

These somewhat unexpected results of the density functional theory are independently
confirmed by the DPD computer simulations. The DPD simulations have been performed
in the region of high rod concentration for different values of the triblock asymmetry
and the Flory-Huggins parameter χ. It has been found in this region that both in the
case of relatively weak and strong repulsion between rod and coil segments, the shorter
rods indeed phase separate from the longer ones despite the fact that they are chemically
equivalent. In the case of relatively small χ, the shorter rods mainly reside in the coil block,
while in the case of strong segregation, they either form micelles in the coil block or are
mainly located at the boundary between the coil block and the block formed by longer rods.
In all cases, the density distribution of the shorter rods is rather diffuse which corresponds
to the low values of the corresponding translational order parameter. One notes also that
the increase of the short rod length may lead to undulation of layers or to the periodic
increase of their thickness due to micellae formation. Thus rod-coil-rod triblock copolymers
can in principle exhibit a plethora of various interesting structures.

5. Conclusions

In this paper, we have developed a molecular-statistical theory of orientationally
ordered rod-coil-rod triblock copolymers using the density-functional approach which
has been applied by the authors before to the theory of rod-coil diblock copolymers [43].
In this theory, the free energy of the lamellar phase is expressed in terms of the direct
correlation functions between segments of different types (i.e., rods and coils) in the
reference disordered phase taking into account also the repulsion between rod and coil
segments and the orientational interaction between rod segments. The direct correlation
functions have been expanded both in Fourier series and in Legendre polynomials keeping
the leading terms, and the orientational and translational order parameters of the rod and
coil segments, as well as the period of the lamellar phase, have been calculated numerically
by direct minimization of the approximate free energy. The incompressibility of the polymer
has been accounted for using the Lagrange multiplier technique [44].
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It should be noted that the direct correlation functions of block copolymers cannot be
calculated in the straightforward way and one has to use Ornstein-Zernike equations which
establish a relation between the direct and the total pair correlation functions of a complex
fluid. The total correlation functions can then be expressed in terms of density-density
correlation functions for a single copolymer chain which can in principle be calculated
using the classical polymer theory for a chain composed of rigid rod fragments and
Gaussian chains. The Ornstein-Zernike equations are well known in the case of one
component simple fluids, but the corresponding equations have never been derived for
triblock copolymers which contain segments of three different types possessing different
degrees of freedom. In particular, coil segments possess only translational degrees of
freedom while rod segments possess both translational and orientational ones. As a result,
the rod-coil-rod triblock copolymers should be described by a whole set of such equations.
In this paper, we have used the density functional theory to derive nine independent
simultaneous Ornstein-Zernike equations which have a nontrivial mathematical structure.
These equations cannot be solved analytically, and thus we have used the method of
expansion to derive a system of simultaneous linear equations for the expansion coefficients
of all direct correlation functions which enter the expression for the free energy of the
lamellar phase. This system of equations has been solved numerically and the results have
been substituted into the free energy.

Finally, we have presented detailed derivations of the density-density correlation
functions for the rod-coil-rod triblock polymer chain. The rod-coil and rod-rod correlation
functions have been used before in the theory of rod-coil diblock copolymers [43,44,46]
while the correlation function between segments of different rods separated by a coil has
been evaluated here for the first time.

One notes that our theory can be further generalized to describe possible structure
of the unusual lamellar ordering in greater detail. The presented results are based on
the assumption that the waves of densities of different molecular segments are either in
phase or in antiphase throughout the phase diagram. In general, one can employ two
independent Lagrange multipliers in the numerical minimization of the free energy to
account for the possibility of variable phase shifts between them. This is computationally
more challenging and will be done in our future publications.
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Appendix A. Expansion of the Mean-Field Potentials

In the lamellar phase, all one-particle densities are periodic functions with the period
of the phase and hence all other ensemble averages including the effective mean-field
potentials are also periodic. Thus one may expand the mean-field potentials in Fourier
series taking into account the first harmonics. One notes that it is sufficient to consider only
the cosine terms of the corresponding Fourier expansions by appropriately choosing the
origin of the coordinate system.
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In particular, in this approximation, the contribution from the Flory-Huggins repulsion
of rods and coils can be written as∫

χ(r12)δρc(r2)dr2 ≈ ρ0 fcψcχ(q) cos(q · r1), (A1)

where the coefficient is defined as

χ(q) = 2
∫

χ(r) cos(q · r)dr, (A2)

and ψc is the positional order parameter characterizing the translational ordering of the coil
fragments (23), which is described by the single-particle distribution function f (c)1 related

to the density as ρc(r) = Nc f (c)1 (r) = Vρ0 fc f (c)1 (r), where Nc is the total number of coil
fragments, and fc is the relative fraction of coil fragments.

Similarly, ∫
χ(r12)δρri(r2, a2)dr2da2 ≈ ρ0 friψriχ(q) cos(q · r1), (A3)

where the positional order parameter of the fragments of rods is given by Equation (24)
In the same approximation, the contribution of the Maier-Saupe-like interactions can

approximately be expressed as∫
J(r12)P2(a · a2)δρri(r2, a2)dr2da2 ≈ ρ0 friP2(a · k)[J0Si +J2σi cos(q · r1)], (A4)

where
J0 =

∫
J(r)dr, J2 = 2

∫
J(r) cos(q · r)dr, (A5)

and where the nematic order parameter of the rods of type i is conventionally introduced
by Equation (21) along with the order parameter σi which, according to its definition (22),
characterizes the degree of simultaneous orientational and positional ordering of the rods
of type i.

The arising non-constant contributions to the integral involving the coil-coil correlation
function is then expressed as:∫

C(I)
cc (r12)δρc(r2)dr2 ≈ ρ0 fcψcC(0)

cc (q) cos(q · r1), (A6)

where the Fourier coefficient is determined by the integral:

C(0)
cc (q) = 2

∫
C(I)

cc (r) cos(q · r)dr. (A7)

Similarly, we expand in cosine series the terms involving the rod-coil correlation function:∫
C(I)

ric (r12, a1)δρc(r2)dr2 ≈ ρ0 fcψcC(I)
ric (q, a1) cos(q · r1), (A8)

∫
C(I)

ric (r12, a2)δρri(r2, a2)dr2da2 ≈ ρ0 fri〈C
(I)
ric (q, a2) cos(q · r2)〉ri cos(q · r1), (A9)

where the coefficient is introduced as an integral

C(I)
ric (q, a) = 2

∫
C(I)

ric (r, a) cos(q · r)dr (A10)

depending on the rod long axis orientation a.
As the latter is a scalar function of the vectors q and a, being defined in the isotropic

disordered polymer phase, it depends only on the scalar product (a · q) and, introducing
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the unit vector k = q/q, we can expand this function in orthogonal Legendre polynomials
keeping the first main terms:

C(I)
ric (q, a) ≈ C(0)

ric (q) + C(2)
ric (q)P2(a · k). (A11)

where the expansion coefficients are expressed as

C(0)
ric (q) =

1
2π

∫
C(I)

ric (r, a) cos(q · r)drda, (A12)

C(2)
ric (q) =

5
2π

∫
C(I)

ric (r, a)P2(a · k) cos(q · r)drda. (A13)

Accordingly, the integrals involving rod-coil correlations reduce to∫
C(I)

ric (r12, a1)δρc(r2)dr2 ≈ ρ0 fcψc

[
C(0)

ric (q) cos(q · r1) + C(2)
ric (q)P2(a1 · k) cos(q · r1)

]
, (A14)

∫
C(I)

ric (r12, a2)δρri(r2, a2)dr2da2 ≈ ρ0 fri

[
ψriC

(0)
ric (q) + σiC

(2)
ric (q)

]
cos(q · r1). (A15)

The terms involving the integrals of the correlations of rod fragments of different
types can be expanded in Fourier series as:

∫
C(I)

r1r2(r12, a1, a2)δρri(r2, a2)dr2da2

≈ ρ0 fri〈C̄r1r2(a1, a2)〉ri + ρ0 fri〈C
(I)
r1r2(q, a1, a2) cos(q · r2)〉ri cos(q · r1) (A16)

where again the averaging 〈· · · 〉ri is performed with the single-particle distribution function
f (ri)
1 (r2, a2) and involves the functions:

C(I)
r1r2(q, a1, a2) = 2

∫
C(I)

r1r2(r, a1, a2) cos(q · r)dr, (A17)

C̄r1r2(a1, a2) =
∫

C(I)
r1r2(r, a1, a2)dr. (A18)

Expanding the latter two integrals in Legendre polynomials enables one to express
them as

C(I)
r1r2(q, a1, a2) ≈ C(0)

r1r2(q) + C(2)
r1r2(q)[P2(a1 · k) + P2(a2 · k)] + C(3)

r1r2(q)P2(a1 · a2), (A19)

C̄r1r2(a1, a2) = C(4)
r1r2P2(a1 · a2), (A20)

where the coefficients are defined as the following integrals:

C(0)
r1r2(q) =

1
8π2

∫
C(I)

r1r2(r, a1, a2) cos(q · r)drda1da2, (A21)

C(2)
r1r2(q) =

5
8π2

∫
C(I)

r1r2(r, a1, a2)P2(a1 · k) cos(q · r)drda1da2, (A22)

C(3)
r1r2(q) =

5
8π2

∫
C(I)

r1r2(r, a1, a2)P2(a1 · a2) cos(q · r)drda1da2, (A23)

C(4)
r1r2 =

5
16π2

∫
C(I)

r1r2(r, a1, a2)P2(a1 · a2)drda1da2. (A24)
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This reduces the term (A16) to:∫
C(I)

r1r2(r12, a1, a2)δρri(r2, a2)dr2da2

≈ ρ0 friSiP2(a1 · k)C
(4)
r1r2 + ρ0 friψiC

(0)
r1r2(q) cos(q · r1) + ρ0 friψriC

(2)
r1r2(q)P2(a1 · k) cos(q · r1)

+ ρ0 friσiC
(2)
r1r2(q) cos(q · r1) + ρ0 friσiC

(3)
r1r2(q)P2(a1 · k) cos(q · r1). (A25)

Finally, the main term of the Fourier expansion of the contribution of the correlations
functions between rods of the same type is expressed as:∫

C(I)
riri(r12, a1)δρri(r2, a1)dr2 ≈ ρ0 fri cos(q · r1)C

(I)
riri(q, a1)

∫
f (ri)
1 (r2, a1) cos(q · r2)dr2, (A26)

where the Fourier component of the correlation function is introduced similarly to those above:

C(I)
riri(q, a1) = 2

∫
C(I)

riri(r, a1) cos(q · r)dr. (A27)

The main terms of the Legendre polynomial expansion of the latter are

C(I)
riri(q, a1) ≈ 4πC(0)

riri(q) + 4πC(2)
riri(q)P2(a1 · k). (A28)

with the coefficients defined as:

C(0)
riri(q) =

1
8π2

∫
C(I)

riri(r, a) cos(q · r)drda, (A29)

C(2)
riri(q) =

5
8π2

∫
C(I)

riri(r, a)P2(a · k) cos(q · r)drda. (A30)

Similar Legendre polynomial expansion of the Fourier coefficient in Equation (A26)
reads as:

C(I)
riri(q, a1)

∫
f (ri)
1 (r2, a1) cos(q · r2)dr2

≈ 1
4π

∫
C(I)

riri(q, a2) f (ri)
1 (r2, a2) cos(q · r2)dr2da2

+
5

4π
P2(a1 · k)

∫
C(I)

riri(q, a2) f (ri)
1 (r2, a2) cos(q · r2)P2(a2 · k)dr2da2. (A31)

Substituting here Equation (A28) yields:

C(I)
riri(q, a1)

∫
f (ri)
1 (r2, a1) cos(q · r2)dr2

≈ C(0)
riri(q)ψri + C(2)

riri(q)σi + 5P2(a1 · k)C
(0)
riri(q)σi

+ 5P2(a1 · k)C
(2)
riri(q)〈P

2
2 (a1 · k) cos(q · r2)〉ri. (A32)

The last term here is expressed as an expansion in Legendre polynomials (the first
constant term here is essential for the free energy self consistence):

P2
2 (a1 · k) =

1
4π

∫
P2

2 (a2 · k)da2 +
5

4π
P2(a1 · k)

∫
P2

2 (a2 · k)P2(a2 · k)da2 + . . .

=
1
5
+

2
7

P2(a1 · k) + . . . (A33)
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Therefore, neglecting higher order Legendre polynomials one can express the contri-
bution (A26) to the mean-field potentials in Equations (12) and (13) as:

∫
C(I)

riri(r12, a1)δρri(r2, a1)dr2 ≈ ρ0 friC
(0)
riri(q)ψri cos(q · r1)

+ ρ0 friC
(2)
riri(q)σi cos(q · r1) + ρ0 friC

(2)
riri(q)ψriP2(a1 · k) cos(q · r1)

+ 5ρ0 fri

[
C(0)

riri(q) +
2
7

C(2)
riri(q)

]
σiP2(a1 · k) cos(q · r1). (A34)

Substituting the expansions (A6), (A14), (A15), (A25) and (A34) into the densities
(11)–(13) transforms the free energy of the lamellar phase of rod-coil-rod triblock copoly-
mers (6) into a self-consistent form of Equation (17).

Appendix B. Derivation of the Ornstein-Zernike Equations for Rod-Coil-Rod
Triblock Copolymers

Here we start with the generalized Legendre transformation equation for the grand
canonical potential Ω[Ur1(x), Ur2(x), Uc(r)] which depends on the external field acting
on chain segments of different types, and on the corresponding chemical potentials
µ0

ν, (ν = r1, r2, c), and which is similar to (1):

βF[ρr1(x), ρr2(x), ρc(r)] = ∑
ν

∫
ρν(x)φν(x)dx−Ω, (A35)

where
φν = βµν − βUe

ν, (A36)

and where F is the free energy functional which depends on the number densities of the
segments of the two rods and the coil. The functional derivative of F with respect to ρν

is [66]:

β
δF

δρν(xν)
= φν(xν), (A37)

It follows from the definition of the grand canonical potential (see, for example,
Ref. [38]) that

β
δΩ

δφν(xν)
= ρν(xν), (A38)

and

δρν

δφµ(xµ)
= β

δ2Ω
δφν(xν)δφµ(xµ)

= 〈δρν(xν)δρµ(xµ)〉

= δµνρµ(xµ)δ(xµ − xν) + ρν(xν)ρµ(xµ)hνµ(xν, xµ), (A39)

where hνµ(xν, xµ) are the corresponding total pair correlation functions.
On the other hand, the free energy F can be written as a sum of two terms as in

Equation (3):
F = W + H, (A40)

where W is the free energy of the system without intermolecular interactions:

βW = ∑
ν

∫
ρν(x1,ν)(ln ρν(x1,ν)Λ + βUe

ν − 1) dx1,ν, (A41)

and where the second functional derivatives of H with respect to ρν are related to the direct
correlation functions Cµν(xµ, xν) by Equation (5).
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From (A37), (A41) and (5) one obtains:

δφν(x1,ν)

δρµ(x2,µ)
= ρ(x1,ν)

−1δν,µδ(x1,ν − x2,µ)− Cµν(x1,ν, x2,µ). (A42)

One notes that the functions δφν(x1,ν)
δρµ(x2,µ)

and δρν

δφµ(xµ)
given by (A42) and (A39), respectively,

are the inverse derivatives of each other and in the discrete space can be considered as the
inverse matrices. Hence the product of these matrices should be equal to the generalized
unit matrix:

∑
γ

∫
d3x3

(
ρ(x1,ν)

−1δν,γδ(x1,ν − x3,γ)− Cγν(x1,ν, x3,γ)
)

× δµγρµ(xµ)δ(xµ − xγ) + ργ(xγ)ρµ(xµ)hγµ(xγ, xµ) = δν,µδ(x1,ν − x2,µ). (A43)

From (A43) one readily obtains the general Ornstein-Zernike equations for the rod-
coil-rod triblock copolymers:

hµν(x1,µ, x2,ν) = Cµν(x1,µ, x2,ν) + ∑
γ

∫
d3x3Cµγ(x1,µ, x3,γ)hγν(x3,γ, x2,ν)ργ(x3), (A44)

where x = (r, a) for rod segments and x = r for coil ones.
As the both definitions of the direct and total correlation functions, (5) and (A39)

correspondingly, are symmetric with respect to the index permutations, so are the correla-
tion functions: Cµν(xµ, xν) = Cνµ(xν, xµ) and hµν(xµ, xν) = hνµ(xν, xµ). Therefore, another
form of the Ornstein-Zernike equation:

hµν(x1,µ, x2,ν) = Cµν(x1,µ, x2,ν) + ∑
γ

∫
d3x3hµγ(x1,µ, x3,γ)Cγν(x3,γ, x2,ν)ργ(x3), (A45)

is of equally validity.
The triblock polymer free energy expressed by Equation (17) is determined by the

direct correlation functions C(I) between different fragments of a single polymer chain
in the disordered phase. The homogeneity of the disordered phase implies that all the
densities are constant:

ρcc = ρ0 fc, ρri =
1

4π
ρ0 fri. (A46)

Therefore, the direct and total correlations of the coil monomers depend only on
the distance between them and obey the corresponding Ornstein-Zernike equation Equa-
tion (27). Analogously, for the Ornstein-Zernike equations describing the correlation of
coil monomers with those of the rods 1, the general (A45) yields Equation (28). Taking into
account that all segments of the same rod of type i are identically oriented along a unit
vector ai, the Ornstein-Zernike equations for them can be written as Equation (29). Finally,
the remaining Ornstein-Zernike equation for the correlations of monomers of different rods
can be obtained from Equation (A45) as given by Equation (30).

Taking into account that in the isotropic phase ργ(r, a) = fγρ0/4π one obtains in the
Fourier representation:

hµν(q, a1, a2) = Cµν(q, a1, a2) +
1

4π
ρ0 ∑

γ

fγ

∫
d2a3Cµγ(q, a1, a3)hγν(q, a3, a2) (A47)

where in the isotropic phase the function hµ,ν is defined by the equation:

〈δρν(q, a1)δρµ(q, a2)〉 = δµν fµ
1

4π
δ(r2 − r1)δ(a1 − a2) +

1
(4π)2 fµ fνhµν(q, a1, a2). (A48)
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The main part of the free energy (17) is determined by the Fourier coefficients of the
direct correlation functions all defined in a similar way as

C(I)
µν (q, . . .) = 2

∫
C(I)

µν (r, . . .) cos(q · r)dr. (A49)

The Fourier harmonics of the total correlation functions can be similarly defined as:

hµν(q, . . .) = 2
∫

hµν(r, . . .) cos(q · r)dr. (A50)

Now it is straightforward to derive the Fourier transforms of the Ornstein-Zernike
equations in which all convoluted spatial integrals transform to the products of the Fourier
coefficients. Thus Equation (27) then transforms to:

hcc(q) = C(I)
cc (q) +

1
8π

ρ0 fr1

∫
C(I)

r1c(q, a1)hr1c(q, a1)da1

+
1

8π
ρ0 fr2

∫
C(I)

r2c(q, a2)hr2c(q, a2)da2 +
1
2

ρ0 fcC(I)
cc (q)hcc(q). (A51)

Analogously, Equations (28) and its counterpart for rods 2 can be written as:

hr1c(q, a1) = C(I)
r1c(q, a1) +

1
8π

ρ0 fr1hr1r1(q, a1)C
(I)
r1c(q, a1)

+
1

8π
ρ0 fr2

∫
hr1r2(q, a1, a2)C

(I)
r2c(q, a2)da2 +

1
2

ρ0 fchr1c(q, a1)C
(I)
cc (q), (A52)

hr2c(q, a2) = C(I)
r2c(q, a2) +

1
8π

ρ0 fr2hr2r2(q, a2)C
(I)
r2c(q, a2)

+
1

8π
ρ0 fr1

∫
hr1r2(q, a1, a2)C

(I)
r1c(q, a1)da1 +

1
2

ρ0 fchr2c(q, a2)C
(I)
cc (q), (A53)

while Equations (29) yields

hr1r1(q, a1) = C(I)
r1r1(q, a1) +

1
8π

ρ0 fr1C(I)
r1r1(q, a1)hr1r1(q, a1)

+
1

8π
ρ0 fr2

∫
C(I)

r1r2(q, a1, a2)hr1r2(q, a1, a2)da2 +
1
2

ρ0 fcC(I)
r1c(q, a1)hr1c(q, a1), (A54)

hr2r2(r, a2) = C(I)
r2r2(r, a2, a′2) +

1
8π

ρ0 fr2C(I)
r2r2(q, a2)hr2r2(q, a2)

+
1

8π
ρ0 fr1

∫
C(I)

r1r2(q, a1, a2)hr1r2(q, a1, a2)da1 +
1
2

ρ0 fcC(I)
r2c(q, a2)hr2c(q, a2). (A55)

Finally, Equation (30) allows obtaining:

hr1r2(q, a1, a2) = C(I)
r1r2(q, a1, a2) +

1
8π

ρ0 fr1hr1r1(q, a1)C
(I)
r1r2(q, a1, a2)

+
1

8π
ρ0 fr2hr1r2(q, a1, a2)C

(I)
r2r2(q, a2) +

1
2

ρ0 fchr1c(q, a1)C
(I)
r2c(q, a2). (A56)

Appendix C. Solution of the Ornstein-Zernike Equations

Ornstein-Zernike equations for rod-coil-rod triblock copolymers cannot be solved ana-
lytically. On the other hand, the approximate expression for the free energy of the lamellar
phase contains only the low order expansion coefficients of the direct correlation functions.
It is possible to derive approximate equations for these coefficients substituting Legendre
polynomials expansions of the direct correlations into the corresponding Ornstein-Zernike
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equations. In particular, using the expansion (A11) it is possible to transform the integral
Equation (A51) into an algebraic equation:

hcc(q) = C(0)
cc (q)

[
1 +

1
2

ρ0 fchcc(q)
]
+

1
2

ρ0 fr1C(0)
r1c(q)h

(0)
r1c(q) +

1
2

ρ0 fr2C(0)
r2c(q)h

(0)
r2c(q)

+
1
2

ρ0 fr1C(2)
r1c(q)h

(2)
r1c(q) +

1
2

ρ0 fr2C(2)
r2c(q)h

(2)
r2c(q), (A57)

where the coefficients are introduced as

h(0)ric (q) =
1

4π

∫
hric(q, a)da, (A58)

h(2)ric (q) =
1

4π

∫
hric(q, a)P2(a · k)da. (A59)

Next we integrate Equations (A52) and (A53) over the corresponding orientations ai,
substitute again Equation (A11) and obtain:

h(0)r1c(q) = C(0)
r1c(q)

[
1 +

1
8π

ρ0 fr1h(0)r1r1(q)
]
+

1
8π

ρ0 fr1C(2)
r1c(q)h

(2)
r1r1(q)

+
1
2

ρ0 fr2C(0)
r2c(q)h

(0)
r1r2(q) +

1
2

ρ0 fr2C(2)
r2c(q)h

(2)
r1r2(q) +

1
2

ρ0 fcC(0)
cc (q)h(0)r1c(q), (A60)

h(0)r2c(q) = C(0)
r2c(q)

[
1 +

1
8π

ρ0 fr2h(0)r2r2(q)
]
+

1
8π

ρ0 fr2C(2)
r2c(q)h

(2)
r2r2(q)

+
1
2

ρ0 fr1C(0)
r1c(q)h

(0)
r1r2(q) +

1
2

ρ0 fr1C(2)
r1c(q)h

(2)
r1r2(q) +

1
2

ρ0 fcC(0)
cc (q)h(0)r2c(q). (A61)

The same procedure applied to Equations (A52) and (A53) multiplied by P2(ai · k) yields

h(2)r1c(q) =
1
5

C(2)
r1c(q) +

1
8π

ρ0 fr1C(0)
r1c(q)h

(2)
r1r1(q) +

1
8π

ρ0 fr1C(2)
r1c(q)h

(5)
r1r1(q)

+
1
2

ρ0 fr2C(0)
r2c(q)h

(2)
r1r2(q) +

1
2

ρ0 fr2C(2)
r2c(q)h

(5)
r1r2(q) +

1
2

ρ0 fcC(0)
cc (q)h(2)r1c(q), (A62)

h(2)r2c(q) =
1
5

C(2)
r2c(q) +

1
8π

ρ0 fr2C(0)
r2c(q)h

(2)
r2r2(q) +

1
8π

ρ0 fr2C(2)
r2c(q)h

(5)
r2r2(q)

+
1
2

ρ0 fr1C(0)
r1c(q)h

(2)
r1r2(q) +

1
2

ρ0 fr1C(2)
r1c(q)h

(5)
r1r2(q) +

1
2

ρ0 fcC(0)
cc (q)h(2)r2c(q), (A63)

where the coefficients are defined as:

h(0)riri(q) =
1

4π

∫
hriri(q, a)da, (A64)

h(2)riri(q) =
1

4π

∫
hriri(q, a)P2(a · k)da, (A65)

h(5)riri(q) =
1

4π

∫
hriri(q, a)P2

2 (a · k)da, (A66)

h(0)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)da1da2, (A67)

h(2)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)P2(a1 · k)da1da2, (A68)

h(5)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)P2(a1 · k)P2(a2 · k)da1da2. (A69)
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Altogether, Equations (A57) and (A60)–(A63) form an enclosed system that can be
solved to obtain independently 5 parameters C(0)

cc (q), C(0)
r1c(q), C(0)

r2c(q), C(2)
r1c(q), and C(2)

r2c(q).
Now, substituting the expansion of the direct correlation functions given by Equations (A11),

(A19) and (A28) into Equation (A56), and integrating over a1 and a2, one obtains:

h(0)r1r2(q) = C(0)
r1r2(q) +

1
8π

ρ0 fr1C(0)
r1r2(q)h

(0)
r1r1(q) +

1
8π

ρ0 fr1C(2)
r1r2(q)h

(2)
r1r1(q)

+
1
2

ρ0 fr2C(0)
r2r2(q)h

(0)
r1r2(q) +

1
2

ρ0 fr2C(2)
r2r2(q)h

(2)
r1r2(q) +

1
2

ρ0 fch(0)r1c(q)C
(0)
r2c(q). (A70)

Similarly, we integrate Equation (A56) multiplied by P2(a1 · k) and obtain:

h(2)r1r2(q) =
1
5

C(2)
r1r2(q) +

1
8π

ρ0 fr1h(2)r1r1(q)C
(0)
r1r2(q) +

1
8π

ρ0 fr1h(5)r1r1(q)C
(2)
r1r2(q)

+
1
2

ρ0 fr2h(2)r1r2(q)C
(0)
r2r2(q) +

1
2

ρ0 fr2h(5)r1r2(q)C
(2)
r2r2(q) +

1
2

ρ0 fch(2)r1c(q)C
(0)
r2c(q). (A71)

Integrating Equation (A56) multiplied by P2(a1 · a2) one also obtains

h(3)r1r2(q) =
1
5

C(3)
r1r2(q) +

1
40π

ρ0 fr1h(2)r1r1(q)C
(2)
r1r2(q) +

1
40π

ρ0 fr1h(0)r1r1(q)C
(3)
r1r2(q)

+
1
2

ρ0 fr2h(3)r1r2(q)C
(0)
r2r2(q) +

1
2

ρ0 fr2h(6)r1r2(q)C
(2)
r2r2(q) +

1
10

ρ0 fch(2)r1c(q)C
(2)
r2c(q), (A72)

where we have used the relation
∫

P2(u · a)P2(v · a)da = 4π
5 P2(v · u) valid for arbitrary

unit vectors u and v, and another coefficient is introduced as

h(6)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)P2(a1 · k)P2(a1 · a2)da1da2. (A73)

In a similar manner, integrating Equations (A54) and (A55) over all orientations of the
unit vector ai one obtains

h(0)r1r1(q) = 4πC(0)
r1r1(q) +

1
2

ρ0 fr1C(0)
r1r1(q)h

(0)
r1r1(q) +

1
2

ρ0 fr1C(2)
r1r1(q)h

(2)
r1r1(q)

+
1
2

ρ0 fr2C(0)
r1r2(q)h

(0)
r1r2(q) + ρ0 fr2C(2)

r1r2(q)h
(2)
r1r2(q) +

1
2

ρ0 fr2C(3)
r1r2(q)h

(3)
r1r2(q)

+
1
2

ρ0 fcC(0)
r1c(q)h

(0)
r1c(q) +

1
2

ρ0 fcC(2)
r1c(q)h

(2)
r1c(q), (A74)

h(0)r2r2(q) = 4πC(0)
r2r2(q) +

1
2

ρ0 fr2C(0)
r2r2(q)h

(0)
r2r2(q) +

1
2

ρ0 fr2C(2)
r2r2(q)h

(2)
r2r2(q)

+
1
2

ρ0 fr1C(0)
r1r2(q)h

(0)
r1r2(q) + ρ0 fr1C(2)

r1r2(q)h
(2)
r1r2(q) +

1
2

ρ0 fr1C(3)
r1r2(q)h

(3)
r1r2(q)

+
1
2

ρ0 fcC(0)
r2c(q)h

(0)
r2c(q) +

1
2

ρ0 fcC(2)
r2c(q)h

(2)
r2c(q). (A75)

Multiplying Equations (A54) and (A55) by the corresponding Legendre polynomial
P2(ai · k) and integrating over ai also yields:

h(2)r1r1(q) =
4π

5
C(2)

r1r1(q) +
1
2

ρ0 fr1C(0)
r1r1(q)h

(2)
r1r1(q) +

1
2

ρ0 fr1C(2)
r1r1(q)h

(5)
r1r1(q)

+
1
2

ρ0 fr2C(0)
r1r2(q)h

(2)
r1r2(q) +

1
2

ρ0 fr2C(2)
r1r2(q)h

(5)
r1r2(q) +

1
2

ρ0 fr2C(2)
r1r2(q)h

(7)
r1r2(q)

+
1
2

ρ0 fr2C(3)
r1r2(q)h

(6)
r1r2(q) +

1
2

ρ0 fcC(0)
r1c(q)h

(2)
r1c(q) +

1
2

ρ0 fcC(2)
r1c(q)h

(5)
r1c(q), (A76)
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h(2)r2r2(q) =
4π

5
C(2)

r2r2(q) +
1
2

ρ0 fr2C(0)
r2r2(q)h

(2)
r2r2(q) +

1
2

ρ0 fr2C(2)
r2r2(q)h

(5)
r2r2(q)

+
1
2

ρ0 fr1C(0)
r1r2(q)h

(2)
r1r2(q) +

1
2

ρ0 fr1C(2)
r1r2(q)h

(5)
r1r2(q) +

1
2

ρ0 fr1C(2)
r1r2(q)h

(7)
r1r2(q)

+
1
2

ρ0 fr1C(3)
r1r2(q)h

(6)
r1r2(q) +

1
2

ρ0 fcC(0)
r2c(q)h

(2)
r2c(q) +

1
2

ρ0 fcC(2)
r2c(q)h

(5)
r2c(q), (A77)

where the coefficients are introduced as:

h(5)ric (q) =
1

4π

∫
hric(q, a)P2

2 (a · k)da, (A78)

h(3)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)P2(a1 · a2)da1da2. (A79)

h(7)r1r2(q) =
1

16π2

∫
hr1r2(q, a1, a2)P2

2 (a1 · k)da1da2. (A80)

As a result, we have derived a system of 12 Equations (A57) and (A60)–(A77) which
are to be solved to obtain 12 expansion coefficients of the direct correlation functions:
C(0)

cc (q), C(0)
r1c(q), C(2)

r1c(q), C(0)
r2c(q), C(2)

r2c(q), C(0)
r1r2(q), C(2)

r1r2(q), C(3)
r1r2(q), C(0)

r1r1(q), C(2)
r1r1(q),

C(0)
r2r2(q), C(2)

r2r2(q).

Appendix D. Density-Density Correlation Functions of Rod-Coil-Rod Polymer Chains

Appendix D.1. Rod-Coil Total Correlation Function

Consider a correlation between the coil monomers and those of the rod of type i = 1, 2.
We enumerate the former by j = 1, 2, . . . , N fc and the latter by k = 1, 2, . . . , N fri and express:

〈δρc(r1)δρri(r3, a)〉

=

〈[
Nch

∑
α=1

N fc

∑
j=1

δ
(

r1 − r(α)j

)
− ρ0 fc

][
Nch

∑
β=1

N fri

∑
k=1

δ
(

r3 − r(β)
k

)
δ
(

a− a(β)
k

)
− 1

4π
ρ0 fri

]〉

=

〈
Nch

∑
α=1

Nch

∑
β=1

N fc

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(β)
k

)
δ
(

a− a(β)
k

)〉
− 1

4π
ρ2

0 fc fri

= Nch(Nch − 1)

〈
N fc

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(β 6=α)
k

)
δ
(

a− a(β 6=α)
k

)〉

+ Nch

〈
N fc

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a− a(α)k

)〉
− 1

4π
ρ2

0 fc fri

= Nch(Nch − 1)
N fri
4πV

N fc

V

+ Nch

〈
N fc

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a− a(α)k

)〉
− 1

4π
ρ2

0 fc fri

= Nch

[〈
N fc

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a− a(α)k

)〉
− N2 fc fri

4πV2

]
(A81)

Accordingly, the correlator per chain reads as

1
Nch
〈δρc(r1)δρri(r3, a)〉

= −N2 fc fri
4πV2 +

N fc

∑
i=1

N fri

∑
j=1

〈
δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a− a(α)k

)〉
, (A82)
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where the latter term contains averages that are the probabilities P̃jk(r1, r3, a) of finding
the coil monomer j at the point r1 if the rod monomer k is already at the point r3 oriented
along a: 〈

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a− a(α)k

)〉
= P̃jk(r1, r3, a), (A83)

which is normalized as ∫
P̃jk(r1, r3.a)dr1dr3da = 1. (A84)

In the homogeneous phase, this probability depends only on the distance r1 − r3 and
we can introduce a more conventional probability

Pjk(r1 − r3, a) = VP̃jk(r1, r3, a). (A85)

This enables one to obtain

〈δρc(r1)δρri(r3, a)〉 = −Nρ0 fc fri
4πV

+
ρ0

N

N fc

∑
j=1

N fri

∑
k=1

Pjk(r1 − r3, a). (A86)

At the same time, the total correlation function definition (A39) here reads

〈δρc(r1)δρri(r3, a)〉 = 1
4π

ρ2
0 fc frihric(r1 − r3, a), (A87)

and hence one obtains

hric(r, a) = − 1
Nch

+
4π

ρ0 fc fri

1
N

N fc

∑
j=1

N fri

∑
k=1

Pjk(r, a), (A88)

where the first constant term vanishes in the thermodynamic limit.
The chain configuration probabilities can be evaluated as convolution of simpler

probabilities of separate chain fragments. Indeed, let a coil monomer j be at the coordinate
origin. Then the probability to find at a point R the end of the coil adjoined to the rod is
given by the Gaussian distribution

Gj0(R) =

(
2π ja2

3

)−3/2

exp
[
− 3R2

2ja2

]
. (A89)

On the other hand, if the rod end is at the point R, its k-th monomer can be found at a
point r only if the rod is in the right direction and r = R + kaa, i.e., with the probability

Q0k(r− R, a) =
1

4π
δ(r− R− kaa), (A90)

which is normalized as
∫

Qik(r, a) dr da = 1.
Now the sought probability can be found by integrating over all possible coordinates

of the end R:

Pjk(r, a) =
∫

Gj0(R)Q0k(r− R, a)dR = Gj0(|r− kaa|)

=
1

4π

(
2π ja2

3

)−3/2

exp
(
−3(r− kaa)2

2ja2

)
, (A91)

and the sum of probabilities can be approximated by the integral:

1
N

N fc

∑
j=1

N fri

∑
k=1

Pjk(r, a) ≈ 1
4πN

∫ N fc

0

∫ N fri

0

(
2π ja2

3

)−3/2

exp
[
−3(r− kaa)2

2ja2

]
dkdj. (A92)
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The integral itself is difficult to take but its Fourier transform can readily be evaluated. Indeed,

Pjk(q, a) = Gj0(q)Q0k(q, a) =
1

4π
exp[−jq2a2/6] cos[ka(q · a)], (A93)

and then

1
N

N fc

∑
j=1

N fri

∑
k=1

Pjk(q, a) ≈ 1
N

∫ N fc

0

∫ N fri

0
exp[−jq2a2/6] cos[ka(q · a)]dkdj

=
1

4πN

∫ N fc

0
exp[−jq2a2/6]dj

∫ N fri

0
cos[ka(q · a)]dk

=
1

4πx
[1− exp(− fcx)]N fri

sin yi
yi

(A94)

where yi = N fria(q · a). Substituting this into Equation (A88), one obtains hric(q, a) in the
form of Equation (32).

Appendix D.2. Total Correlation Function of Segments of the Same Rod

Let us consider any two segments which belong to the same rod of the same chain.
These segments are not truly statistically independent being always aligned in the same
direction. The monomers in different chains are not restricted and we can formally consider

〈δρri(r1, a1)δρri(r3, a3)〉

=

〈[
Nch

∑
α=1

N fri

∑
j=1

δ
(

r1 − r(α)j

)
δ
(

a1 − a(α)
)
− 1

4π
ρ0 fri

]

×
[

Nch

∑
β=1

N fri

∑
k=1

δ
(

r3 − r(β)
k

)
δ
(

a3 − a(β)
)
− 1

4π
ρ0 fri

]〉

=

〈
Nch

∑
α=1

Nch

∑
β=1

N fri

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(β)
k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(β)
)〉
− 1

16π2 ρ2
0 f 2

ri

= Nch(Nch − 1)

〈
N fri

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

a1 − a(α)
)

δ
(

r3 − r(β 6=α)
k

)
δ
(

a3 − a(β 6=α)
k

)〉

+ Nch

〈
N fri

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉
− 1

16π2 ρ2
0 f 2

ri

= Nch(Nch − 1)
N2 f 2

ri
16π2V2

+ Nch

〈
N fri

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉
− 1

16π2 ρ2
0 f 2

ri

= Nch

[〈
N fri

∑
j=1

N fri

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉
−

N2 f 2
ri

16π2V2

]
(A95)

Similar to the previous subsection, we write the expression for the correlator per chain
as a sum of two terms. The first term is a sum over all segments while the second term
describes correlations between different segments:
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1
Nch
〈δρri(r1, a1)δρri(r3, a3)〉

=
N fri

∑
j=1

N fri

∑
k=1

〈
δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉
−

N2 f 2
ri

16π2V2

=
N fri

∑
j=1

〈
δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)j

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉

+
N fri

∑
j 6=k

〈
δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(α)
)

δ
(

a3 − a(α)
)〉
−

N2 f 2
ri

16π2V2

=
N fri
4πV

δ(r3 − r1)δ(a3 − a1) +
N fri

∑
j 6=k

P̃jk(r1, r3, a1, a3)−
N2 f 2

ri
16π2V2 , (A96)

where P̃jk(r1, r3, a1, a3) is the probability to find j-th and k-th monomers of the same rod
at corresponding coordinates and with the corresponding orientations. It is formally
normalized as ∫

P̃jk(r1, r3, a1, a3)dr1dr3da1da3 = 1, (A97)

and can be expressed in a simplified form accounting for the rod linear structure:

P̃jk(r1, r3, a1, a3) = δ(a3 − a1)
1
V

Qjk(r1 − r3, a1), (A98)

where Qjk(r, a) is (as previously) the probability to find j-th monomer at point r aligned
along a if k-th monomer is at the origin being similarly aligned. This enables one to express
the correlator as

〈δρri(r1, a1)δρri(r3, a3)〉

=
ρ0 fri
4π

δ(r3 − r1)δ(a3 − a1) + δ(a3 − a1)
ρ0

N

N fri

∑
j 6=k

Qjk(r1 − r3, a1)−
ρ2

0 f 2
ri

16π2Nch
, (A99)

On the other hand, the total correlation function definition (A39) here can be written
in the form:

〈δρri(r1, a1)δρri(r3, a3)〉 =
ρ0 fri
4π

δ(r1 − r3)δ(a1 − a3) +
ρ2

0 f 2
ri

16π2 hriri(r1, r3, a1, a3), (A100)

and (again in the limit Nch → ∞) one obtains:

hriri(r1, r3, a1, a3) = δ(a3 − a1)hriri(r1 − r3, a1), (A101)

where

hriri(r, a) =
16π2

ρ0 f 2
ri

1
N

N fri

∑
j 6=k

Qjk(r, a). (A102)

Taking into account that

Qjk(r, a) =
1

4π
δ(r− (k− j)aa), (A103)

we finally express the cosine Fourier harmonic of the correlation function as given by
Equation (33).
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Appendix D.3. Total Correlation Function between Segments of the Two Different Rods

For the monomers belonging to the rods of different type we introduce the orientation
of the rods of type 1 and type 2 of a chain α as a(1α) and a(2α) and write the correlator as:

〈δρr1(r1, a1)δρr2(r3, a3)〉

=

〈[
Nch

∑
α=1

N fr1

∑
j=1

δ
(

r1 − r(α)j

)
δ
(

a1 − a(1α)
)
− 1

4π
ρ0 fr1

]

×
[

Nch

∑
β=1

N fr2

∑
k=1

δ
(

r3 − r(β)
k

)
δ
(

a3 − a(2β)
)
− 1

4π
ρ0 fr2

]〉

=

〈
Nch

∑
α=1

Nch

∑
β=1

N fr1

∑
j=1

N fr2

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(β)
k

)
δ
(

a1 − a(1α)
)

δ
(

a3 − a(2β)
)〉
− 1

16π2 ρ2
0 fr1 fr2

= Nch(Nch − 1)

〈
N fr1

∑
j=1

N fr2

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

a1 − a(1α)
)

δ
(

r3 − r(β 6=α)
k

)
δ
(

a3 − a(2β 6=2α)
k

)〉

+ Nch

〈
N fr1

∑
j=1

N fr2

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(1α)
)

δ
(

a3 − a(2α)
)〉
− 1

16π2 ρ2
0 fr1 fr2

= Nch(Nch − 1)
N2 fr1 fr2

16π2V2

+ Nch

〈
N fr1

∑
j=1

N fr2

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(1α)
)

δ
(

a3 − a(2α)
)〉
− 1

16π2 ρ2
0 fr1 fr2

= Nch

[〈
N fr1

∑
j=1

N fr2

∑
k=1

δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(1α)
)

δ
(

a3 − a(2α)
)〉
− N2 fr1 fr2

16π2V2

]
(A104)

Taking into account that in the sums above all terms correspond to different segments
one obtains:

1
Nch
〈δρr1(r1, a1)δρr2(r3, a3)〉

=
N fr1

∑
j=1

N fr2

∑
k=1

〈
δ
(

r1 − r(α)j

)
δ
(

r3 − r(α)k

)
δ
(

a1 − a(1α)
)

δ
(

a3 − a(2α)
)〉
− N2 fr1 fr2

16π2V2

=
N fr1

∑
j=1

N fr2

∑
k=1

P̃jk(r1, r3, a1, a3)−
N2 fr1 fr2

16π2V2 , (A105)

where P̃jk(r1, r3, a1, a3) is the probability to find j-th monomer of type 1 and k-th monomer
of type 2 at the corresponding coordinates and with the corresponding orientations. It is
formally normalized as ∫

P̃jk(r1, r3, a1, a3)dr1dr3da1da3 = 1, (A106)

and in the disordered phase can be expressed as:

P̃jk(r1, r3, a1, a3) =
1
V

Pjk(r1 − r3, a1, a3), (A107)

where Pjk(r, a) is the probability to find j-th monomer of type 1 at point r aligned along a1
if k-th monomer of type 2 is at the origin being aligned along a3. This allows expressing
the correlator as

〈δρri(r1, a1)δρri(r3, a3)〉 =
ρ0

N

N fr1

∑
j=1

N fr2

∑
k=1

Pjk(r1 − r3, a1, a3)−
ρ2

0 fr1 fr2

16π2Nch
, (A108)



Polymers 2021, 13, 3392 31 of 34

The corresponding total correlation function definition (A39) yields:

〈δρr1(r1, a1)δρr2(r3, a3)〉 =
ρ2

0 fr1 fr2

16π2 hr1r2(r1 − r3, a1, a3), (A109)

and in the thermodynamic limit Nch → ∞ one obtains the following expression:

hr1r2(r, a1, a3) =
16π2

ρ0 fr1 fr2

1
N

N fr1

∑
j=1

N fr2

∑
k=1

Pjk(r, a1, a3). (A110)

The probability here can again be written as a convolution of simpler probabilities if
we suppose that the monomer k is at the origin and denote as R1 and R2 the coordinates of
the coil ending monomers:

Pjk(r, a1, a3) =
∫

Qj0(r− R1, a1)G0N fc(|R1 − R2|)Q0k(R2, a3)dR1dR2, (A111)

This integral can again be readily evaluated for the corresponding Fourier transform.
Indeed, the integral convolution automatically reduces to the product of exponential

Fourier transforms:

Pexp
jk (q, a1, a3) =

∫
Pjk(r, a1, a3) exp(−iq · r)dr = Qexp

j0 (q, a1)G
exp
0N fc

(q)Qexp
0k (q, a3), (A112)

where

Qexp
jk (q, a) =

∫
Qjk(r, a) exp(−iq · r)dr =

1
4π

exp[−i(k− j)a(q · a)]. (A113)

The coil probability distribution (A89) is an even function of the coordinates and its
exponential Fourier transform reads:

Pexp
0N fr

(q) =
∫

P0N fr (r) exp(−iq · r)dr = exp(− fcx). (A114)

Accordingly, the cosine Fourier transform of the rod-rod probability can be expressed as:

Pjk(q, a1, a3) = Re
[

Pexp
jk (q, a1, a3)

]
=

1
16π2 exp(− fcx) cos[a(ja1 − ka3) · q]. (A115)

As a result, we obtain the cosine Fourier transform of the total correlation function
between segments of the two different rods separated by a coil, hr1r2(q, a1, a2), as given by
Equation (34).
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