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Abstract

This study presents a new turbine layout optimisation approach using a grid-based problem
formulation for improved design performance and computational efficiency for industrial-
scale applications. A particle swarm optimisation algorithm is employed in the wind turbine
layout optimisation, in which a micro-siting function is proposed to allow solutions 50 m
of deviation while maximising energy capture without compromising maritime navigation
or search and rescue operations. Solutions are assessed by a wind farm model, comprising
the Larsen wake model, a multiple wake effect summation method, and a rotor-effective
wind speed calculation. A novel look-up function is populated by on-the-fly algorithm and
is used to reduce the number of model evaluations by approximately 95%. A gigawatt scale
hypothetical site is presented to test the model on a realistically complex scenario. A set
of design solutions generated by the algorithm are compared to empirical designs, with
the algorithm outperforming the empirical solutions by 7.55% on average, in terms of net-
present-value of energy capture minus the capital cost of turbines. The numerical efficiency
and design effectiveness are examined and further improvements discussed.

1 INTRODUCTION

As the demand for renewable energy generation increases and
onshore usable space is limited, developers have increasingly
looked to offshore wind projects for grid-connected renewable
energy. Although currently more expensive than their onshore
counterparts, these projects have access to higher average wind
speeds and can host larger, more powerful turbines. However,
to compete in the electricity markets effectively into the future,
these offshore wind projects must be capable of generating
energy at the same price–or lower than–conventional fossil fuel
energy generation. In order to achieve this, there are require-
ments to maximise energy capture and transmission while
minimising investment and operations and maintenance costs.
These can all be addressed as sub-problems under the larger all-
encompassing field of offshore wind farm optimisation.

A wind farm model (or wake model) is required to sup-
port the wind farm layout design. The overwhelming majority
of layout studies use the Jensen wake model [1], in which a
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linearly expanding wake region is assumed behind a turbine,
with a velocity deficit decreasing with downstream distance but
radially uniform across the wake area [2]. This was expanded
by Katic et al. to allow for the aggregation of multiple wake
effects and to calculate cluster efficiency, and although the Katic
et al.’s approach was believed to be sufficient for mean energy
production, it is not sufficient for considering turbine load-
ing or for use in detailed cost modelling of projects [3]. The
Jensen model has been shown to overestimate wake losses by
up to 1.91%, compared to Gaussian wake models that over-
estimated losses by up to 0.95% [1]. The Larsen model is one
such Gaussian wake model, describing a wake-affected region
that expands non-linearly containing a Gaussian velocity deficit
[4]. The Frandsen model considers two-way interaction with the
atmosphere and neighbouring wakes to calculate wake expan-
sion horizontally and vertically [5]. There are also more recent
studies that extend the simple Jensen model and apply a Gaus-
sian velocity deficit over the linearly expanding wake region.
Compared to large eddy simulation, physical experiments, and
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field observation, this linear expansion-Gaussian deficit com-
binatorial approach was found to offer improved accuracy but
maintain model simplicity [6] and was improved further by
ensuring mass conservation and consideration of the pressure
recovery region [7]. Pillai et al. [8] conducted a comparison
of wake models considering accuracy and computational time
that included the Jensen model, the Larsen model, the Ishi-
hara model, and the Ainslie Eddy-Viscosity (AEV) model. It
was found that, while the Jensen and AEV models were the
most accurate for a few wind scenarios, the Larsen model by far
offers the best trade-off between accuracy and computational
time.

One of the earliest formulations of a wind farm layout
optimisation study was proposed by Mosetti et al. [9], where a
10 × 10 grid is used for possible turbine positions. This 10 × 10
grid formulation has since been used in many wind farm layout
problems [10–12]. In these studies, turbines are placed within
the defined 100 discrete grid positions to maximise energy
capture by assessing wake interactions across the site. While
this is valuable to examine the efficacy of the algorithms, the
test cases are far from representative of a real offshore wind
farm site. Other studies design turbine positions in a variety of
ways but result in layouts that are irregular and unstructured.
Studies by the authors in [13–16] use many discrete positions
as available turbine locations but prescribe no regular pattern
constraint, resulting in irregular layouts. Lackner and Elkinton
[17] and DuPont and Cagan [18] optimise turbine positions
in continuous space (i.e. no pre-determined set of discrete
possible turbine positions) but also do not require the solutions
to be in the form of any discernible regular pattern. Irregular
layouts can face difficulty and delays in the consenting process
due to concerns on the negative impact on maritime navigation,
search and rescue operations, and–when close to the shore–
visual impact [19]. Therefore, these tools are not currently
suitable for the design of large-scale offshore wind farms. A
small number of studies utilise a grid-based problem formu-
lation; however, these often leave the majority of grid spaces
unoccupied resulting in layouts that appear to be essentially
irregular [20] or are overly constrained in the solutions that
they are able to generate, for example, requiring rows of tur-
bines to be parallel [21]. Although some grid-based algorithms
are capable of generating reasonable solutions, no deviation
from the described grid positions is considered in those tech-
niques [21, 22] limiting the potential energy capture of the
farm.

There are a wide variety of methods in the literature for
wind farm layout optimisation [23], employing various search-
ing methods for optimal solutions such as gradient-based algo-
rithms [17], genetic algorithms (GAs) [9, 20, 24], and particle
swarm optimisation (PSO) algorithms [25, 26]. A review of lay-
out optimisation algorithms by Kumar et al. [27] reveals yet
more approaches that have been taken in solving this com-
plex optimisation problem, including simulated annealing, ant-
colony optimisation, definite point selection, and binary artifi-
cial algae algorithm. Additionally, Wilson et al. [28] describe the
top four methodologies of eight teams in the second edition
of the Wind Farm Layout Optimisation Competition held at

the 22nd Genetic and Evolutionary Computation Conference,
where all teams employed evolutionary algorithms. Pillai et al.
[29] compared a GA with a PSO algorithm and found that both
methods perform well, with the PSO consuming less compu-
tational time and suggested this is due to the typically smaller
population and a constant number of function calls per itera-
tion.

Although there is clearly not yet a convergence on the best
method for wind farm layout optimisation, there are several
areas of interest that need development in future studies. Azlan
et al. [1] highlight some of these as the need for developing
an efficient optimisation approach for larger, more complex
sites; the use of more accurate wake models; and a standard
benchmark wind farm with data on the wind profile, turbines,
and realistic boundary shape. This study aims to tackle these
areas through adapting an efficient algorithm for large-scale
sites, employing a more comprehensive wake model than is
typically chosen in other studies, and development of a realistic
hypothetical site to test the robustness of this and future
algorithms.

This study outlines a grid-based turbine layout optimisation
algorithm using a PSO technique. The problem formulation
allows for a change of angle between rows (and columns) of
turbines thus being capable of generating solutions for a larger
range of sites, with the same number of design variables inde-
pendent of the number of turbines. Further, up to 50 m of devia-
tion is allowed for turbines to be positioned away from the initial
grid positions to support fine-tuning of the layout and increase
energy capture without affecting the safety of maritime opera-
tions. The wind farm model uses the Larsen wake model, which
employs a Gaussian wake profile for more accurate modelling of
the wind speed deficit in the wake-affected region. Additionally,
an industrial-scale hypothetical offshore wind farm site is pro-
posed on which the optimisation design is evaluated. Data of the
hypothetical site is provided to enable reproducibility and allow
for comparison with other future turbine placement method-
ologies.

The remainder of the paper includes the following: Section 2
presents the formulation and solution of the optimisation prob-
lem including the objective function, the constraints, the PSO
algorithm, and novel improvements to the overall algorithm;
Section 3 presents the validation of the wind farm model, the
implementation of the PSO algorithm, and presents a real-world
case study; Section 4 establishes the hypothetical site, including
wind conditions and turbine parameters; Section 5 gives results
and discussion on the effectiveness of the solution; Section 6
presents the conclusions. Key hypothetical wind farm data are
provided in the Appendix.

2 DESCRIPTION OF THE WIND FARM
MODEL AND OPTIMISATION PROCESS

A grid-based layout of turbine positions is chosen in order to
comply with the Maritime and Coastguard Agency Guidelines
in the United Kingdom. Irregular layouts may be able to yield
a greater annual energy capture but may also face difficulties
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in receiving consent in UK waters at least [19]. A grid layout
with an allowed 50 m of micro-siting is proposed as a compro-
mise, maintaining reasonable scope for optimising turbine posi-
tions to increase energy capture, while not compromising the
effectiveness of possible search and rescue missions or maritime
navigation. Details of the problem formulation are presented in
Section 2.1.

The wind farm model comprised several established
approaches including the Larsen wake model, for modelling
individual turbine wakes (Section 2.2.1); a root-sum-square
approach to aggregate multiple wake effects (Section 2.2.2); and
a rotor-effective wind speed model, to calculate the wind speed
experienced by a wind turbine rotor from point wind speed data
(Section 2.2.3).

Description of the optimisation process (Section 2.3) is
addressed in four major parts: selection and description of the
optimisation algorithm; constraints; the objective function; and
novel functions for the improvement of both computational
efficiency and quality of the solutions.

2.1 Formulation of the grid-layout design
problem

In this work, the grid for turbine positions is fully described
by eight variables independent of the size of the site and
the number of turbines. Compared to most other methods
that have an (x, y) variable for each turbine, this formulation
makes it much more efficient when scaling to larger, GW-scale
wind farms due to the low number of variables included in
modelling and optimisation. The eight variables are defined as
follows:

1. m1 –Angle of the central row of turbines (radians from north,
clockwise).

2. ∆m1–Change in the angle of the rows of turbines (radians

between adjacent rows, clockwise from north).
3. s1–Spacing between the rows of turbines along the central

column (m).
4. m2–Angle of the central column of turbines (radians from

north, clockwise).
5. ∆m2–Change in the angle of the columns of turbines (radi-

ans, between adjacent columns, clockwise from north).
6. s2–Spacing between the columns of turbines along the cen-

tral row (m).
7. x– x-coordinate of the crossing point of the central row and

the central column (m from datum in coordinate system used
to define the offshore site).

8. y– y-coordinate of the crossing point of the central row and
the central column (m from datum in coordinate system used
to define the offshore site).

Figure 1(a) is a graphical representation of the eight vari-
ables with turbines placed at the intersection of the rows and
columns, with the central row and column indicated by the
thicker blue dashed lines. Turbines can be seen marked by the
red, filled circles. Figure 1(b) and (c) show two layouts, one with

FIGURE 1 Turbines in a grid layout (a) Illustration of the eight variables
describing the grid layout, (b) Layout with ∆m1 = 0, ∆m2 = 0, and (c) layout
with ∆m1 = 0, ∆m2 = −0.1

no change in the angles between rows or columns (∆m1 =

0, ∆m2 = 0) and one with a change in angle between the
columns of turbines (∆m1 = 0, ∆m2 = −0.1) respectively.
The grid is generated with a sufficient number of rows and
columns to cover the entire wind farm site being considered.
Each grid point is checked to determine if it falls within the wind
farm area, excluding those grid points within an obstacle (user-
defined region(s) where turbines cannot be built). Only the grid
points within the buildable area have turbines built at that loca-
tion, which are then passed to the wind farm model to be
evaluated.

This grid-based formulation allows for addressing large-scale
optimisation problems with a fixed number of variables. Com-
pared to other studies such as that by Serrano González et al.
[21] with similar formulations, the set-up proposed here is suit-
able for wider wind farm sites and shapes given the inclusion of
the two variables that describe the change in the angles of rows
and columns.

In order to calculate the coordinates of individual grid points
from the eight variables, the gradient (m) and the y-intercept (c)
are calculated for each row and column line. A set of equations
for the lines in the linear form of y = mx + c can then be solved
simultaneously to yield the x- and y-coordinates for each grid
point at the intersection of row i and column j, Equations (1)
and (2) respectively.

xi, j =
(
c j − ci

)
∕
(
mi − m j

)
(1)

yi, j = mi × xi, j + c j (2)

where the gradient of the line, m, can be found through m1
± k∗∆m1 (or m2 ± k∗∆m2) with k equal to the number of
rows (or columns) away from the central row (or column).
That is, k = 0 for the central row, and k = 2 for a row two
lines away from the central row. Grid points along the central
row and the central column are equally spaced by s1 and s2,
respectively, and so these known positions can be used to cal-
culate the y-intercept values (ci and cj) of the remaining rows and
columns.
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2.2 Wind farm model

The wind farm model considers only the effect of turbine wakes
on the power production of the offshore wind farm, given the
wind conditions described by a wind rose for the site. Several
studies, including those by Pillai et al. [8] and Göçmen et al. [30]
compare the accuracy and computational time of several wake
models. Although slower than the more widely used Jensen
wake model, the Larsen model more accurately predicts the
wake behaviour and offers the best compromise between accu-
racy and computational time. The Larsen wake model [4] cal-
culates a point wind speed as influenced by an upstream wake.
There is no one definitive method for the summation of multi-
ple wake effects on a given point in space and so the well-known
energy-balance method is used [30], also known as the root-sum-

square method [8]. Point wind speeds are evaluated in this way at
multiple locations across the downstream rotor and are used to
generate a rotor effective wind speed. This may then be used to
generate the wake effect of the rotor on turbines further down-
stream.

It is desired and expected that the model not only be accu-
rate in its assessment of wind farm power production but also
be computationally efficient. This is because some optimisation
methodologies require large numbers of iterations–and there-
fore many evaluations of the model–which can make the opti-
misation process very slow if each evaluation of the wind farm
model is not sufficiently quick.

2.2.1 Larsen wake model

The Larsen wake model was first proposed in [4] and is a simple
and quick, yet efficient in wake calculation procedure. For this
study, the wake model (Equations 3–9) was coded by the authors
using Matlab R2018b.

The model calculates a point wind speed at a downstream
location that is impacted by the wake of an upstream rotor and
is a function of the thrust coefficient of the upstream turbine,
downstream distance, and radial distances from the centre of
the wake. Improvements to the model were proposed in [31],
which include a correction term for the ground effect on the
wake using an empirically found relationship linked to ambient
turbulence.

The main calculations of the Larsen wake model are
described in this section. The wind speed, u, at a point, n, on
a downstream rotor, i, within the wake of an upstream turbine,
j, can be given by

uin j = u∞

[
1 −

1
9

[
CTj

Ai (x + x0)−2
] 1

3

(
r

3

2

(
3c2

1CTj
Ai (x + x0)

)− 1

2
−
( 35

2𝜋

) 3

10 (
3c2

1

)− 1

5

)]
,

(3)

where u∞ is the free-stream wind speed (m/s); CTj is the thrust
coefficient of turbine j; Ai is the rotor swept area of tur-
bine i (m2); x is the distance between turbines, parallel to the
wind direction (m); r is the distance between turbines, perpen-
dicular to the wind direction (m); and x0 and c1 are parame-
ters that describe the wake expansion, Equations (4) and (5),
respectively,

x0 =
9.5d(

2R9.5

de f f

)3

− 1

, (4)

c1 =

(
de f f

2

) 5

2 (105
2𝜋

)− 1

2 (
CTj

Aix0
)− 5

6 , (5)

where d is the rotor diameter (m); R9 .5 is the radius of the wake
at a distance of 9.5D downstream (m), Equation (6); and deff is
the effective rotor diameter (m), Equation (7).

R9.5 = 0.5 (Rnb + min (H ,Rnb)) , (6)

de f f = d

√√√√√√√1 +
√

1 −CTj

2
√

1 −CTj

. (7)

To capture the ground effect on the wake, Equation (6) con-
tains a correction term requiring the hub height, H, and an
empirically found relationship linked to ambient turbulence,
Rnb, Equation (8):

Rnb = max
[
1.08d , 1.08d + 21.7d (Ia − 0.05)] , (8)

where Ia is the ambient turbulence intensity. The wake effect at
a downstream point need only be considered if it is within the
area experiencing a wake effect from an upstream turbine. To
evaluate if this is the case for a given point, the wake radius at the
downstream distance must be calculated. Equation (9) describes
the wake radius as a function of the downstream distance x, the
thrust coefficient Ct, the rotor area Ai and the wake expansion
factor c1.

Rw =
( 35

2𝜋

) 1

5 (
3c2

1

) 1

5 (Ct Aix )−
1

5 . (9)

For a given point, n, on a downstream rotor, i, if the dis-
tance, r, between the point and the centre of the wake is less
than Rw, then the point lies within the wake-affected region,
and Equations (3)–(8) must be evaluated to determine the
wind speed as a result of the wake effect. If r > Rw, then the
point lies outside of the wake and no wake effect needs to be
calculated.
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2.2.2 Summation of multiple wake effects

For a given point, the summation of multiple wake effects can
be achieved through the root-sum-square (or energy-balance)
of the deficit factor, D, a non-dimensional description of the
velocity deficit caused by the wake [3, 30]. The deficit factor can
be calculated for each point on the downstream rotor, for each
of the wakes of upstream rotors, from the point wind speeds
calculated by the Larsen wake model. Summing these using the
energy balance equation [30], the resulting total deficit factor
can be returned to a point wind speed as a fraction of the free-
stream wind speed [3].

Din j = 1 −
uin j

u∞
. (10)

The total deficit factor experienced by a point as a result of
multiple wakes is:

Din
=

√∑
j

(
Din j

)2
. (11)

This can be returned to a point wind speed, now considering
all wake effects, through:

uin
= u∞

(
1 − Din

)
, (12)

where the point wind speed, uin, is equal to the free stream wind
speed, u∞, multiplied by one minus the total deficit factor, Din,
experienced at the point, n.

2.2.3 Rotor effective wind speed

The rotor effective wind speed equation [32] is used to calcu-
late the wind speed experienced by the rotor from the indi-
vidual point wind speeds calculated by the Larsen wake model.
As the power coefficient (CP) varies along the blade, the distri-
bution of CP must be known and used to weigh the influence
on power production for each point wind speed. This captures
the effects of tip losses and low power production from the
root of the turbine blades. The rotor effective wind speed can
then be used to look up the power and the thrust coefficient of
the turbine, through the known power curve and thrust curve.
These are then used to determine the wake effect of the current
turbine on further downstream turbines. Sorting the turbines
into upstream-to-downstream order (for each wind direction)
and calculating the wind speeds as described allows the model
to estimate the aggregate effect of all the wakes on all of the
affected turbines.

ui =

⎛⎜⎜⎝
⎛⎜⎜⎝

2𝜋

∫
0

R

∫
0

u3
in

(r , 𝜃)
𝜕Cp

𝜕r
rdrd𝜃

⎞⎟⎟⎠ ∕
⎛⎜⎜⎝

2𝜋

∫
0

R

∫
0

𝜕Cp

𝜕r
rdrd𝜃

⎞⎟⎟⎠
⎞⎟⎟⎠

1∕3

.

(13)

Equation (13) integrates the point wind speed values with
respect to radial distance, from the rotor centre (r = 0) to the
blade tip (r = R), and with respect to the azimuth angle (from
θ = 0 to θ = 2π).

2.3 Optimisation framework and
implementation

This section provides more detail into the selection and imple-
mentation of the chosen algorithm and other key components
in the optimisation process.

2.3.1 Algorithm selection and implementation

The wind farm power calculated from the wind farm model
can vary greatly for a small change in some or all of the eight
variables. Non-uniform wind distribution, irregular wind farm
boundaries, and obstacles all contribute to the irregular nature
of the objective function values in the solution space. Further,
constraints and/or penalties can create regions in the solution
space with a step-change in the objective value (discussed fur-
ther in Section 2.3.2). It is impractical to rely upon gradient-
based search algorithms that require the objective function
to be differentiable. An exhaustive search method could be
used; however, to achieve a satisfactory level of accuracy would
require the evaluation of an impractically large number of pos-
sible solutions.

When hard constraints are used, some optimisation meth-
ods are able to take advantage of these to reduce the num-
ber of searches to find the optimal solution, either by search-
ing along the vertex edges of the constrained solution space
(simplex method) or by systematically applying ‘cuts’ (additional
constraints) to the solution space (cutting plane method) [33].
However, the problem formulation suggests that an analytical
solution is unlikely to exist on a vertex edge when constraints are
used to define the feasible region. For example, if the variables
s1 (row spacing) and s2 (column spacing) have a lower bound
constraint applied for the minimum turbine spacing, the sim-
plex method would evaluate solutions along these vertices. At
these locations in the solution space, the wind farm power may
be greater due to more turbines fitting into the site but may be
reduced due to greater wake effects. As the row and column
spacing increases, the wind farm power increases due to reduced
wake effects; therefore, a better solution may be found at values
not equal to the constraint value–and not on the vertex edge.
For this reason, these algorithms may not be reliable in finding
an optimal solution.

Evolutionary algorithms, such as GA or PSO, offer a promis-
ing alternative. These algorithms generate a range of solutions
distributed within the solution space and–through different pro-
cesses depending on the algorithm–move the initial solutions
through the solution space to attempt to find increasingly bet-
ter solutions. The GA method selects the best quality solutions
from the population and, considering pairs at a time, ‘breeds’
the solutions by swapping some of their values (of the eight
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Algorithm 1 PSO

Particles randomly distributed in solution space, 𝜙 ∈ R8

while max(𝜙) − min(𝜙) > 𝜙threshold do

for Each particle, i do

Update particle velocity 𝜐i = X ∗ 𝜐i +Y ∗ (𝜙PB − 𝜙i ) + Z ∗ (𝜙GB − 𝜙i ), where {X ,Y ,Z ∈ R | 0 < X ,Y ,Z < 1}

Update particle position 𝜙i = 𝜙i + 𝜐i

Evaluate J (𝜙i )

if J (𝜙i ) > J (𝜙PBi
) then

Update personal best solution, 𝜙PBi
= 𝜙i

end if

if J (𝜙i ) > J (𝜙GBi
) then

Update global best solution, 𝜙GBi
= 𝜙i

end if

end for

end while

Output 𝜙GB

variables) to generate new potential solutions for the next ‘gen-
eration’. Swapping variables in this way may lead to the genera-
tion of grids with highly acute angles and overly close positioned
turbines. A PSO algorithm is analogous to a swarm of bees.
Each particle–or solution–moves through the solution space
via a combination of vectors: the direction of the individual’s
momentum, the direction to its previous personal best solu-
tion, and the direction towards the swarm’s global best solution
[34]. Balasubramanian et al. [35] found the that PSO algorithm
requires simpler implementation and faster convergence than
the GA algorithm. This could be due to the cooperative nature
of the PSO algorithm whereby solutions share knowledge of the
solution space and iteratively improve all solutions in the swarm
as opposed to the competitively organised GA [26]. Therefore,
the PSO method is chosen for this study.

Algorithm 1 outlines the key processes taking place in the
PSO, where φ is the set of independent variables, described later
in Equation (14).

2.3.2 Constraints

Constraints–or limits–can be applied to the variables being con-
sidered in order to bound the solution space to create a region of
feasible solutions resulting in a constrained optimisation prob-
lem. A reformulation of the objective function allows for these
complex constraint equations to be considered in the objective
function as implicit constraints through the implementation of
Lagrange multipliers [36] (similar to the penalty function term,
Pdistance, in Equation 15). In this style of formulation, the objec-
tive function may become infinite, or very large, when these
inequality constraints are violated. The problem can then be
solved as an unconstrained optimisation problem. These penal-
ties can be thought of as a type of soft constraint that disin-
centivises solutions in these regions. In the case of a PSO algo-
rithm, particles may enter this region but will be penalised in the

objective function. As such, the particles are likely to move back
towards the areas where good solutions have previously been
found. This method has two major benefits: first, it avoids com-
plex constraint equations and replaces these constraints with a
simple evaluation of the specific solution; and second, it allows
particles to enter a region that is penalised and re-enter the un-
penalised region in a new location that might otherwise have
been difficult or impossible to reach with hard constraints.

This penalty approach is used in the optimisation process
instead of keeping separate hard constraints. The constraint
penalty applied in the objective function is described further
in the following section. The problem is therefore an uncon-
strained optimisation problem. The PSO algorithm is seeded
with an un-penalised solution to guarantee that there is a good
quality global best solution for particles to move towards. This
ensures that particles, even if initialised in a penalised region,
will not deviate far from the un-penalised region. The seeding
process is described in more detail in Section 2.3.4.

2.3.3 Objective function

The objective function, Equation (15), is a function of the set of
independent variables described previously, grouped in a vector
as in Equation (14).

𝜑 =
[
m1Δm1s1m2Δm2s2xy]

T
, (14)

J (𝜑) = Jrev −Cturbines − Pdistance, (15)

where Jrev is the net present value of the lifetime revenue from
wind farm energy capture; Cturbines is the capital cost of wind
turbines; and Pdistance is the penalty cost associated with tur-
bines positioned less than a given proximity distance apart. The
levelised cost of energy could also be used as an alternative
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objective function and is often used in similar studies [26, 35,
37]. Since the focus of this study is on maximising the energy
capture, the objective function includes only the energy capture
term and the cost of turbines, omitting the remaining complex
cost functions required for LCOE for simplicity and clarity. The
penalty function, Pdistance, is also included; however, this term will
be equal to zero for all layouts that do not violate the proximity
constraint, Equation (17).

The optimisation problem can then be described by the fol-
lowing:

𝜑∗ = arg max J (𝜑) , (16)

where φ∗ is the set of values corresponding to the variables, φ,
that result in the maximisation of the function J(φ).

The three terms in Equation (15) cannot be directly written
as functions of φ; however, all are dependent on all eight vari-
ables because the eight variables fully describe the grid of tur-
bine positions. First, Jrev requires the wind farm power from an
evaluation of the wind farm model, the result of which is heav-
ily dependent on the angles, spacing, and location of the grid.
This wind farm power result is assumed to be approximately
correct for all years of operation of the wind farm, multiplied
by a defined cost of energy and summed over the lifetime of the
project at a given discount rate.

Second, Cturbines is the capital cost of turbines. This cost is
dependent on the number of grid points that lie within the
buildable area and is simply a multiplication of the number of
applicable points by a specified turbine capital cost. Other costs,
such as the cost of turbine transportation and installation could
be included in this term, however, have not been considered in
this study.

Finally, Pdistance is the constraint penalty function. As an alter-
native to a hard constraint formulation, the purpose of this
penalty function, or Lagrange multiplier, is to disincentivise
solutions where turbines are built too close to each other. Dur-
ing the evaluation of the wind farm model, turbine positions
are recorded and the distances between the turbines and their
respective nearest neighbours are calculated. If the distance
between a pair of turbines is found to be below a defined mini-
mum spacing (specific to the type of turbines), then a penalty
cost is applied; otherwise, Pdistance = £0, Equation (17). The
penalty cost applied for a violation of the minimum spacing
is a large cost, which is a function of the size of the site and
the size of the turbines. To avoid values of infinity, this algo-
rithm defines the penalty cost to an arbitrary but sufficiently
high penalty value, equal to the un-discounted annual revenue
of a whole row of turbines.

Pi, j =

⎧⎪⎪⎨⎪⎪⎩

N × RevAEP if the distance between

turbines i and j < minimum spacing

0 if the distance between turbines i

and j ≥ minimum spacing

(i, j ∈ T ) ,

(17)
where N is the maximum possible number of turbines in a row,
for the given wind farm; RevAEP is the revenue of one turbine

operating at rated power continuously for 1 year; and i and j are
real numbers representing each of the grid points to be consid-
ered in the set of T, where T is the subset of grid points contain-
ing turbines in the current solution. The distance between each
turbine i and every other turbine j is measured for all grid points
in the set T. The term Pdistance is the summation

Pdistance =
∑

i, j∈T

Pi, j , (18)

of the individual penalty costs considered for every pair of built
turbines; however, one violation of the minimum turbine spac-
ing should provide an effectively infinite disincentive.

The exact value of the penalty cost is not critical providing
it is relatively large, compared to the annual revenue of a row
of turbines–the number of which will vary with the site dimen-
sions. Formulating the penalty function in this way ensures that
this will always be the case.

2.3.4 Additional improvements

Several improvements have been made in the implementation
of optimisation design.

(1) Seeding of initial solutions: In order to initialise at least
one particle in a region of the solution space containing reason-
able solutions, a simple search procedure is employed prior to
the PSO algorithm. The search procedure resembles a pattern
search algorithm [18] and is described in Algorithm 2.

Here, θ is the angle in radians between the central row and
central column of the grid (m2−m1); distmin is the minimum
allowable distance between turbines; and (xGC,yGC) are the coor-
dinates of the geometric centre of the wind farm site. In a clas-
sical pattern search algorithm, particles move through the solu-
tion space in a user-defined set of pattern directions. Moves are
screened for constraint violations, and if there is no violation,
the move is accepted; otherwise, the step size is reduced and the
process is repeated. In the approach used in this study, however,
the spacing between turbines (variables s1 and s2) are fixed, so no
constraints are required and therefore there is no change in the
step size. In this way, the approach used here could also be con-
sidered as an exhaustive search of a set of discrete user-defined
points in the solution space. The globally best solution found
in this process is used to seed the position of the first parti-
cle in the PSO algorithm. The remaining particles in the swarm
can be seeded with user-defined values based upon empirical
knowledge and experience; otherwise, they are initialised ran-
domly within the following ranges:

1. 0 ≤ m1 ≤ π;

2. m1 +0.45 π ≤ m2 ≤ m1 +0.55 π (for m1 of the corresponding
solution)L

3. −0.02π ≤ ∆m1, ∆m2 ≤ 0.02π,
4. 0.75 distmin ≤ s1, s2 ≤ 3 distmin,

5. xGC − distmin ≤ x ≤ xGC + distmin,

6. yGC − distmin ≤ y ≤ yGC + distmin,
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Algorithm 2 Pattern search algorithm

Fix six variables of 𝜙 (Δm1 = Δm2 = 0, s1 = s2 = distmin, (x, y) = (xGC , yGC )

Initialise m1 = 0.02𝜋 radians

while m1 ≤ 𝜋 do

𝜃 = 0.25𝜋

while 𝜃 ≤ 0.75𝜋 do

m2 = m1 + 𝜃

Evaluate J (𝜙)

if J (𝜙i ) > J (𝜙GB ) then

Update global best solution, 𝜙GB = 𝜙i

end if

Step 𝜃 by +0.02𝜋

end while

Step m1 by +0.02𝜋

end while

Output 𝜙GB for seeding particle in PSO

FIGURE 2 Decision block to evaluate the full wind farm model or to use an approximation

(2) Look-up dataset: The computational load of a single eval-
uation of the wind farm model is reasonably low; however, it is a
function of the number of wind directions and the square of the
number of turbines. On a standard desktop PC (3.4GHz Intel
Core i7-6700, 16GB RAM), an evaluation of the model with 360
wind directions and 58 turbines takes approximately 19 s. The
number of model evaluations is a function of the number of iter-
ations and the number of particles (or potential solutions) in the
PSO. Although it is not possible to reduce the number of wind
directions or turbines, it is possible to reduce the number of
model evaluations to improve the algorithm efficiency. Figure 2
presents a decision block in the algorithm that reduces the num-
ber of model evaluations to around 5% of the original number
of iterations, reducing the computational load by around 95%.
The decision in the block is made probabilistically as shown by
the ‘Yes’ and ‘No’ conditions in Figure 2. The wind farm model
is also evaluated in the condition that the number of turbines is
outwith the range of the dataset created up to that point.

When the wind farm model is evaluated for a given solution,
the wind farm power is recorded against the number of turbines
present and appended to the look-up dataset. This is repeated
for many solutions, resulting in a relationship as shown in
Figure 3. For a given number of wind turbines, there may be
a range of wind farm power values recorded already, and so the
mean of these values is used for that given number of turbines.

For the remaining iterations, when an approximation is used,
this dataset is used as a look-up table for wind farm power. This
approximation method, allows the algorithm to quickly assess

FIGURE 3 An example wind farm power dataset created by the
optimisation process during a case study of the Lillgrund offshore wind farm
site (for more information, see Section 3.3)
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FIGURE 4 Flowchart of the key optimisation processes

the wind farm power, including wake effects (specific to the site,
turbines, and wind profile), without simulation of the full wind
farm model.

The probability of the full model being evaluated is shown in
Figure 2 as

P (Yes) = 1 − P (No) = 1 − min {1, 5∕iter } ,

where iter is the iteration number. This formulation ensures
that the first five iterations are used to sufficiently populate the
dataset and that the probability of the full model being eval-
uated decreases as the algorithm progresses and the dataset is
increasingly well-described. Additionally, the full model is eval-
uated for solutions that are outwith the existing range of the
dataset to ensure that the full range of solutions is described by
the look-up curve.

(3) Micro-siting function: This function allows for up to 50 m
of micro-siting of turbines away from their ‘designated’ grid-
based position. This allows for two major benefits: (1) turbines
that are placed less than 50m outside of the wind farm bound-
ary can be moved inside the boundary to be built, and (2) the
built turbines can be spread apart to reduce the wake losses and
increase energy capture. To reduce the computational complex-
ity of the micro-siting function, two assumptions are made in
line with the above, (1) a greater number of turbines will increase
the wind farm power, and (2) increasing the distance between
turbines will reduce the wake losses.

The function assesses each of the grid positions of possible
turbine locations (including those outside of the wind farm area)
to determine whether it is within 50 m of the buildable area. If

yes, then a new possible turbine location is considered, which
is up to 50 m away from the initial grid position. Positions are
considered along the vector, from the grid point being consid-
ered, in the direction of the average position of the grid point’s
nearest neighbours. If a new position is found that is within the
buildable area, then this position is used to build a turbine. If
no valid position is found then no turbine is built for that grid
point and the next grid position is considered. These move-
ments move turbines just outside of the wind farm (<50 m)
into it to be built. Once all grid positions have been assessed in
this way, turbines are selected randomly to be moved away from
their nearest neighbours by up to 50 m. Incremental distances
of <<50 m are used at each iteration. This process is repeated
such that each turbine is visited on average 10 times. This sec-
ond movement phase increases the spacing between turbines
reducing the wake effect.

2.4 Summary of optimisation process

Figure 4 shows the key processes within the optimisation.
Boundaries of the PSO algorithm and objective function have
been outlined to highlight the procedures involved in these
sections. The particle seeding method, look-up approximation
method, and micro-siting function have all been included to
demonstrate where they fit into the whole optimisation design.

An initial particle is seeded at a suitable point in the eight-
dimensional solution space, and the remaining solutions are ran-
domly seeded. Velocity vectors of the particles are randomly
generated and the positions are updated by moving the particles
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along these vectors. The grid of turbine positions is created
from the variables for each of the proposed solutions in the
swarm as described in Section 2.1. A decision is made to eval-
uate the wind farm model or to look up an approximation, as
described previously, providing a value of the lifetime energy
capture of the site. This is summed with the cost of turbines
(negative cost), and the turbine spacing penalty cost (negative
cost). The record of the personal best and the global best solu-
tions of the swarm are updated where applicable, and the par-
ticle velocities are updated. The velocities of the particles are
generated from three components: the particle’s current direc-
tion of travel, towards its personal best solution, and towards
the swarm’s global best solution. This process then repeats
from updating the particle positions until the particles converge
and/or the velocities have reduced to a sufficiently small value.
On the final set of solutions, the micro-siting function is eval-
uated to improve energy capture and the best solution of the
swarm is kept.

3 VALIDATION AND TESTING

This section outlines the validation of the wind farm model and
verification of the implementation of the optimisation process.
First, the wind farm model was given a set of real turbine posi-
tions and the calculated wind farm power was compared against
the known, real-world, power of the wind farm. Second, the
operation of the PSO algorithm was investigated to determine
if it operates as desired and producing increasingly good quality
solutions over iterations. Finally, the optimisation process was
applied to a case study of a real-world site. The solution was
compared against the actual turbine positions to determine if
the optimisation process can generate reliable solutions.

3.1 Wind farm model validation

Prior to evaluating the whole wind farm model, it was impor-
tant to establish a number of point wind speeds to calculate per
rotor in order to achieve a sufficiently accurate rotor-effective
wind speed. A sensitivity study was carried out by changing
the resolution of the points per rotor and evaluating the rotor-
effective wind speed over the range from 8 to approximately
13,700 points per rotor. It was assumed that a greater resolution
of points across the rotor swept area will result in a more accu-
rate rotor-effective wind speed with the wake model. Indeed, it
was found that with an increasing number of points per rotor,
the rotor-effective wind speed approaches the high-resolution
result. The quality of solutions with a low number of points was
also sufficient, however. The rotor effective wind speed calcu-
lated using 8 points per rotor was 8.438 m/s. This increased
slightly as the resolution was increased, resulting in 8.446 m/s
rotor-effective wind speed with 13,700 points per rotor. Since
the computational time is directly proportional to the number
of points per rotor to be assessed, and the error in wind speed
between the lower and higher resolution cases was ignorable, 8
wind speed points per rotor were chosen as sufficient for the
model calculation.

TABLE 1 Error of capacity factor and energy capture between model
evaluation and SCADA data for three turbines

Average error of capacity

factor (%)

Power

level (kW) Unshifted

Curve

shifted by

3.7◦

Error of energy capture

for wind angles in the

range 190–240◦ (%)

300–600 25.65–26.15 7.12–9.29 0.98–3.54

700–1000 31.74–31.82 13.04–13.15 4.22–4.97

1100–1400 29.79–30.12 10.06–10.25 4.32–4.89

1500–1800 29.34–29.44 10.62–11.55 2.77–4.84

The wind farm model was provided with the real turbine
positions of the Lillgrund offshore wind farm (measured from
the Vattenfall report ‘Technical Description Lillgrund Wind
Power Plant’ [38]) and the wind conditions of the site (from
‘Meteorological Conditions at Lillgrund’ report [39]). The real
turbine positions at Lillgrund can be seen in the left plot in
Figure 5. Also indicated, is the North bearing, and one of
the significant wind directions, at 222.7◦, which is parallel to
the angle of the columns of turbines. The right-hand plot of
Figure 5 shows the average capacity factor of the three high-
lighted turbines (highlighted in Figure 5, left) for both the
model evaluation and the real site supervisory control and
data acquisition (SCADA) data [40]. The data was ‘binned’
into four groups based on the power of the upstream tur-
bines: 300–600 kW, 700–1000 kW, 1100–1400 kW, and 1500–
1800 kW.

It is clear from Figure 5 that the model was able to estimate
wake effects close to that observed in the real-world data, by a
depression in the capacity factor of similar magnitude. How-
ever, there is an offset between the angles of the peak wake
effect of the two datasets of approximately 4◦. In the model,
the angle of the wind direction was defined, and the model
was evaluated at 1◦ increments and does not consider wake
deviation or any wind direction changes through the site. The
wind direction in the real data was recorded as the median yaw
angle of the three upstream turbines (those to the South-West
of the three highlighted turbines in Figure 5, left). The average
errors, for the four power bins, between the real dataset and
the model predictions are given in Table 1, for both the capac-
ity factor error and the difference in energy capture in the seg-
ment (190◦−240◦). Also, included is the average error in capac-
ity factor when the SCADA data was shifted by 3.7◦ to account
for possible measurement inaccuracy. Errors between the model
and the real data range from 25.65%–31.82%, in large part due
to the angle shift mentioned previously. Shifting the real data
by +3.7◦ to remove any possible yaw-measurement inaccuracy
reduces the errors to the range of 7.12%–13.15%. The energy
capture achieved in the segment, 190◦−240◦, closely matches
that recorded by the real-world data with error in the range of
0.98%–4.97% (see Table 1).

Figure 6 shows the capacity factor of the whole Lillgrund
wind farm [30] and the model prediction across the full 360◦
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FIGURE 5 (Left) Lillgrund turbine positions, three highlight turbines under consideration, and the significant wind direction being considered. (Right) Mean
capacity factor of the three turbines under consideration from the model evaluation and Lillgrund SCADA data. Data is grouped into four bins based on the power
level of the upstream turbines, not affected by wakes. The significant wind direction from the left-hand plot at 222.7◦ is indicated for ease of comparison

FIGURE 6 Wind farm capacity factor across wind directions for the Lillgrund offshore wind farm. Model evaluation and Lillgrund SCADA data for
below-rated wind speed

range. Including all turbines in the wind farm and all possible
wind directions allow for the effectiveness of the summation
of multiple wake effects to be assessed. Data for the 360◦ effi-
ciency of the wind farm is also available in [40]; however, as
seen in Figure 5, there was a misalignment between the data
and the geometric positions of the turbines, and so this was
not used for comparison. The error between the capacity factor
of the real site and the model, Figure 6, was reasonably small,
averaging 5.58% using 15◦ wind direction bins. The error in
annual energy capture was even lower, at 0.72%, showing a close

matching of power generation between the model and the real
data.

As mentioned previously, wake models can tolerate large
errors (>8% [8]) depending on the width of the bins used to
group wind directions. As such, errors demonstrated by the
combination of the models shown here in the range of 5.58%
are acceptable for use in the optimisation algorithm. Further,
the assessment of the fitness of solutions generated by the opti-
misation algorithm is measured by the annual energy capture, as
a function of wind farm power output, which showed an error
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FIGURE 7 Minimum, maximum, and mean objective function values in the swarm across iterations

as low as 0.72%, compared to the real wind farm data–more
than sufficiently accurate for use in the algorithm.

3.2 Implementation of the algorithm

Figure 7 shows the range of objective function values found by
the particles in the swarm, for a case study problem described
in the following section. The maximum, mean, and minimum
values are shown, from top to bottom. It can be seen that all
of these improves and converges over iterations and proves
the functionality of the PSO algorithm. For an optimisation
problem such as this with approximately 48–50 turbines, 360
wind conditions (wind speed and direction combinations), and
∼500 iterations, the computational time was approximately 35
min on a standard desktop PC (3.4GHz Intel Core i7-6700,
16GB RAM).

3.3 Real site case study

Having demonstrated the wind farm model and the function-
ality of the optimisation algorithm, a final test was conducted
to examine whether the generated solutions are useful, practi-
cal solutions for a real site design. The Lillgrund offshore wind
farm site was also used for this case study. Figure 8 shows
both the Lillgrund turbine layout (left) and the model result

(right). The wind farm boundary is outlined and the obstruc-
tion where no turbines may be built, in the middle of the wind
farm, is indicated by the shaded red region. In order to make
a fair comparison, the model was restricted to generate solu-
tions with a minimum row and column spacing of 3.3 and
4.3 times the rotor diameter as is seen in the real site; how-
ever, it was free to determine the orientation of the rows and
columns. The real site has 48 turbines and generates an aver-
age wind farm power output of 33.6 MW. The optimised lay-
out gives 52 turbines and generates an average of 36.0 MW.
Although the losses due to wake effects increase in the opti-
mised site due to the presence of four more turbines, the net
present value of lifetime energy capture increased by £17.98
M and the increase in the capital cost of turbines increased by
£9.2 M leading to a net gain of £8.78 M (net-present-value) over
the lifetime of the project (25 years). This demonstrates that the
algorithm is capable of generating reliable solutions, and in this
case, has been shown to outperform the real site of the case
study.

4 HYPOTHETICAL OFFSHORE WIND
FARM STUDY

This section presents an updated hypothetical wind farm
test case that is more representative of large-scale real-world
offshore wind farms, covering the site description, wind
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FIGURE 8 (Left) Turbine positions of the real Lillgrund site of 48 turbines generating an average of 33.6 MW, and (right) optimisation algorithm result
containing 52 turbines generating an average of 36.0 MW

FIGURE 9 Proposed hypothetical offshore wind farm site

conditions, and turbine description. All data used are publicly
available and, where possible, provided in the Appendix.

4.1 Site description

The proposed hypothetical site has an irregular shape including
a concave edge, Figure 9, and covers a large area sufficient to
contain GW-scale projects. Two obstacles are included of dif-
ferent shapes, sizes, and positions, marked by the red shaded
regions. Turbines are restricted from ‘overhanging’ the wind
farm boundary and so cannot be built within one rotor radius
of the wind farm boundary. These aspects are included in order

to provide realistic constraints and complications to the model
being tested. Coordinates for the wind farm region and the two
obstacle regions can be found in the Appendix, Table A1.

4.2 Wind conditions

To make a comparison with other wind farm optimisation stud-
ies, the wind conditions used in this work are taken from those
described first by Mosetti et al. [9]. In their study, the authors
propose three sets of wind conditions: (1) a single-direction,
single-wind speed case, (2) multiple-direction, single-wind speed
case, and (3) non-uniform distribution of wind speed and direc-
tion. This study used wind Scenario 3, shown in Figure 10, as
it is the most representative of real wind conditions. The wind
rose data can be found in the Appendix, Table A2.

4.3 Turbine description

The turbine used was an 8 MW reference wind turbine by
Desmond et al. [41]. Some of the key turbine parameters are:
rotor diameter 164 m, hub height 110 m, Cpmax 0.44, minimum
spacing of five times the rotor diameter, and turbine cost £8 M.
More complete data can be found in the referenced study [41]
including power coefficient and thrust coefficient plots used by
the wake model.

5 RESULTS AND DISCUSSION

Ten intuitively designed layouts were created by manually
adjusting the grid variables to generate good quality layouts,
through intuition and engineering experience. This, rather
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FIGURE 10 Non-uniform distribution of wind speed and direction [9].
(North 0/360 degrees, east 90 degrees)

manual approach, is a common practice in the early design phase
work of offshore wind farms, and several hours were spent on
the generation of these to ensure good quality solutions were
found. No additional micro-siting (deviation from the defined
grid points) was considered for these layouts. A further 10
layouts were created by the proposed optimisation algorithm.
Figure 11 shows the turbine layouts of the best solution of each
of these sets of solutions, with the best intuitively designed result
in the left plot and the best optimisation results in the right
plot. The process of generating solutions manually requires an

appreciation of the trade-offs inherent in the problem, including
but not limited to:

-achieving an orientation relative to the predominant wind
direction beneficial for energy capture, whilst ensur-
ing net energy capture from other wind directions isn’t
reduced by a greater amount,

-increasing the spacing between turbines to reduce wake
effects and increase energy capture, without ‘pushing’
turbines outside of the wind farm boundary, and

-orienting the grid to optimise the use of the space avail-
able (i.e. placing turbines near the wind farm boundary),
without compromising energy capture or reducing tur-
bine numbers.

Although manually generating turbine layouts can be quicker,
these complications mean that generating good quality solutions
can be very difficult and can often be outperformed by solutions
created by the design optimisation algorithm. This can be seen
in the objective function values of the two sets of solutions in
Table 2.

Figure 12, shows a box plot of the fitness of the two sets of
solutions, the manually generated layouts and the optimisation
algorithm layouts as assessed by the objective function, Equa-
tion (15). The intuitively created solutions have an objective
function value, or fitness, in the range of £1,041–£1165 M
and a mean value of £1117.8 M (see Table 2). The layouts
generated by the optimisation algorithm have values of £1198–
£1204 M and a mean value of £1202.3 M. It is clear from
Figure 12 that the optimisation results not only outperform
the intuitively designed solutions in every instance but are also
more consistent. It can be seen in Table 2 that the intuitively
designed solutions are within 11.02% of the mean value of the

FIGURE 11 Best solutions of the intuitively designed layouts (left) and optimisation algorithm layouts (right) as assessed by the objective function
(Equation 15)
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TABLE 2 Objective function value of the 10 intuitively generated
solutions and the 10 optimised solutions

Objective function value (£M)

Solution no. Intuitive solution Optimised solution

1 1126.2 1204.0

2 1144.1 1203.1

3 1072.4 1198.1

4 1066.2 1203.2

5 1140.8 1202.9

6 1127.7 1198.8

7 1041.4 1203.6

8 1146.1 1202.8

9 1148.6 1204.3

10 1164.6 1201.6

Mean 1117.8 1202.3

FIGURE 12 Box plot of the fitness of two sets of solutions generated
manually and by the optimisation algorithm

set, whereas the optimised solutions all occur within 0.52%
of the mean value of the set, which highlights the advantages
of layout design optimisation considering the aforementioned
trade-offs.

From Table 2 it can be seen that the mean fitness of the opti-
mised solutions is £1202.3 M relative to the mean of the intuitive
solutions at £1117.8 M, which is an increase of 7.55%. This cor-
responds to an increase in the net present value of £84.4 M as
assessed by the objective function. The optimisation solutions
were generated on a standard desktop PC (3.4GHz Intel Core
i7-6700, 16GB RAM) in an average time of 39,495 s (approxi-
mately 11 h). Although this is far longer than the time required
to create and assess manually generated solutions (< 1 h), it is
considered a relatively small investment of computational time
and resources for an important design phase study. The pro-
posed algorithm can also be used as a practical design tool for
sensitivity analysis.

As the turbine placement optimisation algorithm comprises
two main functions, the PSO algorithm and the micro-siting
function, solutions are also assessed between these two phases
to determine the relative contribution of each. It was found
that the solutions, after the completion of the PSO algorithm,
had an average fitness of 6.44% greater than the average intu-
itively designed solution. The micro-siting function, which took
an average of 3484 s (approximately 1 h), increased this by a
further 1.11%.

6 CONCLUSION

A new approach for turbine layout optimisation of GW-scale
offshore wind farms has been proposed using a combination of
existing models and methods. The formulation of the problem
improves on previous grid-based layout studies that often have
many empty grid spaces [20] or do not allow for the rows
or columns of turbines to spread out by changing the angle
between them [21]. The addition of two novel components, an
on-the-fly look-up dataset and micro-siting function, provided
further benefits in both computational resource and the quality
of solutions. Creating and using the look-up dataset of average
wind farm power output reduces the number of evaluations
of the wind farm model by 95%, reducing the computational
time commensurately. The micro-siting function, which further
improves the final solutions of the PSO, increased the quality
of solutions by an additional1.11%.

A comparison of the wake model against real data from the
Lillgrund offshore wind farm shows that the model can cor-
rectly predict the average wake effect of a single turbine to an
error range within 7.12%–13.15% and the energy capture of
the downwind turbine to an error range within 0.98%–4.84%.
When considering all turbines in the Lillgrund wind farm, and
therefore the summation of multiple wake effects, the wind
farm model predicted wind farm capacity factor for different
wind directions to an error range within 5.93%–11.63% on aver-
age, with an energy capture error of 0.17%. The optimisation
algorithm, on a case study of the Lillgrund site, has been shown
to produce good quality solutions increasing the net present
value of the site by £8.78 M.

A hypothetical GW-scale site was proposed, and a set of 10
intuitively designed solutions were compared against 10 results
generated by the optimisation algorithm. Compared to the aver-
age fitness of the intuitively designed results, the optimisation
algorithm was able to produce solutions with an average fitness
of 7.55% higher. The proposed algorithm showed consistency
in the quality of results, with all solutions within 0.52% of
the mean, compared to the more variable solutions created
intuitively with a range of 11.02% of the mean value. The
computational resource required for the optimisation algorithm
was considered minimal for such an important design phase
study (approximately 11 h on a standard desktop PC), and so
this approach could be used as a practical design engineering
tool.

Several aspects of this study could be explored further to
improve the design process and possibly the quality of solu-
tions. First, the micro-siting function was only used on the
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final set of PSO solutions; however, this could also be evalu-
ated throughout all iterations of the PSO algorithm. If compu-
tational resource and time are not a consideration, this may yield
improvements to the quality of solutions–but at the price of a
large increase in computational time. Second, generating solu-
tions intuitively and evaluating the micro-siting function only,
would likely lead to better solutions with respect to manually
generated solutions alone. Although it is expected that the solu-
tions would not be as good as those generated by the proposed
algorithm, it could provide a method for the quick creation
of reasonable quality solutions. Finally, additional costs such as
the capital expenditure of the required electrical infrastructure
could be considered. The model shows diminishing returns for
every additional turbine placed in the site (Figure 3), therefore
including a more complete set of cost considerations may lead
to solutions with fewer turbines or affect the spacing and posi-
tioning of turbines.
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APPENDIX

Hypothetical wind farm data

A1. Wind far m boundar y and obstacles

A2. Wind conditions

TABLE A2 No-uniform distribution of wind speed and direction, from
wind Scenario 3 by Mosetti et al. [9] (probability values given in %)

Wind direction (deg) 8 m/s 12 m/s 17 m/s

0<deg≤10 0.84 0.59 0.14

10<deg≤20 0.84 0.88 0.14

20<deg≤30 0.84 1.18 0.14

30<deg≤40 0.84 1.15 1.44

40<deg≤50 0.84 1.78 1.41

50<deg≤60 0.84 1.15 1.44

60<deg≤70 0.84 1.18 0.14

70<deg≤80 0.84 0.88 0.14

80<deg≤90 0.84 0.59 0.14

90<deg≤100 0.84 0.29 0.14

0.84 0.29 0.14

10 deg increments 0.84 0.29 0.14

0.84 0.29 0.14

350<deg≤360 0.84 0.29 0.14

TABLE A1 Coordinates for the wind farm boundary and obstacles

Wind farm
boundary

x-coordinates (m) 1 61 2309 6573 11,021 7500 8000 2221

y-coordinates (m) 1217 8649 11,049 10,313 8000 5500 533 1

Obstacle 1 x-coordinates (m) 7100 7500 7750 7300

y-coordinates (m) 8400 5625 5800 8000

Obstacle 2 x-coordinates (m) 2250 3200 3300 2400 2000 1750

y-coordinates (m) 8000 7600 7200 6700 6400 7300
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