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Abstract

We refine the concept of stochastic reach avoidance for a general class of Markov processes introducing a threshold of p for the
reaching probability. This new problem is called p-safety, and it aims to ensure that the given process reaches a forbidden set
before leaving its ‘working’ state space with a probability of less than p. In the situation when an initial probability measure
characterizes the initial states, a variant of p-safety is put forward. We call this form of safety weak p-safety. In this work,
we characterize both p-safety and weak p-safety and show how to compute them. We employ semi-definite programming to
compute p-safety and linear programming to compute weak p-safety. To get to this point, we use certificates of positivity of
polynomials translated into the sum of squares and the Bernstein forms.
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1 Introduction

Safety verification plays an essential role as the instru-
ment of analyzing whether a system works according to
the specification requirements.

Usually, a system is said to be safe if it does not vio-
late any system constraints. This notion of stochastic
safety has been studied using the concept of barrier cer-
tificates (see [21], [34], [25] and the references therein).
In this paper, we advance our analytical and computa-
tional studies of p-safety initiated in [8]. The concept of
p-safety is ultimately related to the notion of risk. In-
deed, risk is defined as the product of the probability of
a failure, loss, or injury (p-safety) and its cost. There is
an extensive body of work on qualitative risk analysis
and its application. For instance, [1] conducts risk analy-
sis for a drilling operation, including the probability and
consequences of potential accidents scenarios. Specifi-
cally, Bayesian network is used to assess the probability
of blowout. [17] discusses the computation of collision
probability between space-borne objects.

In the probabilistic setting, the concept of p-safety is
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defined at the confluence of two research streams. One
stream focuses on the characterization of the stochas-
tic reach-avoidance problem [28], which is a specializa-
tion of stochastic reachability. The second research di-
rection originates in safety engineering and is related to
dynamic barrier management. Dynamic barrier manage-
ment within the overall risk management framework is
related to adopting an overall approach to safety [22].
The effective barriers are firstly created to prevent or
reduce the impact of accidents. Afterwards, these are
continuously monitored to predict and control the risks.
In control engineering, the concept of safety barriers
(barrier certificates) has been combined with Lyapunov
stability theory, in order to control a system with con-
straints [33], [23] and [31].

In our framework, the objective of p-safety analysis is to
classify the initial states according to their significance
in the reach-avoid probability computation. This idea
can also be related to the hazard identification, which is
the first step in the risk assessment process. Hazard iden-
tification aims to estimate if any particular item (con-
trol action, state, decision) could have the potential to
cause harm. In our case, the ‘hazard items’ are the ini-
tial states that lead to an unsafe region with probability
bigger than p.

Previously, the series of papers [21], and [34] have devel-
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oped the mathematical apparatus to tackle p-safety com-
prised stochastic barrier certificates and their stochastic
characterization using martingale theory. In [21], a bar-
rier function was proposed for a diffusion process and a
switched diffusion process. Later in [34], an optimisation
problem was presented for computing p-safety for the
switched diffusion and piece-wise deterministic Markov
processes. The primary tool for formulating this opti-
misation was the barrier certificate from [21] combined
with the Dirichlet problem’s solution. Also related to
this work is [2]. It considers a stochastic hybrid system in
discrete time with Markov policies. It defines two safety
problems of determining the set of initial states for which
the process stays safe with a probability p for a given
and for some policy. This work proposes dynamic pro-
gramming methods for solving the two problems.

For the first time, in this paper, we present quantita-
tive analytical characterizations of barrier certificates for
general Markov processes. Moreover, optimisation algo-
rithms are developed to approximate the p-safety prob-
abilities.

Many practical applications within robotics, manufac-
turing, energy production, transportation, to name a
few, require the use of Markov models. For safety ver-
ification, instead of computing the reachable states, a
feasible approach is to use barrier certificates. There is
a strong necessity to understand how the certificates are
used for the computation of the reach probabilities. An-
swers to this problem are developed in this paper.

We use the duality between super-martingales and
stochastic Lyapunov functions. The latest ones are
known as excessive/super-regular functions in the con-
text of probabilistic potential theory. Changing the
focus from the martingale theory to potential theory
opens a new avenue which makes it possible to charac-
terize the p-safety as an optimisation problem. In short,
the potential theory is an analytic tool for studying
Markov processes [6]. The part of this theory which we
use is the Hunt balayage theorem. It characterizes the
p-safety as the infimum of a specific cone of excessive
functions - the excessive functions are viewed as the
barrier certificates from [21].

We examine two forms of p-safety: p-strong safety and
weak p-safety, which we introduced before in [35]. We
study the following configuration: a forbidden (unsafe)
subset U of a state-space S and the set of initial condi-
tions A. In strong safety, we aim at finding the largest
probability that a process starts (deterministically) at a
point of A and reaches U before it leaves the state space
S. Weak safety is defined similarly, but it allows the use
of different initial distributions of the process. First, we
provide an analytical characterization of the reach prob-
abilities (or safety functions) using stochastic barrier
certificates. Based on the characterizations of both def-
initions of safety, we provide algorithms for computing

safety. The novelty emerges from the fruitful combina-
tion of the analytical characterizations provided by the
probabilistic potential theory and optimisation. In par-
ticular, safety is translated into semi-definite program-
ming. To this end, we employ the sum of squares [20];
whereas, weak safety is converted into linear program-
ming. For this purpose, we use Bernstein forms [15].

The significance of the coupling between potential the-
ory and optimisation is prodigious. It opens new re-
search avenues where analytical characterizations are
translated into scalable algorithmic methods, not only
for safety, but also for stability and other performance
criteria. To that end, we address a broad class of Markov
processes - the right continuous Markov processes. This
class contains popular processes encountered in control
engineering such as diffusion processes, switched dif-
fusion processes, piece-wise deterministic Markov pro-
cesses [10], and stochastic hybrid systems [7].

The paper is organized as follows. To keep the arti-
cle self-contained, we have recalled some instrumental
concepts from stochastic processes in Section 2. The
concepts of safety are introduced in Section 3. The
reach-avoidance problem is formulated in Section 4, and
it is solved using the super-martingale characterization
in Section 5. In Section 6, probabilistic potential the-
ory, specifically Hunt balayage theorem, is employed
for formulating an abstract optimisation. Subsequently,
in Section 7, the optimisation is re-formulated as a
semi-definite programming. A numerical example of p-
safety computation for switching diffusion is provided.
Section 8 is devoted to the analytic characterization of
weak p-safety. Again, the potential theory is shown to
be fruitful for the derivation of abstract optimisation,
this time for computing weak safety. This optimisation
is, in Section 9, re-formulated using Bernstein forms as
linear programming. Subsequently, a numerical exam-
ple of computing weak p-safety for a Brownian motion
is given.

Notations

R+ ≡ {x ∈ R| x ≥ 0} and Z+ ≡ {x ∈ Z| x ≥ 0}.
Let Q(x) be a predicate of a variable x. We will use the
notation [Q(x)] instead of {x ∈ X| Q(x)} if the set X
is implicitly known. Occasionally, we write “Q on a set
S”, it means that Q(x) holds for all x ∈ S. For example,
a function f > 0 on S means f(x) > 0 for all x ∈ S. For
two functions f and g, (f∧g)(x) ≡ min{f(x), g(x)}, and
(f ∨ g)(x) ≡ max{f(x), g(x)}. The Borel sigma-algebra
on a topological space Y is denoted by B(Y). For a set
A ∈ B(Y), IA denotes the indicator function of A. The
complement of a set A is denoted by Ac, its closure by
cl(A), its boundary by ∂A, and its interior by int(A). We
say that a set is a domain if it is open and connected.

We say that a subset K of a vector space is a positive
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cone if for any h1, h2 ∈ K, and any α ≥ 0 the following
conditions hold:

(1) h1 + h2 ∈ K, and
(2) αh1 ∈ K,
(3) K ∩ (−K) = {0}.

2 Background

In this section, we recollect some instrumental concepts
from stochastic processes, herein the notions of different
generators.

Specifically, we study a special class of Markov processes,
namely (Borel) right processes [7]. We consider such a
Markov process (Xt) ≡ (Xt)t≥0 on the underlying prob-
ability space (Ω,F ,P) with values in a Borel space Y 1 .
We associate a family of probabilities (Py) ≡ (Py)y∈Y
on Y with the property Py[X0 = y] = 1; they are called
Wiener probabilities. The expectation with respect toPy

is denoted Ey. To (Py), we associate a transition semi-
group (pt) ≡ (pt)t≥0 corresponding to the transition
probability kernels pt(y,A) = Py[Xt ∈ A]. The action
of the kernel pt on the Banach space Bb(Y) of bounded
measurable real-valued functions f : Y → R is defined
by

ptf(y) ≡
∫
Y
f(x)pt(y, dx) = Eyf(Xt).

For α > 0, the resolvent Vα is the Laplace transform of
transition probabilities (pt), i.e., Vαf =

∫∞
0
e−αtptfdt,

[24]. In the theory of Markov processes, there exists the
Hille-Yosida characterization that provides the equiva-
lence of the following three descriptions of a Markov pro-
cess: by the transition semigroup, by the resolvent and by
the generator, which will be discussed in Subsection 2.1.

For a measurable set B, the first hitting time τB associ-
ated to this set, is

τB := inf{t ≥ 0|Xt ∈ B};

whereas, the first exit time from B is ζB = τBc (i.e., the
first hitting time of the complement of B).

We will often use the notion of a stopped process. For
stopping τ , the stopped process (Xτ

t ) is

Xτ
t ≡

{
Xt if t ≤ τ
δ if t > τ

where δ is an absorbing (cemetery) point added to Y.

1 Y is a Borel subset of a complete separable metric space.
An example of such a space is Rn with the standard Eu-
clidean distance

2.1 Generators, Super-martingales, Super-regular, Ex-
cessive Functions

Let (Ft) ≡ (Ft)t≥0 be a filtration. We assume that (Xt)
is adapted to (Ft). We recall, a real-valued process (Xt)
is a martingale (with respect to (Ft)) if E[Xt|Fs] = Xs

for t > s and super-martingale if E[Xt|Fs] ≤ Xs for
t > s. A process (Xt) is a local (super-) martingale if
there exists a sequence (Tn)n∈N of stopping times (with
respect to (Ft)) such that Tn → ∞ pointwise and the

stopped process (XTn
t ) is a (super-) martingale.

To a process (Xt), we associate a function-cone whose
elements h : Rn → R satisfy the following condition:
for each h in this cone, the resulting process (ht) with
ht ≡ h(Xt) is a local super-martingale. The reason for
insisting on the super-martingale property is that we are
consequently able to estimate the upper bound of the
expected value of (ht). Specifically, E[ht] ≤ E[hs] for
t ≥ s. This observation gives rise to a profound super-
martingale inequality [3]:

cP[sup
[a,b]

Xt ≥ c] ≤ E[Xa] + E[−Xb ∨ 0]. (1)

Using the transition operator semigroup, one can define
the infinitesimal generator G associated to a Markov
process, as the derivative at t = 0 of the transition semi-
group with respect to the sup norm of the Banach space
Bb(Y). Let DG ⊂ Bb(Y) be the set of functions f for
which this derivative (denoted by Gf) exists. In most
cases, the operator semigroup can be itself characterized
by its infinitesimal generator. When DG is large enough,
the infinitesimal generator captures the law of the whole
dynamics of a Markov process and provides a tool to
study its properties.

The infinitesimal generator admits a couple of exten-
sions: the weak generator, the characteristic operator,
and the extended generator. The reason for defining dif-
ferent concepts of generators is to increase the domains of
the generators to the detriment of having more abstract
theory. Specifically, the domain of the infinitesimal gen-
erator is smaller than the weak generator, which is again
smaller than the domain of the characteristic generator.
Whereas, the extended generator has the largest domain.
The weak generator is defined using the same formula
as the strong generator, but considering the point-wise
convergence. Later in the paper, in Theorem 15, we will
use the characteristic operator, Definition 7.5.1 [19]. De-
note by Ak ↓ x a sequence of open sets {Ak| k ∈ N}
with Ak+1 ⊂ Ak, and

⋂
k∈NAk = {x}. The characteris-

tic operator A is defined by

Af(y) = lim
Ak↓x

Ey[f(XτAk
)]− f(y)

Ey[τAk ]
.
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Another generalisation is the extended generator, which
will be the main object of study in this work. We define
the extended (full) generator L following [10]. The do-
main of the extended generator, denoted by DL, is the
set of measurable function h : Y → R having the prop-
erty that there is a measurable function g : Y → R such
that the function t 7→ g(Xt) is almost surely Py inte-
grable for each y ∈ Y, and the process (Cht ) given by

Cht ≡ h(Xt)− h(X0)−
∫ t

0

g(Xs)ds (2)

is a local martingale (or a martingale in the case of the
full generator) with respect to (Ft). We writeLh = g and
call (DL,L), or even L, an extended generator. Note that
if N is a measurable set such that Py[λ{t|Xt ∈ N} =
0] = 1 for all y ∈ Y, where λ is the Lebesgue measure
on R, then g may be altered on N without changing the
validity of (2). Therefore, the map h 7→ g is not unique
and the extended generator (DL,L) is a multi-valued
operator.

The extended generators of many interesting processes
in control have been characterised; herein, diffusion
processes, their generalisations jump diffusion pro-
cesses and switching diffusion processes, also piecewise-
deterministic Markov processes.

It is instrumental to understand how the properties of
a generator are related to the process (h(Xt)) provided
that (Cht ) in (2) is a local martingale. Let L be the ex-
tended generator of (Xt). A measurable function h ∈ DL
is called a super-regular function if Lh ≤ 0. Notice that
if Lh is a polynomial then verifying if h is super-regular
boils down to the application of a certificate of positiv-
ity [13], e.g., by means of the sum of squares [20] or Bern-
stein forms [15]. This property will be exposed later in
the paper.

Now, (Cht ) in (2) being a local martingale implies that
the process (h(Xt)) becomes a local super-martingale
whenever h is a super-regular. This result will be instru-
mental throughout the paper.

Proposition 1 (Th.4.1 [11]) Let (Xt) be a Markov
process with the extended generator L. For a function
h, the process (ht) with ht = h(Xt) is a local super-
martingale if h is a super-regular.

For the right Markov processes, the super-regular func-
tions can be characterized using the transition semi-
group. They coincide with the so-called excessive func-
tions. These play the role of Lyapunov functions for
stochastic processes. We say that a non-negative mea-
surable function h is excessive [10] if the following two
conditions are satisfied:

(1) pth ≤ h for all t ≥ 0, and

(2) limt↘0 pth = h (pointwise).

We shall denote the cone of excessive functions by EX .

In general, any excessive function (in the domain of the
generator) is super-regular. The opposite result, i.e., any
super-regular function is excessive, has been proven for
standard and right Markov processes [32].

3 Concepts of Safety

Suppose that S and U are two measurable sets in B(Y)
with U ⊂ S. We think about the set S as the state space,
and U as a set representing a dangerous situation, for ex-
ample, a failure of machinery. We want to compute the
probability that the process (Xt) will be, in the future, in
a dangerous state. Strictly speaking, we strive to deter-
mine the probability that (Xt) reaches U at some time
without leaving S. The above statement can be further
formalized using the hitting time τU of the set U , and
the first exit time ζS from S. We will study the prob-
ability that the sample paths visit U before leaving S,
which we write Py[τU < ζS ]. It is natural to think that
if Py[τU < ζS ] is bigger than a certain threshold p, then
the state y is considered unsafe. We will examine safety
in an infinite time-horizon. The study of the safety in
the finite time horizon T can be reduced to the case of
the infinite time horizon using the time-space extension
of the process [35].

Definition 2 A state y ∈ S is (strongly) p-safe if

Py[τU < ζS ] ≤ p. (3)

A state that does not satisfy (3) is called p-unsafe.

The definitions of strong p-safety, or for short p-safety, is
intimately connected with the property of the following
safety function, which is called capacitor function (or
condenser potential) in the mathematical literature [9]

P (y) ≡ P (y;U, S) ≡ Py[τU < ζS ]. (4)

We can also express the safety function using the indi-
cator function as

P (y) = Ey[IU (XτU∪Sc )], (5)

where τU∪Sc is the first hitting time of U ∪ Sc.

We extend the safety function to act on Borel sets. For
A ∈ B(Y), we define

P (A) ≡ P (A;U, S) ≡ sup
y∈A

P (y).

Subsequently, the definition of a p-safe state can be ex-
tended to a p-safe set.
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Definition 3 A Borel subsetA ⊂ S is p-safe if all points
y ∈ A are p-safe, or in other words, if

P (A) = sup{Py[τU < ζS ]| y ∈ A} ≤ p.

For an arbitrary initial measure µ0, we define the follow-
ing safety measure, which is the action of µ0 on P

(µ0P )(A) ≡
∫
A

P (y)µ0(dy), ∀A ∈ B(Y). (6)

In the next definition, we combine the probability of
hitting the forbidden setU with the probability of taking
a specific initial value.

Definition 4 An initial measure µ0 on A is p-safe if

(µ0P )(A) ≤ p.

We say that the initial measure µ0 is p-safe if

(µ0P ) ≡ (µ0P )(S) ≤ p.

For a given initial probability measure µ0, we will refer
to p-safety of µ0 as weak p-safety (without explicitly
referring to µ0). We will come back to the problem weak
p-safety in Section 8. In the next sections, we will address
p-safety.

4 Problem Formulation

Each of the definitions in Section 3 creates an intrigu-
ing theoretical and practical problem of numerically de-
termining it. Specifically in this paper, for a given mea-
surable set S (the state space of the process (Xt)), we
want to solve the reach-avoidance problem, i.e., to iden-
tify numerical algorithms to compute the probability
P (A;U, S) that (Xt) reaches a Borel set U of S without
leaving the set S provided that X0 belongs to another
Borel subset A of S.

Using the hitting time τU of U , and the exit time ζS from
S (recall ζS = τSc), we will study the probability that
the sample paths starting in A visit U before leaving S.

Problem 5 We aim to compute

P (A;U, S) = sup{Py[τU < ζS ]| y ∈ A}.

To exemplify this problem, let us consider two cases: a
Markov chain when the state space is discrete (finite or
countable), and a diffusion process.

Example 6 (Markov chain, Section III.b [29])
We study a Markov chain with the family {pyz} of tran-
sition probabilities from the state y to the state z. For a
subset S, we define its boundary as follows

δS ≡ {z ∈ Sc|pyz 6= 0 for some y ∈ S}.

We take the target set U to be a singleton in S, i.e.,
U = {z}. We let the initial set A also to be a singleton
in S, A = {y}. The safety problem formulated above
reads for the discrete case as the problem of finding the
probability that the Markov chain, starting at y, hits z
before reaching δS (when δS is nonempty). Therefore,
we aim to compute

P ({y}; {z}, S) = Py[τz < τδS ]. (7)

It is known that the probability P({y};{z},S) is a solu-
tion of a boundary value problem for a discrete Lapla-
cian [29], which we address next. The discrete Laplacian
for a Markov chain is defined as

∆f(y) ≡
∑
x

(f(y)− f(x))pyx

for all f : S → R. In the matrix form, ∆ = I − P,
where P = [pyx] is the stochastic matrix and I is the
identity matrix. For a typical random walk on a graph,
pyx is usually equal to 1/dy (where dy is the degree of y)
when x is adjacent to y, and 0 otherwise. Then P (y) =
P ({y}; {z}, S) is the solution of the following Dirichlet
problem

∆P (y) = 0 if y ∈ S \ {z} and

P (z) = 1,

P (w) = 0 if w ∈ δS.

Example 7 (Brownian motion, Example 9.1.3 [19])
Consider a Brownian motion (Bt) on Y = Rn. The
Laplace operator ∆ is defined by

∆f ≡
∑ ∂2f

∂x2
i

for all twice differentiable function f : Rn → R. The
characteristic operator of (Bt) isA = 1

2∆. Also in this ex-
ample, we let the initial setA be a singleton {y}; whereas,
U is an arbitrary open subset of S such that ∂U∩∂S = ∅.
Then P (y) = P ({y};U, S) is the solution of the following
Dirichlet problem [19]

∆P = 0 on S \ U,
P = 1 on ∂U,

P = 0 on ∂S.
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Problem 8 For an initial measure µ0, we strive to com-
pute

P (µ0, A;U, S) = (µ0P )(A).

In the following sections, we will show how to solve Prob-
lems 5 and 8.

5 Barrier Certificates - Super-martingale Char-
acterization

We show that a function h such that h(Xt) is a lo-
cal super-martingale can be used to estimate the upper
bound of P (A;U, S). In the following proposition, we

make use of the stopped process XζS
t of (Xt) with re-

spect to the exit time ζS .

Proposition 9 Let A,U, S ∈ B(Rn) with S bounded, A
and U two subsets of S and cl(A)∩cl(U) = ∅. Consider a
cadlag process 2 (Xt). Suppose that there is a continuous

non-negative function h : S → R+ such that hζSt ≡
h(XζS

t ) is a local super-martingale. Then

HU · P (A;U, S) ≤ HA, (8)

where HA ≡ sup{h(y)| y ∈ A}, HU ≡ inf{h(y)| y ∈ U}.

An intuitive interpretation of the inequality (8) is that
the probability of the process (Xt) being unsafe de-
creases with the gap between the values of the function
h onA and U . Later in the paper, Theorems 15 and The-
orem 17 will provide a tight bound of P (A;U, S) for a
diffusion process and an arbitrary right process, respec-
tively. Before continuing with the proof of the proposi-
tion, we will give an example of a function h.

Example 10 We continue with Example 7 of a Brow-
nian motion on the plane. We denote the closed disk
centered at c with radius r by Dc(r). We suppose that
S = D(0,0)(10), U = D(0,0)(1), and A is the the annulus
with center at 0, internal radius 5 and external radius 10,
i.e., A = D(0,0)(10) \ int(D(0,0)(5)).

Suppose h(x) = 102 − x2
1 − x2

2. We show that h is super
regular,

Af = −2 < 0,

where A is the characteristic operator of the Brownian
motion on the plane. By Proposition 1, if h a super regular

2 (Xt) is a cadlag if its paths t 7→ Xt are right-continuous
with left limits everywhere with probability one.

function, (h(Xt)) is a local super-martingale. Hence, by
(8)

P (A;U, S) ≤ 102 − 52

102 − 12
.

PROOF. [Proposition 9] From the outset, we observe
that τU (ω) < ζS(ω) is equivalent to the existence of tω
such that IU (Xtω (ω)) = 1, and implies that hζStω (ω) ≥
HU . Hence,

P (x) = P[max{IU (XζS
t )}t≥0 = 1|X0 = x]

≤ P
[
sup{hζSt }t≥0 ≥ HU |X0 = x

]
.

We fix t̄ > 0 and consider the sequence (Tn) of stopping
times in the definition of a local super-martingale. The
process ht is cadlag, since h is continuous and Xt is
càdlàg. We use the super-martingale inequality

cP[sup{hζS∧Tnt }t∈[0,t̄] ≥ c] ≤ E[h0] = h0,

where again h0 = h(X0). Since t̄ is arbitrary and Tn →
∞, after substituting c = HU , we arrive at

HU · P (x) ≤ h0. (9)

Hence, taking supreme over X0 = x ∈ A on both sides
of inequality (9), we conclude that

HU · P (A;U, S) ≤ HA.

2

Subsequently, we define the notion of a stochastic barrier
function.

Definition 11 We say that a continuous function h :
Y → R+ is a super-martingale barrier function for a
process (Xt) and a triple (A,U, S) of subsets of Y if

(1) hζSt is a local super-martingale, and
(2) inf{h(u)| u ∈ U} ≥ sup{h(a)| a ∈ A}.

In the next proposition, we list properties of the set of
all barrier functions.

Proposition 12 Let CB be the set of all super-
martingale barrier functions for a process (Xt) and a
triple (A,U, S), where S is bounded.

(I) The set CB is a positive cone that contains constant
functions.

(II) If h1, h2 ∈ CB then h1 ∧ h2 ∈ CB.
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(III) If CB 6= ∅ then there exists a function h ∈ CB and
p ∈ [0, 1] such that
(a) h ≥ 1 on U ,
(b) h ≤ p on A.

PROOF. Part (I) of the proposition follows directly
from the definition of a super-martingale. For part (II),
we make an observation that for i ∈ {1, 2}

h1(a) ∧ h2(a) ≤ hi(a) ≤ hi(u) for all (a, u) ∈ A× U ;

hence, h1(a) ∧ h2(a) ≤ h1(u) ∧ h2(u).

Furthermore by monotonicity of the conditional expec-
tation

E[(h1 ∧ h2)(Xt)|Fs] ≤ E[hit|Fs] ≤ hit.

For part (III), pick an f ∈ CB . Let f
U
≡ inf{f(y)| y ∈

U}; it is well defined as f is continuous. We define h ≡
f/f

U
, and conclude that by part (I), h ∈ CB , and h

satisfies conditions (a), and (b) with p = sup{h(y)| y ∈
A}. Observe that p ∈ [0, 1], as h is non-negative, and
1 = inf{h(b)| b ∈ U} ≥ sup{h(a)| a ∈ A}.2

We define a partial order on CB by

h1 � h2 ⇔ ∃α ∈ CB such that h1 = h2 + α.

From (II) in Proposition 12, we conclude that (Cb,�) is
a meet-semilattice, i.e., each two-element subset has a
greatest lower bound.

We combine Propositions 9 and 12 in the following corol-
lary.

Corollary 13 Let p ∈ [0, 1]. If there exists a continuous

function h : Y → R+ such that (hζSt ) is a local super-
martingale, and

(a) h ≥ 1 on U ,
(b) h ≤ p on A.

are satisfied then P (A;U, S) ≤ p.

For an excessive function h, ht is a supermartingale.

Hence, the condition in Corollary 13 of hζSt being a local
supermartingale can be substituted by h being super-
regular function, and the conclusion of the corollary
holds.

Corollary 14 Let p ∈ [0, 1]. If there exists a super-
regular function h : Y → R+ such that (a) and (b) of
Proposition 13 are satisfied then

P (A;U, S) ≤ p.

We put forward the following idea. We search among all
barrier functions h and find the one with the smallest
ratioHA/HU , whereHA is the supremum of h on the set
A and HU is the infimum of h on U . In the remainder of
this section, we will demonstrate that this idea works for
the diffusion processes. Whereas in the next section, we
will show that it can be generalized to the right processes.

In the next theorem, we specialize the results to diffu-
sion processes. Specifically, by Ch. 9 in [19] if A is the
characteristic generator of a diffusion process, then the
probability that (Xt) reaches U before leaving S solves
the following Dirichlet problem

AP (y) = 0 for y ∈ S \ U,
P (y) = 1 for y ∈ ∂U,
P (y) = 0 for y ∈ ∂S.

The next theorem states that there is an optimisation
scheme for finding the probability P (A;U, S).

Theorem 15 Let S be a bounded subset of Y = Rn,
A, U be two disjoint closed subsets of S. Let S \ U be a
domain with a smooth boundary. Let (Xt) be a diffusion
process with the characteristic operator A. Suppose that

p∗ = inf p (10)

subject to (p, h) ∈ C ⊆ [0, 1]×DL defined by: (p, h) ∈ C
if and only if

(1) Ah(y) ≤ 0 for all y ∈ S \ U ,
(2) h(y) ≥ 0 for all y ∈ S,
(3) p ≥ h(y) for all y ∈ A,
(4) 1 ≤ h(y) for all y ∈ U .

Then

P (A;U, S) = p∗.

PROOF. By Corollary 14, if (p, h) ∈ C thenP (A;U, S) ≤
p∗. It is enough to show that P (A;U, S) ≥ p∗. To this
end, we use Theorem 24.5 in [12] and Theorem 9.2.5
in [19]; the probability P (y) = Py[τU < ζS ] solves the
following boundary value problem

AP (y) = 0 for y ∈ S \ U,
P (y) = 1 for y ∈ ∂U,
P (y) = 0 for y ∈ ∂S.

Since P (A;U, S) = supx∈A P (x), and conditions 1) to 4)
are satisfied, (P (x), p∗) ∈ C. Hence, P (A;U, S) ≥ p∗. 2

The importance of Theorem 15 is that assuming A, U ,
and S semi-algebraic (sub-level sets of some polynomi-
als) and compact, and using Putinar’s positivstellensatz
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(positive polynomial theorem) [18], (10) can be solved by
means of semidefinite programming. Specifically, Puti-
nar’s theorem provides algebraic conditions formulated
in terms of the sum of squares to determine if a polyno-
mial is positive on a semi-algebraic set. We will clarify
this aspect in Section 7.

Example 16 Consider the following stochastic differ-
ential equation on Y = Rn

dXt = f(Xt)dt+ σ(Xt)dBt, (12)

where (Bt) is the Brownian motion with values in a Eu-
clidean space Rl, and the maps f : Rn → Rn, σ : Rn →
Rn ×Rl are Lipschitz continuous.

The characteristic operator A is given as follows: For
any differentiable function h : Rn → R

Ah =< ∇h, f > +
1

2
tr
(
σσTD2h

)
,

where tr() stands for the trace of a matrix, < ∇h, f >=∑
∂h
∂xi

fi and D2h = [ ∂2h
∂xi∂xj

] is the Hessian of the func-

tion h.

Assuming that S \U is compact and semialgebraic of the
form

S \ U = {x ∈ Rn| gi(x) ≥ 0, i = 1 . . . k},

where each gi is a real polynomial in n variables.

Then the condition (1) in Theorem 15 boils down to

−Ah−
k∑
i=1

sigi

is a sum of squares of polynomials for some sum of
squares si (i = 1, . . . k).

In the rest of the paper, we will generalise Theorem 15
to an arbitrary right process using potential theory.

6 Barrier Certificates - Potential Theory Char-
acterisation

We have categorized the reach-avoidance problem by
employing super-martingales. Subsequently, if the pro-
cess had a characteristic generator, we were able to for-
mulate this categorization using super-regular functions.
On the other hand, if a function is super-regular, then it
is excessive, recall definition in Section 2.1. We will show
that potential theory provides a characterization of the
reach-avoidance problem in terms of excessive functions.

We state the main result of this section.

Theorem 17 We consider a right process, equipped with
its extended generator L with the domain DL. Then

P (A;U, S) = inf p (13)

subject to (p, h) ∈ [0, 1]×DL such that

(1) h(y) ≥ 0 for all y ∈ S,
(2) Lh(y) ≤ 0 for all y ∈ S,
(3) p ≥ h(y) for all y ∈ A,
(4) 1 ≤ h(y) for all y ∈ U .

The proof of Theorem 17 follows from several results,
which we will present next. In a following subsection, we
will show how to use this theorem to compute p-safety.

6.1 Proof of the main result

In a nutshell, Theorem 17 leans upon Hunt’s balayage
theorem, Theorem 49.5 in [27]. Hunt’s theorem provides
the characterization of the hitting distributions in terms
of excessive functions. It was also used in solving the
Dirichlet problem via the balayage method.

At the outset, we define the set ESX of functions on Y
excessive with respect to the restriction of the underlying
stochastic process (Xt) to a set S ∈ B(Y).

Definition 18 (Excessive functions on a set) We
say that f ∈ ESX if and only if for all y ∈ S and t ≥ 0,

Eyf(XζS
t ) ≤ f(y), and limt↘0E

yf(XζS
t ) = f(y). We

call ESX the cone of excessive functions restricted to S.

In other words, ESX = EXζS , recall that (XζS
t ) is the

stopped process of (Xt) with respect to the exit time ζS .

We define the set of potential barrier functions

K ≡ {h ∈ ESX | h ≥ 1 on U}. (14)

In order to avoid topological complications in the proof
of our main result, the following assumption is in force.

Assumption 19 The setN of irregular points ofU , i.e.,
those points y ∈ U for which Py{τU > 0} = 1 is a polar
set, in the sense that Py[τN < ζs] = 0 for all y ∈ S.

For example, Assumption 1 holds for Brownian motion
and diffusion processes for which the diffusion coefficient
matrix has a bounded inverse and the drift coefficient
satisfies the Novikov condition, Sec. 9.2 in [19].

Theorem 20 Let (Xt) be a right process. Suppose
A, U, S ∈ B(Y), and A and U are subsets of S. Fur-
thermore, Assumption 19 is satisfied.
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Then

P (A;U, S) = inf
h∈K

sup
x∈A

h(x),

where K is the set of potential barrier functions.

PROOF. The proof consists of two steps:

(1) Show: P (A;U, S) = supx∈A infh∈K h(x),
(2) Show: supx∈A infh∈K h(x) = infh∈K supx∈A h(x).

Step 1. At the outset, consider the réduite (or reduced
function) of f : S → R+, Sec. 5.5.6 in [7], given by

R(f) ≡ inf{h ∈ ESX | h ≥ f}.

For the set U and v ∈ ESX , we define the reduced function
(réduite) of v on U by

RU (v) ≡ R(IUv).

Specifically for v = 1 : y 7→ 1,

RU1(y) = inf{h(y)| h ∈ ESX , h ≥ 1 on U}
= inf
h∈K

h(x).

But by the Hunt balayage theorem,

P (y) = RU1(y). (15)

Hence,

P (A;U, S) = sup
x∈A

inf
h∈K

h(x)

Step 2. We define the ‘value function’ H : K×A→ R+

by
H(h, y) := h(y).

It remains to show that

sup
y∈A

inf
h∈K

H(h, y) = inf
h∈K

sup
y∈A

H(h, y).

First, we notice that

sup
y∈A

inf
h∈K

H(h, y) ≤ inf
h∈K

sup
y∈A

H(h, y).

always hold.

In the remainder of the proof, we will show the opposite
inequality. To this end, we use the concept of balayage
BU (v) of RU (v), i.e.,

BU (v) = sup
α>0

αVα(RU (v)),

where (Vα)α>0 is the resolvent corresponding to the tran-
sition probabilities (pt) of the process (Xt). Here, the
definition of BU (v) is less important. Rather, we will use
the following properties of the balayage:

(1) BSU (v) ∈ ESX ,
(2) RSU (v) ≥ BSU (v),
(3) BSU (v) = RSU (v) on S \ U ,
(4) BSU (v) = RSU (v) = v on U \ Nv, where Nv is a

negligible subset of U with Nv ⊆ N , and N is the
set of irregular points of U .

We consider the following two cases:

(i) The set of irregular point N is empty. In this case,
the balayage and the reduced function coincide.

(ii) The set of irregular point N is nonempty, but it is a
polar set (according to the Assumption 19).

First, we observe that the set N does not have any con-
tribution to the safety measure, i.e.,

P (A;U \N,S) = P (A;U, S).

For this N , define the set K1 ≡ {h ∈ ESX | h ≥ 1 on U \
N}. Specifically, for the case (i), this set coincides with
K. For both cases, BU (1) ∈ K1, since corresponding
negligible set Nv for v ≡ 1 on S is a subset of N .

We compute

P (A;U \N,S) = sup
x∈A

inf
h∈K1

h(x) ≤ inf
h∈K1

sup
x∈A

h(x)

≤ sup
x∈A

BU (1)(x) = P (A;U, S).

But P (A;U \N,S) = P (A;U, S). Hence,

P (A;U, S) = inf
h∈K1

sup
y∈A

h(y).

Since K ⊆ K1,

inf
h∈K

sup
y∈A

h(y) ≤ inf
h∈K1

sup
y∈A

h(y) = P (A;U, S)

= sup
y∈A

inf
h∈K

h(y).

We conclude that

P (A;U, S) = inf
h∈K

sup
y∈A

h(y).
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2

The importance of the last theorem is that it allows
to formulate an optimisation problem. To this end, we
articulate the following proposition.

Proposition 21 Let P ≡ {p ∈ R| ∃h ∈ K,∀y ∈ A, p ≥
h(y)}. Then

inf P = inf
h∈K

sup
y∈A

h(y).

PROOF. Let a = infh∈K supy∈A h(y), and define

Q ≡ {(p, h) ∈ R×K| ∀y ∈ A, p ≥ h(y)},

and notice that for all (p, h) ∈ Q

p ≥ inf
h∈K

sup
y∈A

h(y).

Hence, inf P ≥ infh∈K supy∈A h(y).

On the other hand, for any sufficiently small ε > 0, there
is (hε, yε) ∈ K×A such that hε(yε) = a+ε. Furthermore,
a + ε ∈ P and a + ε ≥ inf P. Since ε is arbitrary small,
a ≥ inf P. 2

PROOF. [Theorem 17] The proof of Theorem 17 fol-
lows from Theorem 20 and Proposition 21.

7 Computation of p-safety

In this section, we will show how to transform Theo-
rem 17 into semi-definite optimisation. To this end, we
will use polynomial certificates of positivity.

Suppose that real polynomials are dense in DL. To il-
lustrate, for diffusion processes and switching diffusion
processes, the C2 functions are dense in the domain DL
of the extended generator. On the other hand, by Stone-
Weierstrass theorem, on a compact set S polynomials
are dense in the set of all continuous functions. There
are also available results in [26] that if there exists c > 0

such that
∫
e2c|x|µ(dx) < ∞, where |x| =

∑k
j=1 |xj |,

then the polynomials are dense in the space L2(Rn;µ).
Consequently, optimisation defined in Theorem 20 can
be formulated as the sum of squares programming. From
the outset, we say that a basic semi-algebraic set B is
generated by a family of polynomials F = {g1, . . . , gm}
if

B = G(F) ≡ {x ∈ Rn| g1(x) ≥ 0, . . . , gm(x) ≥ 0},

and the quadratic module generated by F is

Q(F) ≡

{
s0 +

m∑
i=1

gisi|s0, s1, . . . , sm ∈ Σ2[X]

}
,

where Σ2[X] is the cone of the sum of squares of poly-
nomials (SOS). We suppose that there is g ∈ Q(F)
such that [g(x) ≥ 0] is compact. In this setup, Putinar’s
Positivstellensatz [14] pronounces: If a polynomial p is
positive on a compact basic semi-algebraic set B then
p ∈ Q(F).

Let S, A, and U be compact basic semi-algebraic sets,
i.e., for a finite family of polynomials Fi, i ∈ {S, A, U},
S = G(FS), A = G(FA), and U = G(FU ). The appli-
cation of Theorem 17 together with the Putinar’s Posi-
tivstellensatz results in the following sum of squares pro-
gramming:

Find the minimum of p such that

h ∈ Q(FS) (16a)

−Lh ∈ Q(FS) (16b)

p− h ∈ Q(FA) (16c)

h− 1 ∈ Q(FU ). (16d)

7.1 Numerical Study

We illustrate Theorem 17 in an example of a switching
diffusion process, for short SDP. To this end, we recall
that an SDP is a hybrid process, whose continuous states
evolve as specified by stochastic differential equations
(SDEs) and the jumps between them is triggered by a
continuous time Markov chain.

Definition 22 (SDP [7]) A switching diffusion pro-
cess is a collection

(n,Q, (f, σ), ν0, {λij | (i, j) ∈ Q×Q}),

where

• Q is a finite discrete state space;
• for n ∈ N, Y = Q × Rn is the SDP (hybrid) state

space;
• f : Y → Rn is the drift term;
• σ : Y → Rn×m is the diffusion term;
• ν0 : B(Y) → [0, 1] is an initial probability measure

on (Y,B(Y));
• λi,j : Rn → R are the state-dependent transition

rates with

λi,j(x) ≥ 0 for x ∈ Rn and i 6= j,

λi,i(x) = −
∑

j∈Q,i6=j

λi,j(x) for all x ∈ Rn and i ∈ Q.
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The execution of SDP is a two component process
(qt, Xt) with values in Y that satisfies the SDE (17) and
the transition probabilities (18)

dXt = f(qt, Xt)dt+ σ(qt, Xt)dBt, (17)

where Bt is the m-dimensional Brownian motion,
(q0, X0) has distribution ν0, and

P[qt+δ = j| qt = i, Xs, qs, s ≤ t] = λi,j(Xt)δ + o(δ)
(18)

for i 6= j.

In our specific example, we consider Y = {0, 1} × R2,
the drift

f(0, x) =
[
1 1.4

]T
, f(1, x) =

[
1.4 1

]T
,

the diffusion term

σ(0, x) = σ(1, x) = 0.5I,

where I is the identity matrix of size 2, and the transition
rates λ0,1 = λ1,0 = 10.

Let Dc(r) denote the closed disk centered at c and with
radius r. We suppose that the state space S, the set A
of initial states and the forbidden set U are as follows

S = {0, 1} ×D(0,0)(10), A = {0, 1} ×D(0,0)(1),

U = {0, 1} ×D(5,5)(1).

For the computation of p-safety, it will be instrumental
to use the well-known expression of infinitesimal gener-
ator of associated to SDP [4]. This encapsulates a part
corresponding to the diffusion component and another
part associated to the switching part. Explicitly, for any
function h : Y → R with h(i, ·) ∈ C2(R2), i ∈ {0, 1},
the generator L is defined by

Lh(i, x) ≡ 1

2
tr(σ(i, x)σT(i, x)D2h(i, x))

+ 〈f(i, x),∇h(i, x)〉
+ λi,i+1(x)(h(i+ 1, x)− h(i, x)),

where tr(·) stands for the trace, ∇h is the gradient and
D2h is the Hessian of h(i, ·), and i+1 is to be understood
modulo 2. Concretely,

Lh0(x) = 0.125

(
∂2h0

∂x2
1

+
∂2h0

∂x2
2

)
+
∂h0

∂x1
+ 1.4

∂h0

∂x2

+ 10(h1(x)− h0(x)),

Lh1(x) = 0.125

(
∂2h1

∂x2
1

+
∂2h1

∂x2
2

)
+ 1.4

∂h1

∂x1
+
∂h1

∂x2

+ 10(h0(x)− h1(x)).

To compute p-safety, we use Yalmip optimisation
toolbox for Matlab. The code is available on https:
//github.com/SecureProject/Safety). The disks
D(0,0)(10) = [g1 ≥ 0], D(0,0)(1) = [g2 ≥ 0] and
D(5,5)(1) = [g3 ≥ 0] are defined by the polynomials

g1(X1, X2) = 102 −X2
1 −X2

2 ,

g2(X1, X2) = 1−X2
1 −X2

2 ,

g3(X1, X2) = 1− (X1 − 5)2 − (X2 − 5)2.

We write hi(·) := h(i, ·). We use the following instance
of (16)

• sos(h0 − s1 ∗ g1),
• sos(h1 − s2 ∗ g1),
• sos(−Lh0 − s3 ∗ g1),
• sos(−Lh1 − s4 ∗ g1),
• sos(p− h0 − s5 ∗ g2),
• sos(p− h1 − s6 ∗ g2),
• sos(h0 − 1− s7 ∗ g3),
• sos(h1 − 1− s8 ∗ g3),

where sk for k ∈ {1, . . . , 8} are unknown SOS (polyno-
mials in Σ2[X]), and sos stands for an SOS constraint.

The result of running the numerical example is
P (A;U, S) = 0.28. The influence of the transition rates
on the safety of SDP can be studied by testing different
values of λi,i+1. In the extreme situation of no switches
between the diffusion processes, i.e., for λi,i+1 = 0,
P (A;U, S) = 0.27.

8 Weak p-safety

In the last part of Section 3, we have defined the concept
of weak p-safety. In this section, we will show how to
compute it, i.e., how to compute the smallest number p
such that the process (Xt) is weak p-safe. Specifically,
we regard the situation when not all of the states in the
set A are equally probable, but rather, there exists an
initial probability measure µ0 with suppµ0 ⊆ S.

Problem 23 We want to compute the probability that
the process (Xt), with the initial distribution µ0 ofX0 hits
a subset U of S without leaving the set S. In other words,
for a given initial measure µ0, we strive to compute

〈µ0, P 〉 = (µ0P )(Y) =

∫
S

P (y)µ0(dy),

where P is the safety function defined in (4) (in the last
equality, we have used that the support of µ0 is a subset
of S).

We formulate the main result of this section, a solution
to Problem 23, which shows that the weak safety can be
computed employing the following optimisation.
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Theorem 24 Suppose that L is the extended generator
of a right process (Xt) with the initial distribution µ0.
Suppose that

p∗ = sup
µ
µ(U) (19)

subject to probability measures µ on S that satisfy

〈µ0, f〉 ≥ 〈µ, f〉

for all f ∈ DL such that

(1) f ≥ 0 on S,
(2) Lf ≤ 0 on S.

Then

〈µ0, P 〉 = p∗.

The proof follows from a number of steps, which will
present next. Subsequently, we will illustrate how to use
the theorem to compute weak p-safety.

8.1 Proof of the main result

In the reminding part of this section, we will prove The-
orem 24. To this end, we follow [5], and on the set of
probability measures on S, we define the balayage order
with respect to the cone ESX of excessive functions (re-
stricted to S), see Definition 18,

ν1 ` ν2 ⇔ 〈ν1, f〉 ≥ 〈ν2, f〉, ∀f ∈ ESX .

The next proposition shows how to evaluate the weak
p-safety utilizing the balayage order.

Theorem 25 The weak safety measure can be computed
from

〈µ0, P 〉 = sup
µ0`µ

µ(U). (20)

PROOF. We use the reduced function introduced in
the beginning of the proof of Theorem 20

R(g)(y) = inf{h(y)|h ∈ ESX , g ≤ f}. (21)

Furthermore, we have shown in (15) that P (y) =
RU1(y), but RU1(y) = R(IU )(y). Therefore,

〈µ0, P 〉 = 〈µ0, R(IU )〉

From [5], it is known that for a given probability mea-
sure ν on S, the reduced function satisfies the following
relation

〈ν,RS(g)〉 = sup
ν`µ
〈µ, g〉. (22)

From (21) and (22), the following formula is deduced

〈µ0, P 〉 = sup
µ0`µ
〈µ0, IU 〉 = sup

µ0`µ
µ(U). (23)

2

PROOF. [Theorem 24] A super-regular function is ex-
cessive for right Markov processes. As a consequence, of
Theorem 25, after unfolding the definitions of the bal-
ayage order and the cone of excessive functions we ob-
tain the desired conclusion. 2

9 Computation of weak p-safety

In this section, we will show how to compute weak p-
safety employing Bernstain forms, i.e., polynomials rep-
resented in the Bernstein polynomial basis.

We suppose that Y = Rn, and the closure of the interior
of S is S itself. Furthermore, we assume that S is par-
titioned by a finite family S of n-simplices (simplices of
the dimension n) such that

(1) S =
⋃
σ∈S σ, and

(2) σ1 ∩ σ2 is a face of both σ1 and σ2, ∀σ1, σ2 ∈ S.

Fig. 1. The state-space S is a diamond. The partitioning
by simplices {1, . . . , 6} to the right satisfies Conditions (1)
and (2); whereas, the partitioning to the left does not satisfy
Condition (2). For example, the intersection of simplices 1
and 2 is not a face of simplex 2.

We suppose that the set of polynomials is dense in DL.
We will represent polynomials in Bernstein basis

p =
∑
|α|=D

bα(p,D, σ)Bα(D,σ),

where |α| =
∑n
i=0 αi, bα(p,D, σ) are the Bernstein co-

efficients, and Bα(D,σ) are the Bernstein basis polyno-
mials. The coefficients and the basis depend not only on
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the polynomial p and the degree D, but also on the spe-
cific simplex σ. To see this, we recall that the Bernstein
basis polynomials are defined by

Bα(D,σ) =

(
D

α

)
λα,

where λ = (λ0, . . . λn) are the barycentric coordinates,

λα =
∏
λαii ,

(
D
α

)
= D!

α0!...αn! , and the barycentric coor-
dinates are functions of points in Rn. Suppose that the
simplex σ is given by n + 1 affinely independent point
σ0, . . . , σn ∈ Rn. Since x = λ0σ0 + . . . + λnσn, and∑n
i=0 λi = 1, we have

λ =

[
σ0 . . . σn

1 . . . 1

]−1 [
x

1

]
. (24)

We have chosen to represent polynomials in Bernstein
basis because there is a straightforward way to verify
whether they are non-negative on a simplex.

Theorem 26 (Bernstein Theorem [15]) Suppose
that a polynomial p of degree d is non-negative. Then
there is a degree D ≥ d such that the coefficients bα(σ)
are all none-negative.

The choice of sufficiently large degree D is often neces-
sary to certify positivity of a polynomial. To this end,
we employ degree elevation. The bounds on the degree
necessary to certify positivity with Bernstein coefficients
are provided in [15]. Suppose p is a polynomial of degree
d positive on a standard simplex σ. If

D >
d(d− 1)

2

max|α|=d |bα(p, d, σ)|
m

,

wherem is the minimum of p over σ, then Bernsten coef-
ficients certify positivity of p. Specifically, [16] provides
an example of p(x) = 5x2−4x+1 positive on σ = [−1, 1],
which has to be elevated to at least degree D = 21 to be
certified for positivity. In such a situation, [15] proposes
to use a subdivision of the partitioning S.

Suppose a polynomial p is represented in both the Bern-
stain basis of degree D and degree D′ > D

p(x) =
∑
|α|=D′

bα(p,D′, σ)Bα(D′, σ)

=
∑
|γ|=D

bγ(p,D, σ)Bγ(D,σ).

As a consequence, the coefficients are related by

bγ(p,D′, σ) =
∑
γ−α≥0

|γ−α|=D′−D

aγαbα(p,D′, σ), (25)

where

aγα =

(
D′

α

)(
D′ −D
γ − α

)(
D

γ

)−1

.

To ease the notation, we use the lexicographic order and
collect the coefficients bα(p,D, σ), |α| = D, in the vec-
tor b(p,D, σ). Consequently, the vector b(p,D, σ) has

ND =
(
D+n
n

)
entries. Similarly, we collect the Bernstein

polynomials Bα(D,σ) in the vector B(D,σ).

To formulate the next statement, we recall the definition
of a standard simplex. The standard simplex ∆(n) is the
following subset of Rn

∆(n) ≡ {Y ∈ Rn| Y ≥ 0 and
n∑
i=1

Yi = 1}.

A polynomial can be represented in Bernstein basis with
respected to an arbitrary simplex in S. Nonetheless, for
any simplex σ ∈ S, there is a linear isomorphism T (D,σ)
such that [30]

b(p,D, σ) = T (D,σ)b(p,D,∆(n)). (26)

The extended generator L in Theorem 24 acting on poly-
nomials give rise to the linear operator L(D,σ) acting
on the vector b(p,D, σ) of Bernstein coefficients. It is
defined by

L(D,σ)b(p,D, σ) = b(Lp,D, σ) (27)

for all polynomials p in DL. Notice that L(D,σ) is well-
defined since L is a linear operator.

The following lemma will be instrumental.

Lemma 27 Let f be a real polynomial on S, and S be
partitioned by a finite family of simplices S.

Then f ≥ 0 on S, and −Lf ≥ 0 on S if and only if there
is a degree D such that

T (D,σ)b(f,D,∆(n)) ≥ 0 for all σ ∈ S, (28)

and

−T (D,σ)L(D,∆(n))b(f,D,∆(n)) ≥ 0 for all σ ∈ S.
(29)

In (28) and (29), we have used the convention v ≥ 0 in
RND meaning that each entry vi ≥ 0.
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PROOF.

By Theorem 26, there exists a degree D such that

b(f,D, σ) ≥ 0 for all σ ∈ S (30)

and

−b(Lf,D, σ) ≥ 0 for all σ ∈ S. (31)

We combine (30) with (26) to conclude the inequality in
(28). To prove, the inequality in (29), we observe

b(Lf,D, σ) = T (D,σ)b(Lf,D,∆(n))

= T (D,σ)L(D,∆(n))b(f,D,∆(n)).

2

We define the Bernstein moments (of degree D) of a
measure µ on a simplex σ by

Yα(µ,D, σ) ≡
∫
σ

Bα(D,σ)dµ.

We collect the moments Yα(µ,D, σ) in a vector of mo-
ments Y (µ,D, σ). Specifically, the vector of the Bern-
stein moments of the initial measure µ0 is

Y0(D) ≡ Y (µ0, D, σ) =

∫
S

B(D,σ)dµ0.

However, not all vectors Y are vectors of Bernstein mo-
ments on a simplex σ.

Lemma 28 Suppose S ⊂ Rn is closed, and σ ⊂ S is
an n-simplex. Let (Y (D))D∈Z+

be a sequence of vectors

with Y (D) ∈ RND . There exists a probability measure µ
on S such that ∫

S

B(D,σ)dµ = Y (D)

for all D ∈ Z+ if and only if

Y (D) ∈ ∆(ND). (32)

Furthermore, for all |α| = D,

Yα(D) =

(
D + 1

α

) n∑
i=0

(
1

ei

)(
D

α+ ei

)−1

Yα+ei(D + 1),

(33)

where ei is the vector of zeros in all entries except the
entry i+ 1 where it is 1.

PROOF. Since ∑
|α|=D

Bα(D,σ) = 1,

we have

1 =

∫
S

dµ =
∑
|α|=D

∫
S

Bα(D,σ)dµ = 〈1, Y (µ,D, σ)〉,

(34)

where 1 is the vector of entries 1. The above equality
shows (32).

Let p = Bα(D,σ) for some |α| = D. Subsequently, by
integrating (25) on S for D′ = D + 1,

Yα(µ,D, σ) =
∑

|γ|=D+1

bγ(µ,D + 1, σ)Yγ(µ,D + 1, σ)

=
n∑
i=0

bα+ei(µ,D + 1, σ)Yα+ei(µ,D + 1, σ)

=

n∑
i=0

(
D + 1

α

)(
1

ei

)(
D

α+ ei

)−1

Yα+ei(µ,D + 1, σ).

The set S is closed; hence, by Riesz-Haviland theorem
[14, Theorem 3.1], there is a finite Borel measure µD
such that Y (D) is a vector of Bernstein moments of µD
if and only if 〈Y (D), F 〉 ≥ 0 for all F ≥ 0. This is
equivalent to Y (D) ≥ 0. Combining it with (34) gives
Y (D) ∈ ∆(ND). Since, Y (D)s are related by (33), µ can
be chosen such that µ = µD for all D ∈ Z+. 2

It will also be instrumental to recall the definition of a
dual cone. Let C be a cone inRN , the dual cone C∗ of C is

C∗ ≡ {Y ∈ RN | 〈Y, F 〉 ≥ 0 for all F ∈ C}.

For a subset C ⊂ RN and a vector Y ∈ RN , we write
Y + C ≡ {Y + Z| Z ∈ C}.

We are ready to state the main result of this section.

Theorem 29 Let S be partitioned by a finite family of
simplices S. Suppose that (qk) is a sequence of polyno-
mials converging point-wise to the indicator function IU
that is bounded on S, i.e., there is c such that |qk(x)| < c
for x ∈ S and k ∈ N.

Let µ0 be the initial distribution, with its vector of Bern-
stein moments

Y0(D) ≡ Y (µ0, D,∆(n)).

We define the following objects:
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• The cone C(D) in RND given by:

C(D) ≡
⋂
σ∈S
{F ∈ RND | TF ≥ 0,

− TL(D,∆(n))F ≥ 0},

where T ≡ T (D,σ), and L(D,∆(n)) is given in
(27).

• The polyhedron D(D) given by:

D(D) ≡ (Y0(D)− C(D)∗) ∩∆(ND).

• The sequence:

pk ≡ sup
D∈Z+

sup
Y ∈D(D)

〈Y, b(qk, D,∆(n))〉 (35)

Then

〈µ0, P 〉 = lim
k→∞

pk.

PROOF. We denote by F the vector of Bernstein co-
efficients b(f,D,∆(n)) of f . Employing (30), we write
f ≥ 0 and Lf ≤ 0 on S if and only if there existsD ∈ Z+

such that

F ∈ C(D).

Explicitly, observing that Y0(D) is the vector of the
Bernstein moments of the initial measure µ0, 〈µ0 −
µ, f〉 ≥ 0 for f ≥ 0 on S pronounces 〈Y0(D)−Y, F 〉 ≥ 0
for all F ∈ C(D), where Y ≡ Y (µ,D,∆(n)) are the
Bernstein moments of µ.

From Lemma 28, µ is a probability measure if and only
if its moments are in the standard simplex, Y (D) ∈
∆(ND), and (33) holds. Combining all the above prop-
erties of the moments of µ, we have Y (D) ∈ D(D).

We notice that for any probability measure µ

µ(U) =

∫
S

Iudµ = lim
k→∞

∫
S

qkdµ (36)

= lim
k→∞

∑
|α|=1

bα(qk, D,∆(n))

∫
∆(n)

Bα(D,∆(n))dµ

= lim
k→∞

〈b(qk, D,∆(n)), Y (µ,D,∆(n))〉,

where the second equality follows form Lebesgue’s domi-
nated convergence theorem. Let p∗ = supµ µ(U) subject
to the constraints in Theorem 24. For any ε there is a
measure µε such that

µε(U) + ε ≥ p∗ ≥ µε(U). (37)

Furthermore by (36), for any ε′ there exists N such that
for k > N

|µε(U)− 〈b(qk, Dk,∆(n)), Y (µε, Dk,∆(n))〉| ≤ ε′,
(38)

where Dk ≡ D(qk) is the degree of the polynomial qk.

From (37) and (38), we have

〈b(qk, Dk,∆(n)), Y (µε, Dk,∆(n))〉+ ε+ ε′ ≥ p∗ (39)

and

p∗ ≥ 〈b(qk, Dk,∆(n)), Y (µε, Dk,∆(n))〉 − ε′. (40)

From the discussion in the beginning of the proof, for
any Y (D) inD(D), there is a probability measure µ that
satisfies the constraints in Theorem 24. Furthermore,
from (39) and (40), we conclude that for any ε > 0 and
ε′ > 0 there isN > 0 and Y ∈ D(D) such that for k > N

〈b(qk, Dk,∆(n)), Y 〉+ε+ ε′ ≥ p∗

≥〈b(qk, Dk,∆(n)), Y 〉 − ε′.

Since ε and ε′ can be made arbitrarily small, the conclu-
sion of the theorem follows. 2

Theorem 29 comprises an algorithm for the computation
of weak p-safety. The core of the algorithm is the linear
program (35).

Corollary 30 Since the polyhedral set D(D,σ) is com-
pact and the the optimisation in (35) is linear, (35) is
equivalent to

pk = sup
D∈Z+

max
Y ∈V (D(D))

〈Y, b(qk, D,∆(n))〉,

where V (D(D)) is the set of vertices of the polyhedron
D(D).

Remark 31 We use Theorem 29 is the following way.
We pick a sufficiently good approximation qk of the indi-
cator function IU . We choose a sufficiently large degree
D then

〈µ0, P 〉 ≈ max
Y ∈V (D(D))

〈Y, b(qk, D,∆(n))〉.

9.1 Numerical Example

The computation of p-safety in Section 8 has been based
on an readily available optimisation toolbox. The sit-
uation with weak p-safety is more involved as there is
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no designated toolbox supporting the automatic conver-
sion from the weak safety problem statement to linear
programming discussed in Theorem 29 and Remark 31.
This will be the subject of our future work. Nonetheless,
the next example will illustrate the concept developed
in this chapter for one-dimensional Brownian motion.
From Example 7, the infinitesimal generator is

Lf =
1

2
f ′′.

We consider the state space S = [0, 1] ⊂ Y = R. We
suppose that the initial measure µ0 corresponds to uni-
form distribution on the interval [0, 0.1], the forbidden
set U = [0.2, 1].

To compute weak p-safety (the Matlab code is available
on https://github.com/SecureProject/Safety).
For manipulating polyhedral sets, we have used ben-
solve toolbox for Matlab.

9.1.1 Approximation of IU and Bernstein moments Y0

On the interval [0, 1], the Bernstein basis of degree D is
of the form

Bm(x) ≡ Bm(D)(x) =

(
D

m

)
xm(1− x)D−m.

For a real-valued function f defined and bounded on the
interval [0, 1], let B̂D(f) be the Bernstein polynomial of
degree D that approximates f on [0, 1]

B̂D(f) :=
D∑
m=0

Bm(x)f
(m
D

)
,

and the Bernstein coefficients of B̂D(f) are f
(
m
D

)
.

Therefore, the sequence qk in Theorem 29 corresponds
to the indicator function I[0.2,1],

qk(x) =
k∑

m=0

(
k

m

)
xm(1− x)k−mI[0.2,1]

(m
k

)
.

The approximation only makes sense for a large number
k; nonetheless, for the sake of illustrating the method,
we instantiate the example for k = 3,

q3 = x3,

and the vector of Bernstein coefficient is b(q3) =[
0 1 1 1

]T
.

Next, we compute the Bernstein moments Y0 ≡ Y0(D)
of the initial measure µ0

Y0(m) =

∫ 1

0

Bm(x)µ0(dx) = 10

∫ 0.1

0

Bm(x)dx

Specifically, for D = 3, Y0 =
[
0.86 0.13 0.01 0.00

]T
.

9.1.2 Cone C(D) and its dual C(D)∗

At the outset, we define

f(x) =
D∑
m=0

FmBm(x)

and represent

Lf(x) =
1

2

D∑
m=0

FmB
′′
m(x)

in Bernstein basis for D = 3,

Lf(x) = (3F0 − 6F1 + 3F2)x (41)

+ (3F1 − 6F2 + 3F3)(1− x).

In (41), we have used that

Bm(D)′(x) = D (Bm−1(D − 1)(x)−Bm−(D − 1)(x))) .

As a consequence, the cone C(3) in Theorem 29 is

C(3) = {F ∈ R4| AF ≥ 0}

with the matrix A given by

A =


I

−

[
1 −2 1 0

0 1 −2 1

] ,
where I is 4×4 identity matrix. The dual cone to C(3) is

C(3)∗ = {Z ∈ R4| BZ ≥ 0},

where the matrix B is

B =


3 2 1 0

0 2 1 0

0 1 2 3

0 1 2 0

 .
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The dual cone is computed by changing h-representation
of C(3) given by supporting hyper-planes to v-
representation defined by

C(3) = {BTY | Y ≥ 0}.

and observing that

C(3)∗ = {Z ∈ R4| 〈Z,BTY 〉 ≥ ∀ Y ≥ 0}
= {Z ∈ R4| 〈BZ, Y 〉 ≥ 0 ∀ Y ≥ 0} = {Z ∈ R4| BZ ≥ 0}.

9.1.3 Approximation of weak p-safety

We approximate weak p-safety by

max〈Y, b(q3)〉

subject to

B(Y0 − Y ) ≥ 0, 1 ≥ Y ≥ 0 and 1TY = 1.

The above linear optimisation gives 0.14 for Bernstein
moments of the measure µ∗,

Y ∗ =
[
0.860 0.133 0.004 0.003

]T
.

For the degree D = 20, the weak p-safety is approxi-
mated by 0.25.

10 Conclusion

The main result of this work is two-fold. Firstly, we
have analytically characterized two concepts of safety:
p-safety and weak p-safety. The first concept is the prob-
ability of hitting a forbidden state before reaching the
desired shape when it starts in the specified initial condi-
tion. The second notion has randomized the initial state
by requiring that the initial state be chosen randomly
according to an initial distribution. Secondly, we have
translated the theoretical findings to optimization prob-
lems. Upon solving them, p-safety and weak p-safety can
be calculated. We have provided computational exam-
ples for both forms of safety to explain better the meth-
ods developed in the paper better and allow the usage
of the code for future research.

Our future adventures are to extend our results to the
problem of selecting policies such that a process is kept
p-safe. We intend to develop a toolbox for weak p-safety.
To this end, we need to develop algorithms for efficient
triangulation of the state space, develop algorithms aim-
ing the computation on Bernstein forms. Another avenue
is devoted to the application of the method for leakage
detection in water networks.

Acknowledgements

The work of the first author has been supported by the
Poul Due Jensens Fond in the Project SWIft. The second
author wishes to acknowledge and thank for the financial
support from Maritime Safety Research Center research
sponsors DNV-GL and Royal Caribbean Cruise Ltd.

References

[1] Quantitative risk analysis of offshore drilling operations: A
bayesian approach. Safety science, 57:108–117, 2013.

[2] Alessandro Abate, Maria Prandini, John Lygeros, and
Shankar Sastry. Probabilistic reachability and safety
for controlled discrete time stochastic hybrid systems.
Automatica (Oxford), 44(11):2724–2734, 2008.

[3] L. Arnold. Stochastic differential equations: theory and
applications. Wiley, 1974.

[4] Nicholas A. Baran, George Yin, and Chao Zhu. Feynman-
Kac formula for switching diffusions: connections of systems
of partial differential equations and stochastic differential
equations. Adv. Difference Equ., pages 2013:315, 13, 2013.

[5] J.-M. Bismut. Potential theory in optimal stopping and
alternatinc processes. Stochastic Control Theory and
Stochastic Differential Systems, 16:285–293, 1979.

[6] R. M. Blumenthal and R. K. Getoor. Markov processes and
potential theory. Pure and Applied Mathematics, Vol. 29.
Academic Press, New York-London, 1968.

[7] L.M. Bujorianu. Stochastic Reachability Analysis of Hybrid
Systems. Communications and Control Engineering. Springer
London, London, 2012.

[8] M. L. Bujorianu and R. Wisniewski. New insights on p-
safety of stochastic systems. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 4433–4438, 2019.

[9] K. L. Chung and R. K. Getoor. The condenser problem.
Ann. Probab., 5(1):82–86, 02 1977.

[10] M. H. A. Davis. Markov models and optimization. Chapman
& Hall, 1993.

[11] J. L. Doob. Semimartingales and subharmonic functions.
Trans. Amer. Math. Soc., 77:86–121, 1954.

[12] O. Kallenberg. Foundations of modern probability.
Probability and its Applications (New York). Springer-
Verlag, New York, second edition, 2002.

[13] J. B. Lasserre. Global optimization with polynomials and
the problem of moments. SIAM Journal on Optimization,
11(3):796–817, March 2001.

[14] J. B. Lasserre. Moments, positive polynomials and their
applications, volume 1 of Imperial College Press Optimization
Series. Imperial College Press, London, 2010.

[15] R. Leroy. Certificates of positivity in the simplicial bernstein
basis. hal.archives-ouvertes, hal-00589945:1–35, 2011.

[16] Tobias Leth. Polynomials in the Bernstein Basis and Their
Use in Stability Analysis. PhD thesis, 2017. PhD supervisor:
Prof. Rafa l Wisniewski, Aalborg University Assistant PhD
supervisor: Assoc. Prof. Christoffer Sloth, Aalborg University.

[17] Aleksander A Lidtke, Hugh G Lewis, and Roberto Armellin.
Impact of high-risk conjunctions on active debris removal
target selection. Advances in space research, 56(8):1752–1764,
2015.

17

Safety of stochastic systems: an analytic and computational approach



[18] M. Marshall. Positive polynomials and sums of squares,
volume 146 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2008.

[19] B. Øksendal. Stochastic Differential Equations: An
Introduction with Applications. Springer-Verlag, 5th edition,
2000.

[20] P. A. Parrilo. Semidefinite programming relaxations for
semialgebraic problems. Math. Program., 96(2, Ser. B):293–
320, 2003. Algebraic and geometric methods in discrete
optimization.

[21] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework
for worst-case and stochastic safety verification using barrier
certificates. IEEE Transactions on Automatic Control,
52(8):1415–1428, Aug 2007.

[22] Stephen Prajna and Anders Rantzer. Convex programs for
temporal verification of nonlinear dynamical systems. SIAM
J. Control Optim., 46(3):999–1021, 2007.

[23] M.Z. Romdlony and B. Jayawardhana. Stabilization with
guaranteed safety using control lyapunovbarrier function.
Automatica, 66:39–47, 2016.

[24] Th. G. Kurtz S. N. Ethier. Markov Processes :
Characterization and Convergence. Wiley, New York, N.Y,
2005.

[25] C. Santoyo, M. Dutreix, and S. Coogan. Verification and
control for finite-time safety of stochastic systems via barrier
functions. In 2019 IEEE Conference on Control Technology
and Applications (CCTA), pages 712–717, 2019.

[26] B. Schmuland. Dirichlet forms with polynomial domain.
Math. Japon., 37(6):1015–1024, 1992.

[27] M. Sharpe. General theory of Markov processes, volume 133
of Pure and Applied Mathematics. Academic Press, Inc.,
Boston, MA, 1988.

[28] S. Summers and J. Lygeros. Verification of discrete time
stochastic hybrid systems: A stochastic reach-avoid decision
problem. Automatica, 46(12):1951 – 1961, 2010.

[29] R. Syski. Probabilistic methods in applied mathematics. In
A. T. Bharucha-Reid, editor, Potential Theory for Markov
Chains, pages 214–275. Academic Press, 1973.

[30] Leth T. Polynomials in the Bernstein Basis and their use in
stability theory. PhD thesis, Aalborg University, 2017.

[31] L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier
certificates for collisions-free multirobot systems. IEEE
Transactions on Robotics, 33(3):661–674, 2017.

[32] T. Watanabe. On the equivalence of excessive functions and
superharmonic functions in the theory of Markov processes,
I. Proceedings of the Japan Academy, 38(7.S1):397 – 401,
1962.
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