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ABSTRACT
In this article, we write the time-varying parameter (TVP) regression model involving K explanatory variables
and T observations as a constant coefficient regression model with KT explanatory variables. In contrast
with much of the existing literature which assumes coefficients to evolve according to a random walk,
a hierarchical mixture model on the TVPs is introduced. The resulting model closely mimics a random
coefficients specification which groups the TVPs into several regimes. These flexible mixtures allow for
TVPs that feature a small, moderate or large number of structural breaks. We develop computationally
efficient Bayesian econometric methods based on the singular value decomposition of the KT regressors.
In artificial data, we find our methods to be accurate and much faster than standard approaches in terms
of computation time. In an empirical exercise involving inflation forecasting using a large number of
predictors, we find our models to forecast better than alternative approaches and document different
patterns of parameter change than are found with approaches which assume random walk evolution of
parameters.
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1. Introduction

Time-varying parameter (TVP) regressions and vector autore-
gressions (VARs) have shown their usefulness in a range of
applications in macroeconomics (e.g., Cogley and Sargent 2005;
Primiceri 2005; D’Agostino, Gambetti, and Giannone 2013).
Particularly when the number of explanatory variables is large,
Bayesian methods are typically used since prior information
can be essential in overcoming over-parameterization concerns.
These priors are often hierarchical and ensure parsimony
by automatically shrinking coefficients. Examples include
Belmonte, Koop, and Korobilis (2014), Kalli and Griffin
(2014), Bitto and Frühwirth-Schnatter (2019), and Huber,
Koop, and Onorante (2021). Approaches such as these have
two characteristics that we highlight so as to motivate the
contributions of our article. First, they use Markov Chain
Monte Carlo (MCMC) methods which can be computationally
demanding. They are unable to scale up to the truly large
data sets that macroeconomists now work with. Second, the
regression coefficients in these TVP models are assumed to
follow random walk or autoregressive (AR) processes. In this
article, we develop a new approach which is computationally
efficient and scaleable. Furthermore, it allows for more flexible
patterns of time variation in the regression coefficients.

We achieve the computational gains by writing the TVP
regression as a static regression with a particular, high dimen-
sional, set of regressors. Using the singular value decomposition
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(SVD) of this set of regressors along with conditionally conju-
gate priors yields a computationally fast algorithm which scales
well in high dimensions. One key feature of this approach is that
no approximations are involved. This contrasts with other com-
putationally fast approaches to TVP regression which achieve
computational gains by using approximate methods such as
variational Bayes (Koop and Korobilis 2018), message passing
(Korobilis 2021) or expectation maximization (Rockova and
McAlinn 2021).

Our computational approach avoids large-scale matrix oper-
ations altogether and exploits the fact that most of the matrices
involved are (block) diagonal. In large-dimensional contexts,
this allows fast MCMC-based inference and thus enables the
researcher to compute highly nonlinear functions of the time-
varying regression coefficients while taking parameter uncer-
tainty into account. Compared to estimation approaches based
on forward-filtering backward-sampling (FFBS, see Carter and
Kohn 1994; Frühwirth-Schnatter 1994) algorithms, the com-
putational burden is light. In particular, we show that it rises
(almost) linearly in the number of covariates. For quarterly
macroeconomic datasets that feature a few hundred observa-
tions, this allows us to estimate and forecast, exploiting all avail-
able information without using dimension reduction techniques
such as principal components.

Computational tractability is one concern in high-
dimensional TVP regressions. The curse of dimensionality
associated with estimating large-dimensional TVP regressions
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is another. To solve over-parameterization issues and achieve
a high degree of flexibility in the type of coefficient change,
we use a sparse finite mixture representation (see Malsiner-
Walli, Frühwirth-Schnatter, and Grün 2016) for the time-
varying coefficients. This introduces shrinkage on the amount
of time variation by pooling different time periods into a
(potentially) small number of clusters. We also use shrinkage
priors which allow for the detection of how many clusters
are necessary. Shrinkage toward the cluster means is then
introduced by specifying appropriate conjugate priors on
the regression coefficients. At a general level, this model is
closely related to random coefficient models commonly used
in microeconometrics (see, e.g., Allenby, Arora, and Ginter
1998; Lenk and DeSarbo 2000). We propose three different
choices for this prior. The first of these is based on Zellner’s
g-prior (Zellner 1986). The second is based on the Minnesota
prior (Doan, Litterman, and Sims 1984; Litterman 1986) and
the final one is a ridge-type prior (see, e.g., Griffin and Brown
2013). As opposed to a standard TVP regression which assumes
that the states evolve smoothly over time, our model allows
for abrupt changes (which might only happen occasionally) in
the coefficients. This resembles the behavior of regime switch-
ing models (see, e.g., Hamilton 1989; Frühwirth-Schnatter
2001). Compared to those, our approach has two additional
advantages: it remains agnostic on the precise law of motion
of the coefficients, and it endogenously finds the number of
regimes.1

We investigate the performance of our methods using two
applications. Based on synthetic data, we first illustrate com-
putational gains if K and T become large. We then proceed to
show that our approach effectively recovers key properties of
the data generating process. In a real data application, we model
U.S. inflation dynamics. Our framework provides new insights
on how the relationship between unemployment and inflation
evolves over time. Moreover, in an extensive forecasting exercise
we show that our proposed set of models performs well relative
to a wide range of competing models. Specifically, we find that
our model yields precise point and density forecasts for one-
step-ahead and four-step-ahead predictions. Improvements in
forecast accuracy are especially pronounced during recessionary
episodes.

The remainder of the article is structured as follows. Sec-
tion 2 introduces the static representation of the TVP regression
model while Section 3 shows how the SVD can be used to speed
up computation. Section 4 provides an extensive discussion of
our prior setup. The model is then applied to synthetic data
in Section 5 and real data in Section 6. Finally, the last section
summarizes and concludes the article and the online appendix
provides additional details on computation and further empiri-
cal findings.

1Other approaches which remain agnostic on the transition distribution of
the coefficients are, for example, Kalli and Griffin (2018) and Kapetanios,
Marcellino, and Venditti (2019).

2. A Static Representation of the TVP Model

Let {yt}T
t=1 denote a scalar response variable2 that is described

by a TVP regression given by

yt = x′
tβ t + σηt , ηt ∼ N (0, 1), (1)

where xt is a K-dimensional vector of regressors, β t is a set of K
time-varying regression coefficients and σ 2 is the error variance.
For now, we assume homoscedastic errors, but will relax this
assumption later in the article.

The TVP regression can be written as a static regression
model as follows:⎛
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Equation (2) implies that the dynamic regression model in
Equation (1) can be cast in the form of a standard linear regres-
sion model with KT predictors stored in a T × KT-dimensional
design matrix Z. Notice that the rank of Z is equal to T and
inverting Z′Z is not possible. We stress that, at this stage, we are
agnostic on the evolution of βt over time. A common assump-
tion in the literature is that the latent states evolve according to a
random walk. Such behavior can be achieved by setting φt = xt
for all t, implying a lower triangular matrix Z. If φt = 0K×1
for all t, then we obtain a block-diagonal matrix Z which, in
combination with a Gaussian prior on β would imply a white-
noise state equation.

The researcher may want to investigate whether any explana-
tory variable has a time-varying, constant or a zero coefficient.
In such a case, it proves convenient to work with a different
parameterization of the model which decomposes β into a time-
invariant (γ ) and a time-varying part (β̃)

y = Xγ + Zβ̃ + ση, (3)

with X = (x1, . . . , xT)′ denoting a T × K matrix of stacked
covariates and β t = γ + β̃ t , with β̃ t being the relevant elements
of β̃ .3

Thus, we have written the TVP regression as a static regres-
sion, but with a huge number of explanatory variables. That is, β̃
is a KT-dimensional vector with K and T both being potentially
large numbers.

2This setup can be easily extended to VAR models. In particular, recent
articles (see, e.g., Carriero, Clark, and Marcellino 2019; Koop, Korobilis, and
Pettenuzzo 2019; Tsionas, Izzeldin, and Trapani 2019; Cadonna, Frühwirth-
Schnatter, and Knaus 2020; Huber, Koop, and Onorante 2021; Kastner and
Huber 2020; Carriero et al. 2021) work with a structural VAR specification
which allows for the equations to be estimated separately. Accordingly, the
size of the system does not penalize the estimation time. This extension is
part of our current research agenda.

3In the case of lower triangular Z, the β̃t ’s can be interpreted as the shocks
to the latent states with the actual value of the TVPs in time t given by∑t

s=1 β̃s .
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This representation is related to a noncentered parameteri-
zation (Frühwirth-Schnatter and Wagner 2010) of a state-space
model. The main intuition behind Equation (3) is that parame-
ters tend to fluctuate around a time-invariant regression com-
ponent γ , with deviations being driven by β̃ t . This parame-
terization, in combination with the static representation of the
state space model, allows us to push the model toward a time-
invariant specification during certain points in time, if neces-
sary. This behavior closely resembles characteristics of mixture
innovation models (e.g., Giordani and Kohn 2008), and allows
the model to decide the points in time when it is necessary to
allow for parameter change.

In the theoretical discussion which follows, we will focus on
the time-varying part of the regression model

ŷ = y − Xγ = Zβ̃ + ση,

since sampling from the conditional posterior of γ (under a
Gaussian shrinkage prior and conditional on Zβ̃) is straightfor-
ward. In principle, any shrinkage prior can be introduced on γ .
In our empirical work, we use a hierarchical Normal-Gamma
prior of the form:

γj|τj ∼ N (0, τj), τj|ψ ∼ G(ϑ , ϑψ/2), ψ ∼ G(a0, a1),

where γj is the jth element of γ for j = 1, . . . , K. We set ϑ =
0.1 and a0 = a1 = 0.01 and use MCMC methods to learn
about the posterior for these parameters. The relevant posterior
conditionals are given in Griffin and Brown (2010) and Section
A of the online appendix.

3. Fast Bayesian Inference Using SVDs

3.1. The Homoscedastic Case

In static regressions with huge numbers of explanatory variables,
there are several methods for ensuring parsimony that involve
compressing the data. Traditionally principal components or
factor methods have been used (see Stock and Watson 2011).
Random compression methods have also been used with TVP
models (see Koop, Korobilis, and Pettenuzzo 2019).

The SVD of our matrix of explanatory variables, Z, is

Z︸︷︷︸
T×KT

= U︸︷︷︸
T×T

�︸︷︷︸
T×T

V ′︸︷︷︸
T×KT

whereby U and V are orthogonal matrices and � denotes a
diagonal matrix with the singular values, denoted by λ, of Z as
diagonal elements.

The usefulness and theoretical soundness of the SVD to
compress regressions is demonstrated in Trippe et al. (2019).
They use it as an approximate method in the sense that, in
a case with K regressors, they only use the part of the SVD
corresponding to the largest M singular values, where M < K.
In such a case, their methods become approximate.

In our case, we can exploit the fact that rank(Z) = T (T �
KT) and use the SVD of Z as in Trippe et al. (2019). But we do
not truncate the SVD using only the M largest singular values,
instead we use all T of them. But since the rank of Z is T(�
KT), our approach translates into an exact low-rank structure
implying no loss of information through the SVD.

Thus, using the SVD we can exactly recover the big matrix
Z. The reason for using the SVD instead of Z is that we can
exploit several convenient properties of the SVD that speed up
computation. To be specific, if we use a Gaussian prior, this
leads to a computationally particularly convenient expression of
the posterior distribution of β̃ which avoids complicated matrix
manipulations such as inversion and the Cholesky decomposi-
tion of high-dimensional matrices. Hence, computation is fast.

We assume a conjugate prior of the form

β̃|σ 2 ∼ N (b0, σ 2D0),

with D0 = IT ⊗ � being a KT-dimensional diagonal prior
variance-covariance matrix, where IT denotes a T-dimensional
identity matrix and � a K-dimensional diagonal matrix that
contains covariate-specific shrinkage parameters on its main
diagonal. Our prior will be hierarchical so that � will depend
on other prior hyperparameters θ to be defined later.

Using textbook results for the Gaussian linear regression
model with a conjugate prior (conditional on the time-invariant
coefficients γ ), the posterior is

β̃|Data, γ , σ 2, θ ∼ N (μβ̃ , σ 2V β̃ ). (4)

In conventional regression contexts, the computational bot-
tleneck is typically the KT × KT matrix V β̃ . However, with our
SVD regression, Trippe et al. (2019), show this to take the form:

V β̃ = (
D−1

0 + V diag (λ � λ)V ′)−1

= D0 − D0V
(
diag (λ � λ)−1 + V ′D0V

)−1 V ′D0, (5)
μβ̃ = V β̃ (Z′ŷ + D−1

0 b0), (6)

with � denoting the dot product. Crucially, the matrix 
 =(
diag (λ � λ)−1 + V ′D0V

)−1 is a diagonal matrix if Z is block-
diagonal and thus trivial to compute. For a lower triangular
matrix Z and a general prior covariance matrix, this result does
not hold. However, if we set D0 = θ × IKT (i.e., assume
a ridge-type prior) the matrix 
 again reduces to a diagonal
matrix.4 The main computational hurdle boils down to com-
puting V
V ′, but, for a block-diagonal Z it is a sparse matrix
and efficient algorithms can be used. In case we use a lower tri-
angular Z coupled with a ridge-prior, computation can be sped
up enormously by noting that μ

β̃
=

[
Vdiag

(
λ

θ−1ιT+λ2

)]
U ′ŷ+

D−1
0 b0. The resulting computation time, conditional on a fixed

T, rises approximately linearly in K because most of the matrices
involved are (block) diagonal and sparse. The key feature of our
algorithm is that we entirely avoid inverting a full matrix. The
only inversion involved is the one of 
 which can be carried out
in O(T) steps.

To efficiently simulate β̃ ∼ N (μβ̃ , σ 2V β̃ ) using Equation
(5), we exploit Algorithm 3 proposed in Cong, Chen, and Zhou
(2017). In the first step, this algorithm samples a ∼ N (0TK , D0)
and b ∼ N (0T , diag (λ�λ)−1). In the second step, a valid draw

4Notice that if the condition number (i.e., the ratio of the largest and the
smallest element in λ) is very large, numerical issues can arise. This is
the case if xt ≈ 0. In our simulations and real data exercises, we never
encountered computational issues. If these arise, then a simple solution
would be to use a truncated SVD and discard eigenvalues smaller than a
threshold very close to zero.
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of β̃ is obtained by computing β̃ = μβ̃ +σ(a−D0V
(V ′D0a+
b). Step 2 is trivial since 
 is diagonal for a block-diagonal Z and
also for a lower triangular Z with a ridge-prior. Hence, sampling
of β̃ is fast and scalable to large dimensions.

In this subsection, we have described computationally effi-
cient methods for doing Bayesian estimation in the homoscedas-
tic Gaussian linear regression model when the number of
explanatory variables is large. They can be used in any Big
Data regression model, but here we are using them in the
context of our TVP regression model written in static form
as in Equation (3). These methods involve transforming the
matrix of explanatory variables using the SVD. If the matrices
of prior hyperparameters, b0 and D0, were known and if
homoscedasticity were a reasonable assumption, then textbook,
conjugate prior, results for Bayesian inference in the Gaussian
linear regression model are all that is required. Analytical
results are available for this case and there would be no need
for MCMC methods. This is the case covered by Trippe et al.
(2019). However, in macroeconomic data sets, homoscedasticity
is often not a reasonable assumption. And it is unlikely that
the researcher would be able to make sensible choices for b0
and D0 in this high-dimensional context. Accordingly, we will
develop methods for adding stochastic volatility and propose a
hierarchical prior for the regression coefficients.

3.2. Adding Stochastic Volatility

Stochastic volatility typically is an important feature of success-
ful macroeconomic forecasting models (e.g., Clark 2011). We
incorporate this by replacing σ 2 in Equation (3) with � =
diag(σ 2

1 , . . . , σ 2
T) ⊗ IK . This implies that the prior on β̃ is

β̃|� ∼ N (b0, �D0).

Note that the prior in a specific period is given by

β̃ t|σ 2
t ∼ N (b0t , σ 2

t �),

with b0t being the relevant block associated with the tth period.
Thus, it can be seen that the degree of shrinkage changes with
σ 2

t , implying less shrinkage in more volatile times. From a
computational perspective, assuming that σ 2

t scales the prior
variances enables us to factor � out of the posterior covariance
matrix and thus obtain computational gains because D0 does not
need to be updated for every iteration of the MCMC algorithm.
From an econometric perspective, the feature that shrinkage
decreases if error volatilities are large implies that, in situations
characterized by substantial uncertainty, our approach natu-
rally allows for large shifts in the TVPs and thus permits swift
adjustments to changing economic conditions. Our forecasting
results suggest that this behavior improves predictive accuracy
in turbulent times such as the global financial crisis.

We assume that ht = log(σ 2
t ) follows an AR(1) process

ht = μh + ρh(ht−1 − μh) + σhvt , vt ∼ N (0, 1),

h0 ∼ N
(

μ,
σ 2

h
1 − ρ2

h

)
.

In our empirical work, we follow Kastner and Frühwirth-
Schnatter (2014) and specify a Gaussian prior on the uncondi-
tional mean μh ∼ N (0, 10), a Beta prior on the (transformed)

persistence parameter ρh+1
2 ∼ B(25, 5) and a nonconjugate

Gamma prior on the process innovation variance σ 2
h ∼

G(1/2, 1/2). Bayesian estimation of the volatilities proceeds
using MCMC methods based on the algorithm of Kastner and
Frühwirth-Schnatter (2014). A small alteration to this algorithm
needs to be made due to the dependency of the prior of β̃t on
σ 2

t (see the online appendix for details).

3.3. Posterior Computation

Conditional on the specific choice of the prior on the regres-
sion coefficients (discussed in the next section) we carry out
posterior inference using a relatively straightforward MCMC
algorithm. Most steps of this algorithm are standard and we
provide exact forms of the conditional posterior distributions,
the precise algorithm and additional information on MCMC
mixing in the online appendix. Here, it suffices to note that we
repeat our MCMC algorithm 30,000 times and discard the first
10,000 draws as burn-in.

4. A Hierarchical Prior for the Regression Coefficients

4.1. General Considerations

With hierarchical priors, where b0 and/or D0 depend on
unknown parameters, MCMC methods based on the full
conditional posterior distributions are typically used. In our
case, we would need to recompute the enormous matrix V β̃

and its Cholesky factor at every MCMC draw. This contrasts
with the nonhierarchical case with fixed b0 and D0 where V β̃

is calculated once. Due to this consideration, we wish to avoid
using MCMC methods based on the full posterior conditionals.

Many priors, including the three introduced here, have D0
depending on a small number of prior hyperparameters. These
can be simulated using a Metropolis–Hastings (MH) algorithm.
With such an algorithm, updating of V β̃ only takes place for
accepted draws (in our forecasting exercise roughly 30% of
draws are accepted). Since priors which feature closed form
full conditional posteriors for the hyperparameters imply that
V β̃ needs to be recomputed for each iteration in our posterior
simulator, this reduces computation time appreciably.

4.2. The Prior Covariance Matrix

In this article, we consider three different hierarchical priors
for β̃ . Since our empirical application centers on forecasting
inflation, the predictors xt will be structured as follows xt =
(yt−1, . . . , yt−py , d′

t−1, . . . , d′
t−pd

, 1)′, with dt denoting a set of
N exogenous regressors and py and pd being the maximum
number of lags for the response and the exogenous variables,
respectively. In what follows, we will assume that p = py = pd.
In principle, using different lags is easily possible.

The first prior is inspired by the Minnesota prior (see Litter-
man 1986). It captures the idea that own lags are typically more
important than other lags and, thus, require separate shrinkage.
It also captures the idea that more distant lags are likely to
be less important than more recent ones. Our variant of the
Minnesota prior translates these ideas to control the amount
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of time-variation, implying that coefficients on own lags might
feature more time-variation while parameters associated with
other lags feature less time-variation. The same notion carries
over to coefficients related to more distant lags which should
feature less time-variation a priori.

This prior involves two hyperparameters to be estimated:
θ = (ζ1, ζ2)′. These prior hyperparameters are used to parame-
terize � to match the Minnesota prior variances

[�]ii =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζ 2
1

l2 on the coefficients associated with
yt−l (l = 1, . . . , p)

ζ 2
2

l2
σ̂ 2

y
σ̂ 2

j
on the coefficients related to djt−l

ζ 2
2 on the intercept term.

Here, we let [�]ii denote the (i, i)th element of � , djt refers to
the jth element of dt , σ̂ 2

y , σ̂ 2
j denotes the OLS variance obtained

by estimating an AR(p) model in yt and djt , respectively. The
hyperpriors on ζ1 and ζ2 follow a Uniform distribution:

ζj ∼ U(s0,j, s1,j) for j = 1, 2.

The second prior we use is a variant of the g-prior involving a
single prior hyperparameter: θ = ξ . This specification amounts
to setting � = ξ × 
, where 
 is a diagonal matrix with the
(i, i)th element being defined as [
]ii = σ̂ 2

y /σ̂ 2
j . For reasons

outlined in Doan, Litterman, and Sims (1984), we depart from
using the diagonal elements of (X′X)−1 to scale our prior and
rely on the OLS variances of an AR(p) model as in the case of
the Minnesota-type prior. The third prior is a ridge-type prior
which simply sets � = ξ × IK . This specification is used in the
case of a lower triangular Z for reasons outlined in Section 3.
While being simple, this prior has been shown to work well in a
wide range of applications (Griffin and Brown 2013).

Similar to the Minnesota prior we again use a Uniform prior
on ξ in both cases

ξ ∼ U(s0, s1).

Since we aim to infer ξ , ζ1 and ζ2 from the data we set s0 =
s0,1 = s0,2 = 10−10 close to zero and {s1, s1,1, s1,2} is specified
as follows:

s1 = s1,j = κ
T

K2 for j = 1, 2. (7)

Here, κ is a constant being less or equal than unity to avoid
excessive overfitting in light of large K and T. Since large values
of κ translate into excessive time variation in β̃t , we need to
select κ carefully. The hyperparameters of this prior are inspired
by the risk inflation criterion put forward in Foster et al. (1994)
which would correspond to setting ξ = 1/K2. Since this prior
was developed for a standard linear regression model, it would
introduce too little shrinkage in our framework (or, if we set ξ =
1/(TK)2 too much shrinkage, ruling out any time-variation).
Our approach lets the data speak but essentially implies that
the bound of the prior is increasing in T and decreasing in the
number of covariates. Intuitively speaking, our prior implies that
if the length of the time series increases, the prior probability of
observing substantial structural breaks also increases slightly.

In the empirical application, we infer κ over a grid of values
and select the κ that yields the best forecasting performance

in terms of log predictive scores. Further discussion of and
empirical evidence relating to κ (and G) is given in Section C
of the online appendix.

The methods developed in this article will hold for any choice
of prior covariance matrix, D0, although assuming it to be
diagonal greatly speeds up computation. In this subsection, we
have proposed three forms for it which we shall (with some
abuse of terminology) refer to as the Minnesota, g-prior and
ridge-prior forms, respectively, in the following material.

4.3. The Prior Mean

As for the prior mean, b0, it can take a range of possible forms.
The simplest option is to set it to zero. After all, from Equation
(3), it can be seen that β̃ t measures the deviation from the
constant coefficient case which, on average, is zero. This is what
we do with the Minnesota prior and if we set Z to be lower
triangular.5 However, it is possible that we can gain estimation
accuracy through pooling information across coefficients by
adding extra layers to the prior hierarchy. In this article, we do
so using a sparse finite location mixture of Gaussians and adapt
the methods of Malsiner-Walli, Frühwirth-Schnatter, and Grün
(2016) to the TVP regression context. Sparse finite mixtures,
relative to Dirichlet process mixtures, have the advantage of
being finite dimensional while allowing the number of clusters
to be random a priori. The number of groups can then be
inferred during MCMC sampling by counting the number of
nonempty regimes.6

In the discussion below, we refer to these two treatments
of the prior mean as nonclustered and clustered, respectively.
With the g-prior, we consider both clustered and nonclustered
approaches.

We emphasize that both of these specifications for the prior
mean are very flexible and let the data decide on the form that
the change in parameters takes. This contrasts with standard
TVP regression models, where it is common to assume that the
states evolve according to random walks. This implies that the
prior mean of β t is β t−1.

With the clustered approach, we assume that each β̃t has a
prior of the following form:

fN (β̃ t|μ1, . . . , μG, w, σ 2
t , �) =

G∑
g=1

wgfN (β̃ t|μg , σ 2
t �),

where fN denotes the density of a Gaussian distribution and w
are component weights with

∑G
g=1 wg = 1 and wg ≥ 0 for all

g. μg (g = 1, . . . , G) denotes G component-specific means with
G being a potentially large integer that is much smaller than T
(i.e., G � T).

5Using the Minnesota prior in combination with the clustering specification
introduced in this sub-section is less sensible. That is, its form, involving
different treatments of coefficients on lagged dependent variables and
exogenous variables and smaller prior variances for longer lag length
already, in a sense, clusters the coefficients into groups. A similar argument
holds for a lower triangular matrix Z since that would translate into a
random walk with a (potentially) time-varying drift term.

6For a detailed discussion on the relationship between sparse finite mixtures
and Dirichlet process mixtures, see Frühwirth-Schnatter and Malsiner-Walli
(2019).
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An equivalent representation, based on auxiliary variables δt ,
is

β̃t|δt = g ∼ N (μg , σ 2
t �), (8)

with Pr(δt = g) = wg being the probability that β̃t is assigned
to group g. Equation (8) can be interpreted as a state evo-
lution equation which resembles a hierarchical factor model
since each β̃ t clusters around the different component means
μg . As opposed to assuming a random walk state evolution,
which yields smoothly varying TVPs, this model provides more
flexibility by pulling β̃ t towards G ≤ T prior means. Under the
prior in Equation (8), our model can be interpreted as a random
coefficients model (for a Bayesian treatment, see, for example,
Frühwirth-Schnatter, Tüchler, and Otter 2004).

Before proceeding to the exact prior setup, it is worth noting
that the mixture model is not identified with respect to rela-
beling the latent indicators. In the forecasting application, we
consider functions of the states which are not affected by label
switching. Thus, we apply the random permutation sampler
of Frühwirth-Schnatter (2001) to randomly relabel the states
in order to make sure that our algorithm visits the different
modes of the posterior. In what follows, we define mt = μg
if δt = g. Using this notation, the prior mean is given by
b0 = (m′

1, . . . , m′
T)′.

For the weights w = (w1, . . . , wG)′, we use a symmetric
Dirichlet prior

w|π ∼ Dir(π , . . . , π).

Here, π denotes the intensity parameter that determines how the
model behaves in treating superfluous components. If π ≤ K/2,
irrelevant components are emptied out while if π > K/2, the
model tends to duplicate component densities to handle over-
fitting issues. This implies that careful selection of π is crucial
since it influences the number of breaks in β̃t . The literature
suggests different strategies based on using traditional model
selection criteria or reversible jump MCMC algorithms to infer
G from the data. Our approach closely follows Malsiner-Walli,
Frühwirth-Schnatter, and Grün (2016) and used a shrinkage
prior on π . The prior we adopt follows a Gamma distribution:

π ∼ G(a, aG),

with a = 10 being a hyperparameter that determines the
tightness of the prior (Malsiner-Walli, Frühwirth-Schnatter, and
Grün 2016). The prior on w and π can be rewritten as follows:

w ∼ Dir(a/G, . . . , a/G), a ∼ G(10, 10).

Frühwirth-Schnatter, Malsiner-Walli, and Grün (2020) and
Greve et al. (2020) analyzed this prior choice and show that
it performs well.7

To assess which elements in μg determine the group mem-
bership, we use yet another shrinkage prior on the component
means

μg |�, β̃ ∼ N (μ0, �),

7The R package fipp, which is available on CRAN, allows for investigating
how influential the prior on a is and whether alternative specifications
substantially change the posterior of the number of nonempty groups.

whereby � = ϒRϒ with ϒ = diag(√υ1, . . . , √υK) and
R = diag(R2

1, . . . , R2
K). We let Rj denote the range of β̃ j =

(β̃j1, . . . , β̃jT)′. The prior on υj (j = 1, . . . , K) follows a Gamma
distribution:

υj ∼ G(c0, c1),

translating into the Normal-Gamma prior of Griffin and Brown
(2010). In the empirical application, we set c0 = c1 = 0.6,
with c0 < 1 being crucial for pushing the idiosyncratic group
means μg strongly toward the common mean μ0 (Malsiner-
Walli, Frühwirth-Schnatter, and Grün 2016). For μ0, we use an
improper Gaussian prior with mean set equal zero and infinite
variance.

This location mixture model is extremely flexible in the types
of parameter change that are possible. It allows us to capture
situations where the breaks in parameters are large or small and
frequent or infrequent. It can effectively mimic the behavior of
break point/Markov switching models, standard time-varying
parameter (TVP) models, mixture innovation models and many
more. The common variance factor implicitly affects the tight-
ness of the prior and ensures (conditional) conjugacy.

Compared to a standard TVP model which assumes a
random walk state evolution, our prior on βt is invariant
with respect to time, up to a scaling factor σt . If σt is
constant, (β1, . . . , βT) has the same prior distribution as
(βρ(1), . . . , βρ(T)) for any permutation ρ. In our general case,
temporal dependence is not an assumption, but arises through
appropriately choosing xt and by allowing for prior dependence
on σt . In the extreme case where xt does not include lagged
values of yt (we include several lags of yt in our empirical work)
and σt is constant, the dynamic nature of the model is lost since
the model is invariant to reordering the time series with respect
to t and no dependency is imposed.

5. Illustration Using Artificial Data

In this section we illustrate our modeling approach that uses
the g-prior and clustering by means of synthetic data simulated
from a simple data-generating process (DGP).

We begin by illustrating the computational advantages
arising from using the SVD, relative to a standard Bayesian
approach to TVP regression which involves random walk
evolution of the coefficients and the use of FFBS as well as
a model estimated using the precision sampler all without
a loop (AWOL, see Chan and Jeliazkov 2009; McCausland,
Miller, and Pelletier 2011; Kastner and Frühwirth-Schnatter
2014). Figure 1(a) shows a comparison of the time necessary
to generate a draw from p(β̃|Data, γ , σ 2) using our algorithm
based on the SVD, the FFBS algorithm and the AWOL sampler
as a function of K ∈ {1, 2, . . . , 150} and for T = 200.8

To illustrate how computation times change with T,
Figure 1(b) shows computation times as a function of T ∈
{50, . . . , 250} for K = 100. The dashed lines refer to the actual
time (based on a cluster with 400 IntelE5-2650v3 2.3 GHz cores)
necessary to simulate from the full conditional of the latent

8The AWOL sampler is implemented in R through the shrinkTVP package
(Knaus et al. 2021).
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Figure 1. Runtime comparison: SVD, FFBS and AWOL.
NOTE: The figure shows the actual and theoretical time necessary to obtain a draw of β̃ using our proposed SVD algorithm for Z being block-diagonal and lower triangular,
an AWOL sampler (implemented in R through theshrinkTVP package of Knaus et al. 2021) and the FFBS algorithm. The dashed red lines refer to the SVD approach with
a lower triangular Z and a ridge-prior, the orange dashed line refers to the SVD algorithm with block-diagonal Z, the dashed green lines refer to the AWOL sampler, while
the dashed blue lines indicate the FFBS. The dots refer to theoretical run times. Here, we fit a nonlinear trend on the empirical estimation times.

states while the dots indicate theoretical run times through a
(non)linear trend.

In Panel (a), we fit a (non)linear trend on the empirical esti-
mation times of the different approaches. This implies that while
the computational burden is cubic in the number of covariates K
for the FFBS approach, our technique based on using the SVD
suggests that runtimes increase (almost) linearly in K. Notice
that the figure clearly shows that traditional algorithms based
on FFBS quickly become infeasible in high dimensions. Up to
K ≈ 50, our algorithm (for both choices of Z) is slightly slower
while the computational advantage increases remarkably with
K, being more than four times as fast for K = 100 and over
nine times as fast for K = 150. When we compare the SVD to
the AWOL algorithm, we also observe sizeable improvements in
estimation times. For K = 150, our proposed approach is almost
four times faster. This performance is even more impressive
given that our SVD approach is implemented in R, a high-level
interpreted language, while both FFBS and AWOL are efficiently
implemented in Rcpp (Eddelbuettel et al. 2011).

Panel (b) of the figure shows that, for fixed K, computation
times increase linearly for most approaches if T is varied. The
main exception is the case of a lower triangular Z, with com-
putation times growing nonlinearly in T. This is because this
approach relies on several nonsparse matrix-vector products.
Since T is typically moderate in macroeconomic data this does
not constitute a main bottleneck of the algorithm for general
matrices Z. It is, moreover, noteworthy that the slope of the
line referring to FFBS is steeper than the ones associated with
the SVD (for block-diagonal Z) and AWOL approaches. This
reflects the fact that one needs to perform a filtering (that
scales linearly in T) and smoothing step (that is also linear
in T). This brief discussion shows that the SVD algorithm
scales well and renders estimation of huge dimensional models
feasible.

We now assume that yt is generated by the following
DGP:

yt = β̃t + εt , εt ∼ N (0, 0.12),
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for t = 1, . . . , 160, γ = 0, and β̃t ∼ N (mt , 0.12). β̃t depends
on mt which evolves according to the following law of motion:

mt = 3 × I(t ≤ 60) + 1 × I(60 < t ≤ 85) − 3
×I(85 < t ≤ 120) − 1 × I(t > 120),

with I(•) being the indicator function that equals 1 if its argu-
ment is true.

Analyzing this stylized DGP allows us to illustrate how our
approach can be used to infer the number of latent clusters that
determine the dynamics of β̃t . In what follows, we simulate a
single path of yt and use this for estimating our model. We
estimate the model using the g-prior with clustering and set
G = 12. In this application, we show quantities that depend on
the labeling of the latent indicators. This calls for appropriate
identifying restrictions and we introduce the restriction that
μ1 < · · · < μG. This is not necessary if interest centers purely
on predictive distributions and, thus, we do not impose this
restriction in the forecasting section of this article.

Before discussing how well our model recovers the true state
vector β̃t , we show how our modeling approach can be used
to infer the number of groups G. Following Malsiner-Walli,
Frühwirth-Schnatter, and Grün (2016), the number of groups
is estimated during MCMC sampling as follows:

G(j)
0 = G −

G∑
g=1

I
(

T(j)
g = 0

)

with T(j)
g denoting the number of observations in cluster g for

the jth MCMC draw. This yields a posterior distribution for G0.
Its posterior mode can be used as a point estimate of G.

In Table 1, we report the posterior probability of a given
number of regimes by simply computing the fraction of draws
with G0 = g for g = 1, . . . , 12. The table suggests that
the probability that G0 = 4 is around 66%. This indicates
that our algorithm successfully selects the correct number of

Table 1. Posterior probabilities for a given number of groups G(= 12).

G0 = 1 2 3 4 5 6 7 8 9 10 11 12

0.00 0.00 0.00 0.66 0.26 0.07 0.01 0.00 0.00 0.00 0.00 0.00

groups, since the mode of the posterior distribution equals
four. It is also worth noting that the posterior mean of π is
very small at 0.09, suggesting that our mixture model handles
irrelevant components by emptying them instead of replicating
them (which would be the case if π becomes large). Notice,
however, that G0 = 5 also receives some posterior support.
We have a probability of about 26 percent associated with a
too large number of regimes. In the present model, this slight
overfitting behavior might be caused by additional noise driven
by the shocks to the states β̃t , with our mixture model trying to
fit the noise.

Next, we assess whether our model is able to recover β̃t and
mt . Figure 2 shows the pointwise 16th and 84th percentiles of the
posterior distribution (in solid black) of β̃t (see Panel (a)) and
mt (see Panel (b)) over time. The gray shaded areas represent
the 16th and 84th percentiles of the posterior of β̃t obtained
from estimating a standard TVP regression model with random
walk state equations and stochastic volatility. Apart from the
assumption of random walk evolution of the states, all other
specification choices are made so as to be as close as possible to
our SVD approach. In particular, this model features the hier-
archical Normal-Gamma prior (see Griffin and Brown 2010) on
both the time-invariant part of the model and the signed square
root of the state innovation variances (Bitto and Frühwirth-
Schnatter 2019). It is estimated using a standard FFBS algorithm.
We refer to this model as TVP-RW-FFBS.

In Figure 2, the red lines denote the true value of β̃t and mt ,
respectively. Panel (a) clearly shows that our model successfully
detects major breaks in the underlying states, with the true value
of β̃t almost always being located within the credible intervals.
Our modeling approach not only captures low frequency move-
ments but also successfully replicates higher frequency changes.
By contrast, the posterior distribution of the TVP-RW-FFBS
specification is not capable of capturing abrupt breaks in the
latent states. Instead of capturing large and infrequent changes,
the TVP-RW-FFBS approach yields a smooth evolution of β̃t
over time, suggesting that our proposed approach performs
comparatively better in learning about sudden breaks in the
regression coefficients.

Considering Panel (b) of Figure 2 reveals a similar picture.
Our approach yields credible sets that include the actual out-
come of mt for all t. This discussion shows that our model also

Figure 2. Posterior distribution of β̃t and mt .
NOTE: Panel (a) shows 16th/84th posterior percentiles of β̃t for our proposed model (solid black lines) and a standard TVP regression with random walk state equation (gray
shaded area). The red line denotes the actual outcome. Panel (b) shows the 16th/84th percentiles of the posterior distribution of mt (in solid black) and the true value of
mt (in solid red).
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Figure 3. Posterior distribution of β̃t and mt .
NOTE: Panel (a) shows 16th/84th posterior percentiles of β̃t for our proposed model (solid black lines) and a standard TVP regression with random walk state equation (gray
shaded area). Panel (b) shows the 16th/84th percentiles of the posterior distribution of mt (in solid black). The red lines denote the actual outcome of β̃t .

Table 2. Posterior probabilities for a given number of groups G(= 30).

G0 = 12 13 14 15 16 17 18 19 20 21 22 23

0.01 0.02 0.04 0.07 0.13 0.18 0.16 0.15 0.12 0.07 0.03 0.02

handles cases with infrequent breaks in the regression coeffi-
cients rather well. As compared to standard TVP regressions
that imply a smooth evolution of the states, using a mixture
model to determine the state evolution enables us to capture
large and abrupt breaks.

The previous discussion has shown that our model works
well if the DGP is characterized by relatively few breaks. In the
next step, we test the model under a less favorable DGP: we
assume that the law of motion of β̃t is a random walk with a
state innovation variance of one and β̃0 = 3. The results are
shown in Figure 3 and Table 2. Panel (a) shows that even when
the DGP is characterized by many small breaks, our model is
flexible enough to capture this behavior as well. This is because
we essentially pool coefficients but also allow for idiosyncratic
(i.e., time-specific) deviations from the common mean. If we
consider Panel (b) we observe that the mean process mt captures
the bulk of the variation in β̃t . Table 2 suggests that even if we set
G = 30, the sparse finite mixture allocates substantial posterior
mass to lower values of G (with values of G between 15 and 21),
but still is able to retrieve over 80% of the posterior mass. Hence,
even if the true DGP is a random walk and G is much smaller
than T, our approach accurately recovers the full history of the
latent states.

6. An Application to the US Inflation

6.1. Data and Selected In-Sample Features

Modeling and forecasting inflation is of great value for economic
agents and policymakers. In the most central banks, inflation is
the main policy objective and the workhorse forecasting model
is based on some version of the Phillips curve. The practical
forecasting of inflation is difficult (see Stock and Watson 2007)
and the persistence of low inflation in the presence of a closing
output gap in recent years has led to a renewed debate about
the usefulness of the curve as a policy instrument in the United

States (see, e.g., Ball and Mazumder 2011; Coibion and Gorod-
nichenko 2015).

There are three main issues when forecasting inflation. A first
problem is that the theoretical literature relating to the Phillips
curve and the determination of inflation includes a large battery
of very different specifications, emphasizing domestic vs. inter-
national variables, forward vs. backward looking expectations
or including factors such as labor market developments. The
overall number of potential predictors can be quite large (see
Stock and Watson 2008). Second, within each econometric spec-
ification there is considerable uncertainty about which indicator
should be used as a proxy for the economic cycle (see Moretti,
Onorante, and Zakipour Saber 2019). Third, there are structural
breaks that make different variables and specifications more or
less important at different times (see Koop and Korobilis 2012).
The Great Recession, for example, is universally considered as
a structural break that requires appropriate econometric tech-
niques.

The mainstream literature has dealt with the curse of dimen-
sionality which arises in TVP regressions with many predic-
tors in several ways. Until recently, the two main approaches
included principal components or strong Bayesian shrinkage.
A comparison of the two approaches can be found in De Mol,
Giannone, and Reichlin (2008). Following Raftery, Kárný, and
Ettler (2010), a second stream of research uses model combina-
tion to deal with the curse of dimensionality and the fact that
models can change over time (e.g., Koop and Korobilis 2012).
Finally, a recent (but expanding) stream of literature forecasts
inflation using machine learning techniques (Medeiros et al.
2021). These methods, although useful, suffer from the “black
box problem;” while their accuracy compares well with other
techniques, they are not able to show how the result is obtained
and thus do not offer a simple interpretation.9

For the reasons above, inflation forecasting is an ideal empir-
ical application in which we can investigate the performance
of our methods. An important criterion is the capacity of our
approach to generalize standard TVP models, which are less
flexible because they are based on random walk or autoregres-
sive specifications to determine the evolution of the states. A sec-
ond challenge is the correct detection of well-known structural

9A survey of these techniques is given in Hassani and Silva (2015).
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Table 3. Runtime comparison of empirical exercise (K = 101; T = 212; G = 30)
with 30,000 draws from the posterior distribution.

SVD FFBS shrinkTVP TIV

WN (g-prior WN RW RW RW
clustering) (g-prior) (ridge-prior)

Time 103 76 64 377 150 16
(in minutes)

breaks. In addition, we assess the forecasting performance of our
methods relative to alternative approaches.

Following Stock and Watson (1999), we define the target
variable as follows:

yt+h = ln
(

Pt+h
Pt

)
− ln

(
Pt

Pt−1

)
,

with Pt+h denoting the price level (CPIAUCSL) in period t +h.
Using this definition, we estimate a generalized Phillips curve
involving 49 covariates plus the lagged value of yt that cover
different segments of the economy. Further information on the
specific variables included and the way they are transformed is
provided in Section B of the online appendix. The design matrix
xt includes p = py = pd = 2 lags and an intercept and thus
features K = 101 covariates.

Before we use our model to perform forecasting, we provide
some information on computation times, illustrate some in-
sample features of our model and briefly discuss selected pos-
terior estimates of key parameters.

Table 3 shows empirical runtimes (in minutes) for estimating
the different models for this large dataset. As highlighted in
the beginning of Section 5, our approaches start improving
upon FFBS-based algorithms in terms of computation time if
K exceeds 50, with the improvements increasing nonlinearily
in K. Hence, it is unsurprising that, for our present application
with K = 101, our algorithm (without clustering) is almost five
times faster than using FFBS and twice as fast as the efficient
AWOL sampler. If clustering is added, our approach is still more
than three times faster than FFBS. The additional computational
complexity from using the clustering prior strongly depends on
G. If G is close to T (which typically does not occur in practice
and we thus do not consider this case), then the computation
time increases and the advantage of using the SVD is dimin-
ished. This arises since estimating the location parameters of
the mixtures becomes the bottleneck in our MCMC algorithm.
Finally, using a random walk state evolution equation (i.e., a
lower triangular Z) with a ridge-prior yields the strongest gains
in terms of computational efficiency, being almost six times
faster than FFBS and over twice as fast than the AWOL sampler.

To further illustrate the properties of the estimated parame-
ters in our SVD approach using the g-prior with clustering we
now turn to a small-scale model. In this case, the number of
coefficients is relatively small and features such as multipliers
with an economic interpretation can be easily plotted. This
model is inspired by the New Keynesian Phillips curve (NKPC).
The dependent variable is inflation and the right hand side
variables include two lags of unemployment and inflation. We
set G = 30, thus allowing for a relatively large number of
clusters.

Figure 4 plots multipliers (i.e., the cumulative effect on infla-
tion of a change in unemployment at various horizons). A

comparison of SVD to TVP-RW-FFBS shows many similarities.
For instance, both models are saying an increase in unemploy-
ment has a negative effect on inflation in the very short term
for much of the time. This is what the NKPC would lead us
to expect. However, for SVD this negative effect remains for
most of the time after the financial crisis, whereas for TVP-
RW-FFBS, it vanishes and the NKPC relationship breaks down.
Another difference between the two approaches can be seen in
many recessions where the estimated effect changes much more
abruptly using our approach than with TVP-RW-FFBS. This
illustrates the great flexibility of our approach in terms of the
types of parameter change allowed for. And this flexibility does
not cost us much in terms of estimation precision in the sense
that the credible intervals for the two approaches have similar
width.

Figure 5 displays the posterior of G0, the number of clusters
selected by the algorithm. The posterior is spread over a range
of values, although almost all of the posterior probability is
associated with a number of clusters between ten and 20. G0 = 1
implies that β̃t is centered around a nonzero value that is time-
invariant and there is little posterior evidence in this figure
indicating support for this. This is the lower bound on the
number of clusters. The upper bound on the number of clusters
is 30, but the posterior probability lies in a region far below 30
indicating that the algorithm is successfully finding parsimo-
nious representations for the time variation in parameters. It is
worth stressing that these statements hold for the small NKPC
model. For the large model with K = 101, we find the number
of clusters to be even smaller. In this case the posterior mode
is eight clusters. This inverse relationship between K and G0
is to be expected. That is, as model size increases, more of the
variation over time can be captured by the richer information
set in xt , leaving less of a role for time variation in coefficients.
Our clustering algorithm automatically adjusts to this effect.

6.2. Forecasting Evidence

The forecasting design adopted is recursive. We consider an ini-
tial estimation period from 1965Q1 to 1999Q4. The remaining
observations (2000Q1 to 2018Q4) are used as a hold-out period
to evaluate our forecasting methods. After obtaining h ∈ {1, 4}-
step-ahead predictive distributions for a given period in the
hold-out, we include this period in the estimation sample and
repeat this procedure until we reach the end of the sample. In
order to compute longer horizon forecasts, we adopt the direct
forecasting approach (see, e.g., Stock and Watson 2002). To
assess forecasting accuracy, we use root mean square forecast
errors (RMSEs) for point forecasts and log predictive likelihoods
(LPLs, these are averaged over the hold-out period) for density
forecasts. We evaluate the statistical significance of the forecasts
relative to random walk (RW) forecasts using the Diebold and
Mariano (1995) test.

We compare four variants of our SVD approach (i.e., the
Minnesota prior, the g-prior with and without clustering and the
SVD model with a random walk-type state evolution, labeled
TVP-RW-SVD) to alternatives which vary in their treatment
of parameter change and in the number of explanatory vari-
ables. With regards to parameter change, we consider the time-
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Figure 4. Posterior means of multipliers.
NOTE: Blue shaded areas are 68% credible intervals and gray shaded areas denote NBER recessions.

Figure 5. Posterior distribution of number of nonempty clusters (G0).
NOTE: G0 refers to the nonempty groups with G = 30. The red line denotes the median of G0.
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invariant (TIV) model (which sets β̃ t = 0 for all t) and the
TVP-RW-FFBS approach which has random walk parameter
change. Moreover, as an alternative treatment of the TVPs we
consider the model of Chan, Eisenstat, and Strachan (2020)
which introduces a factor structure in the latent states (labeled
TVP-fac-FFBS).

With regard to the number of explanatory variables, we
consider models with two lags of all 50 of them (labeled FULL
in the tables), none of them as well as some specifications
which contain a subset of them. To be specific, we present
results for all these models using the NKPC specification
discussed in the preceding sub-section (labeled NKPC in
the tables). We also have versions of the model where the
intercept is the only explanatory variable, thus leading to
an unobserved components model (labeled UCM in the
tables).10

In addition, we include some simple benchmarks that have
been used elsewhere in the literature. These include a constant
coefficient AR(2) model, a TVP-AR(2) and an AR(2) augmented
with the two lags of the first three principal components of
dt (this is labeled PCA3). This model is closely related to the
diffusion index model of Stock and Watson (2002). Additionally,
we also compress the data to three dimensions using targeted
random compressions (labeled TARP, see Mukhopadhyay and
Dunson 2020). For each of these two dimension reduction tech-
niques, we also present forecasts for a TVP-RW-FFBS model. All
models considered include stochastic volatility.

Table 4 contains our main set of forecasting results. Note first
that, with some exceptions, the FULL models do best, indicating
that there is information in our K = 50 variables useful for
inflation forecasting. If we focus on results for the FULL models,
then it can be seen that, for h = 1 all of the approaches forecast
approximately as well as each other. But for h = 4, there are
substantial improvements provided by our SVD approaches rel-
ative to the competitors. At this forecast horizon, it is interesting
to note that the very parsimonious UCM version of the TVP-
RW-FFBS provides point forecasts that are almost as good as
those provided by the FULL SVD approaches. However, the
density forecasts provided by the UCM are appreciably worse
than those provided by the SVD approaches. The FULL SVD
approaches are also beating approaches based on dimension
reduction (PCA, TARP), even if we allow for time-variation in
the coefficients for these models.

Comparing the results of our SVD-based models with a
block-diagonal Z to the ones which constrain the state evolution
(i.e., TVP-RW-FFBS, TVP-fac-FFBS and TVP-RW-SVD) sheds
light on how much the increased flexibility improves forecasting
accuracy. In terms of one-step-ahead forecasts, we find that
our flexible approaches yield very similar forecasts to the ones
of TVP regressions with random walk state equations. This is
consistent with the statement that for short-term forecasting,
our model yields forecasts which are competitive to established
methods in the literature. When we consider multi-step-ahead
forecasts we find pronounced improvements in terms of point
and density forecasts for the FULL and NKPC models. Notice

10For the SVD versions of the UCM models, we only present results for the
g-prior with clustering as the other priors imply white-noise behavior for
inflation which is not sensible.

Table 4. Forecasting performance of SVD approaches relative to benchmarks.

Specification Forecast horizon

TVP/TIV Type κ 1-step 4-steps

AR(p)
TIV Benchmark 0.90 0.77∗∗∗

(0.08) (0.23∗∗∗)

TVP-RW-FFBS Benchmark 0.90 0.75∗∗∗
(0.08) (0.26∗∗∗)

FULL
TIV Benchmark 0.82∗ 0.61∗∗

(0.15) (0.37)

TVP-fac-FFBS Benchmark 0.83∗∗ 0.63
(0.17∗∗) (0.25)

TVP-RW-FFBS Benchmark 0.78∗ 0.92
(0.16) (0.01)

TVP-RW-SVD ridge-prior 0.001 0.81∗∗ 0.62∗∗
(0.14) (0.43∗∗∗)

TVP-WN-SVD g-prior 0.1 0.80∗∗∗ 0.59∗∗
(0.15∗∗) (0.42∗)

TVP-WN-SVD g-prior (clustering) 0.05 0.80∗∗∗ 0.57∗∗∗
(0.17∗∗) (0.48∗∗∗)

TVP-WN-SVD Minnesota 0.1 0.82∗∗ 0.61∗∗
(0.16∗) (0.37∗)

NKPC
TIV Benchmark 0.91 0.82∗∗∗

(0.06) (0.12)

TVP-RW-FFBS Benchmark 0.92 0.86
(0.07) (−0.28∗)

TVP-WN-SVD g 0.001 0.89 0.79∗∗∗
(0.07) (0.13)

TVP-WN-SVD g-prior (clustering) 0.001 0.90 0.80∗∗∗
(0.07) (0.12)

TVP-WN-SVD Minnesota 0.001 0.91 0.81∗∗∗
(0.05) (0.13)

PCA3
TIV Benchmark 0.92 0.83∗∗∗

(0.06) (0.18∗∗∗)

TVP-RW-FFBS Benchmark 0.88 0.86
(0.09) (0.05)

TARP
TIV Benchmark 0.99 0.85∗∗∗

(0.01) (0.15∗∗∗)

TVP-RW-FFBS Benchmark 0.92∗∗∗ 0.82
(0.14∗∗∗) (0.17)

UCM
TVP-RW-FFBS Benchmark 0.86∗∗∗ 0.59∗∗

(0.16) (0.16)

TVP-WN-SVD g-prior (clustering) 1 0.88∗ 0.71
(0.08) (0.14)

NOTE: The table shows RMSEs with LPL’s in parentheses below. Asterisks indicate
statistical significance for each model relative to a random walk at the 1 (∗∗∗), 5
(∗∗) and 10 (∗) percent significance levels.

the better performance of TVP-fac-FFBS and TVP-RW-SVD
relative to TVP-RW-FFBS. In the latter case, this is driven by
the ridge-type prior which strongly shrinks the TVPs toward
zero whereas in the former case, the better performance can be
attributed to the parsimonious factor structure on the TVPs.

With two different forecast horizons and two different
forecast metrics, we have four possible ways of evaluating any
approach. For three of these, the FULL SVD approach using
the g-prior with clustering performs best. The only exception
to this is for RMSEs for h = 1, although even here FULL
SVD with g-prior is the second best performing approach. The
improvements relative to our other SVD approaches which do
not involve clustering are small, but are consistently present.
This indicates the benefits of the clustering prior.

In general, the TIV approaches do well (for h = 4 even
better than TVP-RW-FFBS) in terms of point forecasts, but
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Figure 6. Evolution of log predictive Bayes factor relative to RW.
NOTE: The log predictive Bayes factors are cumulated over the hold-out. For the TVP-SVD models the solid line refers to the g-prior with clustering, the dashed line to the
Minnesota prior and the dot-dashed line to the g-prior without clustering (each with block-diagonal Z), while the dotted line refers to the ridge-prior (with lower triangular
Z). The dashed black lines refer to the maximum Bayes factor at the end of the hold-out sample. The gray shaded areas indicate the NBER recessions in the US.

the density forecasts produced by our SVD approaches are
slightly better. This suggests there is only a small amount of
time-variation in this data set, but that our SVD approach
(particularly when we add the hierarchical clustering prior) is
effectively capturing structural breaks in a manner that the ran-
dom walk evolution of the TVP-RW-FFBS and TVP-RW-SVD
cannot.

Figure 6 provides evidence of forecast performance over time
for selected models used in this forecasting exercise. The lines in
this figure are cumulated log predictive Bayes factors relative to
a random walk.

One pattern worth noting is that the benefits of using the
FULL model increase after the beginning of the financial crisis.
This is true not only for our SVD models, but also for the
TIV model. However, notice that during the crisis, the slope
of the line associated with the FULL SVD approach becomes
steeper, indicating that the model strongly outperforms the RW
for that specific time period. This potentially arises from the
fact that during recessions, we typically face abrupt structural
breaks in the regression parameters and our approach is capable
of detecting them.

To examine how our model performs in turbulent times we
focus on forecast accuracy in the Great Recession. It is worth-
while to keep in mind that inflation was fairly stable through
2008Q3. 2008Q4 and 2009Q1 were the periods associated with a
substantial fall in inflation. Subsequently, inflation became more
stable again. Accordingly, it is particularly interesting to look at
2008Q4 and 2009Q1 as periods of possible parameter change.

We find that the FULL SVD approach performs comparable
to a no-change benchmark model. The simple RW model can
be expected to handle a one-off structural break well in the
sense that it will forecast poorly for the one period where the
break occurs and then immediately adjust to the new lower level
of the series. Our FULL SVD approach handles the 2008Q4
and 2009Q1 period about as well as the RW. Subseqeuently, its
forecasts improve relative to a RW. This improvement occurs
in the middle of the Great Recession for h = 1 and a bit
later for h = 4. In contrast, the TVP-RW-FFBS and TVP-RW-
SVD models with the large dataset experience a big drop in
forecasting performance at the beginning of the Great Reces-
sion and tend not to outperform the random walk after 2010.
However, both do well in late 2009. We conjecture that this
pattern of performance reflects two things. First, similarly to our
SVD-based models which do not constrain the state evolution,
both allow for structural breaks, but are slow to adjust to them.
Second, they overfit the data and, thus, provide wide predictive
distributions. In the latter half of 2009, after the structural break
had occured, when there was still uncertainty about the new
pattern in inflation, having this wider predictive distribution
benefitted forecast performance.

This discussion provides evidence that our model works well
under stressful conditions. The main mechanism driving the
strong forecast performance is that the prior variance is allowed
to adapt over time and if uncertainty increases (i.e., σ 2

t becomes
large), the prior variances increase as well and thus make larger
jumps in the parameters more probable.
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It can also be seen that our SVD approaches with block
diagonal Z tend to perform similarly to one another and never
forecast very poorly. This contrasts with the TVP-RW-FFBS
and TVP-RW-SVD models which sometimes forecast well, but
sometimes yield imprecise forecasts (see, e.g., results for h = 4
using the NKPC data set).

Overall, we find our SVD approaches, and in particular the
version that uses the clustering prior, to exhibit the best forecast
performance among a set of popular benchmarks. And it is
worth stressing that they are computationally efficient and, thus,
scaleable. The reason this application uses K = 101 explanatory
variables as opposed to a much larger number is due to our wish
to include the slower TVP-RW-FFBS approach so as to offer a
comparison with the most popular TVP regression model. If we
were to have omitted this comparison, we could have chosen K
to be much larger.

Finally, a brief word on prior sensitivity is in order. The two
key (hyper)parameters of our model are κ and G. In Section
C of the Online Appendix we carried out an extensive prior
robustness analysis. In this analysis we find that the precise
choice of κ plays a limited role for predictive performance unless
it is set too large. This statement holds for large models but,
to a somewhat lesser extent, also for smaller models. In the
smaller models, we find that predictive performance is slightly
more sensitive to the choice of κ and the researcher thus has to
select this hyperparameter with some care. When it comes to
the choice of G, we find that as long as it is not set too small,
forecasting accuracy does not change substantially. This finding
indicates that our shrinkage prior on π successfully empties out
irrelevant clusters if G is large. In an extreme case, that is, if
G is set too small a priori, we lose important information on
how states evolve over time and this is deleterious for predictive
accuracy.

7. Conclusions

In many empirical applications in macroeconomics, there is
strong evidence of parameter change. But there is often uncer-
tainty about the form the parameter change takes. Conventional
approaches to TVP regression models have typically made spe-
cific assumptions on how the states evolve over time (e.g., ran-
dom walk or structural break). In the specification used in this
article, no restriction is placed on the form that the parameter
change can take. However, our very flexible specification poses
challenges in terms of computation and surmounting over-
parameterization concerns. We have addressed the computa-
tional challenge through using the SVD of the high-dimensional
set of regressors. We show how this leads to large simplifications
since key matrices become diagonal or have banded forms. The
over-parameterization worries are overcome through the use of
hierarchical priors and, in particular, through the use of a sparse
finite mixture representation for the time-varying coefficients.

In artificial data, we demonstrate the speed and scaleability
of our methods relative to standard approaches. In an inflation
forecasting exercise, we show how our methods can uncover
different forms of time-variation in parameters than other
approaches. Furthermore, they forecast well. Since our approach
is capable of quickly adjusting to changing economic conditions
and outliers, it might also be well suited when applied to

macroeconomic forecasting in extreme periods such as the
Covid-19 pandemic.

Supplemental Materials

The supplementary material consists of three sections. In Section A, we
provide additional technical details such as all full conditional posterior
distributions and the resulting MCMC sampler. Section B provides a brief
overview on the dataset used in the empirical work while Section C includes
additional empirical results such as convergence diagnostics and robustness
checks.

Acknowledgments

We thank the participants of the 6th NBP Workshop on Forecasting
(Warsaw, 2019), the 11th European Seminar on Bayesian Econometrics
(Madrid, 2021) and internal seminars at the University of Salzburg, the
FAU Erlangen-Nuremberg and the ECB, four anonymous referees as well
as Anna Stelzer, Michael Pfarrhofer and Paul Hofmarcher for helpful
comments and suggestions.

Funding

The first two authors gratefully acknowledge financial support by the
Austrian Science Fund (FWF): ZK 35 and by funds of the Oesterreichische
Nationalbank (Austrian Central Bank, Anniversary Fund, project number
18127).

References

Allenby, G. M., Arora, N., and Ginter, J. L. (1998), “On the Heterogeneity
of Demand,” Journal of Marketing Research, 35, 384–389. [1905]

Ball, L., and Mazumder, S. (2011), “Inflation Dynamics and the Great
Recession,” Brookings Papers on Economic Activity, 42, 337–405. [1912]

Belmonte, M., Koop, G., and Korobilis, D. (2014), “Hierarchical Shrinkage
in Time-Varying Coefficient Models,” Journal of Forecasting, 33, 80–94.
[1904]

Bitto, A., and Frühwirth-Schnatter, S. (2019), “Achieving Shrinkage in a
Time-Varying Parameter Model Framework,” Journal of Econometrics,
210, 75–97. [1904,1911]

Cadonna, A., Frühwirth-Schnatter, S., and Knaus, P. (2020), “Triple the
Gamma—A Unifying Shrinkage Prior for Variance and Variable Selec-
tion in Sparse State Space and TVP Models,” Econometrics, 8, 20. [1905]

Carriero, A., Chan, J., Clark, T. E., and Marcellino, M. (2021), “Corrigen-
dum to: Large Bayesian Vector Autoregressions with Stochastic Volatility
and Non-Conjugate Priors,” Manuscript. [1905]

Carriero, A., Clark, T. E., and Marcellino, M. (2019), “Large Bayesian Vector
Autoregressions With Stochastic Volatility and Non-Conjugate Priors,”
Journal of Econometrics, 212, 137–154. [1905]

Carter, C., and Kohn, R. (1994), “On Gibbs Sampling for State Space
Models,” Biometrika, 81, 541–553. [1904]

Chan, J. C., Eisenstat, E., and Strachan, R. W. (2020), “Reducing the State
Space Dimension in a Large TVP-VAR,” Journal of Econometrics, 218,
105–118. [1915]

Chan, J. C., and Jeliazkov, I. (2009), “Efficient Simulation and Integrated
Likelihood Estimation in State Space Models,” International Journal of
Mathematical Modelling and Numerical Optimisation, 1, 101–120. [1909]

Clark, T. (2011), “Real-Time Density Forecasts From BVARs With Stochas-
tic Volatility,” Journal of Business & Economic Statistics, 29, 327–341.
[1907]

Cogley, T., and Sargent, T. J. (2005), “Drifts and Volatilities: Monetary
Policies and Outcomes in the Post WWII US,” Review of Economic
Dynamics, 8, 262 – 302. [1904]

Coibion, O., and Gorodnichenko, Y. (2015), “Is the Phillips Curve Alive
and Well After All? Inflation Expectations and the Missing Disinflation,”
American Economic Journal: Macroeconomics 7, 197–232. [1912]



1918 N. HAUZENBERGER ET AL.

Cong, Y., Chen, B., and Zhou, M. (2017), “Fast Simulation of Hyperplane-
Truncated Multivariate Normal Distributions,” Bayesian Analysis, 12,
1017–1037. [1906]

D’Agostino, A., Gambetti, L., and Giannone, D. (2013), “Macroeconomic
Forecasting and Structural Change,” Journal of Applied Econometrics, 28,
82–101. [1904]

De Mol, C., Giannone, D., and Reichlin, L. (2008), “Forecasting Using a
Large Number of Predictors: Is Bayesian Shrinkage a Valid Alternative to
Principal Components?” Journal of Econometrics, 146, 318–328. [1912]

Diebold, F. X., and Mariano, R. S. (1995), “Comparing Predictive Accuracy,”
Journal of Business & Economic Statistics, 13, 253–263. [1913]

Doan, T., Litterman, R., and Sims, C. (1984), “Forecasting and Conditional
Projection Using Realistic Prior Distributions,” Econometric Reviews, 3,
1–100. [1905,1908]

Eddelbuettel, D., François, R., Allaire, J., Ushey, K., Kou, Q., Russel, N.,
Chambers, J., and Bates, D. (2011), “Rcpp: Seamless R and C++ Inte-
gration,” Journal of Statistical Software, 40, 1–18. [1910]

Foster, D. P., George, E. I. (1994), “The Risk Inflation Criterion for Multiple
Regression,” The Annals of Statistics, 22, 1947–1975. [1908]

Frühwirth-Schnatter, S. (1994), “Data Augmentation and Dynamic Linear
Models,” Journal of Time Series Analysis 15, 183–202. [1904]

(2001), “Markov Chain Monte Carlo Estimation of Classical and
Dynamic Switching and Mixture Models,” Journal of the American Sta-
tistical Association, 96, 194–209. [1905,1909]

Frühwirth-Schnatter, S., and Malsiner-Walli, G. (2019), “From Here to
Infinity: Sparse Finite Versus Dirichlet Process Mixtures in Model-Based
Clustering,” Advances in Data Analysis and Classification, 13, 33–64.
[1908]

Frühwirth-Schnatter, S., Malsiner-Walli, G., and Grün, B. (2020), “Gen-
eralized Mixtures of Finite Mixtures and Telescoping Sampling,”
arXiv:2005.09918 . [1909]

Frühwirth-Schnatter, S., Tüchler, R., and Otter, T. (2004), “Bayesian Analy-
sis of the Heterogeneity Model,” Journal of Business & Economic Statistics,
22, 2–15. [1909]

Frühwirth-Schnatter, S., and Wagner, H. (2010), “Stochastic Model Spec-
ification Search for Gaussian and Partial Non-Gaussian State Space
Models,” Journal of Econometrics, 154, 85–100. [1906]

Giordani, P., and Kohn, R. (2008), “Efficient Bayesian Inference for Multiple
Change-Point and Mixture Innovation Models,” Journal of Business &
Economic Statistics, 26, 66–77. [1906]

Greve, J., Grün, B., Malsiner-Walli, G., and Frühwirth-Schnatter, S. (2020),
“Spying on the Prior of the Number of Data Clusters and the Par-
tition Distribution in Bayesian Cluster Analysis,” arXiv:2012.12337.
[1909]

Griffin, J., and Brown, P. (2010), “Inference With Normal-Gamma Prior
Distributions in Regression Problems,” Bayesian Analysis, 5, 171–188.
[1906,1909,1911]

Griffin, J. E., and Brown, P. J. (2013), “Some Priors for Sparse Regression
Modelling,” Bayesian Analysis, 8, 691–702. [1905,1908]

Hamilton, J. (1989), “A New Approach to the Economic Analysis of Nonsta-
tionary Time Series and the Business Cycle,” Econometrica, 57, 357–384.
[1905]

Hassani, H., and Silva, E. S. (2015), “Forecasting with Big Data: A Review,”
Annals of Data Science, 2, 5–19. [1912]

Huber, F., Koop, G., and Onorante, L. (2021), “Inducing Sparsity and
Shrinkage in Time-Varying Parameter Models,” Journal of Business &
Economic Statistics, 39, 669–683. [1904,1905]

Kalli, M., and Griffin, J. (2014), “Time-varying Sparsity in Dynamic Regres-
sion Models,” Journal of Econometrics, 178, 779 – 793. [1904]

(2018), “Bayesian Nonparametric Vector Autoregressive Models,”
Journal of Econometrics, 203, 267–282. [1905]

Kapetanios, G., Marcellino, M., and Venditti, F. (2019), “Large Time-
Varying Parameter VARs: A Nonparametric Approach,” Journal of
Applied Econometrics, 34(7), 1027–1049. [1905]

Kastner, G., and Frühwirth-Schnatter, S. (2014), “Ancillarity-Sufficiency
Interweaving Strategy (ASIS) for Boosting MCMC Estimation of
Stochastic Volatility Models,” Computational Statistics & Data Analysis,
76, 408–423. [1907,1909]

Kastner, G., and Huber, F. (2020), “Sparse Bayesian Vector Autoregressions
in Huge Dimensions,” Journal of Forecasting, 39, 1142–1165. [1905]

Knaus, P., Bitto-Nemling, A., Cadonna, A., and Frühwirth-Schnatter, S.
(2021), “Shrinkage in the Time-Varying Parameter Model Framework
Using the R Package shrinkTVP,” Journal of Statistical Software, forth-
coming. [1909,1910]

Koop, G., and Korobilis, D. (2012), “Forecating Inflation Using Dynamic
Model Averaging,” International Economic Review, 53, 867–886. [1912]

(2018), “Variational Bayes Inference in High-Dimensional Time-
Varying Parameter Models,” SSRN:3246472 . [1904]

Koop, G., Korobilis, D., and Pettenuzzo, D. (2019), “Bayesian Com-
pressed Vector Autoregressions,” Journal of Econometrics, 210, 135–154.
[1905,1906]

Korobilis, D. (2021), “High-Dimensional Macroeconomic Forecasting
Using Message Passing Algorithms,” Journal of Business & Economic
Statistics, 39, 493–504. [1904]

Lenk, P. J., and DeSarbo, W. S. (2000), “Bayesian Inference for Finite Mix-
tures of Generalized Linear Models With Random Effects,” Psychome-
trika, 65, 93–119. [1905]

Litterman, R. (1986), “Forecasting with Bayesian Vector Autoregressions:
Five Years of Experience,” Journal of Business & Economic Statistics, 4,
25–38. [1905,1907]

Malsiner-Walli, G., Frühwirth-Schnatter, S., and Grün, B. (2016), “Model-
Based Clustering Based on Sparse Finite Gaussian Mixtures,” Statistics
and Computing, 26, 303–324. [1905,1908,1909,1911]

McCausland, W. J., Miller, S., and Pelletier, D. (2011), “Simulation Smooth-
ing for State–Space Models: A Computational Efficiency Analysis,” Com-
putational Statistics & Data Analysis, 55, 199–212. [1909]

Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., and Zilberman, E. (2021),
“Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods,” Journal of Business & Economic Statistics,
39, 98–119. [1912]

Moretti, L., Onorante, L., and Zakipour Saber, S. (2019), “Phillips Curves in
the Euro Area,” ECB Working Paper No. 2295. [1912]

Mukhopadhyay, M., and Dunson, D. B. (2020), “Targeted Random Pro-
jection for Prediction From High-Dimensional Features,” Journal of the
American Statistical Association, 115, 1998–2010. [1915]

Primiceri, G. (2005), “Time Varying Structural Autoregressions and Mon-
etary Policy,” The Review of Economic Studies, 72, 821–852. [1904]

Raftery, A., Kárný, M., and Ettler, P. (2010), “Online Prediction Under
Model Uncertainty Via Dynamic Model Averaging: Application to a
Cold Rolling Mill,” Technometrics, 52, 52–66. [1912]

Rockova, V., and McAlinn, K. (2021), “Dynamic Variable Selection With
Spike-and-Slab Process Priors,” Bayesian Analysis, 16, 233–269. [1904]

Stock, J., and Watson, M. (1999), “Forecasting Inflation,” Journal of Mone-
tary Economics, 44, 293–335. [1913]

(2002), “Macroeconomic Forecasting Using Diffusion Indexes,”
Journal of Business & Economic Statistics, 20, 147–162. [1913,1915]

(2007), “Why Has U.S. Inflation Become Harder to Forecast?”
Journal of Money, Credit and Banking, 39, 3–33. [1912]

(2008), “Phillips Curve Inflation Forecasts,” NBER Working Paper
No. 14322. [1912]

(2011), “Dynamic Factor Models,” in The Oxford Handbook of
Forecasting, eds. M. Clements and D. Hendry, New York: University
Press, pp. 35–60. [1906]

Trippe, B., Huggins, J., Agrawal, R., and Broderick, T. (2019), “LR-GLM:
High-Dimensional Bayesian Inference Using Low-Rank Data Approxi-
mations,” in Proceedings of the 36th International Conference on Machine
Learning, Proceedings of Machine Learning Research, pp. 6315–6324,
PMLR. [1906,1907]

Tsionas, M., Izzeldin, M., and Trapani, L. (2019), “Bayesian Estimation of
Large Dimensional Time Varying VARs Using Copulas,” Available at
SSRN 3510348 . [1905]

Zellner, A. (1986), “On Assessing Prior Distributions and Bayesian Regres-
sion Analysis With g-Prior Distributions,” in Bayesian Inference and
Decision Techniques: Essays in Honor of Bruno de Finetti. Studies in
Bayesian Econometrics and Statistics, eds. P. Goel and A. Zellner, Vol. 6,
New York: Elsevier. pp. 233–243. [1905]


	Abstract
	1.  Introduction
	2.  A Static Representation of the TVP Model
	3.  Fast Bayesian Inference Using SVDs
	3.1.  The Homoscedastic Case
	3.2.  Adding Stochastic Volatility
	3.3.  Posterior Computation

	4.  A Hierarchical Prior for the Regression Coefficients
	4.1.  General Considerations
	4.2.  The Prior Covariance Matrix
	4.3.  The Prior Mean

	5.  Illustration Using Artificial Data
	6.  An Application to the US Inflation
	6.1.  Data and Selected In-Sample Features
	6.2.  Forecasting Evidence

	7.  Conclusions
	Supplemental Materials
	Acknowledgments
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Adobe Gray - 20% Dot Gain)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




