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ABSTRACT
Six-dimensional hard hypersphere systems in the A6, D6, and E6 crystalline phases have been studied using event-driven molecular dynamics
simulations in periodic, skew cells that reflect the underlying lattices. In all the simulations, the systems had sufficient numbers of hyperspheres
to capture the first coordination shells, and the larger simulations also included the complete second coordination shell. The equations of
state, for densities spanning the fluid, metastable fluid, and solid regimes, were determined. Using molecular dynamics simulations with the
hyperspheres tethered to lattice sites allowed the computation of the free energy for each of the crystal lattices relative to the fluid phase.
From these free energies, the fluid–crystal coexistence region was determined for the E6, D6, and A6 lattices. Pair correlation functions for all
the examined states were computed. Interestingly, for all the states examined, the pair correlation functions displayed neither a split second
peak nor a shoulder in the second peak. These behaviors have been previously used as a signature of the freezing of the fluid phase for hard
hyperspheres in two to five dimensions.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0066421

I. INTRODUCTION

Research into systems in arbitrary spatial dimensions is an
active area of inquiry in a variety of fields. Examples of the rich diver-
sity of applications include the study of proton stability in the six-
dimensional standard model,1 quantum field theories,2 Ising spin
glasses,3 studies of mutually unbiased bases,4 and wave packet meth-
ods for quantum dynamics.5 Other research areas that focus on six-
dimensional systems include quantum key distribution,6 mapping
the movements of autonomous mobile robots,7 biological applica-
tions,8 percolation in high dimensions,9,10 and data mining methods
with multi-dimensional data.11,12

Hard hypersphere systems in arbitrary spatial dimensions have
been and remain an active area of research in statistical mechan-
ics.13–18 The symmetries of the lattices in multidimensional sys-
tems have been studied by researchers in discrete geometry and
number theory as well as coding theory.19,20 Six-dimensional hyper-
sphere systems are of particular interest13–18 because there are three

thermodynamically stable crystalline lattices,19 A6, D6, and E6. The
E6 lattice is the densest of these lattices and has the lowest free
energy.21 Similarly to hard hypersphere systems in lower dimen-
sions, there is a transition from a fluid state at low densities to a
crystalline state at higher densities. The variation of the pressure
with density can be used to indicate the transition as the den-
sity is increased. Compared to systems at a lower dimension, the
fluid–crystal transition is observed at higher densities. Frisch and co-
workers13,14,22 demonstrated theoretically that for repulsive poten-
tials, all virial coefficients beyond the second vanish as the dimension
approaches infinity. In addition, the work of Torquato et al.23,24 pro-
posed a “decorrelation principle” which states that unconstrained
spatial correlations diminish as the dimension increases and vanish
in the d →∞ limit. One result of this behavior is the formation of
the crystalline state at higher densities; another reason is that the six-
dimensional systems experience greater geometrical frustration.21

This paper extends earlier work that reported on six-
dimensional Monte Carlo (MC) and molecular dynamics (MD)
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calculations in the fluid and high density metastable regimes.25,26

Here, we present MD simulations of the crystalline phases of six-
dimensional hard hyperspheres. In most previous work on higher
dimension hard hypersphere systems, the simulations are performed
in periodic boxes where the sides of the primary simulation cell are
orthogonal. This severely restricts the system sizes (i.e., the number
of hyperspheres in the system) for a particular lattice type. In this
work, we perform simulations for different six-dimensional hard
hypersphere crystals in skew periodic boxes, where the edges are
aligned with the basis vectors of the lattice. This allows the analysis
of a wider range of distinct system sizes for a given lattice.

The remainder of this paper is organized as follows: In Sec. II,
the details of the simulations are presented. Then, in Sec. III, the
MD simulation results for the compressibility factor Z are compared
with previous MC and MD calculations in both the fluid and solid
phases. The MD results for the three different lattices are compared
with theoretical equations of state (EOS) based on the extension of
Speedy’s27 work in three dimensions by Pieprzyk and co-workers.28

A recent theoretical prediction of the fluid EOS by Amorós and
Ravi29 is compared with previously reported simulation results. In
Sec. IV, we perform MD simulations of tethered systems to calculate
the free energy of each of the crystalline phases. These are then used
to determine their coexistence point with the fluid phase. In Sec. V,
the structure of the hard hypersphere systems is examined, both in
the different crystalline lattices and in the fluid phase. Finally, Sec. VI
summarizes the main results of this work.

II. SIMULATION DETAILS
We perform event-driven MD simulations over a range of den-

sities for d = 6 dimensional hard hyperspheres. The algorithms used
in the simulations are generalizations of the standard method origi-
nally developed by Alder and Wainwright30,31 for three-dimensional
hard sphere systems. To calculate the free energy of the hard hyper-
sphere systems, we consider a system where each particle is tethered
to a lattice site, which forces it to remain a fixed distance rT (which
we refer to as the tether length) from the site. This model was origi-
nally introduced by Speedy32 and has been used to calculate the free
energy of hard sphere systems in three dimensions.32,33 For these
systems, an additional event is considered when a particle “collides”
with its tether and is reflected back toward its lattice site. In cases
where the tether length is short, a stochastic Andersen thermostat34

is used to increase the equilibration rate.
Unlike previous work, the calculations were performed in skew

simulation boxes where the edges were aligned with the basis vectors
of the respective lattice of the system, and the corresponding peri-
odic boundary conditions were imposed by evaluating the distances
between hyperspheres using the minimum-image convention.

The basis vectors35 for the A6, D6, and E6 lattices used in this
work are summarized in Table I. For the E6 lattice, three system sizes
were examined. The smallest simulation box consisted of 3 × 5 × 7
× 5 × 3 × 5 unit cells. This means that the lattice was constructed by
taking a hypersphere and combining it with every combination of
up to three translations along the basis vector a1, five translations
along a2, seven translations along a3, five translations along a4, three
translations along a5, and five translations along a6 for a total of
N = 7875 hyperspheres. A larger box has 5 × 5 × 7 × 5 × 5 × 5 unit
cells and N = 21 875, and the largest box has 5 × 7 × 9 × 7 × 5 × 5

TABLE I. Basis vectors for the A6, D6, and E6 lattices.

a1 a2 a3 a4 a5 a6

A6

1 0 0 0 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

D6

1 1 0 0 0 0
1 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

E6

0 0 0 0 0 1/2
−1 0 0 0 0 1/2
1 −1 0 0 0 1/2
0 1 −1 0 0 1/2
0 0 1 −1 0 −1/2
0 0 0 1 −1 −1/2
0 0 0 0 1 −1/2
0 0 0 0 0 −1/2

and N = 55 125. For the D6 lattice, simulations were performed for a
box with 5 × 5 × 5 × 5 × 5 × 5 unit cells with a total of N = 15 625
hyperspheres and a larger box with 5 × 5 × 7 × 7 × 5 × 5 unit cells
with a total of N = 30 625 hyperspheres. These simulations were
compared to Monte Carlo calculations for N = 23 328 hyperspheres
initially started in a D6 lattice in a hypercubic simulation box over a
range of densities encompassing both the fluid and solid phases. The
results for the pair correlation functions between the MD simulation
in the skew boxes and the MC simulations in the hypercubic boxes
were in very close agreement. For the A6 lattice, the simulation box
contained 5 × 5 × 5 × 5 × 5 × 5 unit cells with a total of N = 15 625
hyperspheres.

These particular simulation cell sizes were chosen to ensure that
the number of hyperspheres in the first coordination shell of each
hypersphere is equal to the kissing number19 of the lattice. If the
simulation cell is naively chosen, this will not be the case. For exam-
ple, a 5 × 5 × 5 × 5 × 5 × 5 simulation box for the E6 lattice would
lead to 68 nearest neighbors for each hypersphere, whereas the kiss-
ing number19 is 72. If all the nearest neighbors are not included
in a simulation cell, there is a possibility that collisions between
hyperspheres can be missed, leading to hypersphere overlap and
premature termination of the simulation.

The MD simulations are performed in batches of 106 collisions.
The hyperspheres were initialized in the A6, D6, and E6 lattices. For
each set of conditions, a series of initial equilibration simulations
were run until the pressure of the system fluctuated around a steady
state value. Typically, an equilibration period lasted for 106 colli-
sions; however, when the system transitioned from a lattice phase
to the fluid phase, a longer period was used to equilibrate the simu-
lations. The properties of the system were collected over a period of
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107 collisions in batches of 106 collisions, with the value reported as
the mean of these runs and the uncertainty estimated by the standard
deviation of the mean.

The contact value of the radial distribution function G(σ) can
be determined directly from the collision rate through the relation-
ship36

G(σ) = 1
ρB2

(πβmσ2)1/2Ncoll

dNτ
, (1)

where τ is the duration of the simulation, Ncoll is the total number of
collisions between hyperspheres, β = 1/(kBT), kB is the Boltzmann
constant, T is the absolute temperature of the system, m is the mass,
ρ is the number density, and σ is the diameter of a hypersphere. B2
is the second virial coefficient, which is given by37

B2 =
πd/2σd

2Γ(1 + d/2) , (2)

where Γ is the Gamma function.
The equation of state of a system relates its pressure P, temper-

ature T, and ρ. The EOS is typically reported in terms of the com-
pressibility factor Z = βP/ρ, which quantifies the deviations of the
pressure from that of an ideal gas. The compressibility factor can be
computed through the virial theorem, which for a hard hypersphere
system is related to the collision rate36

Z = 1 + βmσ
d

Ncoll

Nτ
⟨r̂ij ⋅ Δvi⟩coll, (3)

where Δvi is the change of the velocity of hypersphere i, r̂ij is a unit
vector that points from the center of hypersphere j to the center of
hypersphere i, and the symbol ⟨⋅ ⋅ ⋅⟩coll indicates that the average is
taken on collision.

This equation can be recast as36

Z = 1 + (πβmσ2)1/2Ncoll

dNτ
. (4)

Note that the compressibility factor can also be determined from the
contact value of the pair correlation function38 by

Z = 1 + ρB2G(σ). (5)

III. EQUATION OF STATE
The compressibility factor was calculated from the MD simu-

lations using both Eqs. (4) and (5); the results from both methods
agreed within one standard error. Table II reports the MD compress-
ibility factor using Eq. (4) for the A6, D6, and E6 lattices for systems
with a different number N of hyperspheres, compared to previous
MC results by van Meel et al.21 The excellent agreement at all values
of density indicates that the systems studied are sufficiently large to
minimize any size dependence. The large Z values found for the A6
lattice at ρσ6 = 3.0 and the E6 lattices at ρσ6 = 4.6 are caused by these
densities being nearly at the close packed densities, 8/

√
7 ≈ 3.0237

and 8/
√

3 ≈ 4.6188, respectively, as given in Table III.

TABLE II. Compressibility factors for the A6, D6, and E6 lattice systems.

A6 D6 E6

ρσd 15 625 15 625 30 625 Refs. 21 and 39 7875 21 875 55 125 Refs. 21 and 39

1.0 6.73(2) 6.72(3) 6.72(7) 6.71 6.72(2) 6.72(2) 6.72(07) 6.73
1.2 8.98(3) 8.97(1) 8.97(7) ⋅ ⋅ ⋅ 8.96(3) 8.96(1) 8.96(18) ⋅ ⋅ ⋅
1.4 11.77(3) 11.81(4) 11.78(12) 11.81 11.77(3) 11.78(3) 11.77(10) 11.78
1.5 11.84(5) 8.57(3) 8.55(10) 8.59 7.49(3) 7.48(2) 7.48(07) 7.49
1.6 11.81(2) 8.60(2) 8.61(9) ⋅ ⋅ ⋅ 7.54(1) 7.56(2) 7.55(07) ⋅ ⋅ ⋅
1.8 13.53(2) 9.27(1) 9.26(6) ⋅ ⋅ ⋅ 8.02(1) 8.02(1) 8.02(06) ⋅ ⋅ ⋅
2.0 16.27(3) 10.25(1) 10.25(6) 10.25 8.69(1) 8.69(1) 8.68(08) 8.69
2.2 20.49(3) 11.53(1) 11.53(6) ⋅ ⋅ ⋅ 9.52(1) 9.52(2) 9.52(07) ⋅ ⋅ ⋅
2.4 27.50(3) 13.17(1) 13.17(6) ⋅ ⋅ ⋅ 10.53(1) 10.53(1) 10.53(05) ⋅ ⋅ ⋅
2.6 41.19(6) 15.29(2) 15.29(5) ⋅ ⋅ ⋅ 11.75(1) 11.75(1) 11.75(06) ⋅ ⋅ ⋅
2.8 79.46(13) 18.14(2) 18.14(8) ⋅ ⋅ ⋅ 13.26(1) 13.26(1) 13.26(07) ⋅ ⋅ ⋅
3.0 763.28(55) 22.14(3) 22.13(9) ⋅ ⋅ ⋅ 15.14(1) 15.14(2) 15.14(12) ⋅ ⋅ ⋅
3.2 ⋅ ⋅ ⋅ 28.13(2) 28.13(13) ⋅ ⋅ ⋅ 17.56(1) 17.56(2) 17.56(06) ⋅ ⋅ ⋅
3.4 ⋅ ⋅ ⋅ 38.13(3) 38.13(21) ⋅ ⋅ ⋅ 20.77(1) 20.77(2) 20.77(12) ⋅ ⋅ ⋅
3.6 ⋅ ⋅ ⋅ 58.14(4) 58.16(24) ⋅ ⋅ ⋅ 25.24(2) 25.24(3) 25.24(12) ⋅ ⋅ ⋅
3.8 ⋅ ⋅ ⋅ 118.13(13) 118.17(68) ⋅ ⋅ ⋅ 31.89(1) 31.89(3) 31.89(18) ⋅ ⋅ ⋅
3.9 ⋅ ⋅ ⋅ 238.11(21) 238.17(75) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
4.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 42.83(3) 42.84(3) 42.84(19) ⋅ ⋅ ⋅
4.2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 64.23(3) 64.23(8) 64.24(48) ⋅ ⋅ ⋅
4.3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 84.99(6) 85.00(7) 85.01(50) ⋅ ⋅ ⋅
4.4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 124.72(8) 124.72(10) 124.76(42) ⋅ ⋅ ⋅
4.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 231.29(14) 231.34(29) 231.25(87) ⋅ ⋅ ⋅
4.6 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1471.6(7) 1471.8(11) 1471.41(79) ⋅ ⋅ ⋅
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TABLE III. Fitted parameters for Eq. (10). The uncertainty of the final digit is given in
parentheses.

Lattice N A B C ρc

A6 15 625 −1.620(1) 0.355(1) × 10−2 11.19(1) 8/
√

7
D6 15 625 −1.867(1) 0.133(6) × 10−3 13.57(0) 4
D6 30 625 −1.862(2) 0.711(3) × 10−4 14.64(3)
E6 7 875 −1.972(3) 0.426(6) × 10−5 17.24(0)

8/
√

3E6 21 875 −1.977(1) 0.334(8) × 10−5 17.71(0)
E6 55 125 −1.974(7) 0.309(6) × 10−5 17.78(5)

Figure 1 presents the compressibility factor for the six-
dimensional systems in the fluid, metastable fluid, and solid states.
The filled circles, filled up-triangles, and filled down-triangles are the
compressibility factors from Table II for the E6, D6, and A6 lattices,
respectively. The current MD results are compared to data from
van Meel et al.21 for the D6 lattice (open triangles) and E6 lattice
(open circles). The diamonds and squares are previously reported
MC25 and MD26 results, respectively, for high density fluids. The
pentagons are fluid and metastable fluid data from van Meel et al.21,39

In the fluid regime, at low to intermediate densities, Amorós
and Ravi29 extended the Carnahan and Starling40 (CS) equation of
state for hard spheres to higher dimensions. Using the CS approach,
they fit the first five calculated virial coefficients37,41–44 to determine
a polynomial equation of state. Their equations in six dimensions
for the virial equation ZV and the CS compressibility factor ZCS are,
respectively,

ZV = 1 + 32η + 349.12η2 + 1093.23η3 + 7888.54η4 (6)

FIG. 1. The compressibility factor for six-dimensional hard hypersphere systems.
The filled symbols are the present MD simulation results for the E6 lattice (circles),
D6 lattice (triangles), and A6 lattice (down triangles). The open circles and the open
up-triangles are the MC data of van Meel et al.21 The solid lines are Eq. (10) with
parameters given in Table III. At lower densities, the MC results25 (diamonds), the
MD results26 (squares), and the MC results21,39 (pentagons) are displayed. The
dotted line is Eq. (7), the dashed line is Eq. (6), and the solid line is Eq. (8).

and

ZCS =
1 + 27.76η + 227.75η2 − 115.72η3 + 5483.43η4

(1 − η)4 , (7)

where η = B2ρ/2d−1 is the packing fraction of the hyperspheres.
Bishop and Whitlock previously25 developed a 4, 5-Padé fit of the
first ten virial coefficients of the six-dimensional hard hypersphere
fluid,44,45

Z[4,5] =
1 + 5.6358(ρσ6) + 11.648(ρσ6)2 + 10.539(ρσ6)3 + 3.417 0(ρσ6)4

1 + 3.0520(ρσ6) + 1.485 7(ρσ6)2 − 0.8228(ρσ6)3 + 0.0694(ρσ6)4 + 0.0154(ρσ6)5 . (8)

The dotted line in Fig. 1 is the CS equation of state [Eq. (7)],
the dashed line is ZV [Eq. (6)], and the solid curve is Eq. (8). For
lower densities, below the E6 freezing density (estimated18 to be
ρσ6 ≈ 1.398), ZCS, ZV , and Z[4,5] are in excellent agreement with all
the simulation data. Above the freezing density, in the metastable
liquid regime, ZCS deviates from the simulation data, whereas ZV
as well as Z[4,5] remain in agreement. Amorós and Ravi29 speculate
that this result for ZCS is caused by using only the first five virial
coefficients in their fits to the CS equation.

In the MD simulations performed in this work, the compress-
ibility factors at ρσ6 = 1.0, 1.2, and 1.4 are the same across each of the
lattices, suggesting that they were all in the fluid phase. In the sim-
ulations for ρσ6 = 1.0 and 1.2, all the lattices rapidly melted into the
fluid phase; for ρσ6 = 1.4, both the A6 and D6 lattices melted quickly,
but the E6 lattice transitioned slowly from the solid phase to the fluid
phase.

To describe the equation of state of solids in three dimensions,
Speedy27 developed an empirical equation for hard spheres by fitting
his molecular dynamics EOS data,

ZS =
3

1 − ρ/ρc
− C1(ρ/ρc − C2)
(ρ/ρc − C3)

, (9)

where ρ is the number density, ρc is the close packed density, and the
constants C1, C2, and C3 are adjusted to reproduce simulation data.

Recently, a detailed investigation28 of the properties of three-
dimensional hard sphere systems using MD with up to about 106

particles re-examined the functional form of the EOS in the solid
state. Pieprzyk et al.28 proposed several improvements. They fit
Speedy’s form to their highly accurate simulation data but decided
that an exponential form better described the non-free volume
portion of the EOS. Following this suggestion, we have tried a
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FIG. 2. The solid EOS scaled by the free volume vs the scaled density. The open
circles represent the E6 lattice with N = 55 125, the crosses are N = 21 875, and
the open squares are N = 7875. The solid red up-triangles are the D6 data for
N = 30 625 and open red triangles are N = 15 625. The blue down triangles are
the A6 data. The solid lines are Eq. (10) scaled by the free volume.

generalized version of their exponential form,28

ZSE =
d

1 − ρ/ρc
+ A + BeC(1−ρ/ρc), (10)

which fits the six-dimensional simulation data very well for all solid
densities in the three lattice systems. In Fig. 1, the parameters in
Eq. (10), shown by the solid lines, were determined by fitting the
data for ρσ6 ≥ 1.6 in Table II; the fitted parameters for each lattice,
as well as the close packed density19 ρc, are summarized in Table III.

To better understand the behavior over the complete range of
the crystal data, Fig. 2 plots the non-free volume portion of the com-
pressibility factor Z [i.e., Z − d/(1 − ρ/ρc)] against ρ/ρc. The black
circles are the E6 data for N = 55 125 with error bars of one standard
deviation, the crosses are for N = 21 875, and the open squares are
for N = 7875. The filled red triangles are the D6 data for N = 30 625,
and the open red triangles are for N = 15 625. The blue down-
triangles are the A6 data. The solid lines represent Eq. (10). Plotting
the data in this manner emphasizes that as the density increases,
the free volume behavior dominates and that the constant term in
Eq. (10) gives rise to the observed plateau.

IV. ESTIMATION OF FLUID–SOLID COEXISTENCE
At the fluid–solid coexistence point for the hard hypersphere

system, the pressures and the chemical potentials of each of the
phases are equal. The pressure of a hypersphere system can be
directly determined from the MD simulations, whereas the chemi-
cal potential cannot. However, the variation of the residual chemical
potential with density can be determined directly from knowledge of
the compressibility factor. The relation can be written as33

βμ(ρ) − βμig(ρref) = ln
ρ

ρref
+ Fres(ρ0)

NkBT

+ ∫
ρ

ρ0

dρ′

ρ′
[Z(ρ′) − 1] + Z(ρ) − 1, (11)

where ρ0 is a “starting” density, ρref is a reference density, μig is
the ideal gas chemical potential, and Fres is the residual Helmholtz
energy (i.e., the Helmholtz energy of the system relative to the
Helmholtz energy of an ideal gas system at the same density). For
hard hypersphere systems, the only energetic contribution to the free
energy is the kinetic energy. Consequently, the residual Helmholtz
energy is directly related to the residual entropy Sres as Fres = −TSres,
which can be determined by considering tethered hard hypersphere
systems. Therefore, in the following discussion, we refer to the
entropy of the system, rather than the Helmholtz energy.

For a fluid system, the starting density can be conveniently cho-
sen to be ρ0 = 0, where the system behaves ideally, and Sres = 0. In the
case of a solid system, however, the presence of a first order phase
transition does not allow the smooth connection of the state to the
ideal gas state, and the starting density ρ0 = 0 cannot be used. Conse-
quently, the residual entropy Sres(ρ0) needs to be evaluated at some
density ρ0 where the system is in the same solid phase.

In a tethered system, each particle is restricted to remain within
a distance rT , known as the tether length, from a specified lattice site.
For a lattice at density ρ, the spacing between sites is a = (ρc/ρ)1/d,
where ρc is the maximum density of the lattice (see Table III). If the
tether length is less than rT,0 = (a − σ)/2, then the particles are too
far apart to interact with each other. The minimum tether length
rT,0 depends on the density of the system—the higher the density,
the shorter the minimum tether length.

When rT < rT,0, the system behaves as an ideal tethered sys-
tem, where there are no particle–particle interactions. The volume
of phase space accessible to the ideal tethered hypersphere system is
simply the product of the volumes that each of the tethered particles
can individually explore,

Ωideal(ρ, rT) = (
πd/2rd

T

Γ(d/2 + 1))
N

, (12)

which should be compared to the entropy of a classical ideal gas,

Ωig = VN

N!
. (13)

The difference between the entropy of an ideal tether system Sideal

and an ideal gas Sig at the same density ρ is

Sideal(ρ) − Sig(ρ) = N ln ϕT +N ln
N!1/N

N
, (14)

where ϕT = πd/2ρ rd
T/Γ(d/2 + 1) is the volume fraction of space

occupied by the tether cells.
In a hard hypersphere system, excluded volume interactions

restrict the phase space that can be explored. The tethers further
restrict the phase space that the system can access. The rate at which
the particles collide with their tethers is proportional to the sur-
face area of the boundary due to the presence of the tethers.33 As
the tethers lengthen, the system can access a larger volume of phase
space. By tracking the variation of the surface area with the tether
length, through monitoring the tether collision rate, the additional
volume of phase space accessible to the system can be determined.
In the limit that the tether length becomes infinite, the properties of
the tethered system approach those of the original, untethered hard

J. Chem. Phys. 155, 144502 (2021); doi: 10.1063/5.0066421 155, 144502-5

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

hypersphere system. Based on this, the entropy of an untethered sys-
tem can be determined33 by integrating the tether collision rate ṄT
with respect to the tether length rT ,

S(ρ)
NkB

− Sideal(ρ)
NkB

= (2πβmσ2)1/2

N ∫
∞

rT,0

drT ṄT(ρ, rT). (15)

The residual entropy Sres can be obtained by just accounting for the
difference between an ideal tethered system and an ideal gas,

Sres(ρ)
NkB

= (2πβmσ2)1/2

N ∫
∞

rT,0

drT ṄT(ρ, rT) + ln ϕT,0 + ln
N!1/N

N
,

(16)
where ϕT,0 is the volume fraction of space occupied by the tether cells
at the minimum tether length rT,0.

Simulations of tethered systems are performed at a reference
density ρrefσ

6 = ρ0σ6 = 2 for systems with different tether lengths
rT . The tether collision rates determined by the MD simulations
are shown in Fig. 3 for the A6 (blue), D6 (red), and E6 (black) lat-
tices. The different symbols represent simulation data for different
sized systems. The size dependence is not significant for the range of
conditions examined. The tether collision rate data for the smallest
system of each lattice were fit with a cubic spline, shown by the solid
lines in Fig. 3.

The vertical dashed lines denote the minimum tether length rT,0
for each lattice at the density ρ0σ6 = 2; rT,0/σ ≈ 0.035 659, 0.061 231,
and 0.074 848 for the A6, D6, and E6 lattices, respectively. At rT,0, the
tether collision rate equals that of an ideal tethered system, which
is Ṅ ideal

T = N(2πβmσ2)−1/2d/rT (see the dotted line in Fig. 3). As
rT increases, the tether collision rate rapidly decays to zero. The
tether collision rate of the A6 lattice remains lower than that for
the D6 lattice, which, in turn, is lower than for the E6 lattice for
all tether lengths. The area underneath the collision rate curve is
directly related to the entropy of the untethered hard hypersphere
system compared to the ideal tethered system. As we can see, this
area is larger for the more thermodynamically stable lattice (i.e.,
E6 > D6 > A6) and implies that the entropy is higher, as expected.
The residual entropies calculated for each lattice, obtained from the
cubic spline fits, are summarized in Table IV.

Once we have determined the entropy of a solid phase with
respect to the ideal gas state, we can then determine the variation of

FIG. 3. The tether collision rate as a function of the tether length rT for the A6
(blue), D6 (red; circles: N = 15 625, crosses: N = 30 625), and E6 (black; circles:
N = 7875, crosses: N = 21 875, pluses: N = 55 125) lattices. The black dotted
line is the tether collision rate for an ideal tethered system. The vertical dashed
lines denote the critical tether length for each respective lattice.

TABLE IV. Data from tether simulations for fluid–solid coexistence calculations for
d = 6 dimensional hard hypersphere systems. The reference density ρrefσ

d = 2.

A6 D6 E6

Sres(ρref)/(NkB) −13.767(3) −10.856(3) −9.815(3)
ρ f σd 2.1959(7) 1.5531(4) 1.3990(4)
ρsσ

d 2.4063(5) 2.0784(8) 1.9399(10)
βpσd 66.90(7) 22.26(2) 16.42(1)
βμ(ρ f /s) − βμig(ρref) 44.43(3) 20.97(1) 17.02(1)

the chemical potential of the solid phase with density from knowl-
edge of the dependence of the compressibility factor with density
and Eq. (11). The compressibility factors for the A6, D6, and E6 lat-
tices were evaluated using Eq. (10) with the respective values of the
coefficients as given in Table III. For the fluid phase, the compress-
ibility factor is evaluated using the 4, 5-Padé approximant,25 shown
in Eq. (8).

The variation of the pressure with chemical potential is shown
in Fig. 4 for the fluid A6, D6, and E6 phases of the hard hypersphere
system. Each line is calculated parametrically with respect to the sys-
tem density for the respective phase. The slope of the tangent to the
curves corresponds to the density of the system. The slope increases
with the pressure of the system and is greater for the solid phases
than for the fluid phase. The point at which the two curves intersect
corresponds to the coexistence between two phases, directly yielding
the coexistence pressure and chemical potential. The value of the
densities in the respective phases at which this occurs corresponds
to the freezing and melting densities. Estimates of the fluid–solid
coexistence point for the fluid and each of the lattice phases are
summarized in Table IV.

Several authors have previously estimated the location of the
fluid–solid coexistence point for the E6 lattice. Using scaled parti-
cle theory to describe the fluid phase and cell theory to model the
solid phase, Finken et al. estimated15 the coexisting fluid and solid
packing fractions to be η f = 0.10 and ηs = 0.16, respectively. Using
Monte Carlo simulations, van Meel and co-workers estimated21 the
coexistence pressure to be βpσd = 13.3 and the coexisting packing
fractions as η f = 0.105 and ηs = 0.138. Recently, Charbonneau and
co-workers presented calculations18 for the fluid–solid coexistence
point for d = 3 to 10 dimensional hard hypersphere systems using

FIG. 4. Variation of the chemical potential with pressure for the fluid phase (gray
line), A6 lattice (blue line), D6 lattice (red line), and E6 (black line) lattice. The
intersections between curves denote coexistence between phases.
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a generalized Frenkel–Ladd method to compute the absolute free
energy of the crystalline phases. For the E6 lattice, they determined
the coexistence pressure to be βpσd = 16.400, with a fluid packing
fraction η f = 0.1129 and a solid packing fraction ηs = 0.1567. In
terms of packing fraction, our estimate for the fluid–solid coexis-
tence point for the E6 lattice occurs at η f = 0.113 and ηs = 0.157,
which is in excellent agreement with the values of Charbonneau and
co-workers.

The coexistence points for the A6 and D6 lattices are shown in
Table IV. As the thermodynamic stability of the lattice decreases, the
coexistence pressure, as well as the freezing and melting densities,
increases.

V. STRUCTURE
Figure 5 displays the pair correlation functions (PCFs) in six

dimensions including the liquid phase, at ρσ6 = 1.0, to a fully formed
solid phase, at ρσ6 = 2.4, for all three lattice types. Note that for all

FIG. 5. The pair correlation functions for the E6, D6, and A6 lattice systems at
densities ρ = 1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, and 2.4. The gray dashed-dotted
lines are for systems at fluid densities. The brown dashed lines indicate metastable
densities. The black, red, and blue lines are in the solid phase.

the G(R)’s, the uncertainties are between 10−2 and 10−3. Fluid den-
sities are displayed as dashed–dotted gray curves, and states between
the freezing and melting densities, as specified by Table IV, are
shown in brown dashed lines. The E6 solid densities are in black,
the D6 lattice in red, and the A6 lattice in blue. In the fluid phase, the
PCFs have a peak at the hypersphere–hypersphere contact distance,
which becomes higher as the density increases. In the solid phase, the
peaks of the PCFs occur at the spacings of the lattice. As the density
increases, the peaks become higher and sharper, approaching a delta
function as the density nears the close packing value of the lattice.

It is known that hard hypersphere systems, with only purely
repulsive interactions, undergo a phase transition from the fluid
to solid state in dimensions two46,47 through five,38,48,49 and this is
hypothesized to occur at higher dimensions as well.15,50,51 Figure 1
demonstrates that two distinct phases exist as the compressibility
factor varies with density. In lower dimensions, one indicator of the
onset of the phase transition is the behavior of the pair correlation
function; that is, a shoulder or a split appears on the second peak.16

Skoge et al.16 commented in their discussion of maximally packed
states that the split peak decreases in prominence as the dimension
increases from three to six. Similar behavior was noted in the stud-
ies of hard hypersphere systems in the fluid and metastable states.52

In these previous fluid MC and MD work, simulations were initi-
ated from either a D lattice or a Z lattice. Of note in Fig. 5 is the
absence of any shoulder or split in the second peak as the fluid
phase approaches the freezing density ρ f for any of the lattices. In
the MD simulations in this work, at all densities, the calculations
were initiated from the relevant lattice positions. As other authors
have discussed,13,14,22–24 spatial correlations diminish as the dimen-
sion increases and the shape (or structure) of the pair correlation
function becomes simpler.

It is interesting to note that in lower dimensions, where a shoul-
der is clearly observed, the close packed lattices are all “D” lattices.
Dimension six is the first dimension in which an E lattice appears,
and in this dimension, the E6 lattice is the closest packed lattice and
the most thermodynamically stable crystal structure. In hard hyper-
sphere fluids, the geometry of the close packing plays a prominent
role in dictating the structure. The change from an underlying D-
type lattice to an underlying E-type may help to explain the absence
of a split second peak.

Another approach23,53,54 to examine the structure in the simula-
tion data is to calculate the occupancy number N(R) by integrating
G(R) as a function of R. N(R) is the total number of particles located
within a distance R from a reference particle at the origin,

N(R) = ρσd∫
R

0
Sdrd−1 G(r) dr (17)

where Sd = 2πd/2/Γ(d/2) is the surface area of a hypersphere.
N(R) can be compared to the theoretical theta series.19 The

theta series for a lattice encodes the distribution of vector norms
in the lattice. It is used to determine properties such as the packing
radius, the kissing number, and the packing density. The predicted
total number of particles found between a reference particle and
the end of a given shell is obtaining by adding up the theta series
coefficient for each shell.

The first several terms of the theta series for the A6, D6, and E6
lattices have been computed by enumeration of the lattice vectors
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TABLE V. The theta series for various six-dimensional lattices.

A6 D6 E6

0 1 1 1
1 42 60 72
2 210 252 270
3 350 544 720
4 882 1020 936
5 1050 1560 2160

surrounding a central site. This was done by taking linear combina-
tions of integer multiples of each of the basis vectors ak in the lattice
(given in Table I),

v =∑
k

mkak, (18)

FIG. 6. The occupation numbers for the lattice systems at a series of densities.
For the E6 lattice, the density range is ρ = 1.0–4.0. For the D6 lattice, the densities
range from ρ = 1.0–2.8. The density range is from ρ = 1.0–2.8 for the A6 lattice.
The specific values for the density can be found in Table II. The dashed-dotted gray
lines are for systems at fluid densities. The dashed brown lines indicate metastable
densities. The solid lines are N(R) for the crystal densities. The horizontal lines
correspond to the shell occupancy values derived from the terms of the theta series
for the first two shells of each lattice.

where the integers mk ∈ [−nmax, nmax] for some positive integer nmax.
The lattice sites are ordered in terms of their distance from the cen-
tral site, and the number of sites in each coordination shell is noted.
This process is repeated for successively larger positive integers nmax
(up to a value of nmax = 15) to ensure that all the sites within a par-
ticular coordination shell have been captured. The first six terms
are summarized in Table V and are in complete agreement to those
listed in Ref. 55 section A004007 for E6 and section A008428 for D6.

The calculated N(R) for the E6, D6, and A6 lattices is shown in
Fig. 6. A range of densities is presented with N(R) plotted vs R/a,
where a = (ρc/ρ)1/6. The liquid densities are represented by gray
dashed-dotted curves, and the metastable densities are represented
by brown dashed lines. The horizontal dashed lines in Fig. 6 cor-
respond to the summed terms of the theta series for the respective
lattices.

For the E6 lattice, good agreement is observed for both the
first shell value, 72, and the second shell value, 270, even though at
ρ = 2.4, the E6 system is still a somewhat unorganized crystal. The
red dotted lines are the sum of the first two terms of the D6 theta
series and agree well with the N(R) data. At ρσ6 = 2.8, the A6 sys-
tem is a well-organized solid, and this is reflected in the behavior of
N(R), which agrees very well with the summed theta series data, the
blue dotted line. For all three lattices, the liquid densities, ρ = 1.0,
1.2, and 1.4, fall on the same N(R) curve.

VI. CONCLUSIONS
In this work, we have used event-driven molecular dyna-

mics to study the crystalline phases of six-dimensional hard hyper-
sphere systems. Unlike most previous work, the simulations were
performed in skew boxes, with the edges aligned with basis vectors
of the lattice under examination; this allows for a much wider range
of system sizes to be explored compared to restricting the box to be
hypercubic or hyper-rectangular.

The pressures and thus the compressibility factors in these sys-
tems were determined from the particle–particle collision rates, and
these were found to be in good agreement with those from previous
work. These were found to fit well with the form [Eq. (10)] suggested
by Pieprzyk et al.28

To determine the free energy of the each of the crystalline states,
simulations were performed in which the hyperspheres in the sys-
tem were tethered to a site of the crystalline lattice using an infinite
square well of differing widths. As expected, the E6 structure was
found to be more stable than the D6 structure, which is, in turn, more
stable than the A6 lattice. The fluid–solid coexistence densities and
pressure increase in going from the E6 to the D6 to the A6 lattices.
The values for the E6 phase are in excellent agreement with recent
Monte Carlo calculations.18

The structure of the crystalline phases has been explored
through the pair correlation functions. In the solid phase, the pair
correlation functions have peaks at distances around the spacing
of the lattice sites. As the density of the solid increases, the peaks
increase in height and become narrow.

In the fluid phase, the pair correlation functions have peaks at
a distance consistent with the hypersphere diameter. For fluid sys-
tems near the freezing density, we find no presence of a split second
peak or shoulder for fluids near the melting transition. This is in
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contrast to what is observed in hard hypersphere systems in two to
five dimensions.

Integration of the pair correlation functions to obtain N(R)
shows that the simulations are large enough to encompass the first
and second coordination shells of the each of the crystalline phases
as well as the fluid phase.

Our studies of multidimensional hypersphere systems are
ongoing.
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