
The Force Generation Mechanism of Lifting Surfaces with Flow
Separation

I.M. Violaa,∗, Abel Arredondo-Galeanab and Gabriele Pisettaa

aInstitute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh, EH10 5HD, UK
bFormerly: Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh, EH10 5HD, UK.
Currently: Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow, G4 0LZ, UK

A R T I C L E I N F O

Keywords:
Lifting surface
Hydrofoil/Blade Hydrodynamics
Wing/Sail Aerodynamics
Leading-edge separation
Impulse theory
Lifting-line theory

A B S T R A C T

Fins, wings, blades and sails can generate lift and drag in both attached and separated flow conditions.
However, the common understanding of the lift generation mechanism holds only for attached flow
conditions. In fact, when massive flow separation occurs, the underlying assumptions of thin airfoil
theory and lifting line theory are violated and the concept of bound circulation cannot be applied.
Therefore, there is a need to develop an intuitive understanding of the force generation mechanism
that does not rely on these assumptions. This paper aims to address this issue by proposing a paradigm
based on established concepts in theoretical fluid mechanics, and impulse theory in particular. The
force generation can be intuitively associated with the vorticity field, which can be gathered with com-
putational fluid dynamics or particle image velocimetry. This paradigm reconciles key known results
about wing aerodynamics, and provides designers of lifting surfaces a measurable objective to opti-
mise the shape in separated flow conditions. It will hopefully underpin both a deeper understanding
of how lift and drag are generated, and the development of low order models in different fields of
application.

1. Introduction
1.1. The Origin of Lift

The origin of lift is one of the most fundamental ques-
tions in fluid dynamics and one of the most difficult to ex-
plain in simple terms. Despite its critical significance, there
is not as yet a satisfactory explanation on the origin of lift for
the layperson (Regis, 2020). The most common understand-
ing is based on the concept of circulation that was developed
independently in the early 1900s by Lanchester (1907) in the
UK, Kutta (1902) in Germany and Joukowsky (1906), some-
times Jukowsky or Zhukovsky, in Russia.

In summary, a solid body immersed in a moving fluid re-
sults necessarily in fluid rotation (Ω), whose measure is the
vorticity (𝜔 = 2Ω); and the integral of the vorticity over a
surface is the circulation (Γ). A solid body within a mov-
ing fluid must be immersed in a layer of vorticity to ensure
a non-slip velocity at the interface. If the overall integral
of vorticity is not null, then there is bound circulation (Γ𝑏)
around the body.

The simplest model of a two-dimensional lifting surface,
i.e. a foil, is a point vortex with circulation equal to the inte-
gral of all of the vorticity in its boundary layer. The lift can
be easily computed by considering a convenient solid sur-
face of arbitrarily radius 𝑎 around the vortex. For example, a
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solid surface can be included in a complex potential through
a doublet of arbitrary strength, resulting in a closed stream-
line representing a solid cylinder. Then one can compute the
velocity on the cylinder surface as the vectorial sum of the
free stream velocity and the vortex-induced velocity, and use
the Bernoulli equation to compute the pressure distribution
around the cylinder. The pressure integral in the lift direction
on the cylinder surface is the lift per unit depth. The result is
𝐿 = −𝜌𝑈Γ𝑏, which is the Kutta-Joukowsky theorem. This
theorem shows that the lift (per unit depth) depends only on
fluid density 𝜌, the free stream velocity 𝑈 and the bound cir-
culation Γ𝑏. An equivalent formulation was derived by Filon
(1926) for the drag (per unit depth): 𝐷 = 𝜌𝑈𝑄𝜓 , where 𝑄𝜓

is the net flow rate into the wake of the vector potential de-
rived by Helmholtz decomposition. Unfortunately, however,
𝑄𝜓 cannot be directly measured (Liu et al., 2015).

The force production mechanism is explained in terms
of bound circulation in, for example, virtually all of the sail
aerodynamics books (e.g. Whidden and Levitt, 1990; Lars-
son and Eliasson, 1995; A. R. Claughton et al., 1998; Fos-
sati, 2009; van Oossanen, 2018, etc.). As discussed in the
following, this model is fairly accurate for lifting surfaces
where the vorticity is confined within the boundary layer.
Moreover, it allows the interaction between the two lifting
surfaces to be explained intuitively, and it explains why the
Venturi effect does not generally apply in unbounded flows.
For example, the Venturi effect has often been incorrectly
considered to explain the interaction between two sails (Gen-
try, 1971, 1973). On the other hand, when flow separation
occurs, the concept of bound circulation is not very helpful
and we lack an intuitive understanding of the force genera-
tion mechanism.

1.2. Lifting Surfaces with a Sharp Leading Edge
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The Forces on a Sail

Flow separation occurs at the leading edge of lifting sur-
faces such as fins, wings, blades and sails, when the radius
of curvature of the leading edge is small compared to the
chord length. For such geometries, there is only one an-
gle of attack, namely the ideal angle of attack, where the
onset flow is tangent to the leading edge and an attached
boundary layer develops on both sides of the solid surface.
At any other other angle of attack, the flow separates on
one of the two sides of the surface. For an angle of attack
higher than the ideal one, vorticity is shed downstream to-
wards the suction side of the surface and rolls up into vor-
tices, which might then roll along the solid surface or be shed
away (Owen and Klanfer, 1955; Gault, 1957; Chang, 1970;
Arena and Mueller, 1980; Carter and Vatsa, 1984; Newman
and Tse, 1992; Crompton and Barrett, 2000; Stevenson et al.,
2016a,b). The rolling of these vortices results, in a time aver-
aged sense, in flow reattachment and in a recirculation region
near the leading edge that is known as leading-edge separa-
tion bubble. This occurs, for example, at the leading edge of
headsails on sailing yachts (Milgram, 1998; Viola and Flay,
2011b; Viola et al., 2013b; Souppez et al., 2019a,b).

On low-aspect-ratio wings, because the flow is strongly
three-dimensional, the circulation shed by the shear layer
might roll up into a leading-edge vortex that remains steadily
attached to the leading edge (Viola and Flay, 2011a,c; Vi-
ola et al., 2013a, 2014; Bot et al., 2014; Richards and Viola,
2015; Deparday et al., 2018; Arredondo-Galeana and Viola,
2018). The condition leading to the stability of leading-edge
vortices on low-aspect-ratio wings is the objective of several
recent studies including Maxworthy (2007); Widmann and
Tropea (2015); Muir and Arredondo-galeana (2017); Akkala
and Buchholz (2017); Marzanek and Rival (2019); and El-
dredge and Jones (2019).

To understand the underlying force generation mecha-
nism, it is useful to simplify the geometry to the essential
features that explain the key observed phenomena. In par-
ticular, lifting surfaces with leading-edge separation can be
described as flat plates at incidence (Roshko, 1954, 1955;
Sarpkaya, 1975; Kiya and Arie, 1977), and the effect of cam-
ber, aspect ratio, swept and twist can be considered sepa-
rately. For example, the sharp leading edge of the plate and
of the sail leads to similar separated flow fields at those an-
gles of attack where a foil with a curved leading edge would,
instead, experience an attached boundary layer. Hence, the
flow around a plate is adopted in this paper to elaborate the
proposed paradigm of lifting surfaces with leading-edge sep-
aration.

For a list of flat plate studies, interested readers can find
a useful table in Afgan et al. (2013). The effect of curva-
ture (Dugan and Cisotti, 1970; Sunada et al., 1997, 2002;
Okamoto and Azuma, 2005) can be considered as an in-
crease of the effective angle of attack. Studies on highly-
cambered circular arcs (Bot, 2019; Nava et al., 2016; Col-
lie et al., 2009; Cyr and Estelle, 1992; Bot et al., 2016; Bot,
2019) allow one to isolate the underlying differences between
low and highly cambered plates. The favourable pressure
gradient upstream of the maximum chamber on a cambered

plate promotes reattachment and the establishment of an at-
tached boundary layer, which is unlikely to occur on a flat
plate. On the other hand, on the rear of a cambered plate,
the adverse pressure gradient promotes trailing edge separa-
tion. For example, recent work (Flay et al., 2017; Bot, 2019;
Souppez et al., 2021) has focused on the leading-edge sep-
aration bubble of circular arcs and on how it affects trailing
edge separation, which is a phenomenon that occurs on cam-
bered plates and not on flat plates.

The main effect of the finite aspect ratio and of the sweep
angle is to promote spanwise convection of vorticity, which,
for example, can enable a stable leading-edge vortex. The ef-
fect of the aspect ratio on the aerodynamics of flat plates was
comprehensively reviewed by Taira and Colonius (2009),
Lee et al. (2012), and Devoria and Mohseni (2017). Sim-
ilarly, for the effect of sweep angle, consider the literature
survey of Huang et al. (2015).

Finally, it is instructive to note that the effect of twist is
the same as that of a shear in the onset flow, and that the twist
does not change the slope of the lift curve versus the angle
of attack (Phillips, 2004). Hence, two lifting surfaces with
the same shape but different twist, would result in the same
lift versus angle of attack curve.

1.3. Aim and Organisation of the Paper
The aim of this paper is to propose a paradigm for the

force production of lifting surfaces that is applicable both
in attached and separated flow conditions. This is based on
well understood fluid mechanics principles, which, however,
are not commonly applied in naval architecture and sail aero-
dynamics. This is the vorticity-moment theory, or impulse
theory, that describes the forces as the time derivative of the
fluid impulse, which can be computed from the vortex flow
in the whole flow field. The advantage of this approach is
that it allows an intuitive rationale for how both lift and drag
are generated in both attached and separated flow conditions,
both in steady and unsteady conditions. More specifically, it
reveals the force contribution associated with any element of
vorticity in the fluid. For example, it shows how the vortic-
ity in different regions of separated flow is associated with
the forces generation. Hence, it allows the force differences
between two flow conditions with separated flow to be in-
terpreted. This can guide designers to identify the optimum
shape and to identify desirable and undesirable flow features
in the fluid.

The vorticity-based approach is equivalent to the com-
mon pressure-friction approach. However, while knowledge
of the surface pressures on the solid surface allow the areas
that most contribute to a force direction to be identified (e.g.
Viola et al., 2013b), the pressure in the flow field does not
provide any direct information of its effect on the forces ex-
perienced by the body. For example, a vortex on the suction
side of a lifting surface is typically assumed to decrease the
surface pressure and thus to lead to lift enhancement. How-
ever, the presence of a local pressure minimum in the fluid
region does not necessarily result in a low pressure on the
body surface itself. In fact, we show in §2 that the force
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The Forces on a Sail

contribution associated with such a vortex depends on the
sign of its circulation and on its velocity. Some vortices in
the separated flow region are associated with a positive lift
contribution and drag reduction, while others are associated
with lift reduction and a drag increase.

The impulse theory is an equivalent formulation to the
Navier-Stokes equations and, therefore, could be written in
a formulation appropriate for numerical modelling, such as
in the discrete vortex methods (Katz, 1981). However, in
this paper we do not consider these numerical methods and
we focus on how this theory can be used to interpret the ob-
served flow fields. Interpreting the force generation mecha-
nism can, in turn, underpin low-order models to predict the
forces (Babinsky et al., 2016; Stevens et al., 2016; Cork-
ery and Babinsky, 2018; Chowdhury and Ringuette, 2019).
Hence, whilst the proposed paradigm is not a predictive model
per se, it is envisaged that it will underpin low order models
for lifting surfaces experiencing separated flow in different
applications.

The rest of the paper is organised as follows. In §2 we in-
troduce the impulse theory. Then, we show how it provides a
physical interpretation of the force generation mechanism in
two-dimensional (2D) flow (§3) and three-dimensional (3D)
flow (§4). In §5 we consider how the force generation mech-
anism is affected by other solid bodies in the fluid, and in §6
by free vorticity in the fluid. Finally, the results and their
significance are summarised in §8.

2. Impulse Theory
From Newton’s second law, we readily find that the force

𝑭 on a body is given by the time derivative of the impulse.
For a volume of fluid 𝑉𝑓 with constant density 𝜌, whose ex-
ternal boundaries approach infinity,

𝑭 = −∫𝑉𝑓 𝜌
d𝒖
d𝑡

d𝑉 = −𝜌 d
d𝑡 ∫𝑉𝑓 𝒖 d𝑉 = −𝜌d𝑰

d𝑡
, (1)

where 𝜌 is the fluid density, 𝑡 is time, 𝒖 is the velocity vector
and

𝑰 = ∫𝑉𝑓 𝒖 d𝑉 (2)

is the impulse. Bold symbols denote vectors.
Wu (1981) and Lighthill (1986) showed that the impulse

is given by

𝑰 = 1
𝑛𝑑 − 1

(
∫𝑉𝑓 𝒙 × 𝝎 d𝑉 + ∫𝑆𝑏 𝒙 × (𝒏 × 𝒖) d𝑆

)
, (3)

where 𝑛𝑑 = 2 and 3 in two and three dimensions, respec-
tively, 𝒙 = (𝑥, 𝑦, 𝑧) is the coordinate vector, 𝝎 is the vorticity
vector, 𝑆𝑏 is the solid boundary within 𝑉𝑓 (e.g. the surface
of a wing), and 𝒏 is the outward unit normal of 𝑆𝑏. A com-
plete derivation and discussion is available in, for instance,
Eldredge (2019) (p. 190).

The second term of eq. 3 vanishes in a reference system
fixed with the body. This, in fact, is an unsteady body force

equal to the difference between the forces as observed from
the reference system 𝑂(𝑥, 𝑦, 𝑧) and those observed from a
reference system fixed with the body. It is proportional to the
product of the fluid density and the body volume (Koumout-
sakos and Leonard, 1995; Leonard and Roshko, 2001) and
thus its effect is negligible for slender bodies with small vol-
ume to surface area ratio (Rival and van Oudheusden, 2017).
For bodies whose weight is supported by the fluid dynamics
forces such as a flying body, Lentink (2018) noted that this
unsteady body force is also negligible for small fluid to body
density ratio.

Equation 3 was derived independently by Wu (1981) and
Lighthill (1986) unaware of each other’s work. They defined
it as the momentum theorem (based on vorticity moments)
and impulse theory, respectively. It allows the computation
of the forces on a body from the knowledge of the vorticity
in the flow field. Key physical constrains that these models
should satisfy are the Kutta condition and Kelvin’s theorem.
The Kutta condition states that the trailing edge of a slender
body must be a stagnation point. Consequently, the stagna-
tion streamline is tangent to the bisector of the trailing edge
in steady flow, and tangent to one of the two sides of the trail-
ing edge in unsteady flows (Basu and Hancock, 1978; Katz,
1981). In turn, this condition sets the amount of vorticity
that is shed at the trailing edge by the solid body into the
wake. Kelvin’s theorem states that the circulation computed
along a closed contour that moves with the fluid, remains
constant over time if the fluid is inviscid or irrotational at
the contour. For example, consider a foil starting from rest
in uniform flow, such that the vorticity vanishes at infinity.
A closed contour including the foil and approaching infinity
would lie in irrotational flow. Thus Kelvin’s theorem states
that the circulation must be zero, as it was before the foil
started moving. Hence, the positive and negative vorticity
must balance and the net vorticity in the fluid must remain
zero over time.

3. Two-dimensional Flow
Consider a two-dimensional space, a rigid body and neg-

ligible unsteady body forces. This allows the derivation to
be simplified without loss of generality. From equations 1-3,
we find that the force per unit depth is

𝑭 = −𝜌 d
d𝑡 ∫𝑉𝑓 𝒙 × 𝝎𝒛 d𝑆. (4)

Now consider the vorticity to be concentrated in pairs of
counter-rotating vortices with circulations −𝚪 and 𝚪. Then
the force 𝑭 in the direction orthogonal to the segment 𝒅 is
(Kim and Gharib, 2011; Babinsky et al., 2016):

𝑭 = 𝜌Σ𝑖(�̇�𝑖 × 𝒅𝑖 + 𝚪𝑖 × �̇�𝑖), (5)

where the dot denotes time derivative, and the force is pos-
itive in the direction from the centroid of the vortex with
negative circulation to that of positive circulation. This is,
in fact, the time derivative of the impulse of vortex pairs,
whose impulse was found by Lamb (1932) to be 𝜌Γ𝑑, with
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The Forces on a Sail

Γ ≡ |𝚪|. The rate of change of the circulation �̇� should be
understood as the production rate of new vortex pairs, viz.
vortex pairs with constant circulation 𝚪 are formed with a
period 𝛿𝑡 = Γ∕Γ̇.

For a single vortex pair whose centroids are located at
coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) as in Fig. 1, eq. 5 shows
that the lift (𝐿) and drag (𝐷) are

𝐿 = 𝜌
(
(𝑥2 − 𝑥1)Γ̇2 + (�̇�2 − �̇�1)Γ2

)
, (6)

𝐷 = −𝜌
(
(𝑦2 − 𝑦1)Γ̇2 + (�̇�2 − �̇�1)Γ2

)
. (7)

This formulation is independent of the reference system. The
subscript of the circulation and of its rate of change shows
which coordinates of the vortex must be selected from the
two counter-rotating vortices. In the rest of the paper we
consider a reference system with the 𝑥-axis along the free
stream velocity𝑈 and positive anticlockwise angles (Fig. 1).

Figure 1: Coordinate system and vortex pair.

3.1. 2D Plate at Low Incidence
Consider a flat plate with chord 𝑐 at a small angle of at-

tack 𝛼, starting from rest and reaching a steady velocity 𝑈𝑏.
In a reference system fixed with the plate, the foil is station-
ary and the fluid flows with velocity 𝑈 = −𝑈𝑏, as in Fig. 2.
The circulation is concentrated near the foil and in the region
where the foil was initially at rest, while the net circulation
in the wake must vanish in steady conditions. The wake is
made of vortex pairs continuously being generated on the
two sides of the plate. The distance across which the vor-
ticity is generated is roughly the plate thickness, which is
small for a thin plate, thus 𝒅 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1) ≈ (0, 0).
Also, 𝒅 remains almost constant, whilst the vortex pairs con-
vect along the plate and then are shed into the wake, thus
�̇� ≈ (0, 0). Consequently, these vortex pairs contribute to
neither lift nor drag.

However, in the boundary layer there is a non-zero net
circulation. The integral of the vorticity Γ𝑏 around the plate
is the bound circulation, while the integral of the vorticity
around the region where the plate was initially at rest is the
starting circulation −Γ𝑏. The bound and starting vortices
each have constant circulation and their distance increases
at the rate �̇� = (𝑈, 0), whilst there is no production of fur-
ther vortex pairs (Γ̇𝑏 = 0). Substituting the bound circula-
tion into the impulse theory formulations, eqs. 6 and 7, gives
the Kutta-Joukowsky lift theorem and d’Alembert’s paradox,

respectively:

𝐿 = −𝜌𝑈Γ𝑏 (8)

𝐷 ≈ 0. (9)

This interpretation of the Kutta-Joukowsky lift theorem
(eq. 8) reveals that the bound circulation is circulation that
moves with velocity 𝑈 , irrespectively of its nearness to the
plate. In other words, all the vorticity in the flow field that
moves with velocity 𝑈 contributes to the bound circulation.
This is also in agreement with the concept of trapped vor-
tex studies by Saffman and Sheffield (1977) and successively
Huang and Chow (1986). A practical consequence of this
result is that the lift can be estimated with eq. 8 by taking
the bound circulation as the integral of all of the vorticity in
a time averaged flow field. This approach was adopted, for
instance, by Devoria and Mohseni (2017), who considered
various aspect ratio plates at various incidences. Because in
steady conditions the net vorticity flux into the wake must
vanish, the integral can be taken over a finite volume around
the plate. For example, Lee et al. (2012) investigated flat
plates with aspect ratios between one and three, at both low
and high angles of attack, which are conditions relevant to
yacht sails. They found that the forces computed by inte-
grating the vorticity in the flow field do not vary when the
integral is performed over a domain that extends beyond two
or three chord lengths downstream of the plate.

For completeness, it is useful to recall that the bound
circulation can be computed by considering the plate as a
lumped-vortex element; see, for instance, Katz and Plotkin
(2001). A vortex with circulation Γ𝑏 is placed at the centre
of pressure, which is at the 1/4 chord point of the foil. For
a single vortex, the non-penetration condition must be satis-
fied at only one point, known as the collocation point, which
can be found to be 𝑐∕2 aft of the vortex (Katz and Plotkin,
2001). At the collocation point, the velocity induced by the
vortex is equal in magnitude and opposite in sign to the free
stream velocity component normal to the chord, i.e.

Γ𝑏
2𝜋𝑐∕2

= −𝑈 sin 𝛼. (10)

Rearranging, gives the bound circulation as

Γ𝑏 = −𝜋𝑈𝑐 sin 𝛼. (11)

Substituting the bound circulation from eq. 11 into eq. 8
gives

𝐿 = 𝜌𝑈2𝑐 𝜋 sin 𝛼, (12)

and in non-dimensional form

𝐶𝐿 = 2𝜋 sin 𝛼. (13)

These results are in agreement with experiments for 𝛼 ≲ 10◦
(Hoerner and Borst, 1975). For example, Fig. 3 and 4 show
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Ā

Figure 2: 2D plate at low incidence.

the comparison with the lift and drag coefficients measured
by Fage and Johansen (1927) and by the Engineering Sci-
ence Data Unit (ESDU, 1970). The experiments of Fage and
Johansen (1927) were performed at a Reynolds number (𝑅𝑒)
of 153k and those of the ESDU at 𝑅𝑒 = 54𝑘.

Figure 3: Lift coefficient of a 2D plate versus the angles of
attack measured by Fage and Johansen (1927) (FJ27) and
(ESDU, 1970) (ESDU), and predictions with eq. 13 (2𝜋 sin 𝛼),
and eq. 18 (𝑘2 cos 𝛼).

Figure 4: Drag coefficient of a 2D plate versus the angles
of attack measured by Fage and Johansen (1927) (FJ27) and
(ESDU, 1970) (ESDU), and predictions with eq. 18 (𝑘2 sin 𝛼).

3.2. 2D Plate at High Incidence
Now consider a flat plate at an angle of attack of approxi-

mately 𝜋∕2 as in Fig. 5. This flow condition was initially in-
vestigated as a potential flow with concentrated vorticity by
von Helmholtz (1868), who developed the free-streamline
theory, and then was further developed by von Kirchhoff

(1868) and Lord Rayleigh (1876). Vorticity is shed down-
stream through two shear layers of opposite sign and equal
magnitude at the two edges of the plate.

An estimate of the production of vorticity can be derived
from the integral of the flux of vorticity across the shear lay-
ers (Fage and Johansen, 1928). Consider a reference system
𝑂′(𝑥′, 𝑦′) with 𝑥′ aligned with a shear layer of thickness 𝛿SL,
with streamwise velocity 𝑢′ ranging from 0 to 𝑈SL (Fig. 5).
The vorticity production is

|Γ̇| = −∫
𝛿SL

0
𝜔𝑢′ d𝑦′ = ∫

𝛿SL

0

𝜕𝑢′

𝜕𝑦′
𝑢′ d𝑦′ (14)

= ∫
𝑈SL

0
𝑢′ d𝑢′ = 1

2
𝑈2
SL, (15)

where the boundary layer approximation 𝜔 = −𝜕𝑢′∕𝜕𝑦′ is
used in the second equality of eq. 14. A similar result was
found to be accurate also in unsteady flow conditions (Kiya
and Arie, 1977; Basu and Hancock, 1978) for small angles
of attack.

Fage and Johansen (1927) noted that, in steady condi-
tions, 𝑈𝑆𝐿 = 𝑘𝑈 with 𝑘 > 1. Specifically, they found that
𝑘 increases from 1.347 at 𝛼 = 𝜋∕6 to 1.49 at 𝛼 = 𝜋∕2 at
Reynolds number 𝑅𝑒 = 153k. Roshko (1954) performed
similar tests at 𝑅𝑒 from 3k to 18k, and found 𝑘 ranging from
1.3 to 1.4 at 𝛼 = 𝜋∕2. The interesting conclusion is that,
if leading-edge separation occurs and thus the Kutta condi-
tion is established at the leading edge, then there is a force
contribution associated with the vorticity production that is|�̇�| = Γ̇ ≈ 𝑘2𝑈2∕2. Most of this vorticity is generated at
the edges, and thus we can assume 𝒅 = (𝑐 cos 𝛼,−𝑐 sin 𝛼).
When substituted into eqs. 6 and 7, we find that the lift and
drag associated with the production of vorticity are, respec-
tively,

𝐿 = 𝜌Γ̇𝑐 cos 𝛼 ≈ 1
2
𝜌𝑈2𝑐 𝑘2 cos 𝛼, (16)

𝐷 = 𝜌Γ̇𝑐 sin 𝛼 ≈ 1
2
𝜌𝑈2𝑐 𝑘2 sin 𝛼, (17)

and, in nondimensional form,

𝐶𝐿 = 𝑘2 cos 𝛼, (18)

𝐶𝐷 = 𝑘2 sin 𝛼. (19)
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Figure 5: 2D plate at high incidence.

These results could be refined by considering the growth
of the wake thickness and vortex annihilation in the wake,
see for example the closure of the Kármán solution with free
streamline theory by Roshko (1955). While this is beyond
the scope of the paper, it is useful to note that the wake thick-
ness 𝑑, measured parallel to the chord, does not vary signif-
icantly beyond a minimum angle of attack. For example,
Fage and Johansen (1927) found that the thickness of the
wake measured orthogonal to the stream is 𝑘′𝑐 sin 𝛼, with
𝑘′ = 1.475, for 𝛼 from 𝜋∕6 to 𝜋∕2. This implies that the
thickness of the wake measured parallel to the plate is con-
stant over this range of incidences.

These results are in good agreement with the forces mea-
sured on a flat plate for 𝛼 between 50◦ and 90◦. Figure 3 and
4 show the lift and drag coefficients predicted with eq. 18
and 19, respectively, where 𝑘 = 1.45 as measured by Fage
and Johansen (1928). This value is not universal and differ-
ent authors have also found different values for similar ex-
periments (e.g. Roshko, 1954). However, the range of vari-
ability is relatively small and thus it can be used in a first
approximation if direct measurement is not available. The
most important result, however, is not the ability to predict
the lift and drag with these simple formulations, but rather
the physical insights on the force generation mechanism that
they provide.

3.3. 2D plate at moderate incidence
At intermediate angles of attack, we do not have a readily

available model. However, the following considerations are
useful to understand the force generation mechanism. Be-
cause the flow is not symmetrical around the streamwise di-
rection, at any instant there is net vorticity near the plate,
i.e. Γ𝑏 ≠ 0. However, in separated flow conditions when the
vorticity is not confined in a thin boundary layer, it is unclear
what should be considered as bound vorticity. For example,
if we do not include the vorticity shed in the leading-edge
separated shear layer, the bound circulation is positive and
it is associated with a negative lift! This counter intuitive
result can easily be verified with simulations or experiments
by integrating the layer of vorticity enclosing the plate.

In particular, two vortex sheets of equal and opposite
sign are shed by the two edges of the plate. The bound cir-
culation ensures that the Kutta condition applies at the two
edges. The sum of the plate-normal velocity components
due to the vortex sheets, the free stream velocity, and the
bound circulation, must vanish at the plate surface. For ex-
ample, let us assume that the vortex sheets are parallel to
the free stream velocity, and that their induced velocity on
the opposite side of the plate is negligible. We find that
Γ𝑏 = Γ0 cos 𝛼 > 0, where Γ0 must be positive as demon-
strated in the Appendix. The lift is

𝐿𝑏 = −𝜌𝑈Γ𝑏 = −𝜌𝑈Γ0 cos 𝛼 < 0. (20)

However, this is never the only lift component and the total
lift is never negative.

A different force generation mechanism is associated with
the relative streamwise velocity of leading and trailing edge
vorticity. Assuming that the outer velocity is𝑈 and the inter-
nal velocity is zero, vorticity transported by the shear layer
convects with a mean velocity 𝑈∕2. Babinsky et al. (2016)
tested a flat plate at incidence and noted that the vorticity
shed at the leading edge formed a coherent vortex that con-
vected downstream at about 𝑈∕2, while the vorticity shed at
the trailing edge convected with velocity 𝑈 (Fig. 6). Ōtomo
et al. (2021) also found a similar result in the separated flow
of large-amplitude pitching foils.

The slower convection of leading-edge vorticity than trail-
ing edge vorticity can occur only for a finite period of time
𝛿𝑡. In fact, all of the vorticity in the wake must convect at
the same velocity. As an example, assume arbitrarily that a
leading-edge vortex (LEV) convects at 𝑈∕2 for a distance
𝑐 cos 𝛼 and thus 𝛿𝑡 = 2(𝑐∕𝑈 ) cos 𝛼. In contrast, the asso-
ciated counter-rotating trailing-edge vortex (TEV), convects
with velocity𝑈 . Hence, the streamwise stretching of the vor-
tex pairs is associated with a vortex force ΓLEV = −Γ̇𝛿𝑡 =
−2Γ̇(𝑐∕𝑈 ) cos 𝛼 is:

𝐿LEV = −𝜌ΓLEV
𝑈

2
= 𝜌Γ̇𝑐 cos 𝛼 ≈ 1

2
𝜌𝑈2𝑐 𝑘2 cos 𝛼. (21)

Unfortunately also this expression cannot be generalised be-
cause we do not have a predictive model for how long LEVs
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A Ā 

Figure 6: Vortex lift mechanism.

and TEVs travel at different velocities.
The relative velocity between LEVs and TEVs results,

in a time averaged flow field, in more leading-edge vorticity
than trailing edge vorticity around the plate. For example,
the time-averaged results of Devoria and Mohseni (2017)
on moderate incidence plates, show that the time-averaged
leading-edge vorticity observed in the field of view (see FoV
in Fig. 6) near the plate is about twice the trailing edge vor-
ticity. Hence, by observing the time averaged flow field and
considering as bound vorticity the net vorticity around the
plate, including that of the separated shear layers, we can
account for both the lift contributions 𝐿𝑏 and 𝐿LEV. This is
discussed further in §7.

The relative velocity in the cross flow direction of the
LEV with respect to the TEV is associated with a drag com-
ponent. This is equivalent to a thickening or shrinking of
the wake thickness between the leading and the trailing edge
shear layers. Differently from the low incidence case (§3.1),
the wake thickness is not negligible because of the leading-
edge separation (Gault, 1957; Tani, 1964; Newman and Tse,
1992). At high incidences (§3.2), we considered the wake
thickness as 𝑑 = 𝑘′𝑐 = 1.45. At intermediate incidences
𝑘′ < 1.45 because the wake thickness decreases to the flat
plate boundary layer thickness as 𝛼 tends to zero.

In summary, the lift and drag on a flat plate at moderate
incidence can be associated with the vorticity production or
with the vortex kinematics, but we do not have a model for
either of these. For example, in contrast to the high incidence
regime where the wake expands in the chordwise direction
from 𝑐 to 𝑑 (Fig. 3), at moderate incidence it can either ex-
pand or shrink. Furthermore, the wake often stretches in the
streamwise direction because counter-rotating vortices in the
leading and trailing edge shear layers can travel at different
speeds in the near wake.

It must be noted that the distinction between leading and
trailing edge vorticity is unnecessary, and is used here only to
distinguish between negative and positive vorticity, respec-
tively. In fact, to compute the forces with eq. 5, the flow
field must be described as an ensemble of vortex pairs with
equal and opposite circulation. The choice of which positive
vorticity is associated to which equal and opposite negative
vorticity to form a vortex pair is arbitrary. Hence, this allows
the force associated with the dynamics of any vorticity in the
flow field to be estimated.

4. Three-dimensional Flow
In a three-dimensional space, the corresponding expres-

sion for eq. 5 is (Wu et al., 2006)

𝑭 = 𝜌Σ𝑗(Γ̇+𝑗 𝐴𝑗 + Γ+
𝑗
�̇�𝑗)𝒏𝑗 , (22)

where the vorticity field is considered to be made of a combi-
nation of vortex rings, each with absolute strength Γ+

𝑗
, min-

imum surface area spanned by the vortex loop 𝐴𝑗 , and unit
vector 𝒏𝑗 normal to the surface and pointing in the oppo-
site direction to its axial induced velocity. The superscript
+ is used to note that the circulation must be taken positive.
The product 𝜌 Γ+𝐴 𝒏 is the impulse of a vortex ring (Milne-
Thomson, 1958).

Here we propose an alternative three dimensional form
of eq. 22, where the total force on the body is the integral
of the two-dimensional forces in the three Cartesian planes
(𝑖 = 1, 2, 3):

𝑭 = 1
2
𝜌Σ𝑖(�̇�𝑖 × 𝒅𝑖 + 𝚪𝑖 × �̇�𝑖), (23)

where the summation Σ is intended as a vectorial sum. The
1∕2 factor is due to the fraction in front of the bracket on the
right hand side of eq. 3. The vorticity must be considered in
all of the three planes. For example, consider planes orthog-
onal to the 𝑥 axis and compute the force 𝑭𝒚𝒛(𝑥) based on
the vorticity observed on that plane. Then integrate 𝑭𝒚𝒛(𝑥)
along 𝑥. Repeat the same procedure for planes orthogonal
to the 𝑦 and the 𝑧 axes to find the forces 𝑭𝒙𝒛(𝑦) and 𝑭𝒙𝒚(𝑧).
The total force is

𝑭 = 1
2

(
∫ 𝑭𝒚𝒛(𝑥) d𝑥 + ∫ 𝑭𝒙𝒛(𝑦) d𝑦 + ∫ 𝑭𝒙𝒚(𝑧) d𝑧

)
.

(24)

An example of how to implement eq. 22 and 24 is provided
in the following sections (§4.1 and 4.2).

4.1. 3D Plate at Low Incidence
Consider a plate with a chord 𝑐 and span 𝑏 at a small

angle of attack 𝛼. The reference system 𝑂(𝑥, 𝑦, 𝑧) is placed
at the leading edge at one end of the span, and has direc-
tions 𝒊, 𝒋, 𝒌 in the drag, lift, and span directions respectively
(Fig. 7). The plate forms a vortex ring enclosed between
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Figure 7: 3D plate at low incidence.

the plate’s bound vortex, the two tip vortices and the starting
vortex. The strength of the vortex ring is constant and equal
to the bound vorticity, i.e. Γ+ = −Γ𝑏, and no further vortex
rings are formed, i.e. Γ̇+ = 0. The projection of the surface
area of the vortex ring on the 𝑦 = 0 plane increases along the
𝑥-direction at a rate �̇�𝑦 = 𝑈𝑏. We considered the projected
area because the vortex ring is at an angle with respect to
the free stream. In fact, due to their reciprocal induced ve-
locities, the tip vortices convect along the 𝑦-direction with a
negative velocity 𝑉 (with |𝑉 | ≪ |𝑈 |), which is the down-
wash velocity. Therefore, the surface area of the vortex ring
increases in the 𝑦-direction at a rate �̇�𝑥 = −𝑉 𝑏. Substituting
these results into eq. 22, we find

𝐿 = 𝜌Γ+�̇�𝑦 = −𝜌𝑈Γ𝑏𝑏, (25)

𝐷 = −𝜌Γ+�̇�𝑥 = 𝜌𝑉 Γ𝑏𝑏, (26)

and, in non dimensional form,

𝐶𝐿 = −2
Γ𝑏
𝑈𝑐

, (27)

𝐶𝐷 = 2𝑉
𝑈

Γ𝑏
𝑈𝑐

. (28)

These lift and drag results (eq. 25 and 26) are consistent with
lifting line theory (Milne-Thomson, 1958) and were inde-
pendently derived by Lanchester (1907) and Prandtl (1918).
They provide accurate results at small angles of incidence,
where there is no leading-edge separation.

As mentioned above, it is less commonly appreciated
that the same results can be achieved from eq. 24, which be-
comes

𝑭 = 1
2

(
∫

𝑐′

0
𝑭𝒚𝒛(𝑥) d𝑥 + ∫

𝑏

0
𝑭𝒙𝒚(𝑧) d𝑧

)
, (29)

where 𝑐′ = 𝑐 cos 𝛼. This formulation allows the use of the
results of the 2D analysis. 𝑭𝒙𝒚 is the two-dimensional force

on planes parallel to the (𝑥, 𝑦) plane, whilst 𝑭𝒚𝒛 is the two-
dimensional force on planes parallel to the (𝑦, 𝑧) plane. Both
forces can be computed with eq. 5. 𝑭𝒙𝒚 was computed in
§3.1 and is given by eq. 8. 𝑭𝒚𝒛 can be computed noting that
vorticity must be produced at the two tips at a rate Γ̇𝑏 =
Γ𝑏𝑈∕𝑐′ to allow the tip vortices to lengthen. Substituting
this result together with eq. 8 into eq. 29, we find

𝐿 = −
𝜌

2
(
(Γ𝑏𝑈∕𝑐′)𝑏𝑐′ + 𝑈Γ𝑏𝑏

)
= −𝜌𝑈Γ𝑏𝑏, (30)

which is the same result as eq. 25.
It is important to note that, for every vortex ring, the two

integrals in eq. 29 give the same result, and thus it is suf-
ficient to solve only one of the two integrals. Consider, for
example, a rectangular vortex ring with area parallel to the
wing. If the legs of the ring parallel to the span are pulled
apart, the other two legs parallel to the tips must lengthen.
On the plane 𝑧 = 𝑏∕2, we would observe an LEV and a TEV
being pulled apart, while on the plane 𝑥 = 𝑐′∕2 we would
observe vorticity being produced to lengthen the legs par-
allel to the tips. The force per unit length associated with
pulling the two legs apart is 𝑭𝒙𝒚 (in the second integral of
eq. 29), and this is equal to the force per unit length asso-
ciated with the lengthening of the legs parallel to the tips,
which is 𝑭𝒚𝒛 (in the first integral of eq. 29). The impor-
tant consequence of this is that the three-dimensional solu-
tion, eq. 30, gives the same force per unit span as the two-
dimensional solution, eq. 8.

In §3.1, it was noted that the drag of a plate at low inci-
dence is approximately zero (eq. 9). However, in 3D there is
a downwash velocity𝑉 , which is the relative 𝑦-velocity com-
ponent between the bound and the starting vortex. Hence,
𝑭𝒙𝒚 is a vortex force 𝐷 = −𝜌𝑉 Γ𝑏. 𝑭𝒚𝒛 is associated with
the vorticity produced at the two tips at a rate Γ̇𝑏 = −Γ𝑏𝑉 ∕𝑐′
to allow the tip vortices to lengthen along the 𝑦-direction.
Note that vorticity of the opposite sign is produced at the
same rate at the two tips. Substituting these two results into
eq. 29, we find

𝐷 =
𝜌

2
(
(Γ𝑏𝑉 ∕𝑐′)𝑏𝑐′ + 𝑉 Γ𝑏𝑏

)
= 𝜌𝑉 Γ𝑏𝑏, (31)

which is the same result as eq. 26.
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Figure 8: 3D plate at high incidence.

4.2. 3D Plate at High Incidence
Consider a plate at high incidence. The vorticity pro-

duced from the perimeter of the wing forms a vortex ring
(Fig. 8). The direction orthogonal to the vortex ring is the
plate-normal direction, defined by the unit vector 𝒏⟂ (which
is approx. 𝒊). The continuous production of vorticity results
in new vortex rings being continuously formed and shed down-
stream.

Equation. 22 becomes

𝑭 = 𝜌Γ̇+𝐴𝒏⟂. (32)

This force is made up of two components in the lift and drag
directions, namely

𝐿 = 𝜌Γ̇+𝐴 cos 𝛼, (33)

𝐷 = 𝜌Γ̇+𝐴 sin 𝛼, (34)

and in non dimensional form,

𝐶𝐿 = 2 Γ̇
+

𝑈2
cos 𝛼, (35)

𝐶𝐷 = 2 Γ̇
+

𝑈2
sin 𝛼. (36)

Assuming Γ̇+ = 𝑈2
SL∕2 as in eq. 14 with 𝑈SL ≈ 𝑈 , this

formulation gives 𝐶𝐿 = 0 and 𝐶𝐷 = 1 for 𝛼 = 𝜋∕2. This is
consistent with flat plate experiments (White, 2011), where
𝐶𝐷 decreases from 2 for an infinite aspect ratio to 1.5, 1.2
and 1.18 for a plate with aspect ratio 20, 5 and 2, respectively.
It is noted that White (2011) states that these results are valid
for Reynolds numbers of at least 104.

This result can be refined by accounting that the shear
layer velocity is higher than the free stream velocity (𝑈SL >

𝑈 ) and that the wake thickness increases along the stream-
wise direction, i.e. the growth of the surface area of the shed
vortex ring �̇�. This is akin of the role of the coefficients 𝑘
and 𝑘′ for the two-dimensional case (§3.2).

The same results as above can be achieved by integrating
the two-dimensional forces using eq. 24, which reduces to

eq. 29 for the case considered. A force associated with the
vorticity production, which is uniform along the perimeter
of the plate, and a vortex force associated with the growth of
the wake, i.e. of the area of the vortex ring, can be identified.
For each of these two force components, the two integrals in
eq. 29 are identical and, hence, the three-dimensional and
two-dimensional formulations give the same force per unit
span. Consider, for example, the force associated with the
production of vorticity, which is associated with the domi-
nant force generation mechanism for low aspect ratio plates
and which is the only one considered in the generation of
eq. 32. Because the vorticity is generated uniformly along
the perimeter of the plate, eq. 29 becomes

𝐿 = −
𝜌

2
(
Γ̇𝑏𝑏𝑐 + Γ̇𝑏𝑐𝑏

)
cos 𝛼 = −𝜌Γ̇𝑏𝑏𝑐 cos 𝛼, (37)

𝐷 = −
𝜌

2
(
Γ̇𝑏𝑏𝑐 + Γ̇𝑏𝑐𝑏

)
sin 𝛼 = −𝜌Γ̇𝑏𝑏𝑐 sin 𝛼, (38)

which is the same result as eq. 32 (in fact, Γ+ = −Γ𝑏 and
𝐴 = 𝑏𝑐).

5. Interaction Between two Lifting Surfaces
Consider two 2D plates at low incidence and, as an ex-

ample, chose the relative position as representative of the jib
and the mainsail while sailing upwind as in Fig. 9. The two
plates operate at low incidence and the forces are mostly as-
sociated with their bound circulations. Because the vorticity
production is negligible as long as the boundary layer is at-
tached, the flow is inviscid everywhere except in the bound-
ary layers of the two plates, whose integral of vorticity is the
bound circulation. For this reason, inviscid flow codes are
accurate in these flow conditions. Consider the bound circu-
lation represented as a single vortex in the centre of the plate
such that the whole potential flow field can be represented by
a bound vortex in the centre of each plate.1 The values of the

1The bound circulation could be more accurately placed at the quarter
chord to ensure the correct pitch moment, and the Kutta condition should
be applied at the collocation point located half chord downstream along the
chord (Katz and Plotkin, 2001). However, this would be less intuitive and
unnecessary for the present discussion.
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Figure 9: Interaction between two plates.

bound vortices are such as to ensure that the Kutta condition
is satisfied at the trailing edge of the two plates.

Let us consider the effect of the back plate on the bound
circulation of the front plate. In the absence of a second
plate, it is shown in §3.1 that Γ𝑏 = −𝜋𝑈𝑐 sin 𝛼. Conversely,
the bound circulation Γ𝑏2 of the back plate induces a plate-
normal velocity at the trailing edge of the front plate that is
opposite in sign to that induced by the bound circulation Γ𝑏1
of the front plate. Therefore, to ensure that the Kutta condi-
tion is satisfied, the circulation of the front plate is higher in
the presence of the back plate (Γ𝑏1 > Γ𝑏). Vice versa, the
plate-normal induced velocities due to the two bound circu-
lations have the same sign at the trailing edge of the back
plate. Therefore, Γ𝑏2 is decreased by the effect of Γ𝑏1.

This result was explained by Gentry (1971, 1973) for the
case of two sails. He noted that the circulation of the front
sail (e.g. the jib) is enhanced by the presence of the back
sail (e.g. the mainsail), and the circulation of the back sail is
diminished by the presence of the front sail. There are only
two conditions when this is not true. First, when there is
significant overlap between the two sails (e.g. when a large
genoa is used instead of a jib), such that the induced velocity
𝑢2 has a positive component along 𝑢1. Second, when the
presence of the front sail prevents the back sail from stalling.
In this case, if the front surface was removed, the circulation
of the back sail would not increase but drop.

6. Effect of Free Vorticity on the Force
In the previous section (§5), the back plate was modelled

as a discrete vortex with circulation Γ𝑏2 and the effect of this
vortex on the front plate was discussed. It is therefore natural
to extend this analysis to the effect that any free vortex in the
flow field has on an isolated plate. Hence, in this section,
the effect of free vortices outside of the boundary layer on
the force generation is discussed. To investigate, a generic
velocity and vorticity fields that could represent the result of
a numerical simulation or of flow visualisation are consid-
ered. In the following section (§6.1) this flow field is derived
analytically for convenience, but the aim of this section is to
provide guidelines on how measured or computed flow fields
can be interpreted.

It must be emphasised that the proposed approach based
on lumped vortices is a discrete representation of a contin-
uous vorticity field. Hence, in the present discussion, vor-

tices can be intended as the integral of the vorticity within
any region of the fluid domain. For example, Pitt Ford and
Babinsky (2013) and Arredondo-Galeana and Viola (2018)
considered a stalled plate in 2D laminar flow conditions, and
a stalled 3D wing in turbulent flow conditions, respectively.
They measured the velocity field with particle image velo-
cimetry and used the vortex detection criterion 𝛾2 (Graftieaux
et al., 2001) to identify coherent vortical structures. They
lumped all the vorticity measured in the flow field into the
centroid of these vortical structures, and reconstructed the
velocity field through a potential flow model with irrota-
tional vortices. This allowed considering the force associ-
ated with the vorticity in different regions of the fluid do-
main.

6.1. The Flow Field Around a Circular Arc with a
Free Vortex

Consider a circular arc, as an example of lifting surface,
and compute the bound vorticity that is necessary to ensure
the Kutta condition through a Kutta-Joukowsky transforma-
tion (Katz and Plotkin, 2001). The flow field around a cylin-
der is achieved by combining a free stream velocity 𝑈 and
a doublet. Add a vortex with circulation Γ𝑏 at the centre of
the cylinder (Fig. 10), which is taken to have radius 𝑅. The
centre of the cylinder is placed in a complex coordinate ref-
erence system at 𝜁0 = 𝜇𝑖, such that the transformed cylinder
is a curved plate with maximum camber 2𝜇. The resulting
potential flow field describes the flow around a plate with
circulation Γ𝑏.

Add a free vortex with circulationΓ𝑣 outside of the cylin-
der, at the complex coordinate 𝜁𝑣 = 𝜌𝑣𝑒

𝑖𝜏𝑣 + 𝜇𝑒𝑖𝜋∕2, where
𝜌𝑣 and 𝜏𝑣 are the radial and azimuthal coordinate of the vor-
tex, respectively. The vortex has a mirror vortex inside the
cylinder at 𝜁 ′

𝑣
= (𝑅2𝜌−1

𝑣
)𝑒𝑖𝜏𝑣 + 𝜇𝑒𝑖𝜋∕2 to maintain the non-

penetration condition on the cylinder surface. The sum of the
vortices inside the cylinder represent the integral of the vor-
ticity in the boundary layer. We want this to be Γ𝑏, and there-
fore add an additional vortex Γ𝑣 in the centre of the cylinder.
The combined effect of −Γ𝑣 at the image vortex location and
Γ𝑣 in the centre of the vortex is simply to redistribute the to-
tal amount of vorticity Γ𝑏 within the boundary layer.2 The

2With the proposed approach, which is the same as in Pitt Ford and
Babinsky (2013), we consider the bound vortex and the external vortex as
separate identities. For example, the external vortex could be a vortex gust.
It should be noted that an alternative approach is to consider the external
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overall complex potential is (Arredondo-Galeana and Viola,
2018)

𝐹 (𝜁 ) = 𝑈 (𝜁 − 𝜁0)𝑒−𝑖𝛼 +
𝑈𝑅2𝑒𝑖𝛼

(𝜁 − 𝜁0)

−
𝑖(Γb + Γ𝑣)

2𝜋
ln(𝜁 − 𝜁0) −

𝑖Γ𝑣
2𝜋

ln
𝜁 − 𝜁𝑣

𝜁 − 𝜁 ′
𝑣

.

(39)

The complex velocity in the cylinder plane is given by dif-
ferentiating the complex potential with respect to 𝜁 , that is

𝑊 (𝜁 ) =
d𝐹 (𝜁 )
d𝜁

= 𝑈𝑒−𝑖𝛼 − 𝑈𝑅2𝑒𝑖𝛼

(𝜁 − 𝜁0)2
−
𝑖(Γb + Γ𝑣)

2𝜋
1

𝜁 − 𝜁0

−
𝑖Γ𝑣
2𝜋

[
1

𝜁 − 𝜁𝑣
− 1
𝜁 − 𝜁 ′

𝑣

]
.

(40)

The real and imaginary part of the complex velocity give
the streamwise and cross-flow velocity components, respec-
tively. The resulting flow field is showed in Fig. 11a. The
cylinder plane can be mapped into the circular arc plane with
the transformation 𝑧 = (𝜁 + 𝑅𝜁−2)𝑒−𝑖𝛼 (Fig. 11b). The
bound circulation that ensures the Kutta condition is found
by the additional condition that the point on the cylinder cor-
responding to the trailing edge, 𝜁TE = 𝑅 𝑒−𝑖𝛽 + 𝑖𝜇 = 0, is a
stagnation point, i.e. 𝑊 (𝜁TE) = 0.

Solving eq. 40 for Γ𝑏 gives an expression for the bound
circulation as a function of the circulation and position of the
external vortex:

Γ𝑏 = −4𝑅𝜋𝑈 sin(𝛼 + 𝛽) − 𝜅Γ𝑣, (41)

where 𝛽 = atan(4𝜇∕𝑐) is the effective angle of attack due to
the plate curvature, and

𝜅 = 2𝑅
𝑅 − 𝜌𝑣 cos(𝛽 + 𝜏𝑣)

𝑅2 + 𝜌2
𝑣
− 2𝑅𝜌 cos(𝛽 + 𝜏𝑣)

. (42)

The first term on the right hand side of eq. 41 is the value
that the bound circulation would have without the external
vortex. Because it is negative, it is associated with a pos-
itive lift. The presence of the external vortex modifies the
bound circulation by the coefficient 𝜅, which depends on the
spatial location of the vortex with respect to the circular arc.
The contours of 𝜅 in the cylinder and circular arc planes are
shown in Fig. 11a and b, respectively. The effect of the ex-
ternal vortex on the force generation is discussed in the next
two sections (§6.2 and 6.3).

6.2. Effect of a Free Vortex on the Force
The flow field described in §6.1 is made of two vortices:

the external vortex and a vortex with circulation Γ𝑏 repre-
senting the overall vorticity in the boundary layer. The force

vortex as vorticity that was in the boundary layer such as, for example, in
Corkery et al. (2019). In this latter case, the additional vortexΓ𝑣 is no longer
added in the centre of the cylinder, Γ𝑏 is the vorticity that was originally in
the boundary layer, while Γ𝑏−Γ𝑣 is the remaining vorticity in the boundary
layer after Γ𝑣 has been shed.

Figure 10: Complex plane of a rotating cylinder with an ex-
ternal vortex.

generation is associated with the kinematics of vortex pairs
that can be arbitrary chosen as long as all the circulation is
accounted for and that the net circulation is zero to satisfy
Kelvin’s theorem.

Because the net observable vorticity is Γ𝑏+Γ𝑣 ≠ 0, then
there must be circulation with equal magnitude and oppo-
site sign somewhere far away along the wake. For example,
consider the vortex pair made of Γ𝑏 in the boundary layer
and −Γ𝑏 infinite downstream, and the vortex pair made of
Γ𝑣 near the circular arc and −Γ𝑣 infinitely downstream. The
force is associated with the change in size and orientation of
these two vortex pairs.

The bound circulation is moving away from the starting
vortex at velocity𝑈 , thus leading to the Kutta-Joukowsky lift
(eq. 8): 𝐿𝑏 = −𝜌𝑈Γ𝑏. The contribution of the free vortex
is not as straightforward because its velocity depends on its
position. If we use this approach to interpret the results of
a numerical or experimental flow field, a critical distinction
must be made.

If the flow is instantaneous, the velocity of the circula-
tion Γ𝑣 could be approximated by the average velocity in
the region occupied by the vorticity (better if the average
is weighted by the distribution of vorticity). Its force con-
tribution is zero only if the free vortex convects downstream
with velocity 𝑈 , which is equivalent to the convection of the
vortex pair being frozen. For example, consider the circu-
lar arc being a yacht sail. If the free vortex was a vortex
gust in turbulent wind and its trajectory was unchanged by
the sail, it would have no force contribution. Conversely, if
the free vortex is close enough to the sail such that the ve-
locity induced by the bound circulation on the free vortex is
not negligible, then the vortex pair would be modified giving
rise to a gust force.

Therefore, if the streamwise velocity of a vortex with
positive circulation is higher than 𝑈 , it is associated with
a positive lift, and vice versa if the circulation is negative
(e.g. the LEV in eq. 21). When the cross-flow velocity in
the 𝑦-direction (with reference to Fig. 10b) of a vortex with
positive circulation is positive, it is associated with thrust,
and with drag if the circulation is negative.
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Figure 11: Contour of 𝜅 on the cylinder plane 𝜁 (a) and the circular arc plane 𝑧. White dotted lines show the radial
and azimuthal coordinates 𝜌 and 𝜏. Black dotter lines show an example of streamlines for the arbitrary set of values
Γ𝑏∕(𝑐𝑈 ) = 0.26, Γ𝑣∕(𝑐𝑈 ) = 2.5, 𝜌∕𝑅 = 1.15 and 𝜏 = 𝜋∕2.

6.3. Effect of a Free Vortex on the Bound
Circulation

The effect of the free vortex on the bound circulation can
be deduced from equations 41 and 42. The addition of free
vorticity in the surrounding fluid contributes with an induced
velocity at the trailing edge, thus resulting in a different value
of the bound circulation. If the free vortex is on the lifting
surface, then 𝜅 = 1 and the bound circulation is reduced
precisely by the free vortex circulation (Fig. 11). Its effect
decreases with increasing distance from the lifting surface.

Consider, for example, a realistic flow field with leading-
edge separation and time averaged reattachment. The vortic-
ity in the LEV contributes to the generation of induced veloc-
ity at the trailing edge and thus the bound circulation must be
lower than it would have been without LEV. Therefore, while
the LEV provides a positive lift contribution (see eq. 21), it
also leads to a lower bound circulation. The sum of the two
effects cancel out each other perfectly if the LEV remains in
a fixed position with respect to the lifting surface and at posi-
tion 𝜅 ≈ 1 (e.g. see the trapped vortex discussed by Saffman
and Sheffield, 1977). The lift enhancing mechanism of the
LEV, firstly observed by Ellington et al. (1996) and then well
documented by many others (Birch and Dickinson, 2001;
Muijres et al., 2008; Lentink and Dickinson, 2009; Lentink,
2011; Videler, 2004; Harbig et al., 2013; Wong and Rival,
2015; Nabawy and Crowther, 2017; Linehan and Mohseni,
2020), is referred to the difference in lift between a wing
with LEV and a wing otherwise stalled. In fact, the main
role of the LEV is to retain leading-edge vorticity near the
lifting surface instead of letting it convect downstream at the
freestream velocity.

7. Forces from Time-Averaged Flow Fields
If the flow field is time averaged, the velocity of any ob-

served vorticity is null. Hence, equation eq. 5 or 23 cannot be
used because �̇� cannot be observed. However, it is noted that
time-averaged vorticity around the solid body is, on average,
moving with the body. Therefore, the Kutta-Joukowsky lift
formula holds also for a time-averaged flow field where the
bound circulation is the integral of all of the observed time-
averaged vorticity within a region including the solid body
and intersecting its wake orthogonally. The lift contribution
of the vorticity production and of the vortex lift contribution
of repeatedly shed vortices is not neglected but is implic-
itly included. In fact, the lower the flow velocity convecting
vorticity through an arbitrary volume, the higher the time av-
eraged value of vorticity in the volume.

The time-averaged drag can be estimated using Taylor’s
formula (Taylor’s Appendix in Bryan et al., 1925),

𝐷 = ∫𝑊 (𝑝 − 𝑝0) d𝑦, (43)

which states that the drag is the integral over a line 𝑊 in-
tersecting the wake orthogonally, of the difference between
the pressure in the wake 𝑝 and that in the far field 𝑝0. By
using the Bernoulli equation, it is found that Taylor’s for-
mula shows that the drag is equal to the momentum loss in
the wake, a result directly verifiable by applying Newton’s
second law. Wu et al. (2006) recently showed that the first
order approximation of eq. 43 is

𝐷 = −𝜌𝑈 ∫𝑊 𝑦𝑤 d𝑦, (44)
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thus enabling the use of Taylor’s formula by knowledge of
only the vorticity field along 𝑊 . For example, a two-dimen-
sional plate with chord 𝑐 at incidence 𝛼 that generates vortic-
ity at a rate Γ̇, forms two shear layers with strength 𝛾 = Γ̇∕𝑈
that extend from each edge of the plate to infinity. The shear
layers are the only vorticity that intersects𝑊 and thus eq. 44
becomes

𝐷 = 𝜌𝑈𝛾𝑐 sin 𝛼 = 𝜌Γ̇𝑐 sin 𝛼. (45)

Substituting 𝛾 = Γ̇∕𝑈 into eq. 45, gives precisely eq. 17.
Liu et al. (2015) show that eq. 44 is equivalent to Filon’s

drag formula when the shear layer approximation 𝜕∕𝜕𝑦 ≫

𝜕∕𝜕𝑥 is used. Therefore, eq. 44 is a form of the Filon’s for-
mula that, together with the Kutta-Joukowsky formulation,
allows the computation of the time-averaged lift and drag.

These two equations together, that we call the Kutta-
Joukowsky-Filon equations, can be combined into one vec-
torial equation and extended to three-dimensional flow as
(Liu et al., 2017)

𝑭 = 𝜌𝑼 × 𝚪𝒃 + 𝜌𝑼𝑄, (46)

where

𝑄 = 1
𝑛𝑑 − 1 ∫𝑆𝑊 (𝑧𝜔𝑦 − 𝑦𝜔𝑧) d𝑆, (47)

𝑛𝑑 = 2 and 3 in two and three dimensions, respectively. 𝑆𝑊

is a plane orthogonally intersecting the wake. For example,
for a plate with span 𝑏 and chord 𝑐 at incidence 𝛼, eq. 46
becomes

𝑭 = 𝜌𝑈Γ𝑏𝑏 𝒋 + 𝜌𝑈𝛾𝑏𝑐 sin 𝛼 𝒊. (48)

Noting that 𝛾 = Γ̇∕𝑈 , this result is consistent with eq. 25
and 34.

8. Conclusions
Force generation on fins, wings, blades and sails have

been traditionally explained through thin airfoil theory and
lifting line theory. However, the underlying assumptions of
these theories are not compatible with separated flow. There-
fore, a new paradigm is proposed, that is compatible with
both attached and separated flow conditions, and both stream-
lined and bluff bodies.

Based on the impulse theory, this paradigm enables an
intuitive and in-depth understanding of some of the key re-
sults of thin airfoil theory and lifting line theory. In addition,
it provides an intuitive interpretation of how a region of vor-
ticity in the flow field is associated with a force contribution.
Hence, the proposed approach can guide designers of lifting
surfaces by providing quantitative objectives based on the
observed flow field.

The proposed paradigm is as follows. To ensure the non-
slip and non-penetration condition, the sail must generate
vorticity. The vorticity in the boundary layer is exactly what
is needed to ensure these two conditions. The Kutta con-
dition and Kelvin’s theorem set two further conditions that

make this vorticity field completely determined, both in the
boundary layer and infinitely far from the solid body. This
vorticity field can be described as an ensemble of vortex
rings, which degenerate in vortex pairs in two dimensions.
The force on the solid body associated with each vortex ring
is the rate of change of their impulse 𝑰 :

𝑭 = 𝜌
d𝑰
d𝑡

= 𝜌
(
Γ̇+𝐴 + Γ+�̇�

)
𝒏, (49)

There are three mechanisms by which the impulse can
be changed: (1) generating new vortex rings at a rate Γ̇+; (2)
varying the area of the vortex ring at a rate �̇�; (3) rotating
the vortex ring and thus the orientation of 𝒏.

1. The first mechanism is that of bluff bodies such as
parachutes, whose continuous generation of vortex rings
parallel to the parachute surface results in a drag per
unit span that is 𝐷 = 𝜌Γ̇+𝐴. When the vorticity is
generated along a perimeter that does not entirely lies
on a plane orthogonal to the stream, this force contri-
bution has both a lift and a drag component.

2. The second mechanism is that of streamlined bodies
such as an airplane wing at low incidence. The vortex
ring is enclosed between the wing of span 𝑏, the tip
vortices and the starting vortex. The area of the vortex
ring increases at a rate �̇� = 𝑈𝑏, resulting in a lift per
unit span 𝐿 = 𝜌𝑈Γ.

3. Any vortex ring in the fluid such as, for instance, the
parachute-type vortex ring generated around the perime-
ter of a solid body, might change shape and orienta-
tion. For any plane intersecting the ring, the vortex
force per unit depth is proportional to the 𝜌𝛿𝑈Γ, where
𝛿𝑈 is the difference in velocity between the legs of the
vortex ring.

Based on this paradigm, the knowledge of the instanta-
neous vorticity and velocity field allows the computation/
interpretation of the instantaneous lift and drag. Moreover,
it is also shown that the time-averaged vorticity field alone
is sufficient to compute/interpret the time-averaged lift and
drag by using the Kutta-Joukowsky-Filon equation.
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Appendix
Consider a 2D plate at an angle of attack sufficiently large

such that the flow is separated at both the leading and trailing
edges, and the separated shear layers are oriented approxi-
mately in the streamwise direction (e.g. Fig. 6). Write two
equations for the chord-normal velocity, which must be zero
due to the Kutta condition, at both the leading and trailing
edge. As we are only interested in an estimate of the sign
of the bound circulation, the leading- and trailing-edge sep-
arated shear layers are represented with a single point vortex
with circulation −Γ and +Γ, respectively, at a streamwise
distance 𝛿𝑥 from the plate edge.

The bound vortex is placed in the middle of the plate.
At the leading edge, the sum of the chord-normal velocities

due to the free stream velocity, the shear layer and the bound
vorticity are

𝑈 sin 𝛼 + Γ
2𝜋𝛿𝑥

cos 𝛼 −
Γ𝑏
𝜋𝑐

= 0. (50)

At the trailing edge, the sum of the chord-normal velocities
is

𝑈 sin 𝛼 − Γ
2𝜋𝛿𝑥

cos 𝛼 +
Γ𝑏
𝜋𝑐

= 0. (51)

Subtracting eq. 51 from eq. 50, gives

Γ
𝜋𝛿𝑥

cos 𝛼 −
2Γ𝑏
𝜋𝑐

= 0. (52)

Solve for Γ𝑏 to obtain

Γ𝑏 =
cos 𝛼
2

𝑐

𝛿𝑥
Γ > 0, (53)

which is positive because every term on the right hand is
defined positive.

CRediT authorship contribution statement
I.M. Viola: Conceptualisation, formal analysis and writ-

ing of the manuscript. Abel Arredondo-Galeana: Devel-
opment of the complex potential and review of the manuscript.
Gabriele Pisetta: Numerical simulations to test some of the
hypothesis underlying this work and review of the manuscript.

IM Viola et al.: Preprint submitted to Elsevier Page 16 of 16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The force generation mechanism of lifting surfaces with flow separation


	The Force Generation Mechanism of Lifting Surfaces with FlowSeparation
	ABSTRACT
	1. Introduction
	2. Impulse Theory
	3. Two-dimensional Flow
	4. Three-dimensional Flow
	5. Interaction Between two Lifting Surfaces
	6. Effect of Free Vorticity on the Force
	7. Forces from Time-Averaged Flow Fields
	8. Conclusions
	Acknowledgements
	References



