
Nonlocal strong forms of thin plate, gradient elasticity,

magneto-electro-elasticity and phase field fracture by nonlocal

operator method

Huilong Renc, Xiaoying Zhuange,d, Erkan Oterkusf, Hehua Zhue, Timon Rabczuka,b,∗

aDivision of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
bFaculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

cInstitute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar, Germany
dInstitute of Continuum Mechanics, Leibniz University Hannover, Hannover, Germany

eState Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering,Tongji
University, Shanghai 200092, China

fDepartment of Naval Architecture, Ocean and Marine Engineering, PeriDynamics Research
Centre,University of Strathclyde, 100 Montrose Street, Glasgow G4 0LZ, UK

Abstract

The derivation of nonlocal strong forms for many physical problems remains cumbersome

in traditional methods. In this paper, we apply the variational principle/weighted resid-

ual method based on nonlocal operator method for the derivation of nonlocal forms for

elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase field fracture

method. The nonlocal governing equations are expressed as integral form on support and

dual-support. The first example shows that the nonlocal elasticity has the same form as

dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general

and it can convert efficiently many local physical models into their corresponding nonlocal

forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed

for the fracture modelling in linear elasticity. Several numerical examples are presented to

validate nonlocal elasticity and the nonlocal thin plate .
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1. Introduction

Classical continuum mechanics has achieved great success in describing the macro-scale

properties of solid material based on the continuous medium hypothesis that the material

is a continuous mass rather than as discrete particles. The assumption indicates that the

substance of the object completely fills the space it occupies, without considering the inherent

micro-structure of the material. Such a continuous medium hypothesis is not always valid

in solid medium. Over the years, researchers found that many phenomena, such as size

effect [1], length scale effect [2], skin/edge effect [3], can not be well predicted by traditional

continuum mechanics. These phenomena may be attributed to the nonlocal effect in the

solid. In contrast with local theory whose mathematical language is partial differential

derivatives defined at an infinitesimal point, nonlocal theory is formulated as integral form

in a domain.

Classical continuum mechanics is regarded as a local theory. For solid mediums of multi-

ple materials with material interface or discontinuity such as fracture, the partial differential

operator is no longer well defined. Around the fracture front tip, the stress singularity hap-

pens for local theory. In order to model fracture and its evolution, various local theories

have been proposed, for example, finite element method (FEM) [4], extended finite element

method [5], phase-field fracture method [6, 7, 8], cracking particle method [9, 10], extended

finite element method [11], numerical manifold method [12], extended isogeometric analysis

(XIGA) for three-dimensional crack [13], meshfree methods [14, 15, 16]. Another approach

for fracture modeling is the nonlocal method. Compared with classical continuum mechanics

without length scale, nonlocal theory takes into account the length scale explicitly and it

is less sensitive to the inhomogeneity/discontinuity encountered in the materials due to its

integral form.

Two general theories to account for the length scale of solid material, are the gradient

elasticity [17, 1, 18, 19, 20] and the nonlocal elasticity [21, 22, 23, 24]. The gradient elasticity

theory can be traced back to Cosserat theory in 1909 [25]. It incorporates the length scale

and higher order derivative of the displacement field. A variety of gradient elasticity theories
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have been proposed such as Mindlin solid theory [17, 2], couple stress theory [1, 26], modified

couple stress [18, 27] and second-grade materials [19]. In nonlocal elasticity, the stress tensor

is based on the integral of the “local” stress field in a domain, in contrast with the local

elasticity defining the stress based on the strain field at a point. Under certain circumstances,

the nonlocal elasticity can be transformed into gradient elasticity [23, 28].

Among various nonlocal elasticity theories, Peridynamics (PD) [29, 30] has attracted the

attention of the researchers in the fracture mechanics field. PD is based on the integral

form well defined in domain with/without discontinuity. This salient feature enables PD a

versatile method for fracture modeling [31, 32, 33, 34]. The origin of PD is the bond-based

PD (BB-PD) with the Poisson ratio restriction. BB-PD can model 2D elasticity with Poisson

ratio of 1/3 and 3D elasticity with Poisson ratio of 1/4. Many efforts have been dedicated

to overcome this restriction, for example, PD with shear deformation [35], bond-rotation

effect by [36], PD with micropolar deformation [37]. The further development of PD is

the state-based PD [30, 38]. Several treatments are developed to overcome the instability

issue in non-ordinary state-based PD (NOSBPD), including, bond-associated higher-order

stabilized model [39], higher-order approximation [40], stabilized non-ordinary state-based

PD [41, 42], sub-horizon scheme [43] and stress point method [44].

In the spirit of nonlocality, PD has been extended in many directions, for example, dual-

horizon PD [45, 46], peridynamic plate/shell theory [47, 48, 49, 50], mixed peridynamic

Petrov–Galerkin method for compressible and incompressible hyperelastic material [51, 52],

phase field based peridynamic damage model for composite structures [53], wave dispersion

analysis of PD [54], damage mechanism in PD [55], coupling scheme for state-based PD and

FEM [56, 57], higher-order peridynamic material models for elasticity [58] and Peridynamic

differential operator (PDDO) [59, 60, 61] for solving partial differential equations, to name

a few. PDDO has greatly extended the power of peridynamics and was applied to numer-

ous challenging problems including fluid flow coupled with heat transfer [62] and fracture

evolution in batteries [63] among others.

Dual-horizon PD overcomes the restriction of constant horizon in PD, without introduc-

ing side effects for variable horizons. Dual-horizon peridynamic formulation can be derived
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from the Euler-Lagrange equations [64]. Based on the concept in nonlocal theory, we de-

veloped the Nonlocal Operator Method (NOM) as the generalization of dual-horizon PD.

NOM uses the nonlocal operators of integral form to replace the local partial differential

operators of different orders. There are three versions of NOM, first-order particle-based

NOM [65, 66], higher order particle-based NOM [67] and higher order NOM based on nu-

merical integration [68]. The particle-based version can be viewed as a special case of NOM

with numerical integration when nodal integration is employed. The nonlocal operators can

be viewed as an alternative to the partial derivatives of shape functions in FEM. Combined

with a variational principle or weighted residual method, NOM obtains the residual vector

and tangent stiffness matrix in the same way as in FEM. NOM has been applied to the solu-

tions of the Poisson equation in high dimensional space, von-Karman thin plate equations,

fracture problems based on phase field [67], waveguide problem in electromagnetic field [66],

gradient solid problem [68] and Cahn-Hilliard equation [69].

Although much progress in nonlocal methods has been achieved in the above mentioned

literatures, the derivations for many physical problems remain cumbersome and compli-

cated, see for example [48, 70, 58, 71]. In local theory, the local differential operator is a

fundamental element for describing physical problems. In analogy, the nonlocal operators

would be very beneficial for developing nonlocal theoretical models. The power of NOM in

deriving nonlocal models remains largely unexplored. In addition, NOM based on implicit

algorithms is relatively complicated in implementation and in this paper, we explore the

explicit algorithm in solving the nonlocal models. Furthermore, we propose an instability

criterion of the nonlocal gradient operator for the purpose of fracture modeling.

The remaining of the paper is outlined as follows. In section 2, the second-order NOM

in 2D/3D is formulated in detail. In section 3, we apply the NOM scheme combined with

variational principle/weighted residual method to derive the nonlocal governing equations for

elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase field fracture

model. The correspondence between local form and nonlocal form for higher order problems

is discussed. In section 4, an instability criterion of nonlocal gradient is presented in the

fracture modeling of linear elastic solid. The implementation of nonlocal solid and nonlocal
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thin plate is discussed in section 5. Several numerical examples for solid and thin plate are

used to demonstrate the accuracy and efficiency of the current method in section 6. Last

but not the least, some concluding remarks are presented.

2. Second-order nonlocal operator method

NOM uses the integral form to replace the partial differential derivatives of different

orders. Although NOM can solve higher order linear/nonlinear problems in 2D/3D, we

restrict our discussion in second-order NOM, which is sufficient for the nonlocal derivation

of the physical problems to be studied in section 3.

2.1. Support and dual-support
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Figure 1: (a) Domain and notation. (b) Schematic diagram for support and dual-support, all shapes above

are supports, Sx = {x1,x2,x4}, S ′x = {x1,x2,x3}.

Consider a domain as shown in Fig.1(a), let xi be spatial coordinates in the domain Ω;

rij := xj − xi is a spatial vector starting from xi to xj; vi := v(xi, t) and vj := v(xj, t)

are the field values for xi and xj, respectively; vij := vj − vi is the relative field vector for

spatial vector rij.
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Support Si is the neighbourhood of point xi. A point xj in support Si forms the spatial

vector rij(= xj−xi). The support in NOM can be a spherical domain, a cube, semi-spherical

domain and so on.

Dual-support is defined as a union of points whose supports include xi, denoted by

S ′i = {xj|xi ∈ Sj}. (1)

Point xj forms the dual-vector rji(= xi − xj = −rij) in S ′i. On the other hand, rji is the

spatial vector formed in Sj. It is worth mentioning that the size of the support of each point

can be different. When the support sizes for all material points are the same, the dual-

support is equal to the support. On the other hand, if the size of support varies for each

point, the shape of dual-support can be quite irregular, even discontinuous for two adjacent

points. One example to illustrate the support and dual-support is shown in Fig.1(b).

2.2. Dual property of dual-support

For point j ∈ Si, let fij be a physical quantity, work conjugate to field difference (uj−ui),

the dual property of dual-support is∫
Ω

∫
Si
fij(uj − ui) dVj dVi =

∫
Ω

(∫
S′i
fji dVj −

∫
Si
fij dVj

)
ui dVi (2)

Proof :

Let the domain Ω be divided into N non-overlapping particles, so that Ω =
∑N

i=1 ∆Vi,

where ∆Vi is the volume assigned to particle i. Herein, N can be arbitrarily large so that

the ∆Vi is infinitesimal and the double summations of discrete form converge to the double
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integrals in continuous form.∫
Ω

∫
Si
fij(uj − ui) dVj dVi

≈
∑

∆Vi∈Ω

∑
∆Vj∈Si

fij(uj − ui)∆Vj∆Vi

=
∑

∆Vi∈Ω

∑
∆Vj∈Si

fijuj∆Vj∆Vi −
∑

∆Vi∈Ω

∑
∆Vj∈Si

fijui∆Vj∆Vi

=
∑

∆Vi∈Ω

∑
∆Vj∈S′i

fjiui∆Vj∆Vi −
∑

∆Vi∈Ω

∑
∆Vj∈Si

fijui∆Vj∆Vi

≈
∫

Ω

(∫
S′i
fji dVj −

∫
Si
fij dVj

)
ui dVi (3)

In the third step, the dual-support is considered as follows. The term fij with uj is the

physical quantity from i’s support, but is added to particle j; since j ∈ Si, i belongs to the

dual-support S ′j of j; all terms fji with ui are collected from any material point j whose

support contains i and hence form the dual-support of i. Therefore, the dual property of

the dual-support is proved.

When all points have the same size of support domains, i.e. j ∈ Si ↔ i ∈ Sj, we have

Si = S ′i for any point i and then the dual property of dual-support by Eq.2 becomes∫
Ω

∫
Si
fij(uj − ui) dVj dVi =

∫
Ω

∫
Si

(fji − fij)ui dVj dVi (4)

Above equation is widely used in the derivation of nonlocal strong form from weak form.

Such expression is valid in the continuum form as well as in discrete form. The dual property

of dual-support is also proved in the dual-horizon peridynamics [46]. A simple example with

N = 4 to illustrate this property is given in Appendix A.

2.3. Nonlocal gradient and Hessian operator

The local gradient operator and Hessian operator for a scalar-valued function u have the

forms in 2D

∇u =
(
u,x, u,y

)T
, ∇2u =

 u,xx u,xy

u,xy u,yy

 (5)
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and in 3D

∇u =
(
u,x, u,y, u,z

)T
, ∇2u =


u,xx u,xy u,xz

u,xy u,yy u,yz

u,xz u,yz u,zz

 (6)

where u,xx denotes the partial derivative of u with respect to x twice.

In the framework of NOM, the partial derivatives can be constructed as follows. The

Taylor series expansion of scalar-valued field uj in 2D can be written as

uj = ui + (ui,x, ui,y, ui,xx, ui,xy, ui,yy) · (xij, yij, x2
ij/2, xijyij, y

2
ij/2) + O(|rij|3) (7)

where rij = (xij, yij)
T = xj − xi and O(|rij|3) denotes the higher order terms.

Let

uij = uj − ui (8)

pij = (xij, yij, x
2
ij/2, xijyij, y

2
ij/2)T (9)

∂ui = (ui,x, ui,y, ui,xx, ui,xy, ui,yy)
T (10)

The Taylor series expansion of Eq.7 can be rewritten as

uij = ∂uTi pij (11)

Tensor product with pTij on both sides of Eq.11

uijp
T
ij = ∂uTi pijp

T
ij (12)

Considering the weighted integration in the support Si, we obtain∫
Si
ω(rij)uijp

T
ij dVj = ∂uTi

∫
Si
ω(rij)pijp

T
ij dVj (13)

where ω(rij) is the weight function.

Then the nonlocal operators can be obtained as

∂̃ui :=

∫
Si
ω(rij)Ki · pijuij dVj (14)

8



where

Ki =
(∫
Si
ω(rij)pij ⊗ pTij dVj

)−1

(15)

Here, we use �̃ to denote the nonlocal form of the local operator � since the definitions of

the local operator and the nonlocal operator are distinct.

The Taylor series expansion of a vector field u can be obtained in the similar manner as

uTij = pTij · ∂ui (16)

ω(rij)pij ⊗ uTij = ω(rij)pij ⊗ pTij · ∂ui (17)∫
Si
ω(rij)pij ⊗ uTij dVj =

∫
Si
ω(rij)pij ⊗ pTij · ∂ui dVj (18)

That is

∂̃ui :=

∫
Si
ω(rij)Ki · pij ⊗ uTij dVj (19)

For example, consider the displacement field u = (u, v)T in two dimensional space, the

relative displacement vector and the nonlocal partial derivatives have the explicit forms

uij =

uj − ui
vj − vi

 , ∂̃ui = (∂̃ui, ∂̃vi) =



ui,x vi,x

ui,y vi,y

ui,xx vi,xx

ui,xy vi,xy

ui,yy vi,yy


, (20)

Let Ki · pij be denoted by

(g1j, g2j, h1j, h2j, h3j)
T = Ki · pij (21)

The gradient vector gij and Hessian matrix hij between points i and j in 2D are, respectively

gij = (g1j, g2j)
T , hij =

h1j h2j

h2j h3j

 (22)
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In 3D case, the polynomial vector based on relative coordinates rij = (xij, yij, zij)
T =

xj − xi is given as

pij = (xij, yij, zij, x
2
ij/2, xijyij, xijzij, y

2
ij/2, yijzij, z

2
ij)

T (23)

The shape tensor in 3D is constructed by Eq.15 with pij in Eq.23.

Let Ki · pij in 3D be denoted by

(g1j, g2j, g3j, h1j, h2j, h3j, h4j, h5j, h6j)
T = Ki · pij (24)

The gradient vector gij and Hessian matrix hij for two points i, j in support in 3D are,

respectively

gij = (g1j, g2j, g3j)
T , hij =


h1j h2j h3j

h2j h4j h5j

h3j h5j h6j

 (25)

It is worth mentioning that for first order NOM or peridynamics, the gradient vector can be

calculated as well by

gij =
(∫
Si
ω(rik)rik ⊗ rik dVk

)−1

· rij (26)

Then the nonlocal gradient operator and Hessian operator for vector field can be defined

as

∇̃ ⊗ ui :=

∫
Si
ω(rij)uij ⊗ gij dVj (27)

∇̃ ⊗ ∇̃ ⊗ ui :=

∫
Si
ω(rij)uij ⊗ hij dVj (28)

In the case of 2-vector in 2 dimensional space, the explicit forms of ∇̃⊗ui and ∇̃⊗∇̃⊗ui
are

∇̃ ⊗ ui =

ui,x ui,y

vi,x vi,y

 (29)
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∇̃ ⊗ ∇̃ ⊗ ui =
(
∂(∇̃⊗ui)

∂x
∂(∇̃⊗ui)

∂y

)
=

ui,xx ui,yx

vi,xx vi,yx

 ui,xy ui,yy

vi,xy vi,yy

 (30)

For scalar-valued field, the nonlocal Laplace operator is the tensor contraction of ∇̃⊗∇̃ui,

e.g. ∆̃ = ∇̃ · ∇̃ = tr(∇̃⊗ ∇̃), where tr(·) denotes the trace of a matrix. More specifically, in

2D

∆̃ui :=

∫
Si
ω(rij)(h1j + 2h2j + h3j)uij dVj (31)

and in 3D

∆̃ui :=

∫
Si
ω(rij)(h1j + 2h2j + 2h3j + h4j + 2h5j + h6j)uij dVj (32)

And their local counterparts for scalar-valued field are

∆w = w,yy + 2w,xy + w,xx in 2D (33)

∆w = w,xx + w,yy + w,zz + 2w,xy + 2w,xz + 2w,yz in 3D (34)

2.4. Stability of the second-order nonlocal operators

According to Ref [67], the energy functional for second-order nonlocal operator in discrete

form can be written as

Fi(u) =
1

2

phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)2
dVj (35)

where phg is the penalty and mi =
∫
Si ω(rij) dVj. The operator in Eq.14 corresponds to the

minimum of Eq.35. The first variation of Fi is

δFi(u) =
phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)
(δuj − δui − pTj ∂̃δui) dVj

=
phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)
(δuj − δui) dVj

− phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)
(pTj ∂̃δui) dVj (36)
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We can prove that

− phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)
(pTj ∂̃δui) dVj

=− phg

mi

∫
j∈Si

ω(rij)
(
pjuij − pjpTj ∂̃ui

)
dVj · ∂̃δui

=− phg

mi

(∫
Si
ω(rij)pjuij dVj −

∫
Si
ω(r)pjp

T
j dVj · ∂̃ui︸ ︷︷ ︸

=0 since Eq.13

)
· ∂̃δui

=0

Therefore,

δFi(u) =
phg

mi

∫
Si
ω(rij)

(
uij − pTj ∂̃ui

)
(δuj − δui) dVj

Consider integration of δFi(u) in domain∫
Ω

δFi dVi = phg
∫

Ω

∫
Si

ω(rij)

mi

(
uij − pTj ∂̃ui

)
(δuj − δui) dVj dVi︸ ︷︷ ︸

by Eq.2

=

∫
Ω

(∫
S′i
ω(rij)

phg

mj

(
uji − pTi ∂̃uj

)
dVj −

∫
Si
ω(r)

phg

mi

(
uij − pTj ∂̃ui

)
dVj

)
δui dVi (37)

For any δui,
∫

Ω
δFi dVi = 0 leads to the internal force due to the stability of the nonlocal

operator ∫
S′i
ω(rij)

phg

mj

(
uji − pTi ∂̃uj

)
dVj −

∫
Si
ω(r)

phg

mi

(
uij − pTj ∂̃ui

)
dVj (38)

Eq.38 is the expression for a scalar-valued field. For vector-valued field, the internal force

due to the stability of nonlocal operator is∫
S′i
ω(rji)

phg

mj

(
uji − pTi ∂̃uj

)
dVj −

∫
Si
ω(rij)

phg

mi

(
uij − pTj ∂̃ui

)
dVj (39)

3. Nonlocal governing equations based on NOM

This section is devoted to the variational derivation of nonlocal strong forms of solid me-

chanics, including hyperelasticity, thin plate, gradient elasticity, electro-magnetic-elasticity

theory and phase field fracture method. The strong form is suitable for theoretical analysis

as well as explicit time integration. For the fully implicit simulation of various PDEs, the

reader is referred to NOM for PDEs [65, 66, 67, 68, 69, 72].
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3.1. Nonlocal form for hyperelasticity

Consider the energy density of a hyperelasticity as ψ := ψ(F ), where F = ∇u+ I. The

balance equation for the hyperelastic solid is

∇ · P + b = 0 on Ω (40)

with boundary conditions u = u0 on ΓD and P · n = t0 on ΓN , where u0 is the specified

displacement and t0 is the prescribed traction load, P = ∂ψ
∂F

, the first Piola-Kirchhoff stress,

b is the body force density.

3.1.1. Derivation based on variational principle

The variation of strain energy over the domain is

δF =

∫
Ω

δψ(F ) dV =

∫
Ω

∂ψ

∂F
: δF dV

=

∫
Ω

P : ∇(δu) dV

=

∫
Ω

Pi :

∫
Si
ω(rij)δuij ⊗ gij dVj dVi

=

∫
Ω

∫
Si
ω(rij)Pi : δuij ⊗ gij dVj dVi

=

∫
Ω

∫
Si
ω(rij)(Pi · gij) · δuij dVj dVi

=

∫
Ω

∫
Si
ω(rij)(Pi · gij) · (δuj − δui) dVj dVi︸ ︷︷ ︸

by Eq.2

=

∫
Ω

(∫
S′i
ω(rji)Pj · gji dVj −

∫
Si
ω(rij)Pi · gij dVj

)
· δui dVi (41)

In above derivation, we replace the gradient operator with nonlocal gradient, e.g. ∇̃⊗ui →∫
Si ω(rij)uij ⊗ gij dVj in Eq.27, and the relation A : a ⊗ b = (A · b) · a for second-order

tensor A and vectors a, b is employed.

The variational of external body force energy

δFext =

∫
Ω

δu · b dV (42)
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For any δui, δF − δFext = 0 leads to the nonlocal governing equations for elasticity∫
Si
ω(rij)Pi · gij dVj −

∫
S′i
ω(rji)Pj · gji dVj + b = 0 (43)

Considering the effect of inertial force ρüi per unit volume, and replacing the dual-

support with dual-horizon, we obtain the equations of motion for dual-horizon peridynamics∫
Hi

ω(rij)Pi · gij dVj −
∫
H′

i

ω(rji)Pj · gji dVj + bi = ρüi (44)

If the sizes of horizons for all material points are the same, the dual-horizon peridynamics

degenerates to the conventional constant horizon peridynamics.

For any specific strain energy density (for example, isotropic/anisotropic linear/nonlinear

elasticity), the explicit form of P can be derived straightforwardly. In the section of numer-

ical examples, we consider the linear isotropic elasticity, which can be viewed as a special

case of the hyperelasticity.

3.1.2. Derivation based on weighted residual method

Beside the derivation based on strain energy density, the nonlocal strong form can be

derived by weighted residual method. Consider the governing equations for hyperelasticity

, the weak form of Eq.40 for any trial vector becomes

0 =

∫
Ω

v · ∇ · P + v · b dV

=

∫
Ω

−∇v : P + v · b dV +

∫
Γ

P · n · v dS

=

∫
Ω

−
(∫
Si
ω(rij)vij ⊗ gij dVj

)
: Pi + vi · b dVi +

∫
Γ

P · n · v dS (45)

Let us focus on the integral in Ω, the first term in above equation can be written as∫
Ω

−
(∫
Si
ω(rij)vij ⊗ gij dVj

)
: Pi dVi

=

∫
Ω

−
(∫
Si
ω(rij)Pi · gij · (vj − vi) dVj

)
dVi︸ ︷︷ ︸

by Eq.2

=

∫
Ω

(∫
Si
ω(rij)Pi · gij dVj −

∫
S′i
ω(rji)Pj · gji dVj

)
· vi dVi (46)
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For any vi, the weak form being zero leads to∫
Si
ω(rij)Pi · gij dVj −

∫
S′i
ω(rji)Pj · gji dVj + b = 0

which is identical to Eq.43. As being more general than the energy method, the weighted

residual method can be used to convert PDEs that have no energy functional to nonlocal

integral forms.

3.2. Nonlocal thin plate theory

The thin plate theory is widely used in engineering applications [73]. The basic assump-

tion of thin plate include: 1) the thickness of the plate is much smaller than the length

inside the mid-plane; 2) the deflection is much smaller than the thickness of the plate so

that higher order effect is neglectable; 3) the stress along the thickness direction is assumed

as zero, e.g. σz ≈ 0 and the points in the midplane have no displacement parallel to the

midplane, e.g. u(x, y, 0) = v(x, y, 0) ≈ 0; 4) the normal of the mid-plane remains perpen-

dicular to the mid-plane after deformation. Then the plate bending can be simplified into

2D problem and the displacements, strain and stress can be described by the deflection on

the mid-plane

u(x, y, z) = −z ∂w
∂x

(47)

v(x, y, z) = −z ∂w
∂y

(48)

w(x, y, z) ' w(x, y, 0) ∼= w(x, y) (49)

The generalized strain is the Hessian operator on the deflection

κ = ∇2w =

w,xx w,xy

w,xy w,yy

 (50)

with nonlocal correspondence and its variation

κ = ∇̃2w :=

∫
Si
ω(rij)hijwij dVj (51)
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δκ =

∫
Si
ω(rij)hijδwij dVj (52)

The bending moment tensor M , the general stress for isotropic thin plate, is given by

M =

 Mxx Mxy

Mxy Myy

 = D0

(
ν tr(κ)I2×2 + (1− ν)κ

)
(53)

where D0 = Et3

12(1−ν2)
and t is the thickness of the plate.

Based on the principle of minimum potential energy, the energy functional for the gov-

erning equation is

Fint =

∫
Ω

1

2
M : κ− qw dS (54)

and for the boundary condition can be expressed as

Fext =

∫
S3

V̄nw dΓ−
∫
S2+S3

M̄n
∂w

∂n
dΓ (55)

where q is the external transverse load on the mid-plane, V̄n is the shear force load on

boundary S3 and M̄n is the prescribed moment on boundary S2 + S3. For simplicity, we

leave the integral on the boundary for later consideration. The variation of the internal

energy functional is

δFint =

∫
Ω

M : δκ− qδw dS

=

∫
Ω

Mi :

∫
Si
ω(rij)hijδwij dSj − qiδwi dSi

=

∫
Ω

∫
Si
ω(rij)Mi : hij(δwj − δwi) dSj︸ ︷︷ ︸

by Eq.2

−
∫

Ω

qiδwi dSi

=

∫
Ω

(∫
S′i
ω(rij)Mj : hji dSj −

∫
Si
ω(rij)Mi : hij dSj − qi

)
δwi dSi (56)
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The variation of the external energy function is

δFext =

∫
S3

V̄nδw dΓ−
∫
S2+S3

M̄n
∂δw

∂n
dΓ

=

∫
S3

V̄nδw dΓ−
∫
S2+S3

M̄n∇δw · n dΓ

=

∫
S3

V̄nδw dΓ−
∫
S2+S3

M̄ni

∫
Si
ω(rij)δwijgij dVj · ni dΓi

=

∫
S3

V̄nδw dΓ−
∫
S2+S3

∫
Si
ω(rij)M̄nigij · niδwij dVj dΓi

=

∫
S3

V̄nδw dΓ−
∫
S2+S3

(∫
S′i
ω(rji)M̄njgji · nj dVj −

∫
Si
ω(rij)M̄nigij · ni dVj

)
δwi dΓi

(57)

For any δwi, δFint − δFext = 0 leads to the nonlocal thin plate equation for material

point in domain Ω∫
Si
ω(rij)Mi : hij dVj −

∫
S′i
ω(rij)Mj : hji dVj + qi = 0 (58)

The additional nonlocal form for material point applied with the moment boundary condition

is ∫
Si
ω(rij)M̄nigij · ni dVj −

∫
S′i
ω(rji)M̄njgji · nj dVj = 0 (59)

Based on the D’Alembert’s principle, the equation of motion considering the effect of

inertial force ρtẅi per unit area is∫
S′i
ω(rij)Mj : hji dVj −

∫
Si
ω(rij)Mi : hij dVj + qi = tρẅi (60)

For clamped boundary condition w,n = ∇w · n = 0, the nonlocal form is∫
Si
ω(rij)wijgij · ni dVj = 0 (61)

Compared with the local governing equation for thin plate ∇2 : M + q = tρẅ, we can

find the correspondence between local and nonlocal formulation

∇2 : M → ∇̃2 : Mi :=

∫
S′i
ω(rji)Mj : hji dVj −

∫
Si
ω(rij)Mi : hij dVj (62)

The nonlocal derivation for thin plate can be extended to composite plate and functional

gradient plate theories.
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3.3. Nonlocal gradient elasticity

Gradient theories emerge from considerations of the microstructure in the material at

micro-scale, where a mass point after homogenization is not the center of a micro-volume

and the rotation of the micro-volume depends on the moment stress/couple stress as well as

the Cauchy stress. Gradient elasticity generalizes the elasticity theory by employing higher

order terms of the deformation gradient or the gradient of the strain tensor. Generally,

the energy density functional can be assumed as ψ := ψ(F ,∇F ) = ψ(∇u,∇2u), where

F = ∇u+ I. The total potential energy in domain is

F =

∫
Ω

ψ − b · u dV (63)

The stress tensor and generalized stress tensor of first Piola-Kirchhoff type are defined as

P =
∂ψ

∂F
(64)

Σ =
∂ψ

∂∇F
(65)

The variation of the total internal energy is

δF =

∫
Ω

( ∂ψ
∂F

: ∇δu+
∂ψ

∂∇F
:̇∇2δu− b · δu

)
dV

=

∫
Ω

(
P : ∇δu+ Σ:̇∇2δu− b · δu

)
dV (66)

Based on the integration by parts, the local form can be derived by

δF =

∫
∂Ω

(
n · P · δu+ n ·Σ:∇δu

)
dS −

∫
Ω

(
∇ · P · δu+∇ ·Σ:∇δu+ b · u

)
dV

=

∫
∂Ω

(
n · P · δu+ n ·Σ : ∇δu− n · ∇ ·Σ · δu

)
dS −

∫
Ω

(∇ · P −∇2 : Σ + b) · δu dV

(67)

Based on D’Alembert’s principle, the governing equations for dynamic gradient elasticity

can be written as

∇ · P −∇2 : Σ + b = ρü in Ω (68)
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On the other hand, do the substitutions ∇δu →
∫
Si ω(rij)gij ⊗ δuij dVj, and ∇2δu →∫

Si ω(rij)hij ⊗ δuij dVj, we get

δF =

∫
Ω

P : ∇δu+ Σ:̇∇2δu− b · δu dV

=

∫
Ω

(
Pi :

∫
Si
ω(rij)gij ⊗ δuij dVj + Σi :̇

∫
Si
ω(rij)hij ⊗ δuij dVj − b · δu

)
dVi

=

∫
Ω

∫
Si
ω(rij)Pi:(δuj − δui)⊗ gij dVj dVi︸ ︷︷ ︸

by Eq.2

+

∫
Ω

∫
Si
ω(rij)Σi :̇(δuj − δuj)⊗ hij dVj dVi︸ ︷︷ ︸

by Eq.2

−
∫

Ω

b · δui dVi

=

∫
Ω

(∫
S′i
ω(rji)Pj · gji dVj −

∫
Si
ω(rij)Pi · gij dVj

)
· δui dVi

+

∫
Ω

(∫
S′i
ω(rji)Σj : hji dVj −

∫
Si
ω(rij)Σi : hij dVj

)
· δui dVi −

∫
Ω

b · δui dVi (69)

In the above derivation, we used Σ:̇u ⊗ h = (Σ : h) · u. For any δui, δF = 0 leads to

the nonlocal form of gradient elasticity∫
Si
ω(rij)(Pi · gij + Σi : hij) dVj −

∫
S′i
ω(rji)(Pj · gji + Σj : hji) dVj + b = ρüi (70)

The inertia force term is added based on D’Alembert’s principle.

Comparing Eq.67 and Eq.69, the correspondence from local form to nonlocal form is

∇2 : Σi →
∫
S′i
ω(rji)Σj : hji dVj −

∫
Si
ω(rij)Σi : hij dVj (71)

3.4. Nonlocal form of magneto-electro-elasticity

In accordance with reference [74], let us postulate the following form of internal energy for

the energy function ψ := ψ(F ,∇F ,p,∇p,m,∇m), a function depends on the displacement

gradient F = ∇u + I and its second gradient ∇F = ∇2u, polarization vector p and its

gradient ∇p, magnetic field m and its gradient ∇m. The total potential energy in the

domain can be written as

F =

∫
Ω

ψ(F ,∇F ,p,∇p,m,∇m) dV (72)
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This model has a strong physical background, for example, the nonlinear electro-gradient

elasticity for semiconductors [75] and flexoelectricity [76].

The first variation of F is

δF =

∫
Ω

δψ dV

=

∫
Ω

∂ψ

∂F
: ∇δu+

∂ψ

∂∇F
:̇∇2δu+

∂ψ

∂p
· δp+

∂ψ

∂∇p
: ∇δp+

∂ψ

∂m
· δm+

∂ψ

∂∇m
: ∇δm dV

=

∫
Ω

P : ∇δu+ Σ:̇∇2δu+ e · δp

+E : ∇δp+ s · δm+ S : ∇δm dV (73)

where

P =
∂ψ

∂F
,Σ =

∂ψ

∂∇F
, e =

∂ψ

∂p
(74)

E =
∂ψ

∂∇p
, s =

∂ψ

∂m
,S =

∂ψ

∂∇m
(75)

Doing substitutions ∇δui →
∫
Si ω(rij)δuij ⊗ gij dVj, ∇2δui →

∫
Si ω(rij)δuij ⊗ hij dVj,

∇δpi →
∫
Si ω(rij)δpij ⊗ gij dVj,∇δmi →

∫
Si ω(rij)δmij ⊗ gij dVj and following the same

operations in prior sections, the functional becomes

δF =

∫
Ω

(∫
S′i
ω(rji)(Pj · gji + Σj : hji) dVj −

∫
Si
ω(rij)(Pi · gij + Σi : hij) dVj

)
· δui dVi

+

∫
Ω

(∫
S′i
ω(rji)(Ej · gji) dVj −

∫
Si
ω(rij)Ei · gij dVj + ei

)
· δpi dVi+∫

Ω

(∫
S′i
ω(rji)(Sj · gji) dVj −

∫
Si
ω(rij)Si · gij dVj + si

)
· δmi dVi (76)

For any δui, δpi, δmi, δF = 0 leads to general nonlocal governing equation for mechanical
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field, electrical field and magnetic field, respectively∫
Si
ω(rij)(Pi · gij + Σi : hij) dVj−∫

S′i
ω(rji)(Pj · gji + Σj : hji) dVj + bi = 0 (77)∫

Si
ω(rij)Ei · gij dVj −

∫
S′i
ω(rji)Ej · gji dVj − ei = 0 (78)∫

Si
ω(rij)Si · gij dVj −

∫
S′i
ω(rji)Sj · gji dVj − si = 0 (79)

In the derivation, we did not specify the exact form of the energy density, whether it is of

small deformation or of finite deformation. For the specified energy form, one only needs to

derive the expression for P ,Σ, e,E, s,S based on the material constitutions. It can be seen

that the nonlocal governing equations for the continuum magneto-electro-elasticity can be

obtained with ease by using nonlocal operator method and variational principle. The same

rule applies for many other physical problems.

3.5. Nonlocal form of phase field fracture method

Phase field fracture method is powerful in fracture modelling [77]. The difference in

tensile and compressive strengths of the material can be considered by dividing the strain

energy density into a tensile part affected by the phase field and a compressive part, which

is independent of the phase field,

ψe(ε(∇u), s) = (1− s)2ψ+
e (ε(∇u)) + ψ−e (ε(∇u)). (80)

where ψ+
e (ψ−e ) denotes the strain energy density for tensile (compressive) part, u is the

displacement, s ∈ [0, 1] is the phase field, ε denotes the strain and ` is the phase field

intrinsic length scale.

The full potential functional of the phase field fracture model reads

F`(u, s) =

∫
Ω

(
(1− s)2ψ+

e (ε(∇u)) + ψ−e (ε(∇u))
)
dV −

∫
∂Ω

t∗ · u dA

−
∫

Ω

b · u dV +

∫
Ω

gc(
s2

2`
+
`

2
∇s · ∇s) dV, (81)
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where t∗ denotes the surface traction at the boundary, b is the body force density and gc is

the critical energy release rate.

For the sake of simplicity, we neglect the surface traction force and consider the first

variation of F`

δF` =

∫
Ω

δ
(

(1− s)2ψ+
e + ψ−e

)
dV −

∫
Ω

b · δu dV +

∫
Ω

gcδ(
s2

2`
+
`

2
∇s · ∇s) dV

=

∫
Ω

(
(1− s)2∂ψ

+
e

∂ε
: ∇δu− 2ψ+

e (1− s)δs+
∂ψ−e
∂ε

: ∇δu
)
dV −

∫
Ω

b · δu dV

+

∫
Ω

gc(
s

`
δs+ `∇s · ∇δs) dV

=

∫
Ω

(
((1− s)2σ+ + σ−) : ∇δu− b · δu

)
dV +

∫
Ω

gc(
s

`
δs− 2

ψ+
e

gc
(1− s)δs+ `∇s · ∇δs) dV

=

∫
Ω

(
σi : ∇δui − bi · δui

)
dVi +

∫
Ω

gc(
si
`
δsi − 2

ψ+
ei

gc
(1− si)δsi + `∇si · ∇δsi) dVi

=

∫
Ω

(
σi : (

∫
Si
ω(rij)δuij ⊗ gij dVj)− bi · δui

)
dVi

+

∫
Ω

gc(
si
`
δsi − 2

ψ+
ei

gc
(1− si)δsi + `∇si ·

∫
Si
ω(rij)δsijgij dVj) dVi

=

∫
Ω

(
(

∫
S′i
ω(rji)σj · gji dVj −

∫
Si
ω(rij)σi · gij dVj) · δui − bi · δui

)
dVi

+

∫
Ω

gc

(si
`
− 2

ψ+
ei

gc
(1− si) +

∫
S′i
ω(rji)`∇sj · gji dVj −

∫
Si
ω(rij)`∇si · gij dVj

)
δsi dVi

(82)

where

σ+ =
∂ψ+

e

∂ε
,σ− =

∂ψ−e
∂ε

(83)

σ = (1− s)2σ+ + σ− (84)

For any δui, δsi, δF` = 0 leads to the nonlocal governing equations for the mechanical field

and phase field ∫
Si
ω(rij)σi · gij dVj −

∫
S′i
ω(rji)σj · gji dVj + bi = 0 (85)

si
`
− 2

ψ+
ei

gc
(1− si) +

∫
S′i
ω(rji)`∇sj · gji dVj −

∫
Si
ω(rij)`∇si · gij dVj = 0 (86)
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The above examples aim at illustrating the power of nonlocal operator method combined

with weighted residual method or variational principle in the derivation of nonlocal strong

forms based on their local strong or energy forms. The derived nonlocal strong forms are

variationally consistent and allow variable support sizes for each point in the model.

4. Instability criterion for fracture modelling

Typical methods for fracture modelling are either based on diffusive crack domain in

phase field methods or on direct topological modification on meshes in XFEM or bonds in

PD. Direct topological modification on meshes often leads to instability issues. For example,

in NOSBPD, the breakage of a bond based on the quantities derived from stress state or

strain state often introduces too much perturbation to the scheme, which may abort the

calculation because of the singularity in shape tensors. These criteria include critical stretch

[29], energy based [31] or stress based criterion [33, 34]. Another issue in NOSBPD is that

the strain energy carried by a bond is closely related with other bonds. It also depends

on the direction, the length of the bond, the choice of influence functions. Removing one

neighbour often gives rise to catastrophic results on the calculation. A criterion on how to

remove the neighbours safely from the neighbour list remains unclear.

Damage is a process deviated from the robust mathematical expression, where the tran-

sition happens in a very narrow zone, such as the crack tip front. It is observed that around

the crack tip, the gradient or strain undergoes a sharp transition within a very small zone.

Most conventional numerical methods for fracture modelling focus on accurate description

of the singularity occurring around the crack tip, such a description is very hard to tackle

and its evolution is inconvenient to update. This dilemma can be handled when something

different from continuous function is introduced.

In NOM, the gradient operator is defined in a “redundant” way. Around the crack tip, the

deformation is irregular and the part due to hourglass energy is comparable to the strain

energy carried by a particle. More specifically, the operator energy in nonlocal operator

method describes the irregularity of a function around the crack tip. The irregularity is

the part that cannot be described by the continuous function. For continuous domain, the
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strain energy density is much larger than the operator energy density. However, for particles

around the crack tip, the operator energy density is far from zero and the irregularity due

to the singularity around the crack tip increases comparably to the strain energy density.

In this sense, the operator energy density can be viewed as an indicator for the crack tip.

Unlike the strain energy density, the hourglass energy density describes the irregular

deformation around the crack tip. It depends on the penalty for the strain energy. Larger

penalty improves the continuity of deformation, but the extent of hourglass energy compared

with the strain energy density is hard to estimate. In this paper, we propose a special

manner to estimate the critical hourglass strain. Let the critical bond strain be denoted by

smax, which may depend on the characteristic length scale of the support, critical energy

release rate and the elastic modulus. When the maximal strain reached smax, the damage

process is activated and the critical hourglass strain shgmax is set as the maximal hourglass

strain shgij for all bonds in the computational model. In the sequential calculation, when the

hourglass strain of a bond is larger than shgmax, the damage on that bond occurs, which is

mathematically described as

dij =

0 if shgij (t) > shgmax, t ∈ [0, T ]

1 otherwise

(87)

where dij denotes the damage status between particle i and particle j.

The damage of a particle is calculated as

di =

∫
Si dij dVj∫
Si dVj

(88)

Every time one particle is removed from the neighbour list, the nonlocal gradient for the

central particle should be recalculated based on the remaining “healthy” neighbour. We will

apply this rule to model fractures in 2D and 3D linear elastic material.

5. Numerical implementation

We have applied NOM to derive the nonlocal strong forms for the traditional continuum

model in §3. Two representative nonlocal theories, the dual-horizon peridynamics by Eq.44
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for fracture modeling and the nonlocal thin plate by Eq.60, are selected for numerical test.

For the DH-PD, the focus is on the test of instability criterion for quasi-static fracture

modeling by explicit time integration algorithm. The nonlocal thin plate is compared with

the finite element method. The nonlocal derivatives can be viewed as a generalization of

the local derivatives, and the nonlocal derivatives recover the local derivatives when the size

of the support degenerates to zero. The range of nonlocality depends on the choice of the

weighting functions and the size of the supports. One obstacle of the nonlocal models is

the verification since the exact solutions of the nonlocal model is rare. For simplicity of

verification, we aim at solving the local problems with nonlocal forms where the nonlocal

effect is reduced by selecting certain weighting functions.

The primary step in the implementation is the calculation of internal force based on the

governing equations. In the first step, the computational domain is discretized into particles.

Ω =
N∑
i=1

∆Vi (89)

where N is the number of particles in the domain. Then the support of each particle is

represented by a list of particle indices,

Si = {j1, j2, ..., jni
} (90)

where j is the global index of the particle and ni is the number of particles in Si.

The gradient gij and Hessian hij for two particles i, j can be assembled by collecting

terms in Ki · pij according to Eq.21 or Eq.23, where

Ki =
(∑
Si

ω(rij)pij ⊗ pTij∆Vj
)−1

(91)

with weight function ω(rij) = 1/|rij|2.

The nonlocal differential derivatives at point i can be calculated as

∂̃ui =
∑
j∈Si

ω(rij)Ki · pijuij∆Vj (92)

The nonlocal operators in ∂̃ui can be used to define the strain tensor, stress tensor, bending

moment and others.
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In discrete form, Eq.44 and Eq.58 become∑
Hi

ω(rij)Pi · gij∆Vj∆Vi −
∑
H′

i

ω(rji)Pj · gji∆Vj∆Vi + bi∆Vi = ρ∆Viüi (93)

∑
Si

ω(rij)Mi : hij∆Vj∆Vi −
∑
S′i

ω(rij)Mj : hji∆Vj∆Vi + qi∆Vi = tρ∆Viẅi (94)

In Eq.93 and Eq.94, the volume of particle i is multiplied on both sides of the equations. It

is not required to calculate the internal forces from the dual-support. Let fi = 0, 1 ≤ i ≤ N

denote the initial internal force on particle i. For each particle, one only needs to focus on

the support, calculating the forces and adding the force to the particle internal force∑
j∈Si

ω(rij)Pi · gij∆Vj∆Vi → fi

−ω(rij1)Pi · gij1∆Vj1∆Vi → fj1

−ω(rij2)Pi · gij2∆Vj2∆Vi → fj2

...

−ω(rijni
)Pi · gijni

∆Vjni
∆Vi → fjni

(95)

where a → b denotes the addition of a to b. The process of adding force −ω(rij1)Pi ·

gij∆Vj∆Vi to fj is equivalent to accumulating the internal forces from particle j’s dual-

support.

For the calculating of internal force of thin plate, the same applies∑
j∈Si

ω(rij)Mi : hij∆Vj∆Vi → fi

−ω(rij1)Mi : hij1∆Vj1∆Vi → fj1

−ω(rij2)Mi : hij2∆Vj2∆Vi → fj2

...

−ω(rijni
)Mi : hijni

∆Vjni
∆Vi → fjni

(96)
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In order to maintain the stability of the nonlocal operator, the discrete form of Eq.39 is∑
S′i

ω(r)
phg

mj

(
uji − pTi ∂̃uj

)
∆Vj∆Vi −

∑
Si

ω(r)
phg

mi

(
uij − pTj ∂̃ui

)
∆Vj∆Vi (97)

For particle i with support Si, the hourglass force is calculated as follows

∑
j∈Si

ω(rij)
phg

mi

(
uij − pTj ∂̃ui

)
∆Vj∆Vi → fi

−ω(rij1)
phg

mi

(
uij1 − pTj1 ∂̃ui

)
∆Vj1∆Vi → fj1

−ω(rij2)
phg

mi

(
uij2 − pTj2 ∂̃ui

)
∆Vj2∆Vi → fj2

...

−ω(rijni
)
phg

mi

(
uijni

− pTjni
∂̃ui
)
∆Vjni

∆Vi → fjni
(98)

When the internal force is attained and the contribution of the external force boundary

condition or body force is accumulated, the basic Verlet algorithm [78] outlined as follows

is used to update the displacement

ui(t+ ∆t) = ui(t) + vi(t)∆t+
1

2
ai(t)∆t

2 (99)

vi(t+ ∆t) = vi(t) +
1

2

(
ai(t) + ai(t+ ∆t)

)
∆t (100)

where ui denotes the displacement or deflection, vi the velocity and ai = fi

mi
the accel-

eration for particle i with mass mi subject to net force fi. For the detailed implemen-

tation and the numerical examples, the reader can find the open source code on Github

https://github.com/hl-ren/Nonlocal_elasticity, and https://github.com/hl-ren/

Nonlocal_thin_plate.
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6. Numerical examples

6.1. Accuracy of nonlocal Hessian operator

We first test the accuracy of the nonlocal Hessian operator. Thus, consider the analytical

derivatives of the field

w(x, y) = exy
(

sin 3(x− y)− cos 2(x+ y)
)
, with x ∈ [−1, 1], y ∈ [−1, 1]. (101)

The domain [−1, 1]2 is discretized with different numbers of particles, N ∈ {202,402,602,802,1002,

1602,1802,2002}. The number of neighbours in support is selected as n = 14. The L2 norm

of the nonlocal Hessian operator is calculated as

L2(∇2w) =

√∑N
i=1(∇2wi − ∇̃2wi) : (∇2wi − ∇̃2wi)∆Vi∑N

i=1(∇2wi) : (∇2wi)∆Vi
(102)

For different discretizations, the L2 norm is plotted in Fig.2(a) with a convergence rate of

0.835. We also tested the influence of the support size. For fixed discretization N = 1802,

the nonlocal effect increases with the number of neighbours in the support, as shown in

Fig.2(b).

500 1000 5000 104 N
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0.100

L2(∇
2w)

(a)

15 20 25 30 35 40
n

0.001
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0.003

0.004

0.005

0.006

L2(∇
2w)

(b)

Figure 2: L2 norm of the nonlocal Hessian operator (a) for N , the number of particles with n = 14 and (b)

for n, the number of particles in support with N = 1802.
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6.2. Square thin plate subject to pressure

The dimensions of the plate are 0.5 × 0.5 m2 with a thickness of 0.01 m. The material

parameters are elastic modulus E = 210 GPa, Poisson ratio ν = 0.3. The plate is applied

with a static pressure load of p = 103 Pa. Two different boundary conditions are taken

into account: a) four sides are all simply supported and b) four sides are all clamped. The

case of clamped boundary constrains the rotation as well as the deflection. The reference

result is calculated by 64×64 S4R elements in ABAQUS without considering the geometrical

nonlinearity. For the simply supported boundary conditions, the particles on the boundaries

of the plate are fixed. The enforcement of clamped boundary conditions requires some special

treatment. As shown in Fig.3, the actual physical model of the plate is denoted by the black

rectangular particles and a fictitious domain of two layers of particles outside the physical

domain is generated where the particle’s deflections are set to zero. the particles outside of

the blue rectangle are applied with penalty phg = 400E while the particles inside the blue

rectangle with penalty phg = 0. The deflection for a simply supported plate at different times

are plotted in Fig.4. The deflections for a clamped plate at different times are depicted in

Fig.5. The deflection of the central point of the plate is monitored and compared with the

result by ABAQUS, as shown in Fig.6(a) and Fig.6(b), where good agreement with FEM

model is observed.

Figure 3: The implementation of clamped boundary condition. The particles in black rectangle represent

the physical model and particles outside of the blue rectangle are applied with penalty phg = 400E.

For the simply supported plate, the deflection of the central point for four different weight

functions is shown in Fig.7. It can be seen that the weight functions barely influence the
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Figure 4: Deflection of simply supported plate at (a) t = 0.97 ms (b) t = 2.9 ms (c) t = 4.87 ms and (d)

t = 6.77 ms.
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Figure 5: Deflection of clamped plate at (a) t = 0.966 ms (b) t = 1.44 ms (c) t = 2.42 ms and (d) t = 2.90

ms.
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Figure 6: Deflection of central point for (a) simply support plate and (b) clamped plate.
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2 4 6 8
Time(ms)

0.005

0.010

0.015

0.020

0.025

Deflection(mm)

w(r,h)=1/r2

w(r,h)=e-1/2 (3 r/h)2

CubicSpline
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Figure 7: Deflection of central point for simply support plate under 4 weight functions.

6.3. Single-edge notched tension test

In this example, we tested the nonlocal elasticity by Eq.43 for single-edge notched tension

in 2D under plane stress condition. For the case of linear elasticity, the first Piola-Kirchhoff

stress is the same as Cauchy stress. The geometry setup is given in Fig.8. The bottom is

fixed while the top of the plate is applied with velocity boundary condition v = 1 m/s, which

can achieve the quasi-static condition. The material parameters are E = 210 GPa, ν = 0.3

and critical strain is set as smax = 0.02. The plate is discretized into 100×100 particles. Each

particle’s support consists of 33 nearest neighbours. The initial crack is created by modifying

the neighbour list when searching the nearest neighbours. The support for each particle is

constructed by finding the k-nearest neighbours and the size of the support is determined by

the farthest particle in the support. Obviously, the size of the support can be different from

each other. The fixed number of neighbours in support results in particles near the boundary

with relatively large support sizes and particles at the centre of the plate with small support

sizes. A duration of T = 6.5× 10−6 seconds is integrated by approximately 4500 steps at a

time increment of ∆t = 1.5418 × 10−9 seconds. Fixed velocity and displacement boundary

conditions are applied to one layer of particles.

Fig.9(a) is the displacement field uy at full damage, where the interaction of internal force

between the two half planes is cut and rigid body displacement dominates. Fig.9(b) is the

distribution of hourglass energy. We can observe that the hourglass energy is concentrated
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Figure 8: Setup of the plate.

0

6.80×10-7
1.36×10-6
2.04×10-6
2.72×10-6
3.40×10-6
4.08×10-6
4.76×10-6
5.44×10-6
6.12×10-6

(a)

0.068

0.136

0.204

0.272

0.340

0.408

0.476

0.544

0.612

0.680

(b)

0.222

0.296

0.370

0.444

0.518

0.592

0.666

0.740

0.814

0.888

(c)

0.552

0.598

0.644

0.690

0.736

0.782

0.828

0.874

0.920

0.966

(d)

Figure 9: (a) Displacement uy at full damage, (b) operator energy at uy = 5.5× 10−3 mm, (c) damage field

at uy = 5.5× 10−3 mm and (d) damage field at uy = 6.2× 10−3 mm.
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on the crack surface and crack tip. Fig.9(c) and Fig.9(d) are the snapshots of damage field,

which confirms that the instability criterion in §4 is stable for fracture modelling.

Although the plate is solved by an explicit dynamic method, the kinetic energy is much

lower than the strain energy as shown by Fig.10(a). The dynamic load curve agrees well

with that by the finite element method in Ref [77], as shown by Fig.10(b). One possible

reason for the difference in reaction force increment is due to explicit algorithm and nonlocal

effect of current formulation.
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Figure 10: (a) Energy curve on displacement; (b) load curve on displacement.

6.4. Out-of-plane shear fracture in 3D

For brittle fracture, the basic modes of fracture are tensile fracture, in-plane shear frac-

ture and out-of-plane shear fracture. In this section, we apply the instability damage crite-

rion to the out-of-plane shear fracture, as shown in Fig.11. The dimensions of the specimen

are 5 × 2.5 × 1 mm3, as shown in Fig.12. The size of the initial crack surface is 2.5 × 1

mm2. The velocity boundary conditions uz = 1 m/s are applied. The model is discretized

into 86,961 particles with particle size ∆x = 0.05 mm. Each particle has 102 neighbours in

its support. Material parameters include elastic modulus E = 210 × 109 Pa and Poisson’s

ratio ν = 0.3 and density ρ = 7800 kg/m3. The time step is selected as ∆t = 7.7 × 10−9

seconds. A total of 3000 steps are calculated. The crack surface starts to propagate at step

1550. The crack surface at different steps are depicted in Fig.13.
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Figure 11: Illustration of out-of-plane shear fracture.
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Figure 12: Setup of the specimen.

7. Conclusion

In this paper, we employ the recently proposed NOM to derive the nonlocal strong

forms for various physical models, including elasticity, thin plate, gradient elasticity, electro-

magneto-elastic coupled model and phase field fracture model. These models require a

second order partial derivative at most and we make use of the second-order NOM scheme,

which contains the nonlocal gradient and nonlocal Hessian operator. Considering the fact

that most physical models are compatible with the variational principle/weighted residual

method, we start from the energy form/weak form of the problem, by inserting the nonlocal

expression of the gradient/Hessian operator into the weak form, based on the dual property

of the dual-support in NOM, the nonlocal strong form is obtained with ease. Such a process

can be extended to many other physical problems in other fields. The derived strong forms

are variationally consistent and allow elegant description for inhomogeneous nonlocality in

both theoretical derivation and numerical implementation.
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(a) (b)

(c) (d)

Figure 13: Crack surfaces at (a) step 1550 (b) step 2050 (c) step 2950 and (d) step 3000.
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We also propose an instability criterion in nonlocal elasticity or dual-horizon state-based

peridynamics for the fracture modeling. The criterion is formulated as the functional of

nonlocal gradient in support, which minimizes the zero-energy deformation that cannot be

described by the nonlocal gradient. Such an operator functional approaches zero for contin-

uous fields but has comparable value to the strain energy density for the deformation around

the crack tip. During the fracture modeling by removing particles from the neighbor list, it

is safer to delete the particle with larger zero-energy deformation. The numerical examples

for 2D/3D fracture modeling confirm the feasibility and robustness of this criterion. The

instability criterion is applicable for anisotropic elastic material and hyperelastic materials.

Appendix A. A simple example to illustrate dual-support

1 2
3

4

1S

2S

3S

4S

Figure A.14: Particles 1-4 and their supports Si, i = {1, 2, 3, 4}.

In order to facilitate the comprehension of dual-support, let us consider 4 particles in

Fig.A.14, each with particle volume ∆Vi, i = {1, 2, 3, 4} and Ω =
∑4

i=1 ∆Vi. Obviously, the

support and dual-support can be listed as follows.

S1 = {2, 3, 4},S ′1 = {3, 4}

S2 = {3},S ′2 = {1, 3}

S3 = {1, 2},S ′3 = {1, 2, 4}

S4 = {1, 3},S ′4 = {1}
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Here we neglect whether the shape tensor is invertible or not.

The most common formula in the derivation based on NOM and variational principle is

the double integrations in support and whole domain. Consider the double integrations∫
Ω

∫
Si
fij(uj − ui) dVj dVi

≈
4∑
i=1

(∑
j∈Si

fij(uj − ui)∆Vj
)

∆Vi

=
4∑
i=1

(∑
j∈Si

fijuj∆Vj

)
∆Vi −

4∑
i=1

(∑
j∈Si

fijui∆Vj

)
∆Vi

Expand the double summations

4∑
i=1

(∑
j∈Si

fijuj∆Vj

)
∆Vi

=
(
f12∆V2∆V1u2 + f13∆V3∆V1u3 + f14∆V4∆V1u4

)
+
(
f23∆V2∆V3u3

)
+
(
f31∆V1∆V3u1 + f32∆V2∆V3u2

)
+
(
f41∆V1∆V4u1 + f43∆V3∆V4u3

)
=
(
f31∆V3 + f41∆V4

)
u1∆V1 +

(
f12∆V1 + f32∆V3

)
u2∆V2

+
(
f13∆V1 + f23∆V2 + f43∆V4

)
u3∆V3 +

(
f14∆V1

)
u4∆V4

=
∑
j∈S′

1

fj1∆Vj∆V1u1 +
∑
j∈S′

2

fj2∆Vj∆V2u2 +
∑
j∈S′

3

fj3∆Vj∆V3u3 +
∑
j∈S′

4

fj4∆Vj∆V4u4

=
4∑
i=1

(∑
j∈S′i

fji∆Vj

)
ui∆Vi (A.1)

Therefore
4∑
i=1

(∑
j∈Si

fijuj∆Vj

)
∆Vi −

4∑
i=1

(∑
j∈Si

fijui∆Vj

)
∆Vi

=
4∑
i=1

(∑
j∈S′i

fji∆Vj

)
ui∆Vi −

4∑
i=1

(∑
j∈Si

fijui∆Vj

)
∆Vi

=
4∑
i=1

(∑
j∈S′i

fji∆Vj −
∑
j∈Si

fij∆Vj

)
ui∆Vi

≈
∫

Ω

(∫
S′i
fji dVj −

∫
Si
fij dVj

)
ui dVi (A.2)
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At last, we obtain∫
Ω

∫
Si
fij(uj − ui) dVj dVi =

∫
Ω

(∫
S′i
fji dVj −

∫
Si
fij dVj

)
ui dVi (A.3)

Above equation is widely used in the derivation of nonlocal strong form from weak form.

Such expression is valid in the continuum form as well as in discrete form.
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Thuc P Vo. A refined quasi-3d isogeometric analysis for functionally graded microplates based on the

modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 313:904–940,

2017.

[21] A.C. Eringen. Nonlocal polar elastic continua. International journal of engineering science, 10(1):1–16,

1972.

[22] A.C. Eringen and D.G.B. Edelen. On nonlocal elasticity. International journal of engineering science,

10(3):233–248, 1972.

[23] A.C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and

surface waves. J. Appl. Phys., 54(9):4703–4710, Sep 1983.

[24] A.C. Eringen. Microcontinuum field theories: I. Foundations and solids. Springer Science & Business

Media, 2012.

[25] E. Cosserat and F. Cosserat. Théorie des corps déformables. 1909.
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